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Maintaining crop health is essential for global food security, yet traditional plant

monitoring methods based on manual inspection are labor-intensive and often

inadequate for early detection of stressors and diseases, and insufficient for

timely, proactive interventions. To address this challenge, we propose a deep

learning-based framework for expert-level, spatiotemporal plant health

assessment using sequential RGB images. Our method categorizes plant health

into five levels, ranging from very poor to optimal, based on visual and

morphological indicators observed throughout the cultivation cycle. To

validate the approach, we collected a custom dataset of 12,119 annotated

images from 200 tomato plants across three varieties, grown in semi-open

greenhouses over multiple cultivation seasons within one year. The framework

leverages state-of-the-art CNN and transformer architectures to produce

accurate, stage-specific health predictions. These predictions closely align with

expert annotations, demonstrating the model’s reliability in tracking plant health

progression. In addition, the system enables the generation of dynamic

cultivation maps for continuous monitoring and early intervention, supporting

data-driven crop management. Overall, the results highlight the potential of this

framework to advance precision agriculture through scalable, automated plant

health monitoring, guided by an understanding of key visual indicators and

stressors affecting crop health throughout the cultivation period.
KEYWORDS

plant health assessment, deep learning, spatiotemporal imaging, precision agriculture,

tomato phenotyping
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1 Introduction

Agricultural productivity is increasingly threatened by

pathogens, pests, and environmental stressors, making global food

security a growing challenge (Gai and Wang, 2024). According to

United Nations (UN) population projections, the global population

is expected to reach 9.7 billion by 2050, further increasing the

demand for agricultural output (Domingues et al., 2022). However,

the agricultural sector faces significant challenges, including fungal

and bacterial diseases, extreme weather conditions, and shifting soil

properties. These factors collectively contribute to annual economic

losses exceeding 220 billion USD (Singh et al., 2019). Addressing

these challenges requires innovative solutions for proactive crop

health monitoring and effective management strategies to sustain

agricultural productivity and food security (Singh et al., 2023).

Traditional plant health assessment methods, such as manual

visual inspections by farmers or agricultural experts, remain widely

used (Ghazal et al., 2024). While these approaches rely on expertise

and experience, they are labor-intensive, prone to human error, and

impractical for large-scale or remote farms. Furthermore, variations

in crop species, evolving disease patterns, and the emergence of new

pathogens often lead to misdiagnosis or delayed interventions

(Kong and Yang, 2023). Consequently, there is an urgent need for

automated, accurate, and scalable plant health monitoring systems

that provide farmers with actionable insights (Aijaz et al., 2025).

Recent advancements in deep learning (DL) have significantly

improved plant disease detection by leveraging image-based

techniques (Sajitha et al., 2024). Convolutional neural networks

(CNNs) have played a pivotal role as feature extractors,

demonstrating remarkable accuracy in identifying plant diseases

(Ferentinos, 2018). For instance, Mohanty et al. (2016) achieved a

breakthrough in automated plant disease detection by classifying 26

diseases across 14 crops using CNN models. Argüeso et al. (2020)

further optimized this process by employing few-shot learning with

Siamese networks and Triplet loss, reducing training data

requirements by 90%. Similarly, Deng et al. (2021) applied

ensemble learning with ResNeSt-50, SE-ResNet-50, and

gDenseNet-121 to detect six rice diseases, effectively lowering

misdiagnosis rates. More recently, Kalpana et al. (2024)

introduced an ensemble model combining Swin transformers and

residual convolutional networks, demonstrating improved

performance on the Plant Village dataset. Additionally, recent

research has explored solutions for low-data scenarios, such as

few-shot learning (Mu et al., 2024; Rezaei et al., 2024) and

contrastive learning for pre-training and fine-tuning on small

labeled datasets (Zhao et al., 2023).

Beyond plant disease classification, researchers have

addressed dataset limitations by focusing on localized symptom

detection. Object detection and segmentation models have been

integrated with CNNs to identify specific regions of interest,

enabling the detection of multiple symptoms within the same

image. Fuentes et al. (2017, 2018, 2021b) applied object detection

algorithms to recognize tomato diseases and pests using a custom

dataset of tomato plant diseases. Roy et al. (2022) enhanced the

YOLOv4 framework for tomato disease identification by
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incorporating DenseNet and additional residual blocks,

achieving 96.29% accuracy on 1,200 images from the Plant

Village dataset. Similarly, Alqahtani et al. (2023) introduced

PlantRefineDet, a method that utilizes ResNet-50 as a feature

extractor with RefineDet to recognize crop disorders across 38

category groups.

Further studies have explored adapting these models to real-

world conditions, tackling challenges such as domain shift (Fuentes

et al., 2021a), unknown and out-of-distribution disease recognition

(Meng et al., 2023; Dong et al., 2024a), data availability constraints

(Xu et al., 2022), and cross-crop plant disease recognition using

visual-language and iterative learning-guided models (Dong et al.,

2024b). These ongoing efforts continue to refine plant disease

detection systems, enhancing their robustness and applicability in

practical agricultural settings.

Despite these advancements, we identify several remaining

challenges in plant health assessment:
1. Data Collection – Many plant disease recognition

frameworks rely on datasets collected under controlled

conditions, focusing on specific diseases or crop types.

