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Apparent soil electrical
conductivity and gamma-ray
spectrometry to map particle
size fraction in micro-irrigated
citrus orchards in California
Elia Scudiero1,2*, Michael P. Schmidt2*, Todd H. Skaggs2,
Jorge F. S. Ferreira2, Daniele Zaccaria3, Alireza Pourreza4

and Dennis L. Corwin2

1Environmental Sciences Department, University of California, Riverside, Riverside, CA, United States,
2U.S. Salinity Laboratory, United States Department of Agriculture (USDA) – Agriculture Research Service,
Riverside, CA, United States, 3Department of Land, Air and Water Resources, University of California, Davis,
Davis, CA, United States, 4Biological and Agricultural Engineering Department, University of California, Davis,
Davis, CA, United States
In specialty crops, water and nutrient management may be optimized using

accurate, high-resolution soil maps, especially in resource-constrained farmland,

such as California.We evaluated the use of soil apparent electrical conductivity (ECa)

and gamma-ray spectrometry (GRS) to map particle size fraction across three

micro-irrigated non-saline citrus orchards in California. Our research showed that

ECa was a reliable predictor of soil texture, particularly sand and silt contents, with

Pearson correlation coefficients (r) as high as -0.92 and 0.94, respectively, at the

field level. Locally-adjusted analysis of covariance (ANOCOVA) regressions using

ECa data returned accurate sand, silt, and clay content estimations with mean

absolute errors (MAE) below 0.06, even when calibrated with a limited dataset (n=5

per field). On the other hand, we observed mixed results with GRS. We observed

negative correlations between GRS total counts and sand content over the entire

dataset (r = -0.55). However, one site (Strathmore) showed a field-scale positive

correlation (r = 0.88). Clay content significantly correlated with gamma-ray total

counts (TC) over the entire dataset (r = 0.37) but not at the field scale. Additional soil

data analyses usingGRS radionuclide ratios and soil laboratory analyses using diffuse

reflectance infrared Fourier transform spectroscopy and acid ammonium oxalate

extractable elements indicated unique geochemical and mineralogical

characteristics in Strathmore, suggesting that factors such as soil mineralogy

influenced the GRS measurements. This inconsistency prevented the

development of a multi-field GRS-based soil texture ANOCOVA model. These

findings confirm that ECa is highly effective for soil texture mapping in non-saline

soils using linear modeling, while GRS may require field-specific calibration due to

variations in local mineralogy. Integrating multi-sensor data is a viable means for

reducing ground-truthing requirements and related costs, and improving the

quality and accuracy of soil maps in agriculture.
KEYWORDS

particle size fraction, precision agriculture, apparent electrical conductivity, gamma-ray
spectrometry, near-ground sensing
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1 Introduction

Accurate soil maps are critical for efficient and sustainable

nitrogen and water management in specialty crops like citrus.

Variations in soil properties, such as texture and moisture

content, remarkably influence the availability and uptake of

nutrients and water. Soil texture, determined by the proportion of

sand, silt, and clay particles, affects key soil processes such as water

retention, drainage, and nutrient-holding capacity. These processes,

in turn, influence the movement and availability of water-soluble

nitrogen and other macro and micro elements applied as fertilizers

and diffused within the soil profile. Nitrogen-deficient citrus plants

are stunted, whereas excessive nitrogen promotes vegetative growth

and increases susceptibility to diseases that damage fruit, kill spurs,

and may reduce yields in following years (Muhammad et al., 2018).

Timing of nitrogen fertilization is crucial in citrus. Peak nitrogen

uptake in citrus trees happens during blooming and early fruit

growth (Muhammad et al., 2018). In areas with coarse-textured

soils (e.g., sandy soils), the high permeability and low water-

retention capacity may lead to nitrogen leaching, particularly in

the form of nitrate (NO3
-), beyond the root zone and into

groundwater. Nutrient leaching reduces the fertilizer use efficiency

by crops and increases the risk of groundwater contamination,

contributing to issues such as eutrophication of water bodies and

pollution of drinking water sources. Conversely, in fine-textured

soils (e.g., clay-rich soils), higher water retention and slower

drainage may lead to waterlogged conditions, especially in low-

lying areas. Under such anaerobic conditions, denitrification

processes may dominate, converting nitrate into gaseous forms of

nitrogen such as nitrous oxide (N2O), a potent greenhouse gas.

Fields characterized by wide variability of soil texture and terrain

attributes may have contrasting propensities for nitrogen loss

through leaching or denitrification (Luo et al., 2023). Without

accurate mapping and management of these variations, uniform

application prescriptions of nitrogen and other nutrients can result

in over-application in some areas and under-application in others.

Over-application can intensify nitrogen losses and environmental

impacts, especially in coarser soil (Syvertsen and Smith, 1996;

Muhammad et al., 2018; Luo et al., 2023).

In the United States of America, soil survey maps developed by

the government (e.g., USDA-NRCS soil survey maps) provide

valuable broad-scale information on soil types and properties

(Beaudette and O’geen, 2009; Chaney et al., 2016). Still, they are

generally inadequate for guiding detailed field-scale water and

nutrient management (Scudiero et al., 2024b). These maps,

typically created at scales of 1:12,000 to 1:24,000, offer an

overview of soil variability across landscapes but often fail to

capture the fine-scale heterogeneity within individual fields, which

is critical for precision agriculture (Reyes et al., 2018).

On-the-go soil sensing technologies provide an efficient means to

generate high-resolution soil maps across agricultural fields. Among

these technologies, apparent soil electrical conductivity (ECa),

gamma-ray spectrometry (GRS), and other on-the-go near-ground

sensing technologies have been widely studied for their potential to

map soil texture (Sudduth et al., 2005; Pätzold et al., 2020).
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Apparent soil electrical conductivity (ECa) is a measure of how

easily electrical current passes through the soil, influenced by factors

such as soil texture, moisture content, salinity, and temperature

(Rhoades et al., 1976; Corwin and Lesch, 2003). ECa is commonly

used in precision agriculture to map soil variability, as it provides

indirect information about soil properties that affect crop growth,

such as clay content and water-holding capacity (Corwin and Lesch,

2003). This non-invasive, on-the-go sensing method is valuable for

identifying zones within a field that require different management

practices (Córdoba et al., 2016). Geospatial ECa is arguably the most

used sensor measurement for field-scale soil mapping by

practitioners and scientists due to its relative ease of use, cost-

effectiveness, and ability to capture spatial variability in soil

properties influenced by factors such as moisture content, salinity,

and clay content (Corwin and Lesch, 2003; Doolittle and Brevik,

2014). However, in environments where soil salinity is expected,

such as in California and other mediterranean, arid, and semi-arid

irrigated farmland worldwide, ECa may not be the ideal tool for soil

texture mapping because of salinity becoming a primary factor

influencing the ECa measurement (Corwin and Scudiero, 2016).

