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Introduction: Climate change forms one of the most dangerous problems that

disturb the earth today. It not only devastates the environment but also affects

the biodiversity of living organisms, including fungi. Macrophomina phaseolina

(Tassi) Goid. is one of the most pervasive and destructive soil-borne fungus that

threatens food security, so predicting its current and future distribution will aid in

following its emergence in new regions and taking precautionary measures to

control it.

Methods: Throughout this work, there are about 324 records of M. phaseolina

were used to model its global prevalence using 19 environmental covariates

under several climate change scenarios for analysis. Maximum Entropy (MaxEnt)

model was used to predict the spatial distribution of this fungus throughout the

world while algorithms of DIVA-GIS were chosen to confirm the

predicted model.

Results: Based on the Jackknife test, minimum temperature of coldest month

(bio_6) represented the most effective bioclimatological parameter to fungus

distribution with a 52.5% contribution. Two representative concentration

pathways (RCPs) 2.6 and 8.5 of global climate model (GCM) code MG, were

used to forecast the global spreading of the fungus in 2050 and 2070. The area

under curve (AUC) and true skill statistics (TSS) were assigned to evaluate the

resulted models with values equal to 0.902 ± 0.009 and 0.8, respectively. These

values indicated a satisfactory significant correlation between themodels and the

ecology of the fungus. Two-dimensional niche analysis illustrated that the fungus

could adapt to a wide range of temperatures (9 °C to 28 °C), and its annual rainfall

ranges from 0 mm to 2000 mm. In the future, Africa will become the low habitat

suitability for the fungus while Europe will become a good place for

its distribution.
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Discussion: The MaxEnt model is potentially useful for predicting the future

distribution ofM. phaseolina under changing climate, but the results need further

intensive evaluation including more ecological parameters other than

bioclimatological data.
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1 Introduction

Macrophomina phaseolina (Tassi) Goid. is one of the most

devastating necrotrophic, seed- and soil-borne pathogenic fungus

that belongs to the Botryosphaeriaceae family (Dell’Olmo et al.,

2022; Ortiz et al., 2023). It infects more than 800 plant species over

the world, including economically important crops such as Glycine

max (L.) Merr. (soybean), Helianthus giganteus E. Watson

(sunflower), Vicia faba L. (bean), Gossypium hirsutum L. (cotton),

Sesamum indicum L. (sesame), and cereal plants causing charcoal

rot, dry root rot, wilt, blight, and damping-off diseases (Farr and

Rossman, (2022); Tančić Živanov et al., 2019; Kaur et al., 2023).

This fungus is characterized by forming a spherical aggregating

mass of hyphae called microsclerotia, which can survive up to 15

years in soil and crop debris as a resistant structure to overcome

several inadequate environmental conditions, making disease

control a challenge (Marquez et al., 2021).

Climate has a major role in the prevalence of M. phaseolina

which is thermophilic in nature and reflects a critical correlation

with soil and environmental factors (Bashir, 2017). For disease

occurrence, high temperature and low moisture played a pivotal

role in the development and distribution of this fungus, where

maximum disease was observed at 25-32°C air and 23-35°C soil

temperature (Bashir, 2017; Marquez et al., 2021). Some other factors

are also responsible for the occurrence of disease such as different

pathogen strains, inconsistency in disease resistance and

susceptibility, and soil physical and chemical characteristics that

alter the interaction between pathogen and host (Bashir, 2017).

Generally, M. phaseolina is geographically distributed in tropical

and sub-tropical areas with semi-arid weather (Wrather et al., 2001;

Sarr et al., 2014). Despite the fact thatM. phaseolina is a disease that

thrives in warm climates, it has been observed in recent years to

spread in a number of different locations and is now ubiquitous all

over the world (Veverka et al., 2008). According to the

Intergovernmental Panel on Climate Change (IPCC), one of the

primary reasons for its appearance is climate change. According to

the IPCC, global warming is likely to continue, and the average

temperature of the earth’s surface is expected to rise by 0.3–4.5

degrees Celsius (Chen et al., 2022). Thus, this phenomenon has

disparate effects on biodiversity and has altered fungal attributes,

resulting in yield losses and economic damage (Ghini et al., 2012;

Dell’Olmo et al., 2022). Nowadays, the fungus can adapt to various
02
agroecological conditions, and its aggressivity fluctuates depending

on different environmental factors (biotic and abiotic) and

geographic areas (Mihail and Taylor, 1995; Fang et al., 2011; Borer

et al., 2016).