These datasets may not fully represent real-world

agricultural variability, including differences in lighting,

plant growth stages, or environmental stressors (Kendler

et al., 2022). Expanding datasets with diverse and high-

quality samples and labels is crucial for improving model

generalization and enhancing model robustness across

different crops and field conditions (Dong et al., 2022,

2023b, 2023a).

2. Sequential Plant Health Assessment –Most existing models

perform single-instance disease classification (Salman et al.,

2023), lacking the capability to track plant health over time.

Continuous monitoring and time-series analysis could

enhance early detection, enabling proactive interventions

before symptoms become severe (Javidan et al., 2024). This

approach also offers a deeper understanding of plant

growth progression and overall health status.

3. Domain Shift – Models trained on specific datasets often

struggle when deployed in different agricultural

environments due to variations in imaging devices,

climate conditions, soil properties, and crop physiology

(Xu et al., 2023). Addressing domain shift requires

techniques such as domain adaptation (Busto and Gall,

2017), transfer learning, and continual learning to ensure

model robustness in diverse settings.
By addressing these challenges, AI-driven plant health

assessment can evolve beyond theoretical accuracy to become a

reliable and adaptable tool for modern agriculture. This involves

understanding plant health indicators throughout the entire

cultivation cycle. Such comprehensive monitoring is essential for

effective crop management, allowing for the timely identification of

changes and implementing prompt interventions when anomalies

arise. Consequently, this approach can help prevent losses, identify

underlying causes, and design control strategies tailored to specific
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crop varieties and growth stages—an essential aspect of controlled

environment agriculture.

To address these issues, this study presents a spatio-temporal

plant health monitoring framework that leverages image-based

deep learning techniques to assess plant health throughout the

entire cultivation period. Unlike traditional disease detection

models, our framework analyzes plant health-related features

continuously, categorizing plant health into five levels—from very

poor to optimal—based on a wide range of visual and

morphological indicators. To validate the effectiveness of this

approach, we developed a custom dataset comprising over 12,000

high-resolution images of individual tomato plants captured in

semi-open greenhouse environments. This dataset, which includes

multiple growth stages and tomato varieties cultivated across

various seasons, represents a significant contribution to

agricultural AI research.

The proposed framework centers on the sequential assessment

of plant health, offering accurate evaluations at distinct growth

stages. This approach facilitates the creation of cultivation process

maps that monitor plant health progression over time, supporting

data-driven decision-making and timely interventions by farmers.

Figure 1 presents the strategic objective of this research—

continuous monitoring of individual plants throughout the entire

cultivation cycle. The study utilizes data collected from four

cultivation lines, aiming to assess plant conditions at specific

spatial points. By aggregating these observations across time, we

construct temporal health profiles that capture dynamic changes in

plant status over the full growing period.

The key contributions of this study are described below:
Fron
1. Spatio-Temporal Tomato Plant Dataset –We collected and

labeled a dataset of approximately 12,000 images

representing various tomato varieties (including cherry

tomatoes, large tomatoes, and the Dafnis hybrid) across

two cultivation periods lasting approximately one year. The

dataset focuses on monitoring a total of 200 individual

plants, with images captured weekly from the plant’s

growth point (top section) throughout the cultivation

cycle. This dataset is unique, as no existing dataset

provides similar characteristics.
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2. Data Annotation Strategy –We propose a five-point

annotation scale (1–5) to assess plant health, ranging

from poor to optimal. As part of the comprehensive

framework, a domain expert guided the temporal labeling

process, incorporating phenotypic indicators such as stem

thickness, leaf condition, and overall plant vitality to

ensure accuracy.

3. Framework for Plant Health Monitoring –We introduce an

image-based deep learning framework that categorizes

plant health into five distinct levels using state-of-the-art

feature extractors. This approach enables a comprehensive

assessment of plant health across the entire cultivation

period, facilitating long-term tracking of individual

plant health.
The remainder of this paper is structured as follows: Section 2

describes the dataset acquisition, annotation strategy, and proposed

methodology. Section 3 presents the implementation details and

experimental results. Section 4 discusses the limitations and

strengths of this research. Section 5 concludes the paper by

summarizing the findings and outlining future research directions.
2 Materials and methods

2.1 Dataset acquisition

This study was conducted at the Fruit Vegetable Research Institute

in Buyeo, South Korea, using a collected dataset of high-resolution

RGB images of three tomato plant varieties: Amos Coli, Nonari-Cherry

Tomato, and Dafnis-Hybrid. These varieties were cultivated under

standard grower-managed conditions in semi-open greenhouses over

two consecutive periods: January–July and August–December 2022.

Table 1 details the plant varieties and cultivation periods.

During the first 25-week period, 100 Amos Coli plants were

monitored in Crop Lines 2 and 3 of the greenhouse. In the second

18-week period (August–December), 100 plants, 50 of Nonari-Cherry

and 50 of Dafnis-Hybrid were observed. In total, 200 plants were

monitored over one year. Weekly site visits were conducted

throughout the cultivation periods to capture high-resolution RGB
FIGURE 1

Spatio-temporal plant health assessment strategy. This diagram represents the research objective of continuously monitoring plant health
throughout the entire cultivation period, enabling precise assessment and tracking of health status over time.
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images. Three images were taken per plant from different viewpoints—

left, right, and top—focusing on the upper plant region, a key indicator

of growth (Cho et al., 2023). This multi-view strategy enabled a

comprehensive assessment of plant health.