Notably, ECa measurements should be carried out over moist soils

(i.e., around field capacity or slightly drier) to ensure reliable

correlations with target soil properties (Corwin and Lesch,

2005b). To this regard, micro-irrigated orchards in water-scarce

environments present unique challenges for ECa sensing due to the

very-short scale spatial heterogeneity of wetting soil conditions,

which influences the sensor measurements. Soil moisture levels are

generally ideal for reliable ECa surveys in the hardly accessible areas

under dense canopies, where micro irrigation is applied.

Conversely, easily accessible alleyways have generally much drier

soils (Pedrera-Parrilla et al., 2016; Corwin et al., 2022; Scudiero

et al., 2024a). Soil compaction may also be remarkably different

between below-canopy areas and the alleyways due to field

equipment passages and other traffic. Even after precipitation

events, ECa surveys in the alleyways of micro-irrigated orchards

may potentially lead to biased representation of field-scale soil

spatial variability. Corwin and Lesch (2013) recommend

surveying ECa both in alleyways and along the tree lines

distinctively in orchards and vineyards.

Gamma-ray spectrometry (GRS) measures, non-invasively, the

natural gamma radiation emitted by isotopes of potassium (K),

uranium (U), and thorium (Th) present in the soil. The entire

energy spectrum of the gamma radiation, typically around the 0.1 to

3 MeV range, is also measured as Total Counts (TC) of gamma

emission. Gamma-ray emitting nuclides are naturally present in

soils and rocks. At the field scale, these gamma emissions correlate

with specific soil properties, such as texture and mineral

composition. Some factors influence gamma-ray emissions, e.g.,

increasing water content and bulk density decrease the measured

gamma-ray volume (Grasty, 1979; Cook et al., 1996; Reinhardt and

Herrmann, 2019). Mahmood et al. (2013) and Reinhardt and

Herrmann (2019) provided detailed descriptions of GRS and its

use for soil mapping and precision agriculture. Unlike ECa, which

primarily reflects soil moisture and salinity, GRS provides

information on the mineralogical composition of the soil, offering
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a different perspective on soil heterogeneity. Moreover, it is

recommended that ECa measurements are carried out in moist

soils (Corwin and Lesch, 2005b), whereas GRS is attenuated by high

soil moisture (Reinhardt and Herrmann, 2019). In water-scarce and

dry micro-irrigated orchards, where spatial variability in soil

moisture is extremely short-scaled due to localized irrigation

application under the tree canopies, GRS can complement ECa

taken along the driplines by providing additional data on particle

size distribution and mineral content with measurements done in

the drier alleyways (Scudiero et al., 2024a). This dual-sensor

approach, developed and described by Scudiero et al. (2024a), can

enhance the accuracy of soil maps, enabling more precise water and

nutrient management in these complex environments.

Developing field-scale models from sensor data typically

requires extensive ground-truthing (Reyes et al., 2018), involving

the collection of numerous soil samples to calibrate and validate the

sensor measurements (Corwin and Lesch, 2005b), as otherwise

sensor maps only serve as a qualitative indication of soil spatial

variability (Corwin and Scudiero, 2016). For regional-scale models,

two primary approaches can be utilized: universal models, which

apply broadly across regions (Lobell et al., 2010; Pätzold et al.,

2020), and locally adjusted models, such as analysis of covariance

(ANOCOVA) regression models (Corwin and Lesch, 2014), which

tailor the sensor data to specific local conditions. The choice

between these approaches depends on the degree of variability

within the region, the desired accuracy of the soil maps, and the

available resources that can be used for the ground truthing

campaign. The reliability of soil property models, whether

universal or locally adjusted, is highly dependent on the rigor and

consistency of sensor and soil data collection protocols (Corwin and

Lesch, 2005b). Standardized calibration, maintenance, and handling

of sensors are essential to ensure accurate and comparable

measurements across different locations and times. Proper spatial

sampling design and timing are critical to capturing the full range of

soil variability (Lesch, 2005), while standardized soil sampling and

laboratory procedures ensure the accuracy of ground-truthing data

(Corwin and Yemoto, 2017). Consistent adherence to these

protocols minimizes measurement-induced variability, leading to

more reliable and generalizable soil property models (Corwin and

Scudiero, 2016). Protocols for field to regional scale soil mapping

with ECa and for ECa-directed soil sampling have been developed

and updated by Dennis Corwin and colleagues at the USDA-ARS

US Salinity Lab (Corwin and Lesch, 2005b; Corwin and Scudiero,

2016). However, no equivalent protocols or recommendations for

GRS are available (Reinhardt and Herrmann, 2019).

Universal models, also referred as “site-independent models”

(Pätzold et al., 2020) should predict soil properties at novel

agricultural fields without the need for additional ground truthing.

For these models to be reliable in predicting soil properties across a

broad region, several conditions must be met. There should be a

quantifiable mechanistic relationship between the sensor

measurements and the target soil properties across the entire

region. This requires that the physical processes being measured,

such as electrical conductivity or gamma-ray emissions, correlate

strongly and predictably with soil attributes like texture, moisture
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content, or mineral composition, regardless of local variations in soil

type or environmental conditions. The data used to develop the

model should be representative of the full range of conditions within

the region, ensuring that the model is not biased toward specific soil

types or microclimates. Modeling approaches like support vector

machines were shown as good candidates for predicting soil

properties from on-the-go sensor measurements over datasets with

diverse pedogenesis (Heggemann et al., 2017). Additionally, the

secondary factors influencing the sensor measurements, e.g., soil-

forming processes, land use history, tillage, and other factors (Corwin

and Lesch, 2005b; Reinhardt and Herrmann, 2019), are similar

enough across the region that a single model can adequately

describe the soil property-sensor relationships everywhere. Finally,

to confirm its accuracy and generalizability, a universal model should

be validated against independent data sets from different locations

within the region (Ramcharan et al., 2018) and with robust cross-

validation techniques (Roberts et al., 2017).

Locally adjusted models, such as the ANOCOVA method

operate under the assumptions that sensors consistently measure

physical processes related to the target soil property across a given

geographical regions and that any secondary influencing factors can

be accounted for by adding local ground-truth data any time a new

site is surveyed. If this assumption holds true, in ANOCOVA

models, a constant slope can be applied to the model, allowing

for the estimation of a local random effect (i.e., a field-specific

intercept coefficient) with limited soil sampling (Harvey and

Morgan, 2009; Corwin and Lesch, 2014, 2017; Scudiero et al.,

2017). This approach potentially reduces the need for extensive

ground-truthing while still providing accurate soil property

estimates at the regional scale (Scudiero et al., 2017). In the

context of calibrating on-the-go sensor measurements to map soil

texture, ANOCOVA regression relies on several assumptions to

ensure accurate results. First, ANOCOVA assumes a linear

relationship between the sensor measurements (covariate) and the

soil texture properties (dependent variable) across the region of

interest, with the slope of this relationship being consistent across

different conditions. Any interaction between sensor data and

geographical or management differences should not significantly

alter the slope of the relationship for the ANOCOVA model to be

reliable. Second, ANOCOVA assumes that the residuals, or errors,

of the regression model are normally distributed and exhibit

homoscedasticity, meaning that the variability of these errors is

consistent across all levels of the covariate. Moreover, the model

assumes that the covariate is measured without error, which is

critical for the reliability of the calibration process. For this, it

is recommended that the sensor data collection procedure is

methodologically consistent across the entire dataset (Corwin and

Lesch, 2014).