Climate change has introduced additional hurdles in

safeguarding crops from fungal infections, jeopardizing food

security. Understanding fungal dispersal and predicting

appropriate future environments are essential for implementing

preventative measures for its prevention and control (Dietzel et al.,

2019; Savary et al., 2019). Examining the spatial distribution of

infections yields critical insights into their prevalence and the

influence of environmental conditions on phytopathogens and

epidemics. A variety of spatial statistical approaches have been

employed to characterize the spread of fungal diseases and affected

plants (Wu et al., 2001; Taliei et al., 2013). The clarification of the

present distribution status of M. phaseolina in relation to climate

change and the constraints of current mitigation efforts is crucial

since there are numerous opportunities for future research on this

fungus (Pandey and Basandrai, 2020).

Geographic Information Systems (GIS) facilitate the mapping of

pathogen distribution and the spatial modeling of environmental

factors influencing disease occurrence by describing, analyzing, and

visualizing data associated with geographic coordinates (Fischer and

Nijkamp, 1992; Murad and Khashoggi, 2020). It is regarded as an

advantageous instrument for forecasting species proliferation and

assessing infestation impacts (Alkhalifah et al., 2022). Conserving

species in their native habitats needed comprehension of their spatial

distribution patterns and ecological interconnectedness. Distribution

Models (SDMs) integrate geographical data from various sources

utilizing GIS tools (Balakrishnan et al., 2018).

Species distribution modeling (SDM) is a crucial technique that

delineates the specific habitat of each species (Runquist et al., 2019;

Deneu et al., 2022). In recent years, numerous modeling software

applications utilizing various mathematical methods have been

created to achieve this objective; however, MaxEnt (Maximum

Entropy Model) and DIVA-GIS are the most effective and precise

tools employed to assess the impact of climate change on diverse

fungal species. CLIMEX, GARP, and HABITAT are widely utilized

methods for assessing the future distribution of certain species in

response to climate change; nonetheless, their efficacy has been

noted to be inferior to that of MaxEnt (Shabani et al., 2014; Hosni

et al., 2020; Zurell et al., 2020).
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This study aims to examine the effects of climate change on the

worldwide occurrence ofMacrophomina phaseolina (Tassi) Goid., a

critical soil-borne fungal disease that jeopardizes food security in

many crops. This research aims to estimate the current and future

distribution ofM. phaseolina under various climatological scenarios

by leveraging a comprehensive dataset of occurrence records of this

pathogen and employing species distribution modeling techniques,

notably the Maximum Entropy (MaxEnt) model. The research aims

to discover critical environmental factors affecting the habitat

appropriateness of the fungus and to evaluate how shifting

climate conditions may impact its regional distribution. This

study seeks to address the crucial question: How will climate

change influence the distr ibut ion and prevalence of

Macrophomina phaseolina in the forthcoming decades?
2 Materials and methods

2.1 Global occurrence data collection for
M. phaseolina

In this study, most of the current distribution records of M.

phaseolina were gathered from published scientific literature, and

the rest of the occurrence data were obtained from the Global

Biodiversity Information Facility (GBIF) digital databases

(GBIF.org, 2022). After choosing the precise location data and

removing the duplicated and high spatial uncertain records (data

points characterized by a considerable degree of uncertainty

concerning their geographic coordinates. This uncertainty may

stem from multiple reasons, including: Inaccurate Location Data:

The supplied coordinates may not accurately represent the true

location of the event; and Low Precision: The information may rely

on general geographic descriptors instead of precise coordinates,

resulting in uncertainty), a total of 324 geo-referenced coordinates

(Supplementary Table S1) were saved as comma delimited (CSV)
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Excel format and used for species distribution modeling (SDM)

analysis (Figure 1).
2.2 Bioclimatological covariates

Nineteen bioclimate covariates were downloaded from the global

WorldClim database (www.worldclim.org, accessed on 6 Feb 2023) to

start the species distribution modeling at a spatial resolution of

around 5 Km2 (Supplementary Table S2). These variables were

generated using the average interpolated climate data from 1950 to

2000 (Hosni et al., 2022). Layers of bioclimatic variables 8-9 and 18-

19 were dislodged to establish the current climatic data due to their

spatial distortions in those variable layers (Samy et al., 2016; Hosni

et al., 2020). So, only 15 bioclimatic covariates were transformed

into ASCII files using ArcGIS version 10.7. Pearson correlation

coefficient has been applied to exclude extremely correlated

covariates (r2 ≥ |0.8|) and minimize multicollinearity from

distribution models (Wang et al., 2018; Hosni et al., 2022).