Figure 2 presents sample images from various viewpoints

collected for several weeks. Images were captured using

smartphone cameras, with a color checker included for future

color-based leaf analysis. Each plant was tagged with a QR code

containing its plant number, slab number, and cultivation period

for identification.
2.2 Dataset Annotation by a domain expert

Following data collection, a domain expert in plant physiology

from the Fruit Vegetable Research Institute in Buyeo, South Korea,

meticulously annotated each image in the dataset, documenting various

growth stages and conditions of tomato plants. Each image was

assigned a health status level on a scale from 1 to 5. Table 2 provides

detailed descriptions and specific indicators used for classification,

while Figure 3 presents representative images for each health level,
Frontiers in Plant Science 04
ranging from Class 1 (severe health issues) to Class 5 (optimal health),

serving as visual references for the annotation process.

During labeling, we identified cases of plant health deterioration

and their potential causes. While most plants remained in optimal

condition, occasional issues arose, such as valve malfunctions that

disrupted nutrient supply. In some instances, this led to sudden

plant distress and, in severe cases, plant death. However, when

problems were detected early, growers were able to intervene and

correct the issue, preventing further damage. Further analysis of

plant growth and health progression is presented in the Discussion

section, supported by representation maps that illustrate the plants’

development over time.
2.3 Dataset distribution

Table 3 presents the distribution of image samples across

datasets corresponding to different tomato plant varieties

cultivated in Line 1, Line 2, Line 3, and Line 4 within the

greenhouse. The number of samples varies significantly across

health status ratings. Since the grower’s objective was to maintain
FIGURE 2

Sample images from three viewpoints showing the growth progression of a plant over multiple weeks.
TABLE 1 Data acquisition details for tomato plant health monitoring.

Cultivation Line
(within the greenhouse)

Tomato Plant Variety Cultivation Period Number of Weeks Number of Plants

1 Nonari-Cherry 2022/08 – 2022/12 18 50

2 Amos Coli 2022/01 – 2022/07 25 50

3 Amos Coli 2022/01 – 2022/07 25 50

4 Dafnis-Hybrid 2022/08 – 2022/12 18 50
“Line” refers to the cultivation line in the greenhouse where the plants were grown.
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optimal plant growth, data acquisition prioritized class levels 4 and

5, which represent plants in near-optimal or optimal conditions.

This pattern was consistent across tomato plant varieties,

cultivation lines, and seasons.

In contrast, although less frequently, data was also collected for

class levels 3 to 1, representing cases where plant health deteriorated

during the monitored period. These lower health levels provide

insights into plant stress factors and potential causes of

deterioration. After annotation by domain experts, the dataset

was structured based on the assigned health status for each

image, ensuring a well-balanced representation of plant

conditions throughout the study. We will refer to each dataset as

the corresponding line and number to facilitate the description.
2.4 Proposed plant health monitoring
framework

Our deep learning-based plant health monitoring framework

(Figure 4) consists of multiple stages, beginning with the collection
Frontiers in Plant Science 05
of high-resolution RGB images from semi-open greenhouse

environments throughout the cultivation period. These images

were annotated by domain experts, assigning health status labels

ranging from 1 (very poor health) to 5 (optimal health). These labels

serve as the ground truth for training deep learning models. A

comparative evaluation was performed using a separate validation

set to identify the most accurate and reliable model for plant health

monitoring. Various techniques were applied to enhance dataset

diversity and robustness, as detailed in the implementation section.

2.4.1 Feature extraction and model architectures
At the core of our framework is a deep learning-based image

classification framework, leveraging state-of-the-art neural network

architectures to assess plant health automatically. The proposed

framework integrates CNN-based and transformer-based

architectures. Each applied network uses all the settings provided

in the original architectures in terms of layer configuration. The

distinguishing changes relate mainly to finding the proper

parameters for the applications. Specifically, to develop our

approach, we leverage the following architectures:
TABLE 2 Health status level, categories, and indicators used by the domain expert to assess plant health.

Health Status Level Category Diagnostic Indicators

5 Optimal health
Vibrant green leaves, uniform growth, no visible stress, no signs of
disease, pests, or deficiencies.

4 Minor deviations from ideal health
Slight discoloration, minor leaf curling or wilting, early-stage
nutrient imbalance, small pest presence but no major damage.

3 Moderate health
Noticeable discoloration (yellowing, browning), leaf deformation,
moderate pest or disease symptoms, stunted growth, and some
necrotic spots.

2 Poor health
Extensive discoloration, widespread necrosis, severe pest infestation,
stunted growth, and significant wilting or leaf drop.

