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Chloroplast density in cells varies among different types of cells and plants. In

current single-cell spatiotemporal analysis, the automatic detection and

quantification of chloroplasts at the single-cell level is crucial. We developed

DeepD&Cchl (Deep-learning-based Detecting-and-Counting-chloroplasts), an

AI tool for single-cell chloroplast detection and cell-type clustering. It utilizes

You-Only-Look-Once (YOLO), a real-time detection algorithm, for accurate and

efficient performance. DeepD&Cchl has been proved to identify chloroplasts in

plant cells across various imaging types, including light microscopy, electron

microscopy, and fluorescence microscopy. Integrated with an Intersection Over

Union (IOU) module, DeepD&Cchl precisely counts chloroplasts in single- or

multi-layered images, while eliminating double-counting errors. Furthermore,

when combined with Cellpose, a single-cell segmentation tool, DeepD&Cchl

enhances its effectiveness at the single-cell level. By counting chloroplasts within

individual cells, it supports cell-type-specific clustering based on chloroplast

number versus cell size, offering valuable morphological insights for single-cell

studies. In summary, DeepD&Cchl is a significant advancement in plant cell

analysis. It offers accuracy and efficiency in chloroplast identification, counting

and cell-type classification, providing a useful tool for plant research.
KEYWORDS

chloroplasts, DeepD&Cchl, deep learning, automatic detection and counting, single
cell, cell type clustering
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1 Introduction

Chloroplasts convert light energy to chemical energy through

photosynthesis, provide oxygen, and serve as a cornerstone for the

world. Research on chloroplasts primarily focuses on their material

composition, genome, diversity, evolution, structure, as well as

function and adaptation (Liu et al., 2018; Xing et al., 2025; Han

et al., 2025; Long et al., 2024; Parisa et al., 2025). The research

usually needs to quantify chloroplast numbers. Accurate counting is

essential for evaluating photosynthetic efficiency and related

physiological traits. Chloroplast number at the stomatal cells has

been used as a reliable indicator for identifying hybrid species or

estimating the ploidy level of specific plant tissues (Fujiwara et al.,

2019; Watts et al., 2023; Cao et al., 2024). Studies have shown that it

varies among different genetic backgrounds of the same species,

suggesting its potential as a classification marker (Pyke and Leech,

1994; Pyke et al., 1994). Ukwueze et al. used chloroplast counting

methods to examine the ploidy of banana germplasm (Ukwueze

et al., 2022). Chepkoech et al. reported an increase in chloroplast

numbers in tetraploid potatoes compared to diploid plants

(Chepkoech et al., 2019). Moreover, Pyke et al. found that the

average number of chloroplasts per cell in the initial leaves varies

among different genetic backgrounds of Arabidopsis (Pyke and

Leech, 1994; Pyke et al., 1994). Specifically, the Landsberg erecta

(Ler) ecotype has 121 chloroplasts per cell, while Wassilewskija

(Ws) ecotype has 83 (Pyke and Leech, 1994; Pyke et al., 1994). These

findings suggest that chloroplast numbers can act as a classification

marker, and counting chloroplasts in single cells is key to

understanding plant adaptability, evolution, and diversity.

Building on the importance of single-cell analysis, a key

question in plant developmental biology is how a plant cell

differentiates into a specific type. In single-cell biology, cells are

typically classified by their transcriptomes. It’s important to

understand that the transcriptome acts as a snapshot of a cell’s

status at a particular moment, considering that cells are dynamic

and continuously adapt to signals and cell cycle changes. This

necessitates the integration of subcellular morphological

information, for instance, chloroplast status, to accurately define a

cell type.

However, current methods have trouble in quickly and

accurately counting chloroplasts at the single-cell level. Manual

or software-assisted counting using images is time-consuming

and error-prone. Molecular staining for organelle counting,

including chloroplasts, associated with flow cytometry might

seem efficient. But it is limited by the isolation process and

can’t accurately determine the number per cell (Mattiasson,

2004; Cole, 2016). A study on chloroplast counting in Spruce

needle leaves showed that examining the chemically fixed three-

dimensional (3D) volume of dead mesophyll cells, using

continuous optical cross-sections via confocal laser-scanning

microscopy, provides more information than traditional two-

dimensional (2D) images. The researchers found that nearly 90%

of chloroplasts were missing in 2D images when dealing with

thick cells (Kubıńová et al., 2014). However, this method relies on

complex data collection, introducing subjectivity and technical
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limitations. Some studies suggest that semi-automatic cell

number quantification can be achieved using manual-

thresholding segmentation and automated measurement with

professional software like ImageJ. Nevertheless, overlapping

cells may not be accurately distinguished and counted (Arena

et al., 2017).