According to this, only five climatic variables were selected to

establish final models: Bio_6, Bio_1, Bio_4, Bio_12, and Bio_10.

We modeled the future distribution patterns forM. phaseolina to

investigate the variability of their potential habitat across several

climate scenarios (Saha et al., 2021). The potential values for climatic

covariates under future climate conditions in the 2050s (average

estimation between 2041 and 2060) and 2070s (average estimation

between 2061 and 2080) were derived from the global climate model

(GCM) [MRI-CGCM3, Code MG] developed by the Meteorological

Research Institute under two IPCC-CMIP5 [Coupled Model

Intercomparing Project Phase 5] representative concentration

pathways (RCPs), 2.6 and 8.5 (https://www.worldclim.org/data/

cmip6/cmip6climate.html (accessed on 5 Feb 2023). RCP 2.6 is the

minimum greenhouse gas emission scenario, while RCP 8.5 is the

maximum greenhouse gas emission scenario (Heringer et al., 2019;

Mohammadi et al., 2019).
FIGURE 1

Global prevalence of M. phaseolina according to the collected occurrence data.
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2.3 Distribution modeling procedures

Two modeling software: the maximum entropy (MaxEnt,

version 3.4.1) and Clim. Model on DIVA-GIS software V7.5 were

utilized to predict the suitable habitat of M. phaseolina (Phillips

et al., 2022; Phillips and Dudıḱ, 2008). Both used presence-only and

small sample-size data to forecast species distribution and model

habitat suitability as a function of environmental variables with

pseudoabsence points (Since the models are using presence-only

data, pseudoabsence points are artificially created locations where

the species is assumed to be absent. These points help balance the

dataset and provide a reference against which to compare the

present data, allowing the model to better understand the

conditions under which the species thrives) (Bradie. and Leung,

2017). To evaluate the predictive performance of our models,

species occurrence information for model calibration was divided

into a training set (75% of occurrence records) and a test set (25% of

occurrence records), where this process was repeated five times as a

choose in Maxent option (Hosni et al., 2022). We followed

(Tavanpour et al., 2019). for settings and used 10000 maximum

random background points as pseudoabsence, regularization

multiplier 1, 10000 maximum iterations with 10-5 convergence

threshold, and selecting the logistic output format. The habitat

suitability areas of the resultant models were classified into 5 classes

(not suitable, low, medium, high, and very high). Also, the Diva-GIS

modeling tool was used to generate the limitation factor map. This

map is a crucial component that helps identify and understand the

factors that limit the distribution of the species. It provides valuable

information about the environmental variables or conditions that

influence the presence or absence of a species in a given area.
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2.4 Model interpretation and evaluation

The developed model was evaluated by calculating the area under

the curve (AUC) of the receiver operating characteristic (ROC) plot,

which varied from 0 (which corresponded to a random distribution) to

1 (which represented a perfect prediction) (Phillips et al., 2006; Mulieri

and Patitucci, 2019). Models that have analysis of variance (AUC)

values that are greater than 0.9 suggest outstanding prediction accuracy,

while values that fall between 0.7 and 0.9 indicate good prediction

accuracy, and values that are less than 0.7 indicate low prediction

accuracy (Pearson, 2010). True Skill Statistics (TSS) was utilized in

order to evaluate the predictability of the models that were projected,

and the values that were utilized varied from -1 to 1 (Allouche et al.,

2006). Negative numbers that are near to 0 suggest a weak association

between the prediction model and the distribution, whereas positive

values that are close to 1 show a significant relationship between the

two. Furthermore, the jackknife test was utilized in structural equation

modeling (SDM) to examine the impact of dominant environmental

variables on model outcomes in order to choose dominant elements

(Allouche et al., 2006; Yang et al., 2013).
3 Results

3.1 Model performance

AUC values were used to evaluate the performance of the

MaxEnt model. In our study, calibration of the model for M.

phaseolina was satisfactory (AUCmean = 0.902 ± 0.009, Figure 2).