The objective of this study was to evaluate the use of GRS for

mapping particle size fraction in micro-irrigated citrus orchards in

California and to compare its performance to that of ECa, which

served as the benchmark. Additionally, the study aimed to test

whether the ANOCOVA approach could be effectively applied to

GRS data to develop accurate soil maps with reduced ground-

truthing requirements.
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2 Materials and methods

2.1 Research sites

Soils at three micro-irrigated citrus orchards in California, USA,

were investigated in this research (Figure 1). The sites are named in

this manuscript after their location. A 4.2-ha commercial ‘Navel’

orange (Citrus sinensis L.) orchard site was in Lemon Cove, Tulare

County (Figure 1b). A 0.4-ha ‘Navel’ orange orchard was located at

the University of California, Riverside Agricultural Experimental

Station, Riverside, Riverside County (Figure 1c). A 3.7-ha

commercial ‘Page’ mandarin (Citrus reticulata B.) orchard located

in Strathmore, Tulare County (Figure 1d). Trees at the ‘Navel’ orange

sites were planted on flat terrain, while trees at the ‘Page’ mandarin

site were planted on 0.3-m raised berms made with local soils.

The primary soil types (USDA soil series) were retrieved from

Soil-Web (Beaudette and O’geen, 2009): in Lemon Cove they were

Havala loam and Yettem sandy loam; in Riverside they were

Monserate sandy loam; and in Strathmore they were Porterville
Frontiers in Plant Science 04
clay, San Joaquin loam, and a portion of the field was classified

as “Riverwash”.
2.2 Sensor-directed spatial sampling
scheme delineation and soil sampling

At each site, sensor-directed spatial sampling selected 20

sampling locations using Response Surface Sampling Design

(RSSD) with the ESAP software (Lesch et al., 2000). The RSSD

was used with the assumption that geospatial sensors utilized to

direct the sampling would correlate with target soil and plant

properties of horticultural interest for on-farm experiments. The

RSSD identifies a set of candidate principal component coordinates

that are representative for the entire sensor survey (i.e., average and

standard deviation of the sample equivalent to the one of the

population), then selects samples proximal to these principal-

component coordinates that are also geographically sparse (i.e.,

samples are as far as possible from each other, to reduce the risk
FIGURE 1

(a) the three research sites located in California, USA; (b) the 4.2-ha ‘Navel’ orange orchard located in Lemon Cove; (c) the 0.4-ha ‘Navel’ orange
orchard located in Riverside; and (d) the 3.7-ha ‘Page’ mandarin. The location of the on-the-go soil sensing transects, the soil sampling locations,
and the missing soil data locations (at the Strathmore site only) are depicted in the figure.
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ofautocorrelated residuals when using ordinary least square linear

modeling) (Lesch et al., 1995; Lesch, 2005; Fitzgerald et al., 2006).

Figure 2 shows the candidate RSSD sites and selected sites for the

three study orchards.

The data from the Lemon Cove and Strathmore orchards were

collected as part of an on-farm experiments to map soil with GRS and

ECa and to deepen the understanding of soil physical and chemical

properties with citrus leaf nutrient contents and fruit yield and

quality. At these study sites, spatial sampling was directed using

high-resolution multispectral imagery collected with an unmanned

aerial vehicle (UAV). Scudiero et al. (2019) detailed the use of ESAP

to direct spatial sampling at the Strathmore site. The same

methodology was used in Lemon Cove and is briefly described below.

Data at the Riverside site was collected to evaluate on-the-go

soil sensing when ECa is measured under the canopy of the trees

(i.e., closer to the micro irrigation emitters) with the apparatus

discussed by Scudiero et al. (2024a). At this site, ECa and GRS were

used to direct the soil sampling scheme delineation as detailed by

Scudiero et al. (2024a) and briefly described below.

2.2.1 Lemon cove
Five-band multispectral (Blue, Green, Red, NIR, and Red Edge)

imagery was collected with RedEdge Multispectral Camera from

MicaSense Inc. (Seattle, WA, USA) flown at an altitude of 100 m

above ground level in February 2019. Based on the methodologies

described by Zhang et al. (2021), a polygon system was created to

uniquely identify each citrus tree in the orchard. The multispectral

imagery underwent radiometric calibration, and the allocated area for

each tree was segmented using the generated polygons. Subsequently,

each tree was segmented from its background (soil) by applying

empirical thresholds on the excess green index (EGI) and normalized

difference vegetation index (NDVI), where a binary mask was created

by multiplying the binary masks of EGI and NDVI, effectively

isolating the canopy pixels from non-canopy areas (Moghimi et al.,

2020). Average reflectance was calculated for each tree at each band

separately and a feature vector consisting of sample trees (rows) and 5

spectral features (columns) was created. This dataset was transformed

into two uncorrelated principal components (collectively representing

94.3% of the dataset variance) using STATISTICA (version 12,

StatSoft Inc., Tulsa, OK, USA). The two principal components were

used to direct the sampling scheme. The Kolmogorov-Smirnov Two-

Sample Test was used to confirm that the multispectral reflectance

values from the selected trees (i.e., the sample) were not significantly

different from those of the entire orchard (i.e., the population).

Additionally, the Average Nearest Neighbor tool in ArcMap

(v.10.5.1, ESRI, Redlands, CA) was used to confirm that the selected

sampling scheme was geographically sparse. Soil was sampled in

December 2019, at 40 cm increments, down to 1.2 m. Only the data

for the 0-40 cm soil profile will be discussed in this manuscript, as

GRS is primarily sensing topsoil properties.

2.2.2 Riverside
In August 2019, GRS and ECa were measured at the Riverside

orchard. The ECa (0-1.5m) survey was carried out using the EM38-

DD (Geonics Ltd., Mississauga, Ontario, Canada) paired to a cm-

scale Trimble R2 GNSS receiver (Trimble, Inc.; Sunnyvale, CA,
Frontiers in Plant Science 05
USA) at 244 locations. GRS was carried out with an RSX-1 detector

and the RS-701 gamma-ray spectrometer (Radiation Solutions Inc.;

Mississauga, ON, Canada) using the sensor’s internal GPS at 1563

locations. The GRS total counts (TC) data were interpolated using

simple kriging with the Geostatistical Analyst toolbox in ArcMap.

The kriging model's leave-one-out cross-validation had R2 = 0.75.

The kriged TC values at the ECa locations were extracted. The ECa

and TC data were then used in ESAP to identify 20 sampling

locations. The representativeness and geographic spread of the

sampling scheme were tested analogously to the Lemon Cove site.

Soil cores from 0-40 cm were collected in August 2019.