1 Very poor health
Severe leaf damage or defoliation, major necrosis, severe stunting,
significant pest or disease damage, plant near death.
FIGURE 3

Example images illustrating the five health status categories, from class 1 (severe health deterioration) to class 5 (optimal health), providing visual
references for the rating strategy used in annotation.
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1. CNN-based Models – The feature extraction mechanism in

CNN models involves a sequential arrangement of

convolutional layers, followed by pooling layers, and

finally, at the end, fully connected layers with SoftMax

activation for classification (Rangel et al., 2024).
tiers in
◦ ResNet-18 (He et al., 2015): Introduces deep residual

learning, addressing the vanishing gradient problem

commonly found in deep networks. It consists of 18

layers, structured into residual blocks, where

shortcut (identity) connections allow information

to bypass certain layers. Each residual block

consists of two to three convolutional layers,

followed by batch normalization and ReLU

activation. ResNet-18 is computationally lighter

than deeper ResNet variants, making it well-suited

for real-time agricultural applications where

efficiency is critical.

◦ VGG-16 (Simonyan and Zisserman, 2014): Consists

of 16 layers, including 13 convolutional layers and

three fully connected layers. It uses small 3 × 3

convolutional kernels, allowing deeper feature

extraction while maintaining computational

efficiency. This architecture employs ReLU

activation and max-pooling layers to downsample

feature maps progressively. VGG-16 has been widely

adopted for image recognition tasks, including plant

disease detection, due to its ability to learn fine-

grained texture details, which are crucial for

distinguishing plant health conditions.

◦ ConvNeXt (Liu et al., 2022): A modern CNN

combining group convolutions, inverted bottleneck

structures to improve feature extraction and reduce

computational load. This network incorporates

group convolutions and an inverted bottleneck

structure to improve feature extraction and reduce

computational load. Advanced techniques like

AdamW optimizer (Loshchilov and Hutter, 2017),

Mixup (Zhang and Cisse, 2018), Cutmix (Yun et al.,

2019), RandAugment (Cubuk et al., 2020), Stochastic

Depth, and Label Smoothing (Müller et al., 2019)

further optimize its performance.
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2. Transformer-based Models – Unlike CNNs, transformer-

based architectures do not rely on spatial hierarchies but

instead use self-attention mechanisms to model both local

and global dependencies within images (Vaswani et al., 2017).

These models have demonstrated superior performance in

vision tasks, including plant health assessment.
◦ Vision Transformers –ViT (Dosovitskiy et al., 2020):

Processes images by dividing them into fixed-size

patches that are linearly embedded with positional

encoding. In this network, patch embeddings pass

through multi-head self-attention layers, capturing

complex spatial dependencies across the image. This

study employs the ViT Base model, which consists of

12 transformer layers, a hidden size of 768, and a 16

× 16 patch size.

◦ Swin Transformers (Liu et al., 2021): Enhances ViTs

by partitioning images into non-overlapping local

windows and computing self-attention within these

regions, significantly reducing computational cost.

The shifted windowing mechanism allows for cross-

window interactions, improving spatial feature learning

at multiple scales. This study utilizes the Swin

Transformer Base model, configured with a 4 × 4

patch size and a 7 × 7 local window size to effectively

balance accuracy and efficiency.
Based on the feature extraction and plant state classification

process shown in Figure 4, we define an equation (Equation 1) that

mathematically represents the contribution of the approach in

predicting the plant state over time.

St = f o
N

i=1
∅ (Fti )

 !
(1)

where St represents the predicted plant state at time t, categorized

into states 1 to 5; Fti represents the image features extracted at time t for

an ith input image; ∅ (Fti ) is the feature transformation function that

processes the extracted features for representation; and f ( : ) represents

the plant state head, which generates the final plant state according to

the established indicators.

By utilizing flexible CNN-based and transformer-based

architectures for feature extraction, the proposed method ensures
TABLE 3 Distribution of image samples across cultivation lines.

Datasets (Line)*
Category by Health Status Rating

Class 1 Class 2 Class 3 Class 4 Class 5 Total

Line 1 18 27 756 1,412 341 2,554

Line 2 9 21 324 1,743 1,509 3,606

Line 3 30 450 933 1,266 889 3,568

Line 4 27 22 73 504 1,738 2,364

Total 84 520 2,086 4,952 4,477 12,119
* The corresponding plant variety is listed in Table 1.
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a robust and scalable plant health assessment, optimizing

classification accuracy while maintaining computational efficiency.

2.4.2 Performance metrics
To assess the effectiveness of our image-based plant health

monitoring framework, we compute the following key performance

metrics: accuracy (Equation 2), precision (Equation 3), recall

(Equation 4), and F1-score (Equation 5). These metrics provide a

comprehensive evaluation of the model’s classification performance.

Accuracy =   
TP + TN

TP + FP + FN + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
Frontiers in Plant Science 07
F1 − score = 2� precision� recall
precision + recall

(5)

where TP represents True Positive, TN represents True

Negative, FP represents False Positive, and FN represents

False Negative.
3 Experimental results

3.1 Implementation settings

The proposed framework was implemented using Python 3.8

and the PyTorch deep learning library (version 1.10.1) with

CUDA 11.3 for GPU acceleration. All experiments were

conducted on a server equipped with an Nvidia GeForce RTX
FIGURE 4

Schematic representation of the image-based plant health monitoring framework. The input consists of plant images collected throughout the entire
cultivation period, while the output is a plant health state indicator that determines the plant’s condition at a specific time (t). P# represents plant
identification numbers, and t# denotes specific time points for health monitoring. * represents “shared feature extractor”.
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3090 GPU, featuring 24,268 MB of memory to efficiently handle

deep learning computations.

3.1.1 Data preprocessing and class imbalance
handling

To improve model generalization, a preprocessing step was

applied to address class imbalance in the dataset. As shown in

Table 3, an initial inspection revealed significant disparities in

sample distribution across classes. For instance, in Line 1, Classes

1 and 2 had only 18 and 27 samples, respectively, whereas Classes 3,

4, and 5 contained 756, 1,412, and 341 samples, respectively. A

similar imbalance was observed in Lines 2, 3, and 4, where lower-

class samples were underrepresented. To mitigate this issue, classes

with fewer than 30 samples (representing fewer than 10 plants) were

excluded. The remaining data was then randomly split into training

and validation sets, maintaining an 80:20 ratio—with 80% allocated

for training and 20% for validation, as detailed in Table 4.

3.1.2 Model training and optimization
The classification models described in Section 2.4 were applied

using transfer learning, leveraging ImageNet pre-trained weights for

fine-tuning. To adapt models to our dataset, the last fully connected

layers were modified to match the target dataset’s output classes

corresponding to the plant health indicator. All pre-trained layers

remained trainable, ensuring adaptation to our specific problem.

The final activation function was SoftMax, and categorical cross-

entropy loss was used as the loss function.

To optimize training efficiency, learning rate schedulers were

incorporated. Specifically, we utilized the AdamW optimizer

(Loshchilov and Hutter, 2017), initialized with a learning rate of

3e-6, and weight decay of 8e-2. Additionally, a custom learning rate

scheduler was implemented, combining warmup and cosine

annealing techniques. The learning rate was gradually increased

during the initial warm-up phase; then, it followed a cosine decay

curve, eventually reaching a minimum learning rate of 1e-6.

Hyperparameters are outlined in Table 5.

3.1.3 Data augmentation and image
normalization

To enhance model robustness, augmentation techniques were

applied, including rotation (± 20 degrees), horizontal flipping,

random cropping, Cutmix (Yun et al., 2019), Mixup (Zhang and

Cisse, 2018) with a smoothing factor of 0.1. Additionally, pixel
Frontiers in Plant Science 08
values were normalized to a standard scale using the mean and

standard deviation. Images were then resized to the standard input

dimensions of the respective models, 224 × 224 pixels for VGG-16,

ResNet-18, and ViT, and 384 × 384 pixels for Swin Transformer.

The mini-batch size was set to 32, optimized based on hardware

constraints for efficient training.
3.2 Quantitative results

This section presents a detailed analysis of our experimental

findings across four datasets: Line 1, Line 2, Line 3, and Line 4. We

evaluate the performance of various CNN-based and transformer-

based deep learning models (Section 2.4) using key performance

metrics: accuracy, precision, recall, and F1-score.

Since average accuracy can be misleading in cases of imbalanced

datasets (Thölke et al., 2023), we consider F1-score as the primary

evaluation metric. The model achieving the highest F1-score is deemed

the most effective for plant health assessment. To mitigate overfitting

and ensure stable training, early stopping was implemented.

3.2.1 Model performance across datasets
The results, summarized in Table 6, indicate that Swin

Transformer-B achieved the highest validation accuracy and

F1-scores in Line 1 and Line 2, with 83.7% validation accuracy

and a 78% F1-score in Line 1, and 81.2% validation accuracy with

a 77% F1-score in Line 2. The Swin Transformer’s performance

in these datasets suggests that its multi-scale attention

mechanism is particularly effective for distinguishing fine-

grained plant health conditions, such as detecting early stress

symptoms and disease progression. However, while Swin

Transformer performed well, its computational cost remains a

challenge, making real-time deployment in resource-limited

environments difficult.

In contrast, ConvNeXt-B demonstrated superior performance

in Line 3 and Line 4, achieving the highest validation accuracy of

84.6% with an F1-score of 82% in Line 3, and 78.3% validation

accuracy with an F1-score of 74% in Line 4. ConvNeXt-B provided a

competitive balance between classification accuracy and

computational efficiency, making it a viable alternative for large-

scale agricultural applications. While ConvNeXt-B slightly

outperformed Swin Transformer in Line 3, its performance

advantage in Line 4, was more pronounced, suggesting that its
TABLE 4 Distribution of training and validation sets per dataset
representing plant varieties.

Datasets Training Data Validation Data

Line 1 2007 502

Line 2 2860 715

Line 3 2838 709

Line4 1852 463
TABLE 5 Training and optimization parameters.

Parameter Method/Value

Optimizer AdamW

Learning Rate 3e-6 (initial), 1e-6 (minimum)

Weight Decay 8e-2

Learning Rate Scheduler Warmup + Cosine Annealing

Loss Function Categorical Cross Entropy

Final Activation SoftMax
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TABLE 6 Performance metrics across datasets.

Datasets
Deep Learn-

ing Architectures
Training
Accuracy

Validation
Accuracy

Precision Recall
F1-

Score

Line 1
(Norari-Cherry)

VGG-16 0.852 0.809 0.75 0.74 0.75

ResNet 18 0.866 0.807 0.76 0.71 0.73

Swin Transformer-B 0.891 0.837 0.81 0.76 0.78

VIT-B 0.845 0.794 0.77 0.69 0.72

ConvNeXt-B 0.887 0.813 0.77 0.71 0.74

Line 2 (Amos Coli)

VGG-16 0.760 0.725 0.67 0.55 0.57

ResNet 18 0.793 0.751 0.72 0.66 0.68

Swin Transformer-B 0.858 0.812 0.80 0.75 0.77

VIT-B 0.708 0.6498 0.68 0.66 0.65

ConvNeXt-B 0.847 0.789 0.77 0.74 0.76

Line 3 (Amos Coli)

VGG-16 0.763 0.743 0.75 0.75 0.75

ResNet 18 0.829 0.801 0.78 0.77 0.77

Swin Transformer-B 0.864 0.839 0.81 0.81 0.81

VIT-B 0.736 0.680 0.67 0.67 0.66

ConvNeXt-B 0.872 0.846 0.82 0.82 0.82

Line 4
(Dafnis-Hybrid)

VGG-16 0.838 0.794 0.77 0.70 0.73

ResNet 18 0.875 0.806 0.86 0.67 0.71

Swin Transformer-B 0.830 0.772 0.79 0.62 0.66

VIT-B 0.782 0.683 0.64 0.68 0.66

ConvNeXt-B 0.892 0.783 0.79 0.70 0.74
F
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Values in bold indicate the best-performing model for each crop line.
TABLE 7 Class-wise performance metrics across datasets.

Datasets Classes Precision Recall F1-Score

Line 1
(Norari-Cherry)

Class 3 0.90 0.84 0.79

Class 4 0.81 0.88 0.86

Class 5 0.70 0.59 0.64

Line 2
(Amos Coli)

Class 3 0.79 0.62 0.69

Class 4 0.80 0.80 0.80

Class 5 0.80 0.84 0.82

Line 3
(Amos Coli)

Class 2 0.73 0.75 0.74

Class 3 0.82 0.76 0.79

Class 4 0.84 0.89 0.86

Class 5 0.90 0.88 0.89

Line 4
(Dafnis-Hybrid)

Class 3 0.86 0.55 0.67

Class 4 0.75 0.79 0.77

Class 5 0.77 0.77 0.77
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convolutional-based structure generalizes better in datasets with

more variability in plant health conditions.

3.2.2 Class wise performance analysis
A class-wise breakdown of precision, recall, and F1-score for the

best-performing models in each dataset is provided in Table 7. The

results highlight significant disparities in model effectiveness across

different plant health states.
Fron
• Class 5 in Line 3 exhibited the highest performance, with a

precision of 0.90 and an F1-score of 0.89, likely due to the

availability of a sufficient number of training samples.

• Class 2 in Line 3 recorded the lowest F1-score (0.74), reinforcing

the impact of data imbalance on classification accuracy.
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• Class 5 in Line 1 had an F1-score of 0.64, significantly lower

than other classes, demonstrating the impact of sample

imbalance on classification performance.

• Swin Transformer excelled in Class 3 (F1-score = 0.79) and

Class 4 (F1-score = 0.86) in Line 1, but underperformed in

Class 5, indicating that certain plant health conditions may be

harder to distinguish without additional contextual features.
These findings underscore the importance of dataset-balancing

strategies to mitigate performance degradation in underrepresented

classes. Therefore, further improvements may include adjusted

sampling techniques, cost-sensitive learning methods, or hybrid

architectures that incorporate multi-modal data inputs (e.g.,

combining RGB images with environmental sensor data).
FIGURE 5

Confusion matrices showing the performance of the model for (A) Line 1, (B) Line 2, (C) Line 3, and (D) Line 4. Misclassifications are frequent
between adjacent health states due to overlapping characteristics.
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3.3 Confusion matrixes

To further assess model performance, confusion matrices in

Figure 5 illustrate classification outcomes for each dataset: (A) Line

1, (B) Line 2, (C) Line 3, and (D) Line 4. These matrices highlight

correct classifications and misclassifications, offering insights into

model strengths and weaknesses. Based on Table 6, Swin

Transformer was the best model for Lines 1 and 2, while ConvNeXt

performed best in Lines 3 and 4.

In Line 2, the model shows strong classification accuracy for

Classes 4 (80%) and 5 (84%), but misclassification is frequent

between adjacent classes, particularly Classes 3 and 4 (62%). This

highlights the challenge of distinguishing gradual health

variations, where subtle differences lead to overlaps. A similar

trend appears in Line 1, where Class 5 is misclassified as Class 4 in
Frontiers in Plant Science 11
39% of cases, suggesting the model struggles to differentiate the

healthiest plants.