This finding means that M. phaseolina current distribution
FIGURE 2

ROC curve and AUC value for the current period over the replicate runs.
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characterized by the selected variables is excellent. The functional

assessment of this model was supported by TSS where its value

equals 0.8. This value represents a good quality modeling process,

knowing that the acceptable TSS value is ≥ 0.5.
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3.2 Contribution and effects of bioclimatic
covariates

Following the removal of the other factors that were linked with

M. phaseolina, the jackknife test was used to determine the

percentages of contribution that each of the five most important

climatological variables (bio_1, bio_10, bio_12, bio_4, and bio_6)

had for the predictions ofM. phaseolina distribution (Figure 3, 4B).

According to the results of this test, the climatic parameter that had

the greatest impact on the distribution of fungi was the Minimum

Temperature of the Coldest Month (bio_6), which had a value of

52.5%, followed by the annual mean temperature (Bio_1) with 18%

contribution. The other bioclimatic factors, according to the

jackknife test, were bio_4, bio_12, and bio_10 showed the lowest

contribution percentage, respectively (Figures 3, 4A). According to

the response curves and the frequency of the bioclimatic variables

that contributed the most to the fungus’s favorable bio_6

(Supplementary Figures S1, S2), the temperature range that the

fungus thrived in was between 3.3 and 10 degrees Celsius

(Figures 4A–C).
3.3 Limitation factor map

Figure 5 depicts the limiting effects of the fungus through its

range. On the map, in the Middle East and Australia, the fungus

distribution is affected by the bio_12 (Annual precipitation) as a
FIGURE 3

Estimates of contribution percentage to species distribution for the
most relevant climatological variables. Bio_6 is the minimum
temperature of coldest period; Bio_1 is Annual mean air temperature;
Bio_4 is the Temperature seasonality; Bio_12 is Annual precipitation;
Bio_10 is the Mean temperature of the warmest quarter.
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limitation factor, especially drought through these deserts.

Temperature seasonality (bio_4) limits the existence of M.

phaseolina in Brazil, the tropical zone of Africa, and parts of

Southeast Asia; very high temperatures there could form a

limitation to this species. In Europe, the fungus is largely

influenced by the low values of the average annual temperature

(bio_1). These three factors form the main limitation factor through

the wide range of M. phaseolina.
Frontiers in Plant Science 06
3.4 Two-dimensional niche analysis

The present study utilized the enveloped test to create the 2D

niche ofM. phaseolina based on the most significant environmental

variables used in examining this fungus. The test was conducted

between the annual mean temperature (bio_1) and annual

precipitation (bio_12) (Figure 6). The results demonstrated a

broad spectrum of adaptability to varying environmental

conditions, with 318 observations, of which 287 (90.3%) fell

within this range. The yearly temperature fluctuates between 9°C

and 28°C, while the annual precipitation varies from 0 mm to

2000 mm. The observed outcome from the frequency influence of

the minimum temperature during the coldest month on the fungus

confirms its remarkable adaptability to a broad spectrum of cold

temperatures, ranging from 3.3°C to 10°C (Figure 4C). These

observations shed light on the broad prevalence of this fungus as

it can grow in dry, hot deserts and cold, rainy regions.
3.5 Current prediction of the potential
distribution of M. phaseolina

According to the distribution points and environmental

variables, the current models generated by MaxEnt and DIVA-

GIS showed compatible habitat suitability and agreed with the

actual collected distribution data of M. phaseolina (Figures 7, 8).

This fungus is an ecumenical cosmopolitan species that inhabits all

continents. On the basis of the map, we are able to draw the

conclusion that the only regions that appear to be exempt from the

invasion of this fungus are those that have extremely cold weather

or very dry, hot desert places. This is the case in the Sahara Desert of

Africa and the Middle East, as well as in colder countries such as the

northern sections of Russia and Canada. There is a wide variety of

habitats that are suitable for the different regions of the planet. In

Europe, the models showed that the habitat appropriateness for the

fungus was extremely high and good across the entire territory,
FIGURE 6

The two-dimensional niche of M. phaseolina between
environmental covariates bio_1 (red dots) and bio_12 (green dots).
The blue box represent envelope of these to variables (the range
that this species could live within)The green dotes indicated the
homogeneity of this points and occurrent of it on the enveloped of
this species even for all 19 bioclimatic variables while the red dotes
indicate the occurrence of this points outside the enveloped either
for the tested variables (Bio_1 & Bio 12) or one or more other
bioclimatic variables.
FIGURE 5

Map showing key limiting factors for global distribution of M. phaseolina.
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which included Spain, Italy, Turkey, Greece, and Germany. On the

other hand, the northern east territories of Europe exhibited habitat

suitability that was low to medium. The eastern coast and small

parts of the western coast of Australia also showed high and very

high risk, while its central part showed medium climate suitability.

Meanwhile, New Zealand followed the same pattern. Africa had

low-to-moderate climate appropriateness across the majority of the

continent, with elevated and extreme hazards in the central to

northern regions and southern nations of the continent. Also, small

areas of Horn Africa, such as Somalia appeared highly suitable.

Moreover, in Asia, the risk is high to very high mainly through

China and India. In North America, the resulting current models

indicated low suitability of M. phaseolina distribution over its land,

except for the eastern coast of the United States and the western

coast of the Mexican Gulf, which showed very high (excellent)
Frontiers in Plant Science 07
suitability. Finally, South America appeared to have very high

suitability in Brazil and Chile.
3.6 Future prediction of the potential
distribution of M. phaseolina

The predictive models for the potential spread ofM. phaseolina

under four future climate change scenarios RCP 2.6 and RCP 8.5,

for the years 2050 and 2070, are illustrated in Figure 9. For RCPs 2.6

and 8.5 during the period 2050 (Figures 9A–C), the most affected

continents by the prevalence of the fungus are Europe and South

America. The eastern region in Europe, including Russia, and

northern areas in South America will become high and very high

habitat suitability. Other continents showed no great differences in
FIGURE 8

Predicted current potential global distribution of M. phaseolina using Bioclim DIVA-GIS.
FIGURE 7

Predicted current potential global distribution of M. phaseolina using MaxEnt.
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the pathogenicity of the fungus in the future. On the contrary, the

virulence of this fungus will decrease and can’t invade some

territories of Africa. For RCPs 2.6 and 8.5 during period 2070

(Figures 9B–D), the predictive models illustrated a dramatic change

in the fungus distribution, where there is a noticeable decrease in

the spreading of the fungus in most regions in Africa, India, and the

United States compared to the current status and period 2050. On

the other hand, the continued increase of its distribution in

Eastern Europe.
Frontiers in Plant Science 08
The calibration maps of current and future forecasts for two

different RCPs in 2050 and 2070 are used to summarize the level of

changes in M. phaseolina distribution owing to global warming

(Figure 10). Under low presumptive emissions of greenhouse gases

(GHG) (RCP 2.6 in 2050 and 2070), the changes are slightly notable

and usually not significant on all continents. However, the fungus

will lose some of its habitats, especially in areas of Africa, and lose its

habitat in India and Australia for the period 2050 than 2070

(Figures 10A–C). Moreover, for the highest presumptive emissions
FIGURE 10

Calibration maps illustrate gain and loss in habitat suitability of M. phaseolina through the studying future scenarios against the current status with a
threshold (>0.5): (A) 2050 for representative concentration pathway 2.6 (RCP 2.6); (B) 2050 for RCP 8.5; (C) 2070 for RCP 2.6, and (D) 2070 for
RCP 8.5.
FIGURE 9

Models of predicted global future distribution of M. phaseolina under two representative concentration pathways (RCPs): (A) 2050 for RCP 2.6; (B) 2050 for
RCP 8.5; (C) 2070 for RCP 2.6, and (D) 2070 for RCP 8.5.
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of GHG (RCP 8.5 in 2050 and 2070), the fungus will lose its habitat

suitability, especially in the equatorial and tropical regions in Africa,

India in Asia, and north parts of Australia, while there is a clear gain

in suitability appears in Eastern Europe (Figures 10B–D).
4 Discussion

Undoubtedly, climate change has become the center of world

attention in recent years. This phenomenon affects the biodiversity

of living organisms, including fungi, leading to the extinction of

some species, and increasing the aggressivity of others (Sax et al.,

2013; Nnadi and Carter, 2021; Mora et al., 2022). One Health (OH)

is the concept that the health of humans, animals, plants, and their

shared ecosystem is inextricably linked (Centers for Disease Control

and Prevention (CDC), 2022). This approach tackles burgeoning

problems such as food safety (Garcia et al., 2020). Plants supply over

80% of the food consumed by humans and are the main source of

nutrition for livestock, however, plant diseases often threaten the

availability of plants for humans and animals (Savary et al., 2017;

Food and Agriculture Organization of the United Nations (FAO),

2020). In addition, agricultural crops may act as carriers of many

human pathogens and harmful fungal-based toxins, making these

plants the main origin of foodborne outbreaks (Rizzo et al., 2021).

Increasing the studies in these fields will demonstrate the value of

the OH approach for the perception and mitigation of the negative

impacts of these issues.

Macrophomina phaseolina can cause substantial yield losses in

crops such as Glycine max (L.) Merr. (soybean), Sorghum bicolor

(L.) Moench (sorghum), and several cereals crops under high

temperatures and low soil moisture (below 60%), impacting the

incomes of farmers and threatening global food security (Kaur et al.,

2012; Ghosh et al., 2018). Also, this fungus produces several types of

mycotoxins, such as phaseolinone, mullein, kojic acid, and

moniliformin, which negatively impact food safety for humans

and animals (Khambhati et al., 2020). So, studies on species range

changes in the near and long future are crucial for implementing

effective management measures and conserving valuable species.

The present study forms a step for better elucidation of the

habitat requirements of M. phaseolina and how it will respond to

climate change. The results showed that the choice of environmental

variables has a certain effect on the prediction of niche models. Many

researchers who use the MaxEnt model to predict the distribution of

species non-selectively use all the environmental factors or most

environmental factors. The environmental variables, sourced from

the WorldClim database, are derived from temperature and

precipitation data tailored to the specific requirements of

occurrence calculations. Consequently, there are unavoidable

correlations between the autocorrelation of these variables and

other matters (Merow and Silander, 2014; Remya et al., 2015; Yi

et al., 2016). The predominant method employed for assessing model

accuracy is the ROC curve method (AUC method), which is now

acknowledged as a specialized model evaluator. It delivers

performance evaluation data across all threshold ranges, as it is

unaffected by diagnostic thresholds (Wang et al., 2018). The
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generated habitat suitability of our models coincided closely with

the actual occurrence of fungus records with a high AUC value equal

to 0.902, implying a close association between the model and the

species’ ecology. Furthermore, the TSS value of 0.8 indicated that the

model predictions and the dispersion of the fungus were in perfect

accord (Naeem et al., 2018).

The most important influencing parameter to M. phaseolina

distribution is the temperature, agreed with previous studies in

microbial and biological organisms (Makori et al., 2017; Sohail

et al., 2020). Temperature is a key factor in fungal growth dynamics

and understanding the effect of temperature on fungal growth is an

essential part of fungal physiology (Ancin-Murguzur et al., 2018;

Mustafa et al., 2023). The majority of fungi are mesophilic where

they can grow at temperatures within the range from 15°C to 37°C

with an optimal temperature of 25–30°C (Aguilar-Paredes et al.,

2023). Understanding the impact of temperature on fungal

communities will aid the design of effective management

strategies against climate change and associated microbial risks

(Ibáñez et al., 2023).

Here are a few essential considerations emphasizing the

significance of limitation factor maps in SDM (Warren et al., 2008;

Elith et al., 2010): Limitation factor maps assist in identifying the

principal environmental factors that affect species dispersal. Through

the examination of the correlation between species occurrence data

and environmental variables, researchers can identify the most

significant elements influencing habitat suitability for species.

Incorporating limiting constraints into species distribution models

enhances their accuracy and predictive capability. III) They offer

insights on the ecological necessities and tolerances of a species. By

delineating the variables that constrain its spread, scientists can

enhance their comprehension of the species’ niche and the spectrum

of environmental conditions in which it can endure. This knowledge

enhances our comprehensive understanding of species-environment

interactions and aids in evaluating species’ responses to

environmental alterations. IV) They serve as essential instruments

for conservation planning and management. They can assist in

identifying regions with high habitat appropriateness for a species,

places presently unsuited but capable of becoming suitable with

appropriate interventions, and regions expected to remain unsuitable

in the future due to constraints imposed by specific causes. This

information is essential for prioritizing conservation initiatives,

identifying crucial habitats, and executing successful management

techniques (Moritz et al., 2012; Nabil et al., 2020).

The latest prediction map (Figure 7) indicates the global

dissemination of M. phaseolina, corroborating numerous prior

studies on its ecology and distribution (Marquez et al., 2021).

Western Europe exhibits high to extremely high habitat suitability,

whilst the colder nations in Eastern Europe demonstrate low suitability.