2.2.3 Strathmore
The Strathmore sampling scheme was determined using ESAP

and multispectral UAV imagery collected in 2019 as described by

Scudiero et al. (2019) and analogously to the procedure described in

Section 2.2.1. At Strathmore, the two principal components

collectively represented 96.5% of the multispectral reflectance

dataset variance. Soil was sampled in December 2019, at 40 cm

increments, down to 1.2 m. The data for the 0-40 cm soil profile will

be discussed in this manuscript. Soil sampling was interrupted

because of rainfall. The soil sampling crew could not return to the

site to complete the soil sampling due to the COVID-19 pandemic

that started in early 2020. Because of this, soil was collected only at

15 out of 20 locations (see Figure 1d).
2.3 On-the-go soil sensing

The on-the-go soil sensing surveys at the three sites were carried

out using the same sensors and according to the field protocols

described by Corwin and Lesch (2005b). The GRS sensor was

mounted on an all-terrain utility vehicle and the ECa sensor was

on a non-metallic sled towed by the same vehicle. All surveys were

carried out at speeds slower than 8 km per hour, typically around

6 km per hour.

The CMD Mini Explorer 6L or ME6L (GF Instruments, S.R.O.;

Brno, Czech Republic) was used to measure ECa at all sites. The

sensor was placed on a sled and connected via cable to the GF

Instruments data logging unit (CMD/C), which was in the drivers

cabin during operation. The ME6L, in the Hi mode, measures ECa at

the nominal depth of 0.3, 0.5, 0.8, 1.1, 1.6, and 2.3 m. At the three sites

the upper five ECa measurements showed high positive correlations.

The fourth layer, the ECa for the 0-1.1 m soil profile, was used in this

research. The Trimble R2 GNSS receiver was paired to the CMD/C.

The ECa was estimated at the soil sampling locations using simple

kriging. Kriging interpolations were carried out on Normal-Score

transformed data, with a first-order trend removal. Kriging details for

each orchard are reported in Table 1.

The GRS was carried out with the RS-701 spectrometer, which

detects total counts (TC) in the 0.4 to 2.81 MeV range, and

emissions of potassium (K, %), uranium (U, ppm), and thorium

(Th, ppm). On-the-go GRS measurements are usually characterized

by a high signal-to-noise ratio (Minty, 1997; Viscarra-Rossel et al.,

2007). Simple kriging in ArcMap was used to reduce the noise of the

TC data, which showed autocorrelated spatial data at the three sites.
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Kriging interpolations were carried out on Normal Score

transformed data, with a first-order trend removal. Kriging details

for each orchard are reported in Table 2. The kriged TC values were
Frontiers in Plant Science 06
then extracted at the soil sampling locations for further analyses.

The K, U, and Th did not consistently show autocorrelated spatial

structures and were not, therefore, interpolated with kriging.
2.4 Soil laboratory analyses

Gravimetric water content (GWC) at time of sampling was

measured for all samples. Soil was dried and sieved discarding

particles larger than 2 mm. The soil samples were analyzed in the

laboratory to measure saturation percentage (SP) and the saturated

paste electrical conductivity (ECe) (Corwin and Yemoto, 2017). SP

is used as a proxy of particle size fraction, with reported very strong

positive correlations with clay content and very strong and negative

correlations with sand content. The hydrometer method (Gee and

Bauder, 1986) was used to determine particle size fraction.

For each field, five soil samples were selected for diffuse

reflectance infrared Fourier-transform spectroscopy (DRIFTS)

and acid ammonium oxalate extractable element analyses. These

five samples were selected to be a balanced subsample of the RSSD

design at each field: one sample was at the average point for the two

principal components for the sensors that directed the soil samples,

and the other four samples were at symmetrical target standard

deviation coordinates; e.g., RSSD level coordinates for PC1 and

PC2, respectively: (1) -0.79, -0.79; (2) -0.79, 0.79; (3) 0, 0; (4) 0.79,

-0.79; and (5) 0.79, 0.79) (see Figure 2).

To analyze the mineralogy of soils across sites, DRIFTS and

selective chemical extraction were used to probe aluminiosilicate and

active, poorly crystalline mineral components, respectively. The

DRIFTS spectra were collected from selected soils that were ball

milled and diluted to 10% mass concentration with spectroscopic

grade KBr prior to analysis. Spectra were collected on an Invenio -R

spectrometer (Bruker Optics Inc., Billerica, MA) using an EasiDiff

sampling accessory (Pike Technologies, Madison, WI). Spectra were

collected from 4000-400 cm-1 with 4 cm-1 resolution and represented

an average of 256 scans. All spectra were collected against a ground

KBr background. After collection, spectra were post-processed by

atmospheric compensation, smoothing (Savitzky-Golay, 17 points),

baseline correction and min-max normalization. Selective extractions

of Fe, Al, Mn, Si, U and Th associated with poorly-crystalline, active

oxide components from soils was conducted by previously established

methods (Mckeague and Day, 1966). Briefly, these components were

selectively extracted through addition of 10 mL of 0.2 M acid

ammonium oxalate solution to 0.25 g of ball milled soil in a 35 mL

polypropylene centrifuge tube and shaken for 4 h in the dark. Extracts

were subsequently purified through centrifugation at 10000 x g for

10 min and gravity filtered through Whatman 42 filter paper prior

to inductively coupled plasma optical emission spectrophotometric

(ICP-OES) quantification of elements (Optima 8000, Perkin Elmer).
2.5 Data analysis

The Pierson correlation coefficients (r) were calculated to

investigate the relationships between soil properties and ECa or

TC for each orchard and for the entire dataset.
FIGURE 2

Plots of standardized principal component target response surface
sampling design levels (empty squares) and the optimal sites having
good spatial uniformity (i.e., selected sites, empty circles) at the
three sites: (a) Lemon Cove, (b) Riverside, and (c) Strathmore. The
selected subsamples for the Limited Data regression models and soil
mineralogy lab analyses are depicted with full circles. At Strathmore,
the missing soil samples are depicted with cross symbols.
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The use of analysis of covariance (ANOCOVA) regression

(Corwin and Lesch, 2014) to build regional sensor to soil

property calibrations was tested. ANOCOVA models feature a

site-independent (regional) slope coefficient and orchard-specific

intercept coefficients. Gamma-ray TC and ECa were used as

predictors to map SP and sand, silt, and clay contents. For these

regression data a square root transformation was employed to

ensure unbiased residuals. The models were evaluated using the

coefficient of determination (R2), the root mean square error

(RMSE), and the mean absolute error (MAE). Models with MAE

> 5% were considered not acceptable (Pätzold et al., 2020). The

ANOCOVA models were calibrated on all available data (All Data

model) and using five soil samples per field (Limited Data model),

using the same subsample used for DRIFTS and acid oxalate

extractable element analyses. The Limited Data models were

evaluated at the left-out locations. Following the methodology of

Corwin and Lesch (2014), the regression models were developed

using STATISTICA (version 12, StatSoft Inc., Tulsa, OK, USA).

The raw GRS data was investigated to identify any differences in

the ratios between TC, K, U, and Th. Differences in these ratios, such as

in the Th/K ratio, are often interpreted as differences in parent material

clay mineralogy and soil type (Herrmann et al., 2010; Wibowo et al.,

2020; Al-Jafar and Al-Jaberi, 2022). At the orchard level, the slope and r

of the TC linear relations with K, U, and Th, as well as these from K

with U and Th, and of U with Th were compared.

Differences in soil concentrations of extractable Fe, Al, Mn, Si,

U and Th across study sites were tested with a one-way analysis of

variance and the Fisher’s Least Significant Difference post-hoc test in

STATISTICA. The Th data was left-censored, as three samples had

concentrations below limits of detection (0.0004 mg g-1). The

missing values were estimated dividing the limit of detection by

two (Hornung and Reed, 1990).
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3 Results

3.1 Field specific and regional linear
relationships between ECa, TC, and
soil properties

Table 3 shows the average, median, minimum, maximum, and

standard deviation values for the measured soil properties, ECa, and

TC across the entire dataset, and within the three orchard sites.

Lemon Cove was the site with the coarsest soil, 5 locations were

classified as Sand, 5 were Loamy Sand, and 10 were Sandy Loam.

Riverside had the most homogeneous soil texture, with 19 locations

classified as Sandy Loam and 1 as Loam. Strathmore had the most

heterogeneous texture: 4 locations were Sandy Loam, 6 were Sandy

Clay Loam, 1 was Loam, and 4 were Silt Loam. Most of the soil

locations had non-salt affected (ECe < 2 dS/m) soils, 5 locations

were slightly saline (2 < ECe < 4 dS/m), of which 3 were in Lemon

Cove and 2 were in Riverside.

Table 4 shows the Pearson r coefficients for ECa and TC with the

measured soil properties over the entire dataset and for each field.

The correlation of ECa with sand was negative and significant (p <

0.05) for all sites and within each orchard. The correlations of TC

with sand were significantly negative for the whole dataset, but were

non-significant at Lemon Cove, significant and negative at

Riverside, and significant and positive at Strathmore. Correlations

between silt and ECa and TC were similar to those of sand but with

the reverse sign. Clay correlations with ECa were non-significant

over the entire dataset and at the Riverside site, they were significant

and positive at Lemon Cove and significant and negative at

Strathmore. Clay content correlated positively over the entire

dataset with TC, but no significant correlations emerged at the

single sites. Notably, clay content showed a weak significant
TABLE 1 Semivariogram and Kriging cross-validation specification for the soil apparent electrical conductivity at the three research sites.

Site Date

Raw measurements Semivariogram Kriging Cross-Validation

n Model Nugget (%) Partial sill (%) Range (m) R2

Lemon Cove Dec-2019 481 Spherical 12.9 87.1 145.0 0.90

Riverside Oct-2021 534 Stable 8.8 91.2 7.8 0.84

Strathmore Dec-2019 633 Stable 5.9 94.1 96.1 0.90
The date of acquisition and the number (n) of sensor measurements are reported. The interpolation cross-validation coefficient of determination (R2) is reported.
TABLE 2 Semivariogram and Kriging cross-validation specification for the gamma-ray Total Counts at the three research sites.

Site Date

Raw measurements Semivariogram Kriging Cross-Validation

n Model
Nugget
(%)

Partial
sill (%)

Range
(m) R2

Lemon Cove Dec-2019 4992 Exponential 37.6 62.4 34.1 0.84

Riverside Aug-2019 1563 Exponential 36.0 64.0 39.2 0.75

Strathmore Dec-2019 4483 Exponential 0.5 99.5 49.2 0.71
The date of acquisition and the number (n) of sensor measurements are reported. The interpolation cross-validation coefficient of determination (R2) is reported.
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TABLE 3 Basic statistics for sand, silt, and clay contents; saturated soil extract conductivity (ECe); gravimetric water content (GWC) at the time of
sampling; saturation percentage (SP), soil apparent electrical conductivity (ECa) at the soil sampling locations; and gamma-ray spectrometry (GRS)
total counts at the soil sampling locations for the entire dataset and for the three research sites.

Mean Median Minimum Maximum Standard Deviation

All sites (n = 55)

Sand 0.64 0.62 0.30 0.94 0.15

Silt 0.25 0.23 0.04 0.64 0.14

Clay 0.11 0.10 0.02 0.33 0.07

ECe (dS m-1) 1.08 0.79 0.30 3.41 0.74

GWC 0.14 0.13 0.04 0.38 0.06

SP 0.32 0.33 0.19 0.52 0.08

ECa (mS m-1) 26.97 23.12 14.46 56.66 10.56

GRS Total Counts (cps) 2653.31 2758.54 1584.51 3623.98 744.95

Lemon Cove (n = 20)

Sand 0.79 0.77 0.64 0.94 0.09

Silt 0.15 0.16 0.04 0.23 0.06

Clay 0.07 0.07 0.02 0.13 0.04

ECe (dS m-1) 1.11 0.78 0.39 3.41 0.87

GWC 0.14 0.14 0.11 0.17 0.02

SP 0.24 0.25 0.19 0.29 0.02

ECa (mS m-1) 21.31 21.07 18.63 26.73 1.93

GRS Total Counts (cps) 1775.30 1761.19 1584.51 2054.51 117.57

Riverside (n = 20)

Sand 0.58 0.59 0.45 0.71 0.06

Silt 0.30 0.31 0.20 0.37 0.04

Clay 0.12 0.12 0.07 0.18 0.03

ECe (dS m-1) 1.39 1.36 0.58 2.85 0.69

GWC 0.09 0.09 0.04 0.15 0.03

SP 0.35 0.35 0.33 0.39 0.02

ECa (mS m-1) 21.87 23.12 14.46 25.96 3.54

GRS Total Counts (cps) 3477.27 3488.88 3302.50 3623.98 93.49

Strathmore (n = 15)

Sand 0.52 0.53 0.30 0.77 0.15

Silt 0.31 0.20 0.06 0.64 0.20

Clay 0.16 0.17 0.02 0.33 0.09

ECe (dS m-1) 0.62 0.51 0.30 1.18 0.28

GWC 0.21 0.19 0.13 0.38 0.07

SP 0.39 0.33 0.27 0.52 0.09

ECa (mS m-1) 41.31 35.10 30.47 56.66 10.26

GRS Total Counts (cps) 2725.37 2758.54 2471.73 2992.12 182.13
F
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correlation with sand content (r = -0.43) over the entire dataset, but

no other significant correlation with other soil properties. The clay-

sand correlations were strongly negative at Lemon Cove (r = -0.91)

and Riverside (r = -0.80), but non-significant at Strathmore. The

clay-silt correlations were positive at Lemon Cove (r = 0.77) and

Riverside (r = 0.51), but negative at Strathmore (r = -0.72). Over the

entire dataset, the relationships between SP and sand were strong

and negative (r =-0.86), but non-significant with clay. Over the

entire dataset, TC had a non-significant correlation with ECa. The

only significant relationship was observed between TC and ECa at

the Strathmore site with r = -0.89.

Table 5 reports the ANOCOVA regressions for sand, silt, and clay

content, and SP with ECa as the predictor. The ANOCOVA regression

models were developed on square root transformed data. ANOCOVA

regression assumptions were met. The goodness-of-fit metrics (R2,

RMSE, and MAE) were calculated for the back-transformed data. For

all models, except the one predicting clay content, the ANOCOVA

slopes in the All Data models and Limited Data models had slope

values with overlapping standard errors. The calibration of the All

Data and Limited Data models were significant at the p<0.05 level.

The model calibration errors were low, all calibration MAEs were

acceptably low (i.e., MAE < 0.05). The independent evaluations of the

Limited Data models had MAE <0.06. The calibration RMSE values

were under 0.06 in the All Data and Limited Data calibrations. The

RMSE for the independent evaluations of the Limited Data models

were 0.07 for sand, silt, and SP and 0.073 for clay content.

The ANOCOVA approach could not be employed to estimate

any of the texture-related soil properties using TC. The

relationships between the sensor and each soil property could not

be represented with a single slope across the entire dataset.
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3.2 Differences in soil characteristics across
the three sites

Figure 3 reports the slope and the Pearson r for the linear

relationships for all combinations between TC, K, U, and Th from

the raw (i.e., non-kriged) sensor datasets. The sample sizes for the

three datasets were large (see Table 1). The r values were all

significant at the p<0.05 level. For all considered linear

relationships, the r values were visibly higher at Strathmore than

at the other two sites. Similarly, the slope coefficient values for all

relationships were remarkably higher at Strathmore than at the

other two sites. In Figure 3, the error bars represent the 5th to 95th

confidence interval for the regression slopes. Notably, the slope

intervals at Lemon Cove and Riverside overlapped (i.e., not

significantly different) for the TC (dependent) and U

(independent) relationship (Figure 3b), for the K (dependent) and

U (independent) relationship (Figure 3d), and for the U

(dependent) and Th (independent) relationship (Figure 3f).

Across all sites, DRIFTS spectra showed prominent

aluminosilicate clay mineral vibrations which informed the nature

of clay minerals present (Figure 4). This includes features generally

related to structural -OH (≈3697 and 3623 cm-1), Si-O (≈1100, 1035-

1015, 790-430 cm-1), octahedral Al-Al-OH (≈915 cm-1), Al-O-Si

(≈535 cm-1) and clay-associated water (≈3400 and 1638 cm-1)

vibrations present across all sites (Madejová and Komadel, 2001;

Madejová, 2003; Petit, 2006). The -OH stretching mode at 3697 cm-1

was indicative of kaolinite clay present in soils, while peaks around

3620 and 3400 cm-1 have been identified previously as being

characteristic of montmorillonite, suggesting the presence of these

two clay minerals across sites (Khang et al., 2016). There were subtle

differences between sites that suggested some differences in

mineralogy between sites. This was primarily observed for the

Strathmore soils, which showed some vibrational features either

distinct or more pronounced when compared to the Lemon Cove

and Riverside soils. This includes a pronounced peak at 798 cm-1,

a more pronounced shoulder at 878 cm-1, a reduction of the 750 cm-1

feature, and a primary Si-O peak at 1035 cm-1 in Strathmore

compared with 1019 cm-1 in Lemon Cove and Riverside soils.

These differences could have potentially resulted from changes

in clay octahedral sheet substitution for a given clay mineral

type, which could have enhanced absorbance near 878 cm-1 as well

as impacted the position of the primary Si-O stretching peak

near ≈1030-1015 cm-1 (Madejová and Komadel, 2001; Madejová,

2003). Differences in mineral composition between Strathmore and

the Lemon Cove and Riverside sites, including aluminosilicate and

oxide species, could also have resulted in different absorbances across

sites as several different minerals have DRIFTS features in this range

(e.g., goethite, silicon oxide minerals) (Madejová, 2003; Parikh et al.,

2014). All of these potential influences indicated a Strathmore soil

mineralogy distinct from Lemon Cove and Riverside.

Poorly crystalline forms of Fe, Al, Mn and Si (i.e., organically

bound and amorphous mineral species) varied between sites

(Table 6). Lemon Cove soils had the highest average

concentration of acid ammonium oxalate extractable Fe and was

significantly higher than Strathmore, with Riverside being

statistically similar to both. Strathmore soils had significantly
TABLE 4 Pearson correlation coefficients for soil apparent electrical
conductivity and gamma-ray total counts with sand, silt, and clay
contents; saturated soil extract conductivity (ECe); gravimetric water
content (GWC) at the time of sampling; and saturation percentage (SP).

All sites Lemon Cove Riverside Strathmore

Apparent Electrical Conductivity

Sand -0.70 -0.73 -0.55 -0.92

Silt 0.65 0.67 0.59 0.94

Clay 0.24 0.72 0.32 -0.56

ECe -0.35 0.22 -0.34 -0.12

GWC 0.81 0.10 0.41 0.80

SP 0.72 0.08 -0.03 0.94

Gamma-Ray Total Counts

Sand -0.55 0.11 -0.58 0.88

Silt 0.43 -0.13 0.63 -0.83

Clay 0.37 -0.05 0.32 0.40

ECe 0.14 0.17 -0.27 0.02

GWC -0.32 0.22 -0.07 -0.68

SP 0.54 -0.47 -0.23 -0.91
Bold and red coefficients were significant at the p<0.05 level.
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higher average extractable concentrations of Al and Mn than

Lemon Cove, with Riverside comparable to both sites. Extractable

Si was highest for Riverside, with Lemon Cove significantly lower. U

associated with these forms was highest in Lemon Cove, followed by

Riverside and then Strathmore, with Strathmore being significantly

lower than Lemon Cove. Th was significantly higher in Lemon Cove

compared to Strathmore, which had detectable Th in only 2 of the 5

soils analyzed, with Riverside not significantly different from either.

Across all sites, U and Th associated with extractable elements

showed a positive correlation with extractable Fe phases, while

extractable Al, Mn and Si had a negative relationship with

associated U and Th (Table 7).
4 Discussion

Arguably, on-the-go soil sensors should reliably correlate with

the target soil properties that they developed to justify their broad

and consistent use in high-resolution soil mapping. On-the-go

sensors measuring ECa capture a complex process which is

influenced by many soil properties such as water content, salinity,

and soil texture. These complex interactions contributing to ECa

have been studied in agricultural soils for many decades (Rhoades

et al., 1976, 1989; Corwin and Lesch, 2003; 2005a), and are fairly

well understood: e.g., higher clay content, water content, and

salinity contribute to higher ECa. Moreover, it is often the case

that the spatial patterns of the soil properties influencing ECa are

locally correlated at the field scale, e.g., the soil physical properties

and terrain drive the spatial variability of soil moisture and salinity,

making statistical ECa-to-soil-property calibrations at the field-scale

fairly straightforward (Corwin and Scudiero, 2016). Because of the

complex interactions between soil properties influencing ECa,

unexpected soil relationships are sometimes reported. For

example, Scudiero et al. (2016) reported a negative relationship

between ECa and clay content from fields in shallow soils on hilly

landscape in Colorado, USA. The GRS as reviewed by Mahmood

et al. (2013) measures a more straightforward process: the emissions

of gamma radiation from radionucleotides naturally occurring in

soils and rocks (mainly from 40K, 238U, and 232Th) and from

anthropogenic 137Cs. The overall TC are expected to be lower in

sandy soils than in finer soils (Mahmood et al., 2013; Reinhardt and
Frontiers in Plant Science 10
Herrmann, 2019); and others, and as supported by the global

Pearson correlation coefficients observed in this study (Table 4).

Unfortunately, at the field-scale, TC relationships with soil texture

can be erratic as shown by Pätzold et al. (2020) in Germany, by

Maxton and Lund (2020) in the USMidwest, and as observed in this

California citrus study (Table 4).

Despite the potential of observing unexpected correlations

between ECa and GRS with texture-related field properties, we

observed significant relationships between most target soil

properties and sites using either of the sensors (Table 4).

Moreover, as discussed by Scudiero et al. (2024a), data fusion

(e.g., principal component analysis, multiple regression) between

the two sensors can be a means to obtain very accurate soil texture

maps. Unfortunately, even when leveraging the spatial information

from on-the-go sensing in spatial models (Reyes et al., 2018) and/or

directing the soil sampling to calibrate ordinary least square models

(Lesch, 2005), the amount of ground-truth data needed to develop

accurate field-scale maps is too high (e.g., dozens of soil samples per

field). The burden and the cost associated with the collection of

ground-truth data from numerous locations within each field is a

major bottleneck for the widespread application of on-the-go

sensing for quantitative and accurate soil texture mapping.

Beyond the field-scale, the potential for developing regional site-

independent models that would allow predicting soil properties at new

sites without the need for collecting local ground-truth data has been

investigated by many scientist in the past decades. Sudduth et al. (2005)

investigated the use of ECa from different sensors to map texture and

cation exchange capacity across six USMidwest states. Their study sites

from six states included soils of differing parent material, weathering,

levels of organic matter content, and agricultural management. They

observed R2 values ≥ 0.55 for the two soil properties across their entire

dataset. Although encouraging, their models were not sufficiently

accurate to predict field-scale texture for precision agriculture. For

GRS, Heggemann et al. (2017) developed a site-independent model to

predict soil texture using data collected from ten agricultural fields in

Germany across sites with diverse mineralogy and parent material.

They developed site-independent support vector machines models that

yielded R2 of 0.96 (sand), 0.93 (silt), and 0.78 (clay), and with MAE

values < 0.04. However, Pätzold et al. (2020) evaluated the model by

Heggemann et al. (2017) at independent fields in Germany. They

observed that the “model was not generally capable of predicting soil
TABLE 5 The analysis of covariance regression statistics for soil apparent electrical conductivity (independent variable) and sand, silt, and clay
content, and saturation percentage (SP) (dependent variables).

Dependent variable

Slope (standard
error)* R2

L.D. Ind. Eval.

RMSE

L.D. Ind. Eval.

MAE

L.D. Ind. Eval.A.D. L.D. A.D. A.D. A.D.

Sand -0.112(0.011) -0.12(0.014) 0.84 0.94 0.80 0.060 0.040 0.066 0.049 0.030 0.055

Silt 0.183(0.019) 0.21(0.022) 0.81 0.97 0.73 0.059 0.030 0.069 0.048 0.024 0.055

Clay -0.05(0.023) -0.13(0.031) 0.38 0.65 0.10 0.052 0.037 0.073 0.039 0.027 0.054

SP 0.061(0.008) 0.067(0.01) 0.84 0.93 0.81 0.031 0.020 0.035 0.025 0.016 0.028
f

*Regression slopes and standard errors are for the square-root-transformed data.
The regression slope (standard error in parenthesis) for the All Data (A.D.) and Limited Data (L.D.) models are reported. The goodness of fit for the A.D. and L.D. models and the independent
evaluation of the L.D. models are reported: the coefficient of determination (R2), the root mean square error (RMSE), and the mean absolute error (MAE).
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texture at sites that were not adequately represented in the

calibration set”.

ANOCOVA regression as an alternative approach to universal

models has been widely discussed for ECa-to-salinity calibrations

(Corwin and Lesch, 2014, 2017; Scudiero et al., 2017). Harvey and

Morgan (2009) discussed the potential of ANOCOVA for texture

mapping on three fields in Texas, USA, and observed prediction errors

below 4% for clay. In this study, we report calibration MAE values <
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0.05 for ANOCOVA ECa-texture predictions (Table 5). Previous

research concluded that ANOCOVA may be a means to reducing

field-scale soil samples (Corwin and Lesch, 2014; Scudiero et al., 2017).

In particular, the regression slope common for all fields is calibrated

over the entire available dataset, whereas only three or more samples

per field may be needed to estimate the field-specific intercept. For the

first time, this research shows that minimal data (n=5 per field) can be

used to calibrate accurate ANOCOVA ECa-texture regression with
FIGURE 3

Regression slope coefficients (bars are the 5th to 95th confidence interval for the coefficients) and Pearson correlation coefficients (r) for
relationships between gamma-ray spectrometry total counts (TC), potassium (K), uranium (U), and thorium (Th). Each quadrant compares regression
slopes at the three research sites, Lemon Cove (LC), Riverside (R), and Strathmore (S), for the simple linear regression model (a is the regression
intercept) specified at the top of each quadrant: TC as a function of (a) K, (b) U, and (c) Th; K as a function of (d) U, and (e) Th; and (f) U as a
function of Th.
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very low calibration and independent evaluation errors (Table 5).

Generating high-resolution, accurate soil maps using as few as five

ground-truth sites per agricultural field may benefit practitioners

seeking to decrease the costs related to soil sampling and

laboratory analyses.

ANOCOVA regression was shown in this research to be a very

powerful tool to map texture with limited data, but it relies on

postulating the slope between the sensor and the target soil property

to be stable over multiple fields. This was not the case for GRS-TC

making ANOCOVA regression modeling not feasible. Over the
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three fields, the TC showed expected (e.g., positive r with clay) and

unexpected (e.g., negative r with clay) with the target soil texture

properties. These inconsistencies make GRS unsuitable for texture

mapping in California citrus orchards using ANOCOVA. Field-

specific modeling may be needed instead. Mahmood et al. (2013)

and Pätzold et al. (2020) indicated that differences in parent

material and clay mineralogy may be responsible for contrasting

GRS and texture relationships over multiple fields. If fields with

unexpected GRS-texture relationships could be identified from raw

GRS data or using available landscape-scale soil maps, then soil

scientists may decide whether to include such fields in ANOCOVA

models or to calibrate field-specific models (which require larger

ground-truthing). Moreover, reliable classification of the expected

nature of the GRS-texture relationship may enable the calibration of
TABLE 6 Fe, Mn, Al and Si in acid oxalate extractable solid phases along
with Th and U associated with these phases.

Site Feao Mnao Alao Siao Thao Uao

(mg g-1 soil)

Lemon Cove 2.57 a 0.13 c 0.45 b 0.29 b 0.011 a 0.027 a

Riverside 1.01 b 0.27 b 0.59 b 0.51 a 0.0061 ab 0.015 b

Strathmore 0.76 b 0.44 a 0.84 a 0.41 a 0.0016 b 0.011 b
Denoted statistical significance (p<0.05 level) was determined through one way Analysis of
Variance and the Fisher’s Least Significant Difference as a post-hoc test.
TABLE 7 Pearson correlation coefficients for soil concentrations of
extractable Th and U with the extractable Fe, Mn, Al, and Si.