In Line 3 and Line 4, classification follows a similar pattern, with

strong diagonal performance but lower accuracy in underrepresented

classes. Class 3 in Line 4 and Class 2 in Line 3 exhibit the weakest

performance, reinforcing the impact of class imbalance on model

reliability. These results emphasize the need for improved data-

balancing strategies to enhance the classification of minority

health states.
3.4 t-SNE visualizations

The t-SNE plots in Figure 6 visualize class separability in a

reduced two-dimensional space, providing insight into feature
FIGURE 6

t-SNE plots for (A) Line 1, (B) Line 2, (C) Line 3, and (D) Line 4. Overlapping regions indicate classification challenges, particularly in underrepresented
classes. Best view in color. Zoom in for better visibility.
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distributions. Each point represents a sample, with colors

denoting different health states. Overlapping clusters indicate

classification challenges, while well-separated clusters suggest

effective distinction.

In Line 2 (Figure 6B), Class 3 and Class 4 exhibit significant

overlap, aligning with confusion matrix findings. Class 3 and Class

5, however, show better separation, reflecting the greater visual

difference between moderate and severe health deterioration.

Similarly, Line 3 (Figure 6C) shows strong overlap between

Classes 2 and 3, reinforcing the difficulty in distinguishing early-

stage plant stress. In contrast, Class 5 is well separated, confirming

distinct features in severely affected plants.

Line 1 and Line 4 follow similar patterns (Figures 6A, D), where

adjacent health states overlap while distant ones are clearly separated.

Notably, better separation is observed in classes with larger training

samples, highlighting the role of dataset size in feature learning. These

findings stress the importance of augmentation techniques and loss

adjustments to improve class differentiation.
3.5 Visualization of activation maps

To interpret model decisions, Grad-CAM heatmaps (Figure 7)

highlight the most influential image regions during classification

(Selvaraju et al., 2017). For CNNs, activations were extracted from

final convolutional layers, while for transformers, they were taken

before the last attention block.

Heatmaps show strong activation in the upper plant regions,

suggesting that leaf structure, color, and texture play key roles in

classification. However, Figure 8 reveals some challenging cases,

especially when models misfocus on background plants, leading to
Frontiers in Plant Science 12
misclassification. This issue arises when target plants are partially

occluded or closely positioned to others with different health states.

Overall, the trained models capture relevant plant features, yet

background interference remains a limitation.
3.6 Qualitative results

Across all lines, Figure 9 showcases diverse examples of

correctly classified plants, emphasizing the adaptability of each

model to its respective dataset. The high-confidence predictions

suggest that our models effectively capture key features such as leaf

color, shape, and structural integrity, which are indicative of plant

health. Moreover, these qualitative results highlight the importance

of dataset-specific optimization, as each model exhibits peak

performance when applied to the dataset it was best suited for.

Despite these successes, challenges remain in cases where plant

health conditions exhibit gradual transitions between classes, which

may still contribute to occasional misclassification. This observation

aligns with our confusion matrix and t-SNE findings, underscoring the

need for further refinements, such as enhanced attention mechanisms

and multi-modal inputs integrating environmental factors.
4 Discussion

While the proposed framework effectively monitors plant health

over time, challenges remain, particularly regarding data

availability, distribution, and generalization to new plant samples.

To further investigate these limitations, we conducted model

validation using plant-based dataset partitioning and spatio-
FIGURE 7

Grad-CAM visualizations for Line 1 and Line 2 datasets. Red regions indicate the most influential areas for classification.
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FIGURE 9

Qualitative evaluation of model predictions across cultivation lines: Line 1, Line 2, Line 3, and Line 4. Each dataset was classified using its top-
performing model (Swin Transformer for Lines 1 and 2, ConvNeXt for Lines 3 and 4), demonstrating high-confidence predictions in plant
health assessment.
FIGURE 8

Examples of misclassification due to background plant interference, emphasizing the need for improved spatial focus in model predictions.
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temporal health status modeling. These experiments assess the

robustness, adaptability, and long-term applicability of

our approach.
4.1 Model validation using plant-based
dataset partitioning

To evaluate the model’s ability to generalize, we revised the data

partitioning strategy by dividing datasets based on individual plants

rather than random splits. This setup simulates real-world

deployment, where models must classify unseen plants instead of

recognizing familiar ones from the training phase.
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A major concern with random partitioning is that multiple images

of the same plant may appear in both training and validation sets,

leading to artificially inflated performance metrics due to memorization

rather than generalization. To mitigate this, we allocated 70% of plants

for training, 20% for validation, and 10% for testing across all datasets.

The best-performing models—Swin Transformer for Line 1 and Line 2,

and ConvNeXt for Line 3 and Line 4—were used with the same training

strategies described in Section 3.1.

Table 8 presents the results of this experiment, showing

performance comparable to the previous 80:20 random split. These

findings confirm that the models retain high classification accuracy

even when evaluated on entirely new plants, validating their potential

for long-term monitoring and real-world deployment.
FIGURE 10

Comparison of model-predicted health status vs. expert labels over time for: (A) Plant 5 of Line 1, (B) Plant 10 of Line 2, (C) Plant 1 of Line 3, and (D)
Plant 21 of Line 4. The dashed red line represents ground-truth health status.
TABLE 8 Model performance using plant-based partitioning.