This may result from the snowy conditions that inhibit fungal growth.

Numerous studies have examined the impact of temperature on fungal

development (Cesondes et al., 2007; Das et al., 2008; Cesondes et al.,

2012). In Africa, the fungus exhibits exceptional climate suitability in

equatorial, subequatorial, and tropical regions, where it endures

elevated temperatures due to microsclerotia (Manici et al., 1995;

Akhtar et al., 2011; Lodha et al., 2022). Sahara deserts and regions
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with elevated precipitation levels have limited habitat appropriateness,

with insufficient soil moisture identified as a significant predisposing

factor for the fungus (Goudarzi et al., 2008; Lodha and Mawar, 2020).

India, China, and Southeast Asia exhibit exceptional compatibility for

M. phaseolina. The fungus is predominantly found in the Old World;

nevertheless, the results suggest that its habitat is also suitable in

temperate regions of North America, southeastern South America,

and western Australia.

The future predictive modeling and calibration maps indicate the

spread of the fungus towards Eastern Europe, specifically Russia and

Ukraine. The minimum temperature of the coldest month (bio_6)

facilitated the fungus’s adaptability to low temperatures (3.3°C to 10°

C). This disruption may result from the adverse effects of global

warming, which will certainly jeopardize the future production of

numerous commodities, including Triticum aestivum L. (wheat) and

Zea mays L. (maize) in Russia and Ukraine, representing over 30% of

global wheat trade (US Department of Agriculture World

Agricultural Supply and Demand Estimates (WASDE), 2023).

Conversely, the fungus will forfeit the majority of its habitats in

Africa due to the anticipated high temperature increase in equatorial

regions and other areas that would be above the fungus’s tolerance

threshold. In the New World, the prevalence of fungus remains

largely unchanged. These maps and data will assist specialists in plant

pathology and management in assessing the future distribution risk

of M. phaseolina.

The current study provides updated and detailed maps about the

global prevalence ofM. phaseolina under changing climate through the

present and future periods, where this work is considered the first

modeling to anticipate the global prevalence of this fungus using the

robust predictive powers of MaxEnt and DIVA-GIS. In comparison to

other works related to the distribution of fungi, (Alkhalifah et al., 2023).

reported differences in habitat suitability between the current and

future distributions of Fusarium oxysporum, especially in Europe, due

to global warming. The most effective climatological parameter of F.

oxysporum distribution was the annual mean temperature (Bio-1),

which disagreed with our work. Also, the annual mean temperature

(bio-1) formed the most contributed bioclimatological parameter to

Aspergillus niger distribution (Alkhalifah et al., 2022). On the other

hand, A. niger will gain new habitat in several parts of the world (the

Eastern part of Europe and Central Asia) where it will form emergence

medical and agricultural issues (Alkhalifah et al., 2022). From the

limited works about the distribution of fungi responding to climate

change, Europe will be a good habitat for emerging fungi. Also, the

study of (Wu et al., 2024) utilized the MaxEnt model and ArcGIS to

map suitable habitats for the invasive weeds Avena sterilis and Avena

ludoviciana in Asia, highlighting the significant risk they pose to

dryland crops under climate change.

Considering other environmental covariates involving human

population, land cover, host animal distribution, and vegetation

index could aid in ameliorating them (Hosni et al., 2022). However,

the decreasing of future data on these variables may limit their

utility in researching the effect of climate change on present

distribution models. Despite it all, our research contributes to a

greater understanding of the current and future distribution of M.

phaseolina worldwide. The models generated in this study analyzed
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the impact of climate change on the existing and future prevalence

of the fungus using bioclimatological factors.
5 Conclusions

When it comes to forecasting the future distribution of

dangerous fungus, SDM is an important and powerful tool. Based

on the findings of this research, it was determined that M.

phaseolina will continue to spread towards Eastern Europe and

some regions of South America, whereas it will be eradicated from

certain locations in Africa and Asia. The current findings of this

research serve as a cautionary tale about the ways in which climate

change can potentially alter the geographic distribution of M.

phaseolina across the globe. Therefore, in order to improve our

ability to predict the spread of this fungus, we need to conduct

additional research on it, with a particular focus on the habitat

suitability that influences its invasion pattern. In order to combat

the phenomenon of fungal adaptability to a variety of

environmental conditions, it is of the utmost importance to create

advanced monitoring and control measures.
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