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With carbon dioxide (CO2) levels continuing to rise in the coming decades and 
threatening agro-ecosystems worldwide, it is crucial to understand the impact of 
elevated CO2 on global food production and security. Elevated CO2 levels have 
been found to reduce micronutrients such as Zinc (Zn) and Iron (Fe) in staple 
crops, potentially exacerbating the already existing global micronutrient 
deficiency issue. However, as vegetables serve as another key source of 
micronutrients, it remains uncertain to what extent this negative effect on 
micronutrient levels also applies to them. To address this, we investigated the 
effects of elevated CO2 on Zn and Fe in vegetables using a meta-analysis. As 
expected, we found a significant increase (27%, 95% CI: 14–41%) in vegetable 
biomass production under elevated CO2 levels. Elevated CO2 (i) significantly 
reduced overall Zn concentration in vegetables by 8.9% (95% CI: 4–14%), while 
this effect was pronounced only in fruit vegetables (11%), but not in leafy and stem 
vegetables; (ii) consistently exhibited minimal effects on Fe concentration in 
vegetables. In the context of climate change with rising CO2 levels, these findings 
suggest that elevated CO2 could potentially exacerbate Zn deficiencies through 
vegetable consumption, albeit with enhanced vegetable yields. Furthermore, as 
the global population increasingly adopts vegetarian diets in the future, these 
results underscore the need for mitigation strategies to address potential future 
micronutrient deficiencies. 
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1 Introduction 

Atmospheric carbon dioxide (CO2) is projected to increase up 
to 550 ppm by the middle of the 21st century, nearly doubling the 
pre-industrial CO2 levels (Friedlingstein et al., 2023; Lan et al., 2024; 
Smith and Myers, 2018). Such increases in atmospheric CO2 

concentrations have been reported to affect human nutrition by 
influencing global food production and altering nutrient 
concentrations in staple crops (Beach et al., 2019; Myers et al., 
2017; Smith and Myers, 2019). An exemplification of this 
phenomenon is that several food crops under elevated CO2 levels 
have shown decreased mineral nutrient concentrations (Myers 
et al., 2015; Semba et al., 2022; Smith et al., 2017). 

Globally, more than two billion people are deficient in 
micronutrients (Seal and Prudhon, 2007). Among the essential 
elements, micronutrients such as Zinc (Zn), Iron (Fe) and 
Selenium (Se) are particularly critical for humans due to their 
critical roles in numerous biological functions and human 
physical growth (Belay et al., 2021; Frise et al., 2022; Jones et al., 
2017; Phiri et al., 2019). However, the reductions in Zn, Fe, and Se 
concentrations in plants induced by increased atmospheric CO2 

levels may potentially accelerate micronutrient deficiencies for 
individuals who heavily depend on crops as their primary source 
of food. A meta-analysis encompassing 143 comparisons of edible 
portions of crops, including maize, rice, wheat, sorghum and field 
peas, revealed that elevated CO2 led to significant decreases in Fe 
and Zn concentrations across all crops except maize (Myers et al., 
2014). It was estimated that an additional 175 million people in 
2050 will face Zn deficiency and around 1.4 billion individuals are 
anticipated to experience a reduction of more than 4% in dietary Fe 
due to elevated CO2 levels (Smith and Myers, 2018). Similarly, Se 
concentrations also tended to decrease in rice and cucumber under 
elevated CO2 in research trials (Wang et al., 2023; Wei et al., 2021). 

Aside from staple crop consumption, vegetables are highly 
recommended in daily diets due to their diverse range of 
beneficial compounds, such as vitamins, antioxidants, minerals, 
and dietary fiber (Dong et al., 2020). Globally, 1.2 billion tons of 
vegetables were produced in 2021 and the demand for vegetables is 
growing (FAO, 2022). Although numerous studies have shown 
changes in the essential nutrients Zn, Fe and Se in staple crops 
under elevated CO2, far less attention has been devoted to the effects 
of elevated CO2 concentration on vegetable growth and quality. 
Moreover, in climate-controlled vegetable cultivation, elevated CO2 

has been widely adopted as an agricultural practice for enhancing 
plant growth (Dong et al., 2018a, 2020). Thus, understanding 
vegetable growth and nutrient status under elevated CO2 

conditions is crucial for assessing the potential impacts of rising 
atmospheric CO2 concentrations on food security. 

In general, increased CO2 concentrations tend to increase 
biomass production, but the effects of elevated CO2 on the 
nutrient status of vegetables are less well recognized due to the 
predominant focus on biomass enhancement. From experimental 
observations, the impact of impact of elevated CO2 on nutrients in 
vegetables varies: some experimental trials suggested that elevated 
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CO2 levels could potentially reduce the Zn, Fe and Se in vegetables 
including sweet peppers, tomatoes and cucumbers (Dong et al., 
2018c; Pinero et al., 2017; Wang et al., 2023), while other 
experiments showed different outcomes (Baslam et al., 2012; 
Dong et al., 2018b). This disparity is likely due to the 
heterogeneity among experimental setups and plant species. For 
instance, different CO2 enrichment facilities, such as free-air CO2 

enrichment systems (FACE), open-top chambers (OTC) and 
controlled environmental conditions (CEC) have yielded varying 
results (Long et al., 2006; Taub et al., 2007; Wang et al., 2013). 
Besides, different plant species have exhibited varying responses to 
elevated CO2 conditions (Al-Hadeethi et al., 2019; Dong et al., 2020; 
Taub et al., 2007). As such, a systematic quantification of the effects 
of elevated CO2 on the Zn, Fe and Se in vegetables is needed. 
Previous similar research has pointed out a significant reduction in 
Zn and Fe, but with fewer observations (n=95 versus 51 for Zn; 
n=97 versus 49 for Fe) (Dong et al., 2018a). In contrast, another 
meta-analysis focused solely on biomass production without 
considering nutrient factors (Dong et al., 2020). Our objective 
was to systematically quantify the impacts of elevated CO2 

concentrations on biomass and micronutrients (Fe, Zn and Se) in 
vegetables using a meta-analysis. We hypothesized that elevated 
CO2 concentrations would increase vegetable biomass production 
but decrease Zn, Fe and Se concentrations in vegetables. 
2 Materials and methods 

2.1 Database compilation 

This meta-analysis is based on studies of the effects of elevated 
CO2 on the essential elements Zn, Fe and Se in common vegetables. 
An extensive keyword search was performed in the databases Web 
of Science, and the search engine Google Scholar. The keywords 
used were “carbon dioxide”, “CO2 ”, “Zn”, “Zinc”, “Fe”, “Iron”, “Se”, 
“Selenium”, “vegetable”, “salad” and the name of a specific vegetable 
was also employed as a keyword (search  strings are  listed  in
Supplementary Materials). The vegetables were classified as fruit 
vegetables, flowery vegetables, leafy vegetables, stem vegetables, and 
root vegetables. Fruit vegetables include bean, cucumber, eggplant, 
pea, pepper, squash and tomato. Flowery vegetables include 
artichoke, broccoli, cauliflower, and kale. Stem vegetables 
included celery and potato. Leafy vegetables include arugula, basil, 
cabbage, dill, endive, lettuce, onion, pakchoi, parsley, spinach and 
Swiss chard. Root vegetables include beet, carrot, radish, sweet 
potato and turnip. Pea or bean and potato were categorized as fruit 
vegetables and stem vegetables, respectively, as they are served as 
vegetables in certain countries (Gopalakrishnan, 2007; Pllana 
et al., 2018). 

Predefined inclusion criteria were applied to determine the 
eligibility of studies for incorporation into the meta-analysis. 
First, the study must include experimental treatments (elevated 
CO2 concentrations at ≥550 and ≤ 1200 μmol mol-1) and controls 
(ambient CO2 concentrations at ≥200 and ≤ 450 μmol mol-1). 
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When multiple elevated CO2 levels were investigated within the 
same study, only the outcomes from the elevated CO2 level of 
approximately double the ambient concentration were incorporated 
(Lam et al., 2012). Second, the study must present original research 
on the examination of vegetable biomass production, and Zn and/or 
Fe and/or Se concentrations in vegetables under elevated CO2 

treatments. Third, the mean and sample size for experimental 
treatments and control groups must be reported. 

The PRISMA flow chart is given in Supplementary Figure S1 in 
Supplementary Materials to present the screening and paper 
selection process. The final dataset contains 433 observations 
from 27 studies, with 95 observations for Zn, 97 observations for 
Fe, 3 observations for Se and 238 observations for biomass 
production. Additionally, to identify influencing factors and 
assess potential variation of CO2 impacts on biomass and 
nutrient status in vegetables, we collected and compiled 
information on the vegetable types, plant tissues, CO2 enrichment 
facilities and plant growth substrate. Selected studies of the meta

analysis were presented in Supplementary Materials. 
   

 

2.2 Meta-analysis 

Each effect size statistic was calculated as the log-transformed 
response ratio (LnRR) (Hedges et al., 1999). 

G )
xx1LnRR = Ln 
xx2

Where xx1 and xx2 represents the mean values in the elevated CO2 

treatments and control groups, respectively. 
The variance (v) of each LnRR was calculated as: 

SD1
2 SD2

2 CV1
2 CV2

2 

v = + = +2 2n1 xx1 n2 xx2 n1 n2 

Where v is the sampling variance, SD and n are the 
corresponding standard deviation and sampling size, respectively, 
and CV is the coefficient of variation. 

If standard error (SE) instead of standard deviation (SD) were 
presented in studies, the transformation from SE to SD was 
performed utilizing the following mathematical equation: 

pffiffiffi 
SD = SE x n

Where n represents the sample size. 
The weighting factor (w) was computed as: 

1 
w =  

v 

The weighted response ratio (LnRR+) for all experiments was 
calculated as 

i ðwi x LnRRiÞo1LnRR+ = io1wi 

Where wi and LnRRi are the w and LnRR from the ith study. 
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The 95% confidence interval (95%CI) for LnRR+ was computed as 

sffiffiffiffiffiffiffiffiffiffiffiffi 
1 

95%CI = LnRR+ ± 1:96 io1wi 

The random effect model was employed to obtain the results 
described above with the “metafor” package in R v.4.3.2. Elevated 
CO2 effects were considered significant if the 95% confidence 
interval values did not overlap with zero. The effect sizes were 
transformed into percentages using the equation below to better 
illustrate the impacts of elevated CO2 addition: ( )LnRR+Effect size % = e − 1 x 100 % 

For empirical papers that did not present standard deviations 
or statistics that allow the calculation of SD, a method called “All 
cases” addressing missing standard deviations (SDs) through an 
improved LnRR2 and a weighted average CV, estimated from 
studies that do report SDs in the dataset, was adopted as described 
by Nakagawa et al. (2023). Briefly, a weighted average of CVs 
within studies was first calculated when multiple effect sizes were 
reported in one study. The pooled average of CVs between studies 
was then computed for variance calculations and the variance was 
used to substitute cases that lack SDs. 

G ) G ) 
xx1 1 CV1

2 CV2
2 

LnRR2 = Ln  + − 
xx2 2 n1 n2 

" #2 " #2k k 
i=1(n1iCV1i) i=1(n2iCV2i)o o 

k k oi=1n1i oi=1n2i 
v(LnRR2) =  +
 

n1 n2
 " #4 " #4k k 
i=1(n1iCV1i) i=1(n2iCV2i) 

k k 
o o 
oi=1n1i oi=1n2i 

+ 
2n1

2 + 
2n2

2 

The details and equations for the estimators for each effect size 
and variance can be found in the research of Nakagawa et al. (2023). 
2.3 Statistical analysis 

The title and abstract screening process was conducted using 
Covidence. Data from the selected studies were collected and 
extracted using WebPlotDigitizer software and directly from 
tables. We applied intercept-only multivariate meta-analysis 
models, setting ‘1|Observation’ as the random effect, to test 
whether the lnRRs significantly differed from 0. The data were 
subsequently categorized into subgroups based on vegetable type, 
plant tissue, CO2 enrichment facility, and plant growth substrate. 
For each subgroup, similar intercept-only multivariate meta

analysis models were applied to test whether their lnRRs 
significantly differed from 0. The meta-analysis and visualization 
of the results were conducted using the metafor package and ggplot 
package in R v.4.3.2. 
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3 Results 

3.1 Overall effects of elevated CO2 on 
biomass and Zn, Fe and Se in vegetables 

Overall, elevated CO2 enhanced vegetable biomass production 
significantly by 27% (95% CI: 14–41%) (Figure 1). However, Zn 
concentration in vegetables significantly decreased by 8.9% (95% 
CI: 4–14%; Figure 1) under elevated CO2. A similar trend was also 
found for Se concentrations in vegetables, with a significant 16% 
(95% CI: 0.5%–29%) reduction. However, this finding for Se should 
be interpreted with caution due to the limited number of studies 
available, which may affect the robustness of the estimated effect 
size. In contrast, no significant effect from elevated CO2 on Fe 
concentrations was detected. 
3.2 Variation of elevated CO2 effects on 
vegetables from different subgroups 

A consistent positive effect of elevated CO2 on biomass 
production was observed across different vegetable groups 
(Figure 2), with significant 19%, 35% and 51% increases in 
biomass production for fruit vegetables, leafy vegetables, and stem 
vegetables, respectively. The response of biomass to elevated CO2 

exhibited variations based on the plant tissue classification. The 
increase in biomass production was 54%, 20%, 32% and 66%, 
Frontiers in Plant Science 04
respectively, for fruit, leaves, stems and tubers of vegetables. In 
contrast, vegetable root biomass did not exhibit any changes. 
Moreover, the impacts of CO2 varied depending on CO2 

enrichment technologies applied in agricultural practices. The 
biomass  production  of  vegetables  grown  in  controlled  
environmental conditions (CEC) and open-top chambers (OTC) 
increased by 23% and 37%, respectively, under elevated CO2 

conditions. However, this increase was not observed with 
vegetables grown under free-air CO2 enrichment (FACE) systems, 
suggesting that results from controlled environments may not fully 
capture plant responses under field conditions. Furthermore, CO2 

had a consistently positive effect on vegetables grown using different 
substrates, with 44%, 38% and 20% increases when growing in field 
soils, hydroponic systems and pots, respectively. 

While elevated CO2 generally led to a decrease in Zn 
concentrations in vegetables, the variations manifest differently 
within distinct subgroups (Figure 2). Elevated CO2 resulted in a 
significant decrease (11%) in Zn concentration in fruit vegetables, 
while Zn concentrations in leafy and stem vegetables appeared 
unaffected. Likewise, for the fruit of vegetables, increasing CO2 

levels led to an evident 14% reduction in Zn concentrations, while 
no such effect was observed for other plant parts. In studies 
employing CO2 enrichment technologies including CEC and 
OTC, the elevated CO2 induced a notable reduction of 7.3% and 
15% in Zn concentrations, respectively, while FACE exhibited 
minimal effects. Vegetables cultivated in both hydroponic systems 
and pots exhibited a pronounced negative impact from elevated 
FIGURE 1 

Overall effects of elevated CO2 on biomass production, and Zn, Fe and Se concentrations in vegetables. The x-axis values indicate estimates of 
percentage change with 95% confidence intervals. The numbers in parentheses represent the experimental observations of each respective 
indicator. Overlapping with the dashed line indicates no effect of elevated CO2. 
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CO2 on Zn, leading to a 21% and 6.2% reduction in Zn levels, 
respectively. However, these effects were not observed in vegetables 
grown in the field at elevated CO2 conditions. 

No significant changes in Fe concentrations were observed in 
vegetables under the elevated CO2 condition, neither overall nor 
within any subgroups (Figure 2). 
4 Discussions 

4.1 Effects of elevated CO2 on vegetable 
biomass 

Elevated CO2 increases (27%) vegetable biomass significantly 
(Figure 1), which is comparable with the results from a previous 
meta-analysis (Dong et al., 2020) as well as the response of staple 
crops biomass to elevated CO2, with wheat increased by 23% 
(Ainsworth, 2008), soybean by 37% (Ainsworth et al., 2002), 
barley by 24% (Gardi et al., 2022) and rice by 24% (Wang et al., 
2015). There are two possible explanations for the positive effects of 
Frontiers in Plant Science 05 
elevated CO2 on plant biomass. First, elevated CO2 increases 
photosynthetic efficiency by increasing photosynthetic rate while 
in the meantime reducing stomatal conductance (Seneweera and 
Norton, 2011). A meta-analysis of 12 large-scale FACE experiments 
revealed that elevated CO2 resulted in a 31% increase in the light-
saturated photosynthetic rate for 40 species (Ainsworth and Long, 
2005). More specifically, elevated CO2 can enhance the 
carboxylation rate of Ribulose-1,5-bisphosphate (RuBP) 
carboxylase/oxygenase (RuBisCO), which is an important enzyme 
in plants catalyzing the initial step in the net photosynthetic CO2 

assimilation (Spreitzer and Salvucci, 2002). Although RuBisCO 
exhibits a high affinity for CO2, it is typically not saturated at 
current atmospheric CO2 levels in C3 plants as it also binds with 
oxygen to catalyze the oxygenation of RuBP. However, with 
increased CO2 concentrations, the carboxylation rate of RuBisCO 
can be augmented, as the competitive inhibition of oxygen on 
RuBisCO is alleviated (Ainsworth and Long, 2005). This leads to an 
increase in the rate of CO2 fixation and the decrease in 
photorespiration, thereby contributing to higher photosynthetic 
rates and increased biomass production (Allen, 1994; Long et al., 
FIGURE 2 

Variation in the effects of elevated CO2 on biomass production and Zn and Fe concentrations in vegetables across different subgroups. The x-axis 
values indicate estimates of percentage change with 95% confidence intervals. The numbers represent in parentheses the experimental observations 
of each respective indicator. Overlapping with the dashed line indicates no effect of elevated CO2. 
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2006, 2004). Second, biomass increase can be associated with the 
cultivation environment (Dong et al., 2020). Vegetables cultivated 
in climate-controlled environment chambers or greenhouses 
usually benefit from optimal growing conditions such as warmer 
temperature, sufficient water and nutrients. Consequently, plants 
exhibited greater response in terms of photosynthesis and biomass 
production under suitable and stable environments when elevated 
CO2 is supplied (Dong et al., 2020; Long et al., 2004). This is in 
agreement with our results, where a significant biomass 
enhancement of 23% and 37% was observed in vegetables grown 
in well-controlled CEC and OTC systems, respectively, while no 
changes were found in FACE systems. 

Overall, elevated CO2 has a consistent positive effect on biomass 
production across various subgroups, with a few exceptions such as 
the biomass from the FACE system (Figure 2). This result is in line 
with other studies. For instance, Long et al. (2006) revealed that the 
enhanced yield of crops was approximately 50% less in FACE 
studies than in enclosure studies. One possible explanation for 
this lack of response in biomass in the FACE system is the co-vary 
factors, such as variations in temperature and precipitation 
fluctuations and soil heterogeneity under field conditions, 
influencing photosynthetic rate and biomass (Reich et al., 2014). 
Thus, future studies should explore the interactive effects of elevated 
CO2 with other factors on biomass production. Controlled-
environment studies can provide valuable mechanistic insights, 
however, incorporating FACE experiments will enhance the 
applicability of findings to real-world scenarios. 

It is important to note that while elevated CO2 increased 
biomass production for fruit, leaves, stems, and tubers of 
vegetables significantly, it had limited impacts on vegetable root 
biomass (Figure 2). The observed increase in tuber biomass 
production aligns with the findings of Miglietta et al. (2002) who 
reported that rising CO2 levels significantly enhanced tuber yield of 
potatoes. This difference between tubers and roots can be attributed 
to their distinct functions. Tubers act as storage organs where excess 
carbon fixed during photosynthesis is deposited as starch 
(Turesson, 2014). Elevated CO2 enhances photosynthetic activity, 
leading to increased carbohydrate production, which is 
preferentially allocated to storage tissues like tubers, thus 
increasing the biomass production of tubers. The unchanged root 
biomass aligns with the limited effect of elevated CO2 on root 
biomass previously observed in grassland ecosystems (Arnone et al., 
2000) and barley (Martıń-Olmedo et al., 2002). This may be 
attributed to the increased water use efficiency via reduced 
stomatal conductance under elevated CO2, decreasing the 
demand for water supply and thereby mitigating the necessity for 
a larger root system (Phillips et al., 2005; Reich et al., 2014). 
However, this result does not align with the findings that elevated 
CO2 increases root production from grassland, forest and 
agriculture systems (Nie et al., 2013). This discrepancy might 
result from the short-term exposure to rising CO2 levels since 
vegetables have shorter growth cycles compared to other staple 
crops and tree species. Further research is needed to verify this 
explanation. Nevertheless, our result suggests that the effects of 
elevated CO2 primarily manifest in non-root tissues. 
Frontiers in Plant Science 06
4.2 Effects of elevated CO2 on Zn, Fe and 
Se concentration in vegetables 

Aligned with our expectation, elevated CO2 led to an average 
8.9% decrease in Zn concentrations in vegetables (Figure 1). Rising 
atmospheric CO2 levels have been reported to decrease mineral 
concentrations in staple crops. For example, a meta-analysis of the 
response of diverse species to elevated CO2 has demonstrated that 
Zn concentration was decreased by 9.1% in wheat, 3.4% in rice, 
5.6% in soybeans and 5.2% in corn, respectively (Al-Hadeethi et al., 
2019). Additionally, meta-analyses focusing on individual species 
further corroborated these findings, with a 3.7% decrease in Zn 
concentration in rice (Hu et al., 2022) and 12% in wheat (Broberg 
et al., 2017). Likewise, with increasing CO2 levels, experimental 
studies have observed a decreased Zn concentration in vegetables, 
such as tomatoes (Khan et al., 2013), potatoes (Kumari and 
Agrawal, 2014) and cucumbers (Dong et al., 2018b). The 
mechanism behind the reduction in mineral contents such as Zn 
associated with increasing CO2 levels has not been fully elucidated 
(Myers et al., 2014; Soares et al., 2019). “Dilution effect” has been 
proposed to account for this phenomenon, wherein the increased 
carbohydrate production leads to a decrease in mineral 
concentration (Jarrell and Beverly, 1981; Myers et al., 2014). This 
appears to explain an overall 27% increase in biomass and an 8.9% 
decrease in Zn concentration in our study. Besides, resulting from 
the reduced stomatal conductance in response to the rising CO2 

levels, plants tend to exhibit decreased transpiration. This reduction 
in transpiration could result in diminished mass flow, consequently 
leading to reduced nutrient uptake such as the uptake of Zn (Ben 
Mariem et al., 2021; Li et al., 2018; McGrath and Lobell, 2013). 

Across all studies in the present analysis, elevated CO2 

decreased Zn concentration in fruit vegetables but not in leafy 
vegetables and stem vegetables (Figure 2). When it comes to 
different tissues of vegetables, similarly, elevated CO2 decreased 
Zn concentration in fruit tissues rather than in other parts of 
vegetables. This may be ascribed to the slower re-translocation of 
Zn within plants via phloem under elevated CO2, making it less 
easily redistributed to fruits after root uptake (Olsen and Palmgren, 
2014; Page and Feller, 2015; Ujiie et al., 2019). Besides, the biomass 
of fruits appears to be more sensitive to elevated CO2 

concentrations, showing the highest biomass increase (55%, 
Figure 2) compared to other plant parts, which can be partially 
explained by the “dilution effects” in fruits. 

CO2 enrichment facilities also impacted the response of Zn 
concentration in vegetables to elevated CO2. Cultivating OTC and 
CEC systems resulted in a greater decrease in Zn compared to the 
FACE system. This aligns with the increased biomass production in 
vegetables cultivated with OTC and CEC systems under elevated 
CO2, which might be again explained as the “dilution effect”. There 
are also two other possible explanations. First, the variations in 
weather conditions such as temperature and water fluctuations in 
FACE system might account for limited effects of elevated CO2 on 
Zn. This can be further supported by the observed larger decrease of 
Zn in vegetables cultivated in pot and hydroponic systems than in 
field soil conditions (Figure 2). In pot system, the volume of soil 
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substrate available for root exploration is more limited compared to 
field-grown plants. This constraint can affect plant growth and 
nutrient uptake, as roots in field conditions can expand freely, 
accessing a larger volume of nutrients. Second, edge effects in OTC 
and CEC systems might influence the response due to the warmer 
conditions induced in these systems compared to the FACE system 
(Taub et al., 2007). Together with the greater biomass production 
and Zn decrease, elevated CO2 showed greater effects on vegetables 
in OTC and CEC systems compared to FACE. 

Similar to Zn, Se concentration in vegetables exhibited a 
decreasing trend under elevated CO2. However, we should note 
that there was a limited number of comparative observations in this 
study and the result must be interpreted with care. Current research 
on the response of Se in plants to CO2 fertilization in different plant 
species is limited and inconsistent. For instance, elevated CO2 

increased Se concentration by 30% in cucumbers when 0.5 mg Se 
L-1 was applied, while no significant changes were observed at lower 
Se doses (Wang et al., 2023). Similarly, in staple crops, Se 
concentration in rice was decreased under elevated CO2 (Wei 
et al., 2021), while other studies did not observe any changes in 
Se levels in wheat (Högy et al., 2013) and soybeans (Köhler et al., 
2019). These discrepancies, along with the limited studies of 
elevated CO2 effects on Se in vegetables, underscore the need for 
further research to validate the observed trend and clarify the 
underlying mechanisms. 

Against our expectation, there was no significant changes in Fe 
concentrations in vegetables under elevated CO2 conditions 
(Figures 1, 2). This finding differed from the meta-analysis by 
Dong et al. (2018a), who found a 16% reduction in Fe in 
vegetables with rising CO2 levels. This discrepancy can be 
attributed to the fewer comparison observations (n=49) included 
in their analysis compared with our work (n=97) since fewer 
observations might lead to a narrower data cope. The non
significant changes of Fe in vegetables observed in the present 
study also contrast with the findings reported for staple crops. For 
instance, in a meta-analysis, elevated CO2 conditions decreased 
around 4-6% of Fe content in staple crops (Al-Hadeethi et al., 2019). 
This variation in the Fe response might be attributed to the 
differences among the various species investigated. For example, 
Myers et al. (2014) also revealed that elevated CO2 was associated 
with significant decreases in Fe levels in wheat (5.5%), rice (7.3%), 
barley (10.5%) and soybean (4.1%), but no significant changes were 
observed in potato and sorghum. Nevertheless, the unchanged Fe 
level under increasing CO2 levels cannot be explained by the 
“dilution effect” theory. One potential explanation is that the 
change in Fe concentration in rising CO2 is smaller than the 
change in Zn. This stems from the distinct mass flow 
mechanisms governing the transport of these elements in plants, 
influenced by their differing solubilities. Compared to other 
micronutrients, such as calcium (Ca) and Zn, Fe is typically 
present at much lower concentrations in soil solution due to its 
low solubility, particularly under aerobic and alkaline conditions. 
As a result, Fe exhibits limited mobility via mass flow and its 
availability to plants is often constrained (McGrath and Lobell, 
2013). Therefore, it is less likely influenced by the altered mass flow 
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induced by elevated CO2. In addition, Fe availability in soil is 
affected by a complex interplay of factors, such as pH, organic 
matter, microorganisms and interactions with other nutrients 
(Colombo et al., 2013). For instance, higher pH in soil solutions 
reduces Fe availability. Elevated CO2 can further alter soil chemistry 
and microbial dynamics, potentially affecting nutrient cycling and 
availability (Blagodatskaya et al., 2010; Terrer et al., 2021). 
However, many studies on plant nutrition under elevated CO2 

have not fully accounted for these soil-mediated processes 
influencing Fe availability. This gap highlights the need for more 
comprehensive research that integrates soil chemistry and plant 
physiology to better understand nutrient dynamics under elevated 
CO2 conditions. However, the above explanations may not apply to 
the situation with soilless cultivated vegetables, such as those grown 
in hydroponic systems, where Fe is assumed to be soluble and 
available in hydroponic solutions. Another possible explanation for 
the unchanged Fe concentration is the well-fertilized cultivation 
conditions in vegetables grown in hydroponic systems, where 
nitrogen and other nutrients are typically well-supplied, reducing 
nutrient limitations that could constrain Fe acquisition. For 
example, Fe concentration in wheat was not altered under 
medium nitrogen levels, while it significantly decreased under low 
nitrogen levels when exposed to elevated CO2 conditions compared 
to ambient CO2 levels (Al-Hadeethi et al., 2019). As an enzymatic 
cofactor of nitrogen metabolism (such as nitrite and nitrate 
reductase), Fe plays an important role in nitrogen assimilation in 
plants (Borlotti et al., 2012; Nasar et al., 2022). Thus, the well-
supplied nitrogen may enhance plant health and the physiological 
requirements of Fe as an enzymatic cofactor, possibly altering Fe 
uptake in plants (McGrath and Lobell, 2013). Moreover, unlike soil-
based cultivation, where nitrogen can influence Fe availability by 
affecting soil pH, hydroponic systems offer a controlled 
environment where pH is relatively stabilized, minimizing 
variability in Fe availability. Furthermore, due to its essential role 
in plant growth, plants tightly regulate Fe homeostasis and respond 
to both Fe deficiency and Fe overload (Morrissey and Guerinot, 
2009). Thus, there may be regulations in vegetables regarding Fe 
changes induced by elevated CO2 levels to maintain Fe homeostasis, 
but such speculation requires further investigation. 

Although changes in Zn, Fe, and Se concentrations under 
elevated CO2 are discussed, the studies included in this analysis 
did not account for the supply of these nutrients. It is important to 
note that nutrient distribution and transport in plants can be 
influenced by the levels of Zn and Fe supply, which may affect 
the observed nutrient concentrations. For instance, under sufficient 
Zn supply, Zn is primarily absorbed through root uptake. However, 
under Zn-deficient conditions, root uptake and Zn remobilization 
from the roots, stems, and leaves to seeds can occur, as observed in 
rice (Sperotto, 2013). Similarly, the supply range of Se affects its 
response to elevated CO2. For instance, Se concentration in 
cucumbers increased by 30% under elevated CO2 when 0.5 mg Se 
L-1 was applied, but no significant changes were observed at lower 
Se doses (Wang et al., 2023). The mechanisms underlying the effects 
of nutrient supply on plant responses to elevated CO2, however, 
remain to be explored. 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1509102
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1509102 
4.3 Implications for nutrients deficiency 
and future work 

Dietary deficiency of Zn, Fe and Se poses a significant global 
public health challenge. By 2050, an additional 175 million people 
were estimated to become Zn deficient due to the reduced Zn 
concentrations in staple crops as CO2 levels reach 550 ppm (Smith 
and Myers, 2018). From our analysis, elevated CO2 levels did not 
have a substantial impact on Fe concentration in vegetables. This 
finding suggests that elevated CO2 levels may not further exacerbate 
Fe deficiency stemming from vegetable consumption. However, a 
significant reduction (8.9%) in Zn has been observed in vegetables 
under rising atmospheric CO2 levels. This implies that rising CO2 

levels have the potential to further exacerbate Zn deficiency related 
to vegetable consumption, particularly among the population who 
consume little animal flesh or animal-based products. Plant-based 
foods such as vegetables generally contain a lower Zn content 
compared to meat (Gibson, 2012) and the presence of inhibitors 
such as phytates will further impede Zn acquisition (Hunt, 2003). 
Thus, individuals who exclusively rely on plant-based food may face 
an increased risk of Zn deficiency under rising CO2 levels due to the 
reduced Zn concentration. For non-vegetarians, meat can be an 
important source of essential nutrients such as Zn, Fe and Se 
(Czerwonka and Tokarz, 2017; Gerber et al., 2009). For instance, 
animal-based food provides more than 50% of the Zn in adult diets 
in the United States, with beef alone contributing more than 25% of 
all Zn intake (Subar et al., 1998). Thus, individuals who can benefit 
from meat consumption may be less affected by the reduced Zn 
concentration in staple crops and vegetables under rising CO2 

levels. However, meat consumption varies significantly from 
region to region. For instance, the highest levels for unprocessed 
red meat consumption range from 60 g to 91 g per day in Latin 
America and Europe, while the lowest levels range from 7 g to 34 g 
per day in Asia and Africa (Micha et al., 2015). Those with limited 
access to meat may still experience Zn deficiency due to reduced Zn 
concentrations in vegetables and staple crops under rising 
CO2 levels. 

Se deficiency and its associated prevalence have been reported 
in many parts of the world, such as sub-Saharan Africa (Phiri et al., 
2019), China (Chen, 2012) and Germany (Moghaddam et al., 2020), 
and advocating for improving the Se supply by dietary or 
supplemental measures has been suggested. Albeit limited 
observations, our results show elevated CO2 decreases Se 
concentrations significantly in vegetables. Therefore, under future 
climate change scenarios with rising CO2 levels, further research 
with a larger sample size is necessary to verify the trends observed. 

Elevated CO2 showed greater effects on vegetables (higher 
biomass production and greater Zn decreases) cultivated in OTC 
and CEC systems compared to FACE. This disparity likely derives 
from the variation of other factors under field conditions. 
Moreover, given limited observations under field conditions, 
future field research that resembles realistic environmental 
conditions is needed. Besides, future work should also investigate 
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long-term effects and consider other essential nutrients. Our current 
understanding is also hampered by the fact that the data available is 
that the available data is limited to C3 vegetables. Given the 
physiological differences between C3 and C4 plants in terms of 
carbon fixation pathways and response mechanisms to 
environmental conditions, it is essential to assess whether similar 
changes in nutrients observed in C3 plants also apply to 
C4 vegetables. 
5 Conclusions 

Our results show that elevated CO2 significantly enhanced 
biomass production in vegetables by 27%. However, it also led to 
an 8.9% reduction in Zn concentrations, while Fe concentrations in 
vegetables were not impacted. The severity of nutrient reductions in 
vegetables induced by elevated CO2 varied with vegetable types, 
micronutrients, and conditions of CO2 enrichment facilities. These 
findings suggest a risk of exacerbating Zn and Se deficiencies with 
the consumption of vegetables under elevated CO2 conditions, but 
it appears that this issue may not be exacerbated for Fe. The findings 
underscore the importance of considering the nutritional 
implications of climate change-induced alterations in vegetable 
composition, and the need to mitigate potential nutrient 
deficiencies in vegetables, thereby promoting global food security 
and human health. 
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