Fe Mn Al Si

Th 0.60 -0.69 -0.62 -0.48

U 0.98 -0.81 -0.62 -0.57
Bold and red coefficients were significant at the p<0.05 level.
FIGURE 4

Diffuse reflectance infrared Fourier transform spectra for soil samples from the three sites. The average spectral signature for each site (solid lines)
and the 5th to 95th interval (shaded areas) are depicted. The 4000-400 cm-1 spectra are shown in quadrant (a). Quadrant (b) shows the specra
between 1200 and 900 cm-1. Quadrant (c) shows the specra between 900 and 660 cm-1.
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reliable site-independent models (Pätzold et al., 2020). For this

reason, soils from the three citrus sites were analyzed using DRIFTS,

extraction of active mineral phases, and available USDA soil maps

(Beaudette and O’geen, 2009) in relationship to the raw GRS TC, K,

Th, and U observed at the three sites.

Mineralogical analysis through DRIFTS and extraction of active

Fe, Al, and Mn oxides highlighted notable differences in soil clay

fractionmineralogy between sites. The aluminosilicate and active oxide

phases probed here both represent prevalent, reactive and high surface

area minerals in soil clay size fractions that are known to retetain

several elements in soils, including K, Th, and U (Mcbride, 1994; Duff

et al., 2002; Bachmaf and Merkel, 2011; Hongxia et al., 2016; Dublet

et al., 2017; Wang et al., 2021). As such, variation in this mineralogy

between sites may translate to different affinities of these isotopes for

the clay fraction of these soils. In the case of the soil minerals probed by

DRIFTS, there were apparent differences in clay substitution, clay

composition and/or oxide chemistry between the Strathmore site and

Lemon Cove and Riverside soils. These factors could have impacted

surface hydroxyl group availability (e.g., 1:1 vs. 2:1 clay), cation

exchange capacity and exchange selectivity, which may greatly

impact mineral retention of ions, including Th and U (Duff et al.,

2002; Bachmaf and Merkel, 2011; Hongxia et al., 2016; Wang et al.,

2017). In addition to the distinct aluminosilicate mineralogy at the

Strathmore site, differences in extractable Fe, Al, Mn, and Si provide

further insight into the deviation in GRS-texture relationship at the

Strathmore site. An observation apparent in our data is the role of

poorly-crystalline and amorphous Fe species in U and Th retention

across sites, in alignment with previous studies showing the strong

association of these Fe species for U and Th through adsorption and

co-precipitation (Duff et al., 2002; Dublet et al., 2017; Li et al., 2019;

Wang et al., 2021). Interestingly, poorly-crystalline Al, Mn, and Si

forms showed a weak inverse relationship with extracted U and Th,

indicating they did not associate to the same extent as with Fe.

Provided the relatively lower proportion of Fe in total extracted

poorly-crystalline mineral phases at the Strathmore site compared to

Lemon Cove and Riverside, it is conceivable that this reduced the

affinity of Th and U for fine-grained active oxides in Strathmore. This

could, in turn, weaken or alter the relationship between soil clay

content and GRS through lower radionuclide retention. While these

results overall indicate that mineralogy may have played a role in

observed inconsistencies in assessment of soil texture across sites with

GRS, more detailed mineralogical analyses (e.g., X-ray diffraction

“XRD”), extended X-ray absorption fine structure “EXAFS”

spectroscopy) and isotope retention studies of isolated textural

fractions across sites would further explore this relationship.

The mineralogical results align with the previous suggestion

that differences in clay fraction mineralogy may result in

contrasting trends of GRS and clay determination between field

sites (Mahmood et al., 2013; Pätzold et al., 2020). This suggests that

fundamental knowledge of site mineralogy may inform the

applicability of GRS for soil textural determination between sites.

This could relate further to variable environmental factors that may

impact mineralogy of soil clay fractions, such as parent material,

drainage and climate (Mcbride, 1994). For example, formation and

dissolution of poorly crystalline Fe species related to Th and U

retention across the Lemon Cove, Riverside and Strathmore sites
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are notably sensitive to soil redox fluctuations that may in turn

impact radionuclide retention (Duff et al., 2002; Winkler et al.,

2018). Knowing in advance the pedological properties of a soil may

therefore provide some indication of what type of GRS defined

textural relationships could be expected for a given site. Defining

these relationships with respect to widely available soil survey data

may also represent a future area for exploration with substantial

implications for GRS application at regional scales.
5 Conclusions

As smart fertilizer and water management practices become

increasingly important for California’s specialty crops, driven by

factors such as resource scarcity, rising costs, and regulations, the

need for accurate, high-resolution soil maps will grow. Geospatial

sensors, such as soil apparent electrical conductivity (ECa) and

gamma-ray spectrometry (GRS), were confirmed in this study as

reliable tools for field-scale soil mapping of particle size fraction,

based on data from three citrus orchards in California. Model-based

sampling schemes, such as the response surface sampling design

used here, enable the creation of accurate soil maps using a

relatively small set of ground-truth soil samples. Multi-field

modeling using universal, site-independent models may not be

feasible due to unknown secondary influences on sensor

measurements at the individual field level. For ECa, locally

adjusted analysis of covariance (ANOCOVA) regressions modeled

particle size fractions with high accuracy. Notably, the ANOCOVA

regressions can be calibrated using limited (n=5 per field) data. This

novel insight marks a step forward in making high-resolution

mapping affordable for practitioners and their clientele. More

research is needed to understand how ANOCOVA models that

use minimal soil data can be developed, calibrated, evaluated, and

improved over time (e.g., when any new field is added to a

preexisting dataset).

In one of the orchards (the Strathmore orchard), GRS exhibited

an unexpected negative correlation with clay content, making the use

of ANOCOVA for GRS-texture regressions not possible. Although

such relationships have been reported previously, the causes behind

them remain poorly understood. To investigate this further, GRS

ratios, diffuse reflectance infrared Fourier-transform spectroscopy

(DRIFTS), and acid ammonium oxalate extractable elements were

analyzed at all three sites. The Strathmore orchard displayed unique

GRS ratios, DRIFTS, and acid ammonium oxalate extractable

element profiles compared to the other sites. These novel insights

may guide future research and help predict whether positive

(expected) or unexpected GRS-clay content relationships are likely

to occur at a given field, based either on raw GRS data or geochemical

information. Such a-priori knowledge could inform soil scientists’

decisions about ground-truthing efforts (e.g., allocating additional

resources to increase the number of soil samples for an accurate map)

or be used as an additional predictor in regional models, such as

support vector machines or random forest regression models. Here,

the odd GRS-texture relationships were observed in one site only,

which had fewer sampling locations than the other two sites. Further

research is needed to identify other sites showing unexpected GSR-
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texture relationships to understand commonalities amongst these

and contrasting features compared to sites where GSR performs

as expected.
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