Deep learning has shown tremendous potential in plant

research. It has been employed to accurately segment and analyze

individual cells in microscopic images (van Valen et al., 2016; Xie

et al, 2018). By merging transfer learning and Convolutional Neural

Networks (CNNs), a deep-learning framework named

DeeplearnMOR was developed for prompt classification of image

categories and accurate identification of organelle abnormalities (Li

et al., 2021). Additionally, an ImageJ plugin was created to enable

non-experts to analyze data with U-Net for tasks like cell detection

and shape measurements in biomedical images (Falk et al., 2019).

Pachitariu et al. introduced Cellpose, a deep learning tool for precise

cell segmentation across diverse image types. Although it does not

directly count chloroplasts, Cellpose provides a foundation for

analyzing chloroplasts within single cells (Pachitariu and Stringer,

2022). Recently, Lambret Frotte et al. developed Chloro-Count

based on Mask Region-based CNNs, to count the chloroplast

number in fixed rice bundle sheath cells using confocal laser

scanning microscopy (Lambret Frotte et al., 2025). Meanwhile,

the deep learning framework YOLO (You Only Look Once)

object detection algorithm has transformed computer vision with

its capacity to make real-time predictions at impressive speeds. It

has been effectively used for cell detection and counting (Redmon

and Farhadi, 2017; Aldughayfiq et al., 2023). Despite these

advancements, it has not yet been applied to quantify subcellular

structures like chloroplasts or mitochondria using 3D images from

living cells.

To bridge the gap, we have developed DeepD&Cchl (Deep-

learning-based Detecting-and-Counting-chloroplasts), a tool built

on the YOLO object detection algorithm. The DeepD&Cchl,

integrated with the Intersection Over Union (IOU) mode, enables

accurate chloroplast counting in microscope images. When

combined with the Cellpose segmentation tool, it allows for

counting within individual 3D living cells. By plotting single cell

chloroplast number against cell size, this method reveals a cell-type

clustering effect, providing valuable morphological information for

single-cell studies in plant research.
2 Materials and methods

2.1 Plant sample preparation

The original bryophyte plant materials, including Sphagnum

squarrosum (S. squ), Physcomitrium patens (P. Pat), and

Ricciocarpos natans (R. nat), were gifted by Prof. Ruiliang Zhu

and Prof. Yue Sun from the School of Life Sciences at East China

Normal University. The original Wolffia australiana (W. Aus) was

gifted by Dr. Li Feng from the High School Affiliated to Renmin

University of China.
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For bryophyte culture, within a clean workbench, the plant’s

surface soil was first rinsed off with clear water, followed by

immersion in a 0.05% Triton buffer solution for 5 minutes.

Subsequently, the specimen was treated with a 5% NaClO

solution for another 5 minutes and then rinsed with sterilized

distilled water three times, each rinse lasting 2 minutes. Excess

moisture on the surface of the thallus was absorbed using sterile

filter paper. The specimen was then placed on a pre-prepared ½

GB5 medium with 1% sucrose, sealed with a sealing film, and then

incubated in a room maintained at a constant temperature of 22°C

with a light cycle of 16 hours (at 800 lux) to 8 hours.

For cultivation, thallus sections that were vibrant green and in

good growth condition were placed on the same medium for

propagation. During this process, the growth status of the scales

was observed and documented. The culture medium was prepared

by dissolving Gamborg B5 Medium powder and sucrose in distilled

water, adjusting the pH to 5.7-5.8, adding agar, and then

autoclaving. After sterilization, the medium was poured into Petri

dishes and allowed to air-dry at room temperature.

For Arabidopsis Columbia (Col-0, WT) culture, the seedlings

were transferred to soil 14 days after being cultured on 1/2

Murashige and Skoog (MS) agar medium in a controlled growth

chamber (16-h-light/8-h-dark photoperiod, 22°C and 70%

relative humidity).

For W. Aus culture, the plants were cultured in the liquid

1/2 Murashige and Skoog (MS) medium in a controlled

growth chamber.
2.2 Image collection

In this study, light microscope images of the samples were

captured using an Olympus-BX43 biological microscope. Initially,

we ensured the microscope slide was clean before adding 3–5 drops

of distilled water onto it. Carefully, the liverwort scales were

dissected using a dissecting needle and then laid flat in the water

droplets on the slide. Once covered with a cover slip, we began our

examination under the microscope at a low magnification to

initially locate our target. Following this, we switched to a 10-fold

eyepiece and a 60-fold objective magnifier for more detailed

observation. After confirming regions where the chloroplasts were

relatively dispersed without excessive clustering, photographs were

taken, thus yielding a high-quality dataset of chloroplast images,

setting the foundation for subsequent analysis. By carefully

adjusting the longitudinal direction of the sample stage to move

the microscope stage, a series of microscopic images (about 5–7

images) focusing on different planes were obtained. The image

should include complete cells, ensuring that all chloroplasts in the

cell could be clearly visible and counted.

The fluorescence microscope images were captured with a

LEICA TCS SP8 (Germany) confocal microscope using a 40×

objective or 63×objective oil immersion objective (excitation

wavelengths: 632 nm).

For serial block face scanning electron microscopy (SBF-SEM)

imaging, referring to a published protocol (Liu et al., 2024), the
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capitulum of S. Squ was fixed in a solution of 4% (w/v)

paraformaldehyde in PBS at 4°C overnight. The fixed samples

were stained with 2% (w/v) osmium tetroxide solution, treated

with 1% (w/v) thiocarbohydrazide (TCH) solution, and restained

with 1% aqueous uranyl acetate/Walton’s lead aspartate solution in

turn. Samples were then washed and dehydrated through an ice-

cold acetone series (25%, 50%, 75%, 100%, 100%, and 100%

acetone) before being embedded in EPIN812 resin at room

temperature. Blocks were modified into thin strips, mounted onto

a stereomicroscope holder and then imaged and recorded using

SEM (3VIEW-SEM, Zeiss). To obtain a three-dimensional image of

the sample, a series of images (40 nm per slice) were obtained by

removing each slice and imaging the next surface.
2.3 Dataset preparation

In this study, we captured approximately 300 bright-field light

microscope images (191 images of R. nat, 51 images of P. pat, and

89 images of S. Squ), 119 fluorescence microscope images (Wolffia

Arrhiza) and 512 SBF-SEM images (720×1200 pixels, S. Squ) for

manual labeling.

After selecting images that excelled in terms of resolution,

contrast, and chloroplast distribution, we employed an annotation

tool, LabelImg software (https://github.com/tzutalin/labelImg;

Tzutalin, 2015), to manually label the chloroplasts present in

these images. Utilizing the bounding box feature of this tool, we

meticulously assigned a label to each visible chloroplast. Over

20,000 chloroplasts for light microscopic images, 3600

chloroplasts for fluorescence microscope images and 2500

chloroplasts for the SBF-SEM images were labeled. A single

annotator labeled the chloroplasts to eliminate inter-annotator

variability to minimize potential impacts on model performance.

90% of the labeled chloroplasts were used as training data and the

remaining 10% served as validation data. The annotated data were

saved in.txt format, providing precise training and validation

datasets for subsequent deep learning training.
2.4 Framework of DeepD&Cchl

The framework of DeepD&Cchl can be seen in Figure 1.

DeepD&Cchl, a set of models based on YOLO (Supplementary

Figure S1), were developed to detect and count chloroplasts. To

maintain clarity and avoid confusion among DeepD&Cchl models,

we established a systematic naming protocol: DeepD&Cchl_L for

light microscope images, DeepD&Cchl_E for SBF-SEM images, and

DeepD&Cchl_F for fluorescence microscope images. Each name

reflects the unique features and applications of the corresponding

model. The manually labeled datasets were used to train and

tune the corresponding model (Figure 1A). For instance, light

microscope chloroplast images of three bryophyte (S. squ, P. pat,

and R. nat) were obtained (Supplementary Figure S2) for

training of DeepD&Cchl-L model, which specifically detect

light microscope chloroplasts. The well-manual-labelled light
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microscopy chloroplast dataset was fed to the YOLOv7 framework

loaded with YOLOv7.pt model (https://github.com/WongKinYiu/

yolov7; Wang et al., 2023).

To run YOLOv7 locally, we established Python 3.9 environment

using “conda create -n yolov7_env python=3.9”, and then activate it

with “conda activate yolov7_env”. Within this environment, we

installed the necessary libraries and dependencies using “pip install

-r requirements.txt” (https://github.com/WongKinYiu/yolov7),

including PyTorch, torchvision, numpy, scipy, pandas, matplotlib,

seaborn, and OpenCV. The YOLOv7 source code was also cloned

from the same GitHub repository, and pretrained weights were

downloaded for initialization. Details can be also referred to the

attached Manual.

We trained each model for 500 epochs using the Adam

optimizer with a learning rate of 0.001 and a batch size of 16 for

each type of images. The training process lasted 2.662, 2.123 and

3.216 hours for DeepD&Cchl-L, DeepD&Cchl-F, and

DeepD&Cchl-E, respectively. All of our training and testing data
Frontiers in Plant Science 04
were stored in an input directory which contained separate folders

for training and testing, along with the corresponding label txt files.

Our experiments were conducted on a desktop computer equipped

with an Intel Core i7–10700 CPU @ 3.80 GHz and an NVIDIA

GeForce RTX 3060 with 12GB of VRAM. The code was executed

using the PyTorch 2.0.0 framework and was supported by CUDA

version 12.2.

To extend chloroplast detection to 3D cellular structures, we

captured a sequential set of 2D images at different focal depths from

the same sample. These consecutive 2D image layers were aligned

according to their focal depths, sequentially stacked to form a 3D

cell model, and processed by DeepD&Cchl to detect the

chloroplasts in each layer. An IOU module was implemented to

prevent repeated counting. The IOