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Introduction: Maize kernel variety identification is crucial for reducing storage

losses and ensuring food security. Traditional single models show limitations in

processing large-scale multimodal data.

Methods: This study constructed an interpretable ensemble learning model for

maize seed variety identification through improved differential evolutionary

algorithm and multimodal data fusion. Morphological and hyperspectral data

of maize samples were extracted and preprocessed, and three methods were

used to screen features, respectively. The base learner of the Stacking integration

model was selected using diversity and performance indices, with parameters

optimized through a differential evolution algorithm incorporating multiple

mutation strategies and dynamic adjustment of mutation factors and

recombination rates. Shapley Additive exPlanation was applied for interpretable

ensemble learning.

Results: The HDE-Stacking identification model achieved 97.78% accuracy. The

spectral bands at 784 nm, 910 nm, 732 nm, 962 nm, and 666 nm showed positive

impacts on identification results.

Discussion: This research provides a scientific basis for efficient identification of

different corn kernel varieties, enhancing accuracy and traceability in germplasm

resource management. The findings have significant practical value in

agricultural production, improving quality management efficiency and

contributing to food security assurance.
KEYWORDS

maize kernel, variety identification, stacking ensemble model, multimodal data,
differential evolutionary algorithm, SHAP value
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1 Introduction

The problem of global food security is becoming increasingly

serious, and maize, as one of the major food crops globally

(Tyczewska et al., 2018), shoulders the important mission of

securing human food supply. Kernel quality of maize not only

affects germination and growth and development, but also directly

relates to the final yield and economic benefits (Sehgal et al., 2018).

Therefore, accurate and rapid identification of maize kernels not

only helps to improve the efficiency of agricultural production, but

also ensures that high-quality kernels reach the market and reduces

the waste of resources and economic losses (Yang et al., 2017; Wang

D. et al., 2021; Zhang et al., 2022). Although traditional

identification methods such as high performance liquid

chromatography (HPLC), protein electrophoresis and DNA

molecular labelling have high accuracy, these methods generally

have significant drawbacks such as being destructive, costly and

time-consuming (Zareef et al., 2021; Zhang et al., 2024), so it is

important to develop rapid, non-destructive and economical

methods for seed variety identification.

In recent years, with the rapid development of information

technology, the application of multimodal data has gradually

become a trend in the identification of maize kernel varieties

(Zhou et al., 2017). Multimodal data refers to multidimensional

information acquired through a number of different perceptual

means or data sources. Image data can capture the appearance

characteristics of seeds, including shape, color, and surface texture,

but the appearance characteristics are often not sufficient to

comprehensively reflect the intrinsic quality differences of seeds

(Khojastehnazhand and Roostaei, 2022). Hyperspectral technology

reveals the internal chemical composition and physical structure of

seeds by collecting reflectance spectral data in multiple spectral

bands, providing richer information for seed identification (Hu

et al., 2022). Researchers have proposed various improvements to

address the limitations of a single learner. Table 1 presents a

performance comparison of different techniques in seed variety

classification. While deep learning methods have demonstrated

exceptional performance in image-based classification tasks due

to their powerful feature learning capabilities, they require larger

training datasets, longer training periods, and exhibit lower

interpretability compared to traditional machine learning
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approaches. Notably, the fusion of image and spectral data has

shown significant advantages, achieving 97.7% accuracy in ten-class

maize classification tasks. These results indicate that single data

sources often overlook crucial feature information, whereas the

fusion of multiple features can enhance feature representation

through complementary effects. Consequently, researchers have

started investigating the integration of information from multiple

feature types to enhance classification and discrimination tasks.

Huang et al. (2016a) combined morphological and spectral features

for maize seed classification, achieving an accuracy of 92.65% using

a least squares support vector machine classifier. Li et al. (2023)

combined morphological and hyperspectral features to predict

cotton seed vigor using a modified one-dimensional CNN model

and obtained a correlation coefficient of 0.9427 after fusion of

spectral and image features. Yang et al. (2015) utilized hyperspectral

imaging combining spectral and image features and used SVM

model for identification with up to 98.2% accuracy. Scholl et al.

(2021) proposed a deep learning method that fuses hyperspectral,

LiDAR and RGB data to significantly improve the accuracy of crop

identification. These studies demonstrate the great potential of

multimodal data in maize kernel variety identification, when the

capability of single-modal data is limited, multimodal fusion can

effectively make up for its shortcomings.

Meanwhile, the effective integration of high-dimensional and

complex data is still a great challenge. With the rapid development

of artificial intelligence, machine learning methods have been

widely applied in agricultural research, showing great potential in

crop yield prediction (Guo et al., 2021, 2022, 2023), crop

phenotyping (Ubbens and Stavness, 2017; Mochida et al., 2019;

Zheng et al., 2021), growth monitoring (Singh et al., 2016;

Moysiadis et al., 2023; Aierken et al., 2024) and variety

identification (Kurtulmuş and Ünal, 2015; Tu et al., 2022).

Traditional single algorithms have limited learning capabilities

and are prone to overfitting when dealing with multimodal data

(Duan et al., 2024). Ensemble learning techniques are gradually

being introduced to further drive model performance optimization

(Wang L. et al., 2021). In agricultural applications, Umamaheswari

and Madhumathi (2024) developed a Stacking ensemble model for

crop yield prediction by combining multiple machine learning

algorithms, which significantly improved prediction accuracy

compared to single models. Wang et al. (2024) proposed an
TABLE 1 Classification results of different technologies.

Sorting
Technology

Data Type
Number of Varieties

and Categories
Model Accuracy (%) Ref

Machine learning

Hyperspectral five types of wheat ELM 86.26 (Bao et al., 2019)

NIR+HSI seven types of cotton PLS-DA, LR, SVM 80 (Zhu et al., 2019)

RGB five types of maize MLP, LDA, SVM etc. 93 (Xu et al., 2021)

Deep learning

NIRS four years of cotton seeds CNN, RNN, LSTM, etc. 93.5 (Duan et al., 2021)

HSI eight types of wheat seeds CNN 95.65 (Zhao et al., 2022)

RGB six types of maize ResNet50 91.23 (Li et al., 2024)

RGB+NIRS ten types of maize BP Neural Network 97.7 (Yang and Hu, 2023)
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innovative Stacking framework that integrated crop simulation

models with machine learning methods to estimate pakchoi dry

matter yield, demonstrating the advantages of ensemble learning in

handling complex agricultural data. Bigdeli et al. (2021) proposed

an ensemble deep learning strategy based on CNN-SVM, which

significantly improves the accuracy of remote sensing data

classification, and the classification accuracy is improved by 2% to

10% compared with the traditional methods. Therefore, this study

chooses to solve the problem of maize kernel variety identification

from the perspective of ensemble learning. However, in the practical

application of machine learning, performance largely depends on

the setting of hyperparameters within the model. Therefore,

selecting the optimal hyperparameters is the most critical step.

The swarm intelligence optimization algorithm can effectively solve

nonlinear parameter optimization problems and has strong global

search capabilities and adaptability. In recent years, a variety of

evolutionary algorithms have been proposed to solve optimization

problems, such as the grey wolf optimization algorithm (GWO), the

grasshopper optimization algorithm (GOA), and the sparrow

search algorithm (SSA). Research has shown that these swarm

intelligence algorithms outperform traditional optimization

algorithms in many fields, such as speech recognition, image

processing, path planning, and data mining. For example, the

hybrid particle swarm optimization algorithm proposed by Sudha

and Maheswari (2024) improved the accuracy of Mask RCNN to

98.96% in the lung cancer detection task. Shao et al. (2022) applied

the sparrow search algorithm to intelligent vehicle classification and

achieved an accuracy of 95.83% in multi-modal data analysis.

Among the many evolutionary algorithms, this study selected the

differential evolution (DE) algorithm as the basic algorithm, mainly

based on the following considerations: it has few parameters, is easy

to implement and adjust; it has a mature theoretical basis and a

wealth of improvement strategies; it performs stably in continuous

optimization problems. However, the differential evolutionary

algorithm is less efficient in searching when dealing with high-

dimensional data, and it is easy to fall into local optimal solutions

(Gao et al., 2021). In response to this problem, Zhou et al. (2016)

improved the differential evolutionary algorithm through a multi-

stage strategy, which significantly improved the quality of solutions

and convergence speed in global optimization problems. Liang et al.

(2024) proposed a multi-objective differential evolutionary

algorithm that improves the quality and diversity of solutions for

high-dimensional multimodal multi-objective optimization

through a two-population framework. The selection of the base

learner is one of the key challenges in optimizing the integrated

learning model. Especially when dealing with complex data,

considering the performance and diversity of different learners

can help improve the generalization ability and robustness of

the model.

Interpretability of model decision-making processes becomes

particularly important when machine learning models are applied

to critical agricultural production decisions such as crop variety

identification. Although individual learners in ensemble learning

models (e.g., decision trees and logistic regression) are interpretable,

understanding the combined decision-making basis of the model

remains challenging when dealing with complex multimodal data
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(Sahlaoui et al., 2021; Zhang et al., 2021; Nordin et al., 2023). Users

need to understand these decision bases in order to make reasonable

adjustments to agricultural production processes (Ribeiro and dos

Santos Coelho, 2020). With the development of explainable

artificial intelligence (XAI) technology, the explainability of

ensemble learning models has become a hot research topic.

Rather than focusing only on the accuracy of the model, users are

more concerned about which features play a key role in the

decision-making process, which directly affects the quality of

decision-making in agricultural management. Charytanowicz

(2023) proposed an ensemble machine learning-based framework

for wheat grain classification, which achieved 94% classification

accuracy and model interpretability through SHAP values, with

grain furrow length, grain circumference, and the ratio of embryo

area to grain area being the key variables affecting the classification

results, especially in the Rosa and Canadian varieties which were the

most significant in the Rosa and Canadian varieties. In this context,

the design of ensemble learning frameworks with high

discriminatory performance and interpretability has become an

important research direction in the field of maize kernel

variety identification.

To address the above problems, this study proposes a

framework combining an improved differential evolutionary

algorithm and interpretable ensemble learning for maize seed

variety identification based on multimodal data. Specifically, the

contributions are mainly in the following aspects:

1. An identification framework combining multimodal data and

ensemble learning is proposed: the accuracy of maize seed variety

identification is improved by effectively integrating image and

hyperspectral data. The limitations of a single data source are

overcome through feature-level fusion, and the complementary

nature of multimodal data is effectively utilized.

2. Optimized parameter configuration of the ensemble learning

model: an improved differential evolutionary algorithm is proposed

to optimize the hyperparameter settings of the Stacking ensemble

learning model, which enhances the discriminative performance

and stability of the model to better adapt to high-dimensional

complex data.

3. Interpretable ensemble learning framework is designed: in the

ensemble learning model, a new base learner selection and fusion

strategy is proposed, which takes into account the discrimination

performance and model diversity to ensure the robustness of the

discrimination results. Meanwhile, the interpretability of the model

is enhanced by introducing the SHAP interpretation mechanism,

which makes the final discrimination results not only accurate but

also transparent and easy to understand.
2 Materials and methods

2.1 Material preparation

The maize kernel samples used in this study were provided by

Institute of Smart Agriculture at Jilin Agricultural University, and

included a total of 11 varieties: JiDan209, JiDan626, JiDan505,

JiDan27, JiDan407, JiDan50, JiDan83, JiDan953, JiDan436,
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LY9915, and ZhengDan958 (Figure 1). For model training and

evaluation purposes, these varieties were numerically encoded from

0 to 10 in the order listed above. These varieties are representative of

the main maize varieties promoted for planting in Jilin Province: the

JiDan series of varieties are highly adaptable and have stable yields,

and are the dominant varieties in the spring maize zone of

Northeast China; ZhengDan958 is a widely adaptable variety in

the Huanghuaihai summer maize zone; and LY9915 is an important

variety promoted for planting in Northeast China. All selected seeds

were yellow in color with a few varieties having a slightly reddish

surface. To ensure the purity and integrity of the seed samples,

manual screening was conducted during the sampling process to

remove broken, insect-damaged and impurity seeds, and finally full

and intact seeds were selected. The number of seeds per variety

was 1000.
2.2 Data acquisition

2.2.1 Image data acquisition
Images of the maize kernels were captured by a Canon EOS 1500D

camera, and all images were taken under uniform conditions in order

to ensure consistency in the data acquisition environment, to avoid

interference from external light sources, and to minimize the impact of

external factors on image quality. Maize kernels were placed on a black

background plate, and the camera was mounted vertically above it with

two stabilized LED light sources to provide consistent illumination. The

acquisition equipment is shown in Figure 2A. The kernels of each

variety were divided into groups of 100 and arranged on the black

background plate, and a total of 10 sets of images were captured. The

resolution of each image was 6000 × 4000 pixels.

2.2.2 Hyperspectral data acquisition
Hyperspectral data from maize kernels were collected with a

FieldSpec4 portable spectrometer from ASD, which was used to

measure spectral reflectance in the range of 350 to 2500 nm. The

distance between the probe and the sample surface was 10 cm,
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the wavelength accuracy was 0.5 nm, the repeatability was 0.1 nm,

the sampling interval was 1 nm, and a 20W halogen lamp was used as

the light source. The schematic diagram of the equipment is shown in

Figure 2B. Before measurement, the spectra were calibrated by a

standard white board, and the average number of measurements was

set to 10, with an integration time of 100 ms. 150 maize kernels were

randomly selected from each variety for measurement, and the

spectrometer was recalibrated before each measurement to ensure

data consistency and accuracy. In addition, all measurements were

performed in the same laboratory environment in order to minimize

the interference of ambient light sources on the measurements. The

reliability and reproducibility of the spectral data were ensured through

a rigorous experimental design.
2.3 Experimental procedure

The computer environment used in this study was as follows:

CPU: Intel(R) Xeon(R) Gold 6246R CPU@ 3.40GHz, RAM: 128 GB,

GPU: NVIDIA Quadro RTX 8000, 64-bit Windows 10 operating

system, Python version 3.8. In order to identify maize kernels,

morphological feature data were first extracted from RGB images

using the “Machine Vision-based Phenotype Measurement System

for Maize Kernels without Reference”, which was developed by the

College of Information Technology at Jilin Agricultural University

(Software Copyright Registration No.2024SR0703043). Subsequently,

the morphological data and hyperspectral data were pre-processed

independently, and a subset of features was obtained by a feature

selection algorithm. In order to determine the optimal combination

pattern, the morphological features of grains, hyperspectral bands

and their combinations were used as model inputs. When selecting

the base learner for Stacking ensemble learning, the principle of

“good but different” was followed, and the differential evolution

algorithm was used to optimize the hyperparameters of the

ensemble learning model. Then the differential evolution algorithm

is improved, and finally the model is interpreted using an

interpretable method. The system flowchart is shown in Figure 3.
FIGURE 1

Maize kernel samples.
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2.4 Data pre-processing

It has been shown that seed morphology data can effectively

reflect genetic characteristics and are crucial for crop breeding

research. In order to retain the relevant information in the seed

grain images, the images were first converted to grayscale maps and

processed for noise reduction using Gaussian filters. Subsequently, a

binarized threshold image is obtained by the Otsu method (Yousefi,

2011; Gómez Ramos et al., 2021), and residual noise is further

eliminated using the morphological open operation. Next, the

background region is identified by an expansion operation, the

foreground region is identified by applying a distance transform,

and the unknown region is identified by a subtraction operation.

After labeling the foreground region, the watershed algorithm is

applied to achieve image segmentation (Longzhe and Enchen, 2011;

Seal et al., 2015), and the contour of each maize kernel is extracted

using the boundary tracking algorithm. Finally, the minimum outer

rectangle was drawn and analyzed morphologically. Geometric,

texture and color features of individual kernels were extracted

from 1000 kernels of each variety using image processing

techniques (Saad et al., 2011; Neuweiler et al., 2020; Khan and

AlGhamdi, 2023; Zubair and Alo, 2024), and the un-normalized

data may result in some features having too much or too little
Frontiers in Plant Science 05
influence on the model due to the significant differences in the

numerical ranges of the different features, thus affecting the

performance of the model. Therefore, it is crucial to normalize

the data before training the model. This helps ensure that each

feature contributes equally to the model.

During hyperspectral data acquisition, phenomena such as

diffuse reflection and light scattering on the surface of the sample

may cause interference, resulting in significant differences in

hyperspectral data for the same type of sample (Cozzolino et al.,

2023). This interference not only increases the noise level in the

data, but also affects the accuracy of subsequent analysis and model

building. Therefore, preprocessing of hyperspectral data is

necessary. Hyperspectral preprocessing can effectively reduce the

impact of noise on the data, thereby improving the discrimination

performance of the model. In this study, the Savitzky-Golay (SG)

smoothing technique was used to process hyperspectral data. This

technique reduces the impact of random noise by fitting a

polynomial within a sliding window, significantly improving the

signal-to-noise ratio of the spectral signal while retaining the

detailed spectral characteristics. Hyperspectral data processed by

SG smoothing more accurately reflects the chemical and physical

properties of the sample and significantly enhances the relevance of

the data and the discriminative accuracy of the model.
FIGURE 2

Real image and schematic diagram of maize kernel collection: (A) image data; (B) hyperspectral data.
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2.5 HDE-stacking interpretable
integration models

2.5.1 Stacking-based learner selection
In the stacked integration model, the selection of base learners

plays a decisive role in the variety identification of maize kernels.

The selection of base learners should follow the principle of ‘good

but different’ (Sesmero et al., 2021), i.e. each base learner should

have excellent discriminatory performance, while at the same time

reflecting the differences. Through this approach, the internal
Frontiers in Plant Science 06
features of the maize kernel dataset can be more comprehensively

explored in combination with multimodal data, so as to improve the

overall performance and generalization ability of the ensemble

model. In this paper, a base learner selection strategy that

combines diversity and discriminative performance is adopted.

However, how to define and evaluate diversity among models is a

key research question. Although various diversity metrics have been

proposed in the fields of statistics, information theory, and software

engineering (Sun et al., 2014; Bian and Chen, 2021), there is no

unified standard, which makes diversity metrics somewhat
FIGURE 3

Experimental flow chart.
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subjective. In addition, the results of a single metric are often not

comprehensive and accurate enough. Therefore, this paper

proposes a fusion measure of model diversity based on existing

research, which fully combines the valid information of different

indexes to measure the diversity among models from multiple

perspectives for better selection of base learners. The diversity

composite index of each candidate model is defined by the

combination rule, as shown in (Equation 1).

Dcix =o
T

t=1

dx,t

oM
y=1dy,t

(1)

dx,t =
oM

y=1dxy,t , If   the  metric   is   bigger,   the   better

oM
y=11 − dxy,t , If   the  metric   is   smaller,   the   better

8<
:

(2)

where Dcix is the diversity composite index of alternative model

x, M is the number of alternative models, T is the number of

diversity metrics, dxy,t is the difference between model x and model

y under the Tth diversity measure, and   dx,t is the sum of the

differences between model x and other models under the Tth

diversity measure.

The discriminative performance of a model is usually measured

by common metrics such as accuracy and recall. Similar to the

measure of model diversity, the performance composite of each

alternative model can be defined by the combination rule shown in

(Equation 3).

Pcix =oS
s=1

ax,s

oM
y=1ay,s

(3)

where, Pcix is the performance composite index of the

alternative model x, S is the number of performance indicators,

and ax,s is the sth performance indicator value of model x.

Combining Dcix and Pcix yields a composite evaluation score for

model x as shown in (Equation 4).

Px = rDcix + (1 − r)Pcix , 0 ≤ r ≤ 1 (4)

where r(r = 0:5) and 1 − r denote the proportion of and in the

base learner optimization process, respectively.

In this paper, the dual roles of diversity and accuracy in

ensemble learning are emphasized and they are given equal

importance. In addition, the alternative models are ranked in

descending order based on the comprehensive evaluation scores

of the alternative models, and the top K alternative models are taken

as the base learners for the Stacking integration models.

2.5.2 Improvement of differential
evolutionary algorithms

In order to improve the performance of Stacking ensemble

learning models, differential evolutionary algorithms are used to

optimize the parameters of the base learner. However, the

traditional differential evolutionary algorithm has some

limitations in practical applications, which restrict its

optimization performance and convergence speed. In this paper,
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the following two main improvement points are proposed to

enhance the performance of the differential evolutionary

algorithm in optimizing the Stacking integration learning model.

First, an adaptive control mechanism that dynamically adjusts

the mutation factor and recombination rate: the mutation factor (F)

and recombination rate (CR) are key parameters in differential

evolutionary algorithms, which directly affect the exploration and

exploitation capabilities of the algorithms. Fixed variance factor and

recombination rate may perform poorly in different optimization

stages. In this paper, a dynamic adjustment mechanism is proposed

so that these two parameters can be adjusted according to the

convergence in the optimization process to improve the adaptability

and performance of the algorithm. Let the current iteration number

be t and the convergence situation be ct , then the dynamic

adjustment formula is as follows:

Ft+1 =

0:2 + 0:5 · r, ct ≤ 0:05

0:3 + 0:5 · r,   0:05 < ct ≤ 0:1

0:5 + 0:5 · r, ct > 0:1

8>><
>>:

(5)

CRt+1 =

0:95, ct ≤ 0:05

0:9, 0:05 < ct ≤ 0:1

0:7, ct >   0:1

8>><
>>:

(6)

where r is a random number in the range [0, 1] used to

introduce randomness to avoid premature convergence. With this

dynamic adjustment mechanism, the algorithm has strong global

search capabilities in the early stages, and in the later stages it

focuses more on enhancing local search capabilities, thereby

improving the overall optimization effect. Meanwhile, the

adaptive control mechanism dynamically adjusts the parameters

by monitoring the diversity and convergence of the population. Let

the diversity of the current population be DCurrent , and the

maximum diversity be Dmax , then the adjustment formula for the

variation factor and recombination rate is:

Ft+1 = Fbase + DF · (1 − DCurrent
Dmax

) (7)

CRt+1 = CRbase + DCR · (1 − DCurrent
Dmax

) (8)

where Fbase and CRbase are the baseline variance factors and

recombination rates, and DF and DCR are the adjustment margins.

Through this adaptive control mechanism, the algorithm can

automatically adjust the parameters at different optimization

stages to improve the overall performance and convergence speed.

Second, the combination of multiple mutation strategies: the

mutation strategies used in differential evolution algorithms directly

affect the diversity of the population and the algorithm’s global

search ability. Traditional differential evolution algorithms usually

use a single mutation strategy, such as DE/rand/1/bin or DE/best/1/

bin. such a single strategy may not be sufficient to provide enough

diversity in some cases, which results in the algorithm easily falling

into local optimal solutions. Therefore, this paper proposes to

combine multiple variation strategies to enhance the algorithm’s
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global search and local exploitation capabilities including rand1,

best1, current-to-best1 and best2. The variation strategy formulas

are as follows:

DE/rand/1/bin strategy:

v(t+1)i = x(t)r1 + F · x(t)r2 − x(t)r3
� �

(9)

where x(t)r1 , x
(t)
r2 , x

(t)
r3 are three different individuals chosen

at random.

DE/best/1/bin strategy:

v(t+1)i = x(t)best + F · x(t)r1 − x(t)r2
� �

(10)

where x(t)best is the current optimal individual, x(t)r1 , x
(t)
r2 are two

different individuals chosen at random.

DE/current-to-best/1 strategy:

v(t+1)i = x(t)i + F · x(t)best − x(t)i
� �

+ F · x(t)r1 − x(t)r2
� �

(11)

where x(t)i is the current individual, x(t)best is the current optimal

individual, x(t)r1 , x
(t)
r2 is two different individuals chosen at random.

DE/best/2/bin strategy:

v(t+1)i = x(t)best + F · x(t)r1 − x(t)r2
� �

+ F · x(t)r3 − x(t)r4
� �

(12)

where x(t)best is the current optimal individual, and x(t)r1 , x
(t)
r2 , x

(t)
r3 ,

x(t)r4 are four different individuals chosen at random.

The above variant strategies have different advantages at

different stages of optimization. The main goal of the initial phase

is to explore the search space extensively to find possible high

quality solutions, so strategies such as DE/rand/1/bin are suitable to

increase the population diversity. The intermediate stage requires

finding a balance between exploring new solutions and exploiting

existing ones, so strategies such as DE/current-to-best/1 can be

used. While in the later stages, the main goal is to fine-tune the

exploitation of the better solutions, so strategies such as DE/best/1/

bin and DE/best/2/bin are more suitable. By combining multiple

variant strategies, the global search and local development ability of

the algorithm can be enhanced while maintaining the diversity of

the population.

The detailed implementation of the HDE-Stacking integration

model is shown in Table 2.

2.5.3 Model interpretability
In machine learning and data science, the interpretability of

models has always been a research topic of great concern. For

stacking ensemble learning models, their internal mechanisms and

decision-making processes are often complex and difficult to

understand intuitively. Therefore, the introduction of model

interpretability techniques is of great significance for improving

the transparency and credibility of models. This paper uses SHAP

values to interpret the prediction results of stacking ensemble

learning models (Kumar and Geetha, 2022; Huang et al., 2024).

The steps are as follows: use diversity metrics and performance

metrics to select the base learners of the ensemble learning model,

and then use a differential evolution algorithm to optimize the

parameters of the Stacking ensemble learning model and train the
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final model; use the SHAP library to calculate the SHAP values of

each feature; visual tools are used to intuitively display the

contribution of each feature to the prediction result and the

interactions between features; finally, by analyzing the SHAP

values, the importance and influence of features in model

prediction can be understood, providing guidance for improving

and optimizing the model.
3 Results

3.1 Model evaluation indicators

This paper compares and analyzes the discrimination

performance of the model by analyzing the four metrics obtained

from the confusion matrix (i.e., accuracy, precision, recall, and F1-

Score). At the same time, in order to fully reflect the relationship

between models, four common pairwise metrics are used:

divergence metric (Dis), q-statistic (Qs), k-statistic (Ks), and

correlation coefficient (Cor) (Sun et al., 2014). These paired

metrics assess the diversity and relevance of each model from

different perspectives, providing richer information for base

learner selection. The specific formulas for each metric are

detailed in Table 3.
3.2 Multimodal data fusion

Currently, multimodal data fusion methods are mainly divided

into three categories: data layer fusion, feature layer fusion and

decision layer fusion (Ilhan et al., 2021). In this study, a feature-level

fusion approach was used to integrate image data and spectral data

of maize kernels to improve the predictive performance of the

model. Image data are used to capture morphological features of
TABLE 2 Pseudo-code of Improved DE for Stacking ensemble
model optimization.

Input: Population size NP, Number of generations G_max, Initial mutation
factor F_base, Initial crossover rate CR_base, Diversity adjustment parameters
△F, △CR, Maximum diversity D_max.

1 Initialize population P(t) with NP individuals
2 Initialize base mutation factor F_base and crossover rate CR_base
3 for t = 1 to G_max do
4 Calculate current diversity D_Current of population P(t)
5
6 Adjust F and CR based on convergence indicator c_t:
7 F_(t+1) = dynamic adjustment based on c_t and D_Current
8 CR_(t+1) = dynamic adjustment based on c_t and D_Current
9 for each individual i in P(t) do
10 Select mutation strategy based on optimization stage:
11 v_i^(t+1) = mutation using selected strategy
12
13 Perform crossover to generate trial vector U_i
14 Select the better between U_i and X_i to form new population
15 end for
16
17 Update and monitor the best solution
18 end for
19
20 Return the best solution found
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maize kernels, while spectral data provide information on the

chemical composition and internal structure of maize kernels,

and combining these two types of complementary features to

form an ensemble feature space allows the model to take

advantage of both image and spectral data to improve the

accuracy and robustness of identification.

3.2.1 Maize kernel morphological
feature extraction

In this paper, fifty-two morphological features were extracted

from maize kernels, and the normalized mean values in different

kernel categories are shown in Figure 4. By analyzing the

distribution of data points in Figure 4A, it is found that the maize

kernel shape features are significantly different in different

categories, among which the distribution of data points for

features ‘E’ and ‘r’ is more scattered, indicating that these features

have greater variation among different maize kernels, showing a

stronger differentiation ability. The mean values of texture features

of different kernel categories are shown in Figure 4B, where category

JD436 has significant differences from other categories in feature

contrast, while category JD50 shows significant discrimination in

feature ‘hist0’. The mean values of the color features of different

kernel categories are shown in Figure 4C, and the distribution of

data points for features such as ‘g_mean’, ‘b_mean’, ‘h_mean’, and

‘l_mean’ is more concentrated, indicating that there are less

differences in these features among different categories of maize

kernels. Comparatively speaking, the features ‘s_dev’, ‘a_dev’ and

‘g_dev’ show significant differences, for example, category JD209

shows obvious distinguishing characteristics on the feature ‘g_dev’,

while category JD505 has a high degree of recognition on the feature

‘a_dev’. In summary, variety identification of different types of

maize kernels based on morphological features is feasible, and the

significant differences in these features provide strong support

for identification.

Due to the potential interconnections between the extracted

morphological features, not all of them had a significant impact on

the construction of the model. Therefore, this study used mutual

information (MI), recursive feature elimination (RFE) and

significance weighted selection of features (SFM) methods for

morphological feature selection.
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1. MI: The application of MI in classification quantifies the

dependency of each feature on the target variable by

measuring the amount of mutual information between

the features and the target variable to select the set of

features that contribute most to the classification result

(Kraskov et al., 2004). Mutual information is used to select

the top 15 features as shown in Figure 5A.

2. RFE: RFE selects a set of features that contribute most to the

classification result by training a classification model

recursively, evaluating the importance of features, and

gradually eliminating the least important features (Darst

et al., 2018). RFE is used to select the top 15 most important

features, as shown in Figure 5B.

3. SFM: SFM is a model-based feature selection method that

focuses on features of higher importance as determined by

a predefined machine learning model (Raschka, 2018). The

top 15 features are selected using a tree-based evaluator, as

shown in Figure 5C.
The normalized morphological features and the feature data

after feature selection were input into the DE-Stacking model, and

the dataset was divided into a training set and a test set in a ratio of

7:3 for subsequent analysis. The maximum number of iterations of

the DE algorithm was 50, and the population size was 20. The

Stacking ensemble learning base learner used Logistic Regression

(LR), Decision Tree (DT), Support Vector Machine (SVM),

k-Nearest Neighbor (KNN) and Gaussian Process (GP). The RFE

algorithm outperformed the other two in terms of feature selection.

Support Vector Machine, SVM), k Nearest Neighbor, KNN) and

Gaussian Process, GP). The RFE algorithm outperformed the other

two algorithms in terms of feature selection, as shown in Figure 6.

Compared with the discrimination results obtained by inputting all

morphological features, the results were slightly enhanced by

selecting one-third of the features for discrimination. The results

show that feature selection can significantly improve the algorithm’s

discrimination effect. However, due to the high similarity in

appearance of the maize kernels, the model faces challenges in

accurately distinguishing between them, resulting in the possibility

of some categories being confused. This reflects the limitations of

relying solely on morphological features for discrimination,
TABLE 3 Metrics for model diversity and performance.

Diversity metrics Formula Performance metrics Formula

Dis b + c
a + b + c + d

Accuracy TP + TN
TP + TN + FP + FN

Qs ad − bc
ad + bc

Precision TP
TP + FP

Ks p1 − p2
1 − p2

Recall TP
TP + FN

Cor ad − bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a + b)(a + c)(c + d)(b + d)

p F1-Score 2*P*R

P + R
For models x and y, a and d denote the number of samples correctly and incorrectly identified by the two models, respectively, b denotes the number of samples correctly identified by model x
but incorrectly identified by model y, and c denotes the number of samples incorrectly identified by model x but correctly identified by model y. The formula p1 = [(a + b)(a + c) + (c + d)(b + d)]/
(a + b + c + d)2 denotes the probability that the two models realize the chance of agreement, and p2 = (a + d)/(a + b + c + d) denotes the probability that the two models realize agreement. True
Positive(TP) and False Negative (FN) indicate the number of samples in which the actual positive category was recognized as positive and negative, respectively (Jiang et al., 2023).
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especially when dealing with a large number of categories.

Therefore, the introduction of more comprehensive and diverse

data to enrich the feature set is crucial to improving

discrimination accuracy.

3.2.2 Hyperspectral feature extraction of
maize kernels

The spectral curve is processed using the SG smoothing

algorithm, which effectively reduces the impact of noise. Maize

kernels have a wide distribution in the near-infrared spectral region,

but the overall trend of the spectral curves of all varieties is similar,

with obvious peaks near 863 nm, 1105 nm, 1295 nm, 1680 nm and
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2015 nm, and obvious valleys near 980 nm, 1175 nm, 1450 nm,

1780 nm and 1915 nm, as shown in Figure 7. These spectral features

reflect the differences in protein, fat, and carbohydrate content

between different maize varieties, which are due to the different

absorption strengths of the C-H, N-H, and O-H groups in organic

components in these spectral ranges. Interesting correlations exist

between spectral and morphological characteristics. For example,

varieties with higher ‘E’ values tended to show stronger absorption

in the 910 nm band, suggesting a possible relationship between

kernel shape and protein-water interactions. This correlation may

be due to the effect of kernel shape on the internal water distribution

pattern. The absorption peaks observed near 863 nm, 1105 nm and
(A)

(B)

(C)
FIGURE 4

Mean values of morphological features for different seed categories: (A) mean values of geometric features; (B) mean values of textural features;
(C) mean values of color features.
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1295 nm showed different intensities in varieties with different

surface texture characteristics. Varieties with higher logarithmic

values in the texture analysis usually showed stronger absorption at

these wavelengths, suggesting a potential link between surface

structure and internal biochemical composition. The relationship

between color features and spectral features is particularly evident

in the visible range (400-700 nm). Species with higher color

standard deviations (‘s_dev’, ‘a_dev’) showed more complex

spectral patterns in this range, suggesting that the heterogeneity
Frontiers in Plant Science 11
of the surface color may reflect potential changes in pigment

distribution and composition. Therefore, these differences form

the basis for the use of hyperspectral data for seed discrimination

in agricultural applications.

Due to the presence of co-linear spectral bands in hyperspectral

data, there is significant redundancy, which leads to an increase in

model training time and a decrease in accuracy. Therefore, it is

necessary to select characteristic bands before inputting data into

the model to reduce the impact of redundant bands on the model.
(A)

(B)

(C)

FIGURE 5

Results of feature selection for morphological characterization of maize kernels: (A) results of feature selection using MI; (B) results of feature
selection using RFE; (C) results of feature selection using SFM.
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This study uses the sequential projection algorithm (SPA), the

competitive adaptive reweighted sampling algorithm (CARS), and

the bootstrap soft shrinkage algorithm (BOSS) for morphological

feature selection.
Fron
1. SPA: SPA is a forward feature selection method that uses

vector projection analysis. By projecting wavelengths onto

other wavelengths and comparing the magnitudes of the

projected vectors, the wavelength with the largest projected

vector is selected as the candidate wavelength, and then the

final feature wavelengths are selected based on the

correction model (Soares et al., 2013). SPA selects a

combination of variables with minimal redundant
tiers in Plant Science 12
information and minimal collinearity. Therefore, the

characteristic wavelengths were selected using SPA from

2151 bands between 350 nm and 2500 nm. The process of

selecting the spectral bands is shown in Figures 8A, B.

2. CARS: The basic idea of CARS is to adaptively adjust the

selection probability of each band through Monte Carlo

sampling and an exponential decay function, and finally

select the optimal band combination that contributes the

most to modeling performance (Li et al., 2009). As the

number of runs increases, the selected characteristic

wavelengths gradually decrease. After twenty-two runs,

an ideal feature subset is obtained, as shown in

Figures 8C, D.
FIGURE 6

Identification result of DE-Stacking under morphological features.
FIGURE 7

Average reflectance spectra of different maize varieties after pre-treatment with an SG filter.
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Fron
3. BOSS: The BOSS algorithm is a variable selection method

proposed by Baichuan Deng and others, which is

specifically used for near-infrared spectroscopy data

analysis. Through Bootstrap sampling and soft shrinkage

techniques, the feature variables that contribute most to the

model are evaluated and selected recursively, thereby
tiers in Plant Science 13
effectively reducing the data dimension, reducing model

complexity and multiple collinearity, and improving model

stability and prediction performance (Al-Kaf et al., 2020).

As shown in Figures 8E–G, the RMSECV reaches a

minimum at the 18th iteration, at which point the BOSS

algorithm selects 33 eigenbands.
(A) (B)

(C) (D)

(E)

(F)

(G)

FIGURE 8

Visualization of feature wavelength selection results using three different algorithms. (A) RMSE change curve with increasing number of feature
wavelengths selected by SPA algorithm (B) Index distribution of 106 feature wavelengths identified by SPA algorithm (C) RMSECV curve with
increasing number of feature wavelengths selected by CARS algorithm (D) Index distribution of 94 feature wavelengths identified by CARS algorithm
(E) Visualization of wavelength band weights determined by BOSS algorithm (F) RMSECV change curve with increasing number of iterations in BOSS
algorithm (G) Index distribution of 33 feature wavelengths identified by BOSS algorithm.
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Figure 8 show the selected spectral characteristic wavelength

groups for each maize kernel variety using the SPA, CARS and

BOSS algorithms, respectively. The SPA algorithm reduces the

original 2151 bands to 106, CARS reduces the characteristic

wavelengths to 94, and BOSS reduces the characteristic

wavelengths to 33, greatly reducing the input data for the model.

The training and test sets of the DE-Stacking-based

hyperspectral data discrimination model for maize kernels were

randomly selected from each category at a ratio of 7:3 from a pool of

150 samples. The discrimination results are shown in Figure 9.

3.2.3 Data fusion
It is known that spectral bands can reflect the selectivity of

different varieties of maize kernels in terms of reflection, absorption

and transmission of incident radiation. In addition, the morphological

characteristics of the kernels can provide insight into their surface

properties, as well as structural and organizational changes that are not

visible to the naked eye. Therefore, fusing morphological data with

spectral data can provide richer feature information for model

training. To construct the maize variety identification model, we

combined morphological features selected by MI, RFE and SFM

with spectral features selected by different methods (33 wavelengths

from BOSS, 106 from SPA, and 94 from CARS). The results in

Figure 10 show that combining RFE-selected morphological features

with SPA-selected spectral features achieved the highest accuracy

among all nine feature combinations when input to the DE-

Stacking model. This feature-level fusion improved accuracy by

3.1% compared to using all morphological and spectral features,

demonstrating that selective information fusion can enhance both

model accuracy and stability while reducing misclassification errors.
3.3 Alternative model evaluation

Using six single models as base learners has long processing

times and high complexity, so the number of base models needs to
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be reduced while maintaining the accuracy. This study is based on a

dataset with RFE-SPA feature fusion, and the discrimination results

of each alternative model on the test set are compared and analyzed

using five-fold cross-validation. The performance and diversity

metrics in Table 3 are used to evaluate the models, and the

discrimination performance and difference distribution of the six

candidate models are shown in Table 3 and Figure 11.

Table 4 shows that the DT model performed the worst in

individual prediction, with an accuracy, precision, recall, and

F1-Score of less than 65%, while the performance indicators of

the remaining five models were all above 68%. For the small data set

of maize grain varieties studied in this paper, the MLP model

performed best in the four evaluation metrics, and the SVM model

has a unique advantage in processing high-dimensional small

sample data. The LR model can effectively capture the linear

relationships in the data by mapping the linear combination of

input features to the probability space, and also shows better

discrimination ability.

Figure 11 shows the heat maps of the Disagreement Measure

(Dis), Q Statistic (Qs), Kappa Statistic (Ks) and Correlation

Coefficient (Cor) respectively. The darker the color, the greater

the diversity between the models, and vice versa. Although the

results obtained using different diversity measures are different, they

generally reflect the same trend in model diversity. In addition,

since the training mechanisms of SVM, KNN, GP and LR differ

greatly from those of other learners, the diversity indicators Dis, Qs,

Ks and Cor for these learners also show significant differences.

The choice of the base learner needs to take into account both

the discriminative ability of the model and the differences between

the models. Therefore, the diversity and performance indices of

each model were calculated and ranked according to Eqs. (1), (3),

and (4), respectively, as shown in Table 5. It can be seen that under

the influence of the model diversity index, the MLP model with the

best discriminative performance only ranked 3rd, while the DT

model with the worst discriminative performance ranked 2nd in the

overall ranking.
FIGURE 9

Identification result of DE-Stacking under spectral feature.
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FIGURE 11

Diversity measures for alternative models.
FIGURE 10

Comparison of the identification results using the DE-Stacking model after data fusion.
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To obtain the best ensemble model and verify the rationality of

the base learner selection method in this paper, experiments were

conducted using the RFE-SPA fusion data. The model with a

number of base learners of 1 uses the base learner with the

highest overall ranking in Table 5, the model with a number of 2

uses the top two, and the model with a number of 3-6 uses the top

three, and so on, as shown in Figure 12.

Table 5 combined with Figure 12 shows that as the number of

base learners increases, the overall performance of the ensemble

model tends to first increase and then decrease. This is because not

all base learners can provide gain. When there is a large

performance difference between base learners, the ensemble

model often relies on the better performing learners, while the

contribution of the worse performing learners may be ignored or

even have a negative impact. As shown in Figure 12, the addition of

SVM reduces the performance of the ensemble model with 3 base

learners. If the newly added base learner is similar to the existing

learners, it may produce similar errors, resulting in no improvement

in the performance of the ensemble model, or even worse than a

single excellent base learner. The addition of GP and KNN also

resulted in a decrease in performance, as they are less diverse and do

not have a significant advantage in accuracy, but instead increase

the computational complexity of the model.

Ensemble model 1 adopts the base learner selection strategy

proposed in Section 3.2 and is the model with the best performance

in Figure 12. Ensemble models 2 and 3 only consider the differences

between models and select models with higher diversity indices in

Table 5 as base learners. Ensemble models 4 and 5 only consider the

identification performance of models and select models with higher

accuracy as base learners. Ensemble models 6 and 7 randomly select
Frontiers in Plant Science 16
models in Table 5 as base learners, as shown in Table 6.

Interestingly, some ensemble models with randomly selected base

learners performed well, possibly because the random selection

strategy introduced more diversity. In addition, although the

ensemble methods that only consider the diversity or accuracy of

the base learners can improve the performance of the ensemble

model to a certain extent, the improvement is limited. On the one

hand, these ensemble methods may include base learners with lower

performance, which is difficult to significantly improve the overall

performance of the ensemble model; on the other hand, the

accuracy of the base learners is similar, which fails to provide

sufficient diverse information for the model and limits the

improvement of performance. After analyzing Table 6, this paper

finally selects DT, LR, and MLP as the base learners for the

DE-Stacking ensemble model. This combination balances the

number of base learners while taking into account accuracy and

diversity, effectively improving the performance and stability of the

model and reducing the error in the identification of maize

kernel varieties.
3.4 Comparison of models

In order to further validate the discriminatory performance of

the ensemble model, the test set of maize variety fusion data was

predicted and analyzed using MLP, RF represented by Bagging,

XGBoost represented by Boosting, and DE-Stacking ensemble

model, and the discriminatory results are shown in Table 7. The

DE-Stacking ensemble model of accuracy, precision, recall and

F1-Score reached 94.58%, 94.87%, 94.98% and 94.92%,
TABLE 5 Metrics and rankings for alternative models.

Models Diversity composite
index

Performance composite
index

Comprehensive evaluation
score

Comprehensive
ranking

LR 0.7707 0.3472 0.5589 1

DT 0.7297 0.2864 0.5580 2

SVM 0.6889 0.3432 0.5160 4

KNN 0.5788 0.3182 0.4485 5

GP 0.4819 0.3364 0.4091 6

MLP 0.6710 0.3773 0.5241 3
TABLE 4 Discriminatory performance of alternative models.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LR 73.33 73.12 74.5 73.81

DT 61.52 63.15 61.9 61.52

MLP 82.12 83.65 82.43 83.03

KNN 70.00 70.8 69.75 70.27

GP 73.03 74.56 72.98 73.76

SVM 72.73 72.45 73.33 72.89
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respectively, which is 4.7 percentage points higher than the

XGBoost model, which is the best performer among the single

prediction models, and 18.25, 17.87, 18.59 and 18.37 percentage

points higher than the average of all models, respectively. The DE-

Stacking integration model proposed in this paper shows better

overall discrimination performance. This is because a single model

can only classify the categories of maize kernels from a specific

perspective, and the boundaries of maize kernel categories often

have large ambiguities and uncertainties, which makes it difficult for

a single model to achieve comprehensive and accurate

discriminative modeling. The DE-Stacking model reduces the risk
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of falling into a local optimal solution during the model training

process by integrating multiple base learners with large differences,

and can effectively overcome the inherent limitations of a single

model in the hypothesis space.

Since the DE algorithm may fall into a local optimum, the DE

algorithm is improved using the improvement method in Section

2.5.2 and compared with other optimization methods. The results

are shown in Table 8. The HDE-Stacking model has the highest

accuracy rate of 97.78% compared to the other four models.

Compared with the unimproved DE-Stacking model, the accuracy

rate has increased by 3.21%, and compared with ABC-Stacking and
TABLE 6 Performance comparison of ensemble models with different base learner combinations.

Ensemble Models Combinations of base learners Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1 LR+DT+MLP 94.58 94.87 94.98 94.92

2 LR+SVM+MLP 91.79 92.05 91.96 92.00

3 LR+SVM+DT 88.96 89.45 89.39 89.42

4 LR+SVM+GP 86.08 86.76 86.68 86.65

5 SVM+GP+KNN 82.57 82.83 82.75 82.69

6 DT+KNN+GP 83.01 83.4 83.49 83.47

7 KNN+GP+MLP+DT 91.10 91.58 91.47 91.51
TABLE 7 Performance comparison of different models.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

MLP 82.12 83.65 82.43 83.03

RF 88.06 88.68 87.55 87.93

XGBoost 89.88 89.63 88.72 89.17

DE-Stacking 94.58 94.87 94.98 94.92
FIGURE 12

Performance comparison of ensemble models with different numbers of base learners.
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PSO-Stacking, HDE-Stacking also achieved a better accuracy rate.

In terms of precision, the HDE-Stacking model improved by 3.02%

compared with the DE-Stacking model on the data set. In terms of

recall, the HDE-Stacking model also improved compared with other

models on the dataset.

Table 9 shows the comparative performance of HDE-Stacking

and DE-Stacking models using different feature combinations.

Using all morphological features alone, the HDE-Stacking model

achieved 55.15% accuracy, while using all hyperspectral features

alone reached 92.12% accuracy. The combination of RFE selected

morphological features and SPA selected spectral features achieved

the highest accuracy of 97.78%. This shows that information fusion

effectively improves the accuracy and stability of discrimination

while reducing misidentification.
3.5 Model interpretation

SHAP (Shapley Additive Explanations) is a game-theory-based

explanation method for interpreting the predictions of machine

learning models. The SHAP values are calculated separately for each

base learner. The SHAP values quantify the influence of each feature

on the prediction result by calculating the marginal contribution of

the feature in different combinations. For different types of base

learners, the corresponding SHAP interpreters are used for

calculation. After training the stacked model, the weights of each

base learner are obtained from the meta learner. These weights

reflect the relative importance of each base learner in the final

prediction result. Subsequently, the SHAP values of each base

learner are multiplied by their corresponding weights, and these

weighted SHAP values are then summed to obtain the SHAP values

of the stacked model. This process allows the contribution of each

base learner to be reflected in the final explanation. Finally, the
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weighted average of the SHAP values is used to generate relevant

explanation charts, through which the decision-making process of

the stacked model can be visually understood.

3.5.1 SHAP summary plot
SHAP Summary Plot is used to show the impact and importance

of each feature on the model’s prediction results, helping to visually

understand the decision-making process of complex models. The

horizontal axis represents the SHAP value, which is the magnitude

and direction of the impact of each feature on the model output. A

positive SHAP value indicates a factor’s positive impact on maize

variety identification. In contrast, negative values indicate an

attenuating effect. The vertical axis lists all the features used in the

model, including hyperspectral and morphological data. These

features are arranged in order of importance from top to bottom,

with the most important features at the top, and the color indicates

the magnitude of the feature value, with red indicating a high feature

value and blue indicating a low feature value.

As can be seen in Figure 13A, the red and blue points of the

morphological feature ‘hist0’ are almost evenly distributed near the

zero point of the SHAP value, indicating that this feature has a

relatively neutral impact on model prediction, with neither a

significant positive nor a significant negative impact, indicating its

weak predictive ability. The red dots of ‘h_mean’ are concentrated in

the negative direction of the SHAP value, indicating that a higher

feature value will lead to a lower prediction result; while the red dots of

‘a_mean’ are concentrated in the positive direction, indicating that a

high feature value will increase the prediction result. The influence of

the “E” feature on the model is small, and it is mainly negative,

indicating that a high value may slightly reduce the probability of the

model predicting a certain category, but the overall influence is not

significant. Nevertheless, the synergistic effect of this feature still needs

to be considered in the comprehensive morphological feature analysis.
TABLE 8 Comparison of the results of different optimization algorithms.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

HDE-Stacking 97.78 97.89 97.93 97.91

DE-Stacking 94.58 94.87 94.98 94.92

GWO-Stacking 93.83 94.34 93.86 94.10

ABC-Stacking 91.04 92.87 90.51 91.67

PSO-Stacking 93.34 94.55 93.53 94.04
TABLE 9 HDE-Stacking and DE-Stacking models using different feature combinations.

Models Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%)

HDE-Stacking
(LR+DT+MLP)

ALL Morphological features 55.15 54.08 55.15 54.40

ALL Hyperspectral features 92.12 92.23 92.12 92.00

RFE-SPA features 97.78 97.89 97.93 97.91

DE-Stacking
(LR+DT+MLP)

ALL Morphological features 48.09 48.45 48.09 48.26

ALL Hyperspectral features 88.29 85.04 84.29 85.62

RFE-SPA features 94.58 94.87 94.98 94.92
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SHAP analysis showed that multiple spectral bands (784 nm,

910 nm, 732 nm, 962 nm and 666 nm) had significant positive

effects on the identification of varieties. This is highly consistent

with the known spectral characteristics of corn grains: The 666 nm

band falls within the red light region (around 660 nm), where

chlorophyll has strong absorption. Its positive contribution suggests

that different varieties may have distinct chlorophyll content

patterns. The 732 nm band lies in the critical transition zone

(691-730 nm) where different maize varieties show significant
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variation in nitrogen content-related spectral reflectance. This

explains why this band contributes positively to variety

discrimination. The 784 nm band is close to the 790 nm

absorption peak associated with O-H, N-H, and C-H groups in

proteins and water, providing important biochemical information

for variety differentiation. The 910 nm and 962 nm bands are near

the 1000 nm region, where the second overtone of O-H stretching

from water-protein interactions occurs. Their positive contributions

indicate that varieties differ in their protein and moisture
(A)

(B)

FIGURE 13

Characteristic contribution explanation diagram. (A) SHAP Summary Plot; (B) SHAP Force Plot.
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compositions. Conversely, the bands at 1201 nm, 1280 nm, and

1358 nm showed different impacts in variety discrimination. These

wavelengths are primarily associated with carbohydrate content

(around 1200 nm) and protein C-H stretch first overtone (around

1300 nm). Their varying contributions to variety discrimination

may reflect the complex biochemical differences among maize

varieties in terms of their carbohydrate and protein compositions.

This finding provides an important basis for optimizing band

selection. Morphological features show a weaker contribution

than spectral features. This indicates that despite the visible

morphological differences between varieties, the internal

biochemical composition reflected in the spectral data provides

more reliable discriminant information for variety recognition.

These insights can help agricultural experts optimize grain

identification procedures and further advance precision

agriculture technologies based on spectral and morphological data.

3.5.2 SHAP force plot
Force Plot is used to interpret the model prediction results for

individual samples, showing the impact of each feature on the final

prediction value. The length and direction of the arrow are used to

indicate the size and direction of the contribution of different features

to the model prediction. Red arrows indicate a positive contribution,

meaning that these features increase the probability of the sample

being identified as the current category; blue arrows indicate a negative

contribution, meaning that these features reduce the probability of the

sample being identified as the current category. The length of the

arrow reflects the contribution of each feature to the prediction result.

Figure 13B shows that the Base Value is about 0.11, which

indicates the average predicted output value of the model when

there is no feature information. The final predicted value f(x) is 0.16,

which indicates that the influence of specific features has slightly

improved the model’s predicted value compared to the Base Value.

The red part on the left side of the figure represents the features that

contribute positively to the model output, such as h_mean = 0.464,

962.0 = 1.216 and 910.0 = 1.326, which together push up the

predicted value; the blue part on the right side indicates the features

that features that have a negative impact on the predicted value,

such as hist0 = 0.614 and Hu2 = 0.182. Although they offset the

impact of some positive features, they are not enough to completely

offset the boosting effect of the red features, so the final predicted

value is slightly higher than the baseline value, reflecting the

cumulative effect of the positive features. This analysis helps to

gain a deeper understanding of the model’s decision-making

process in maize kernel variety identification, especially the

specific contributions of different morphological and spectral

features to the identification results, providing a scientific basis

for kernel identification in precision agriculture.
4 Discussion

This study selected 11 representative maize varieties from

Northeast China, including widely cultivated mainstream varieties

such as JiDan27 and JiDan50. Although these varieties are difficult

to distinguish by visual inspection, multimodal data analysis revealed
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significant differences in their morphological and spectral

characteristics. Analysis showed that among the fifty-two extracted

morphological features, features such as ‘a_mean’ and ‘hist0’ made

important contributions to variety discrimination. Particularly in terms

of texture features, variety JiDan436 showed significant discrimination

in contrast features, while variety JiDan50 demonstrated distinctive

characteristics in ‘hist0’ features. Furthermore, in spectral feature

analysis, although the overall trends of spectral curves were similar

across varieties, they exhibited different reflection intensities at key

bands such as 784 nm and 910 nm, reflecting differences in internal

kernel compositions. Through feature-level fusion strategy, this study

successfully integrated these subtle but crucial morphological and

spectral differences to achieve accurate identification of visually

similar varieties. However, compared to Huang et al. (2016b), this

study has room for improvement in sample diversity. By combining

the ISVDD algorithm for classifying maize seeds from different years,

they improved classification accuracy from 84.1% to 94.4% after

increasing the training set by 11.0% to 12.8%. This indicates that

model updating strategies can significantly enhance classification

performance when dealing with maize variety identification across

different years. Therefore, future research could consider: (1)

expanding the sample range to include varieties from other

producing areas; (2) introducing model updating mechanisms while

maintaining the advantages of regionally representative varieties; (3)

conducting multi-year studies to analyze the impact of inter-annual

climate variations on morphological and spectral characteristics of

maize kernels.

While the proposed HDE-Stacking ensemble model achieved

remarkable results in this example verification, the performance of

some ensemble model combinations based on selection strategies also

gradually improved. Due to the large number of alternative models

and random combinations, it is difficult to fully verify all combinations

due to time and computational cost constraints. This aligns with the

findings of Shi et al. (2020) in their evolutionary multi-task ensemble

learning model, who pointed out that efficiently selecting and

combining base learners in complex feature spaces remains

challenging. Therefore, further research is needed to improve the

base learner selection strategy for obtaining optimal combinations.

The multi-strategy combination method of differential

evolution algorithm generally performs well, yet it does not

guarantee optimal solutions in every instance. In some cases, a

single strategy or random combination strategy may lead to better

solutions. This finding aligns with the research of Gao et al. (2021),

who found that chaotic local search strategies in differential

evolution algorithms sometimes outperform complex global

search approaches. In large-scale optimization problems, due to

time and computational resource constraints, it is impossible to

verify all possible strategy combinations exhaustively. Therefore,

further optimization of parameter adjustment methods is needed in

future research to improve the algorithm’s adaptability and

efficiency across a wider range of problems.

Moreover, regarding model interpretability, this study revealed key

features and their mechanisms affecting maize variety identification

through the SHAP framework. Kumar and Geetha (2022)

demonstrated that the computational complexity of SHAP values

increases significantly when handling high-dimensional features.
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Although this study partially addressed this issue through feature

selection methods, computational efficiency remains a challenge

when processing larger-scale high-dimensional data. Future research

could explore more efficient interpretation methods or develop more

effective interpretation mechanisms by incorporating domain

knowledge to enhance model interpretability and transparency in

high-dimensional data applications. Additionally, the interpretability

analysis results could be combined with traditional agronomic trait

evaluation methods to provide more comprehensive technical support

for maize variety breeding and quality improvement.
5 Conclusion

This study proposes a multimodal data fusion technique and

integrates it with an interpretable stacking ensemble learning model

to achieve efficient detection of maize kernel varieties. The base

learner is selected and ensemble using diversity and performance

indicators, and the discrimination performance is improved using

an improved differential evolution algorithm. Finally, the stacking

model is explained using the SHAP method. Experimental analysis

of the maize kernel variety dataset shows that:
Fron
1. The use of multi-modal data fusion techniques can

effectively improve the discriminant performance and

prediction accuracy of the model. Morphological data

selected 15 features as model inputs through RFE, with

an accuracy of 52.9%; hyperspectral data selected 106

features as model inputs through SPA, with an accuracy

of 90%; and the accuracy was improved to 94.58% by using

a feature-level fusion strategy to fuse morphological data

and hyperspectral data.

2. Different combinations of base learners have a significant

impact on the discrimination performance of the ensemble

model. In the selection process, the diversity, accuracy and

number of base learners are fully considered, which enhances

the stability of the ensemble model and effectively improves

the accuracy of the maize kernel variety discrimination results.

3. The adaptive control mechanism of using dynamically

adjusted mutation factors and recombination rates, as well

as the combination of multiple mutation strategies, improves

the differential evolution algorithm. The accuracy, precision,

recall and F1 score of the HDE-Stacking ensemble model

reached 97.78%, 97.89%, 97.93% and 97.9% respectively, and

its stability and comprehensive performance are significantly

better than those of other single identification models.

4. The interpretability of the model decision-making process

was achieved through the introduction of the SHAP

interpretation framework, which revealed the key features

that affect the identification of corn varieties: among the

hyperspectral features, the 784 nm, 910 nm, 732 nm, 962

nm and 666 nm bands had a significant positive

contribution to the recognition results. These bands are

mainly related to the protein, fat and carbohydrate content
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of corn kernels; among the morphological features,

‘a_mean’ (the mean value of the a channel in the color

space) was the most influential feature, which is closely

related to the apparent characteristics of the kernels. These

findings provide an important scientific basis for further

optimizing the corn variety recognition system.
In summary, this study not only proposes a high-performance

method for identifying corn grain varieties, but also, more

importantly, reveals the internal working mechanism of the model

decision-making through the SHAP explanation mechanism,

providing an interpretable and reliable new path for quickly and

accurately identifying corn grain varieties. This interpretable

identification method is of great practical significance for guiding

corn breeding and variety identification work.
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