Datasets Deep Learning Architectures Training Accuracy Validation Accuracy Test Accuracy

Line 1 Swin Transformer-B 0.903 0.804 0.790

Line 2 Swin Transformer-B 0.836 0.797 0.779

Line 3 ConvNeXt-B 0.871 0.827 0.805

Line 4 ConvNeXt-B 0.845 0.774 0.765
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FIGURE 11

Temporal health status progression using expert annotations for: (A) Line 1 (Norari Cherry), (B) Line 2 (Amos Coli), (C) Line 3 (Amos Coli), and (D) Line
4 (Dafnis-Hybrid). P# represents the plant number per line. The dashed lines represent moving averages.
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4.2 Spatio-temporal modeling of plant
health over the cultivation period

To comprehensibly understand the generalization of the trained

models, we generated spatio-temporal health diagrams using new

plants not included in training. These diagrams illustrate the

evolution of plant health over time, comparing model predictions

with expert annotations.

For each cultivation line, the data of unseen plants was selected,

and its health trajectory was predicted using the trained models.

These predictions were compared with ground-truth labels

provided by domain experts. The models correctly classified

health status in 83% of cases, demonstrating strong predictive

accuracy for time-series plant health tracking.

Figure 10 visualizes health status changes over time, where each

subplot represents the progression of an individual plant’s

condition. The dashed red line indicates ground truth health

status, while the model’s predictions are plotted over time. These

results suggest that the framework is effective for continuous health

monitoring and could be integrated into precision agriculture

decision-support systems.
4.3 Changes in plant health dynamics
during the cultivation period

To analyze broader trends, Figure 11 visualizes the evolution of

plant health across all cultivation lines and plants using expert

annotations. The horizontal axis represents time (weeks), while the

vertical axis shows health states (1-5), including state 0 for

plant mortality.

Each plotted point represents the health status of an individual

plant in a given week, capturing fluctuations in health conditions.

The red and blue dashed lines indicate moving averages, providing

insight into overall trends. This visualization helps track:
Fron
• Health improvement or deterioration patterns across

different plant varieties.

• The impact of external factors such as environmental stress

or nutrient deficiencies.

• The potential for early intervention by identifying declining

health states.

• Our findings suggest that early detection of declining plant

health enables targeted interventions, improving overall

crop resilience. This supports automated health

monitoring as a valuable tool for precision agriculture.
4.4 Considerations for scalability,
interoperability, and regulatory compliance

The successful deployment of the proposed plant health

monitoring framework in real-world agricultural settings requires
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careful consideration of scalability, interoperability, and regulatory

compliance. These factors determine the framework’s applicability

to large-scale commercial farming, integration with existing

agricultural technologies, and adherence to industry regulations,

plant health monitoring systems must address three key criteria:
1. Scalability: For widespread adoption, the framework must

efficiently scale across varied agricultural environments and

handle large datasets with minimal computational

overhead. Key aspects of scalability include:
◦ Computational Efficiency: The deep learning models

performing best in this study: Swin Transformer and

ConvNeXt, require high computational resources.

Deploying these models on edge devices or cloud-

based infrastructures could facilitate real-time

monitoring without reliance on centralized

computing resources (O’Grady et al., 2019).

◦ Extensibility to Other Crops: While this study

focuses on tomato plants, the framework can be

tested on different crop types to generalize beyond

the specific datasets. However, collecting datasets

from other crops may be also required.

◦ Handling Large-Scale Deployments: As farms

expand, the system must process thousands of

images per day. Optimizations such as model

distillation (Moslemi et al., 2024) could enhance

efficiency , reducing inference t ime whi le

maintaining accuracy.
2. Interoperability: For seamless integration into existing

precision agriculture ecosystems, the framework must

support interoperability with various data sources:

◦ Multi-Modal Data Integration: Combining RGB
image data with sensor readings (e.g., soil moisture,

temperature, nutrient levels) can improve predictive

accuracy (Talaviya et al., 2020). Future extensions

should explore fusion models that integrate multi-

modal data for crop monitoring.
3. Regulatory Compliance: Adhering to agricultural

regulations ensures trust, security, and widespread

adoption, including:
◦ Data Privacy & Security: Given that plant health

monitoring may involve farm-specific data,

compliance with data protection.

◦ AI Transparency & Accountability: Regulations such

as the EU AI Act emphasize the need for explainable

AI in critical applications, including agriculture (EU,

2024). The proposed Grad-CAM-based visualization

contributes to transparency by enabling interpretable

model decisions, which could be extended with

model auditing frameworks to ensure fair and

unbiased predictions.

◦ Alignment with Agricultural Standards: The system

should align with precision agriculture frameworks

could enhance credibility among policymakers and

agribusiness stakeholders (FAO, 2024).
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5 Conclusion

This study proposed a deep learning-based framework for

monitoring plant health throughout the entire cultivation period

of tomato plants. Validated on four custom datasets representing

different tomato varieties and growth stages, the framework

achieved an outstanding performance, demonstrating its

reliability for real-world applications. Key contributions include

comprehensive dataset collection, enabling precise plant health

assessments for early intervention, and showcasing scalability for

precision agriculture. Despite these advancements, challenges such

as class imbalance, generalization, and real-time deployment

remain. Future work should explore multi-modal data integration,

edge AI for real-time inference, and regulatory compliance to

enhance adoption. The findings highlight the transformative role

of deep learning in data-driven plant health monitoring, offering

solutions to optimize crop management, sustainability, and farm

productivity in modern agriculture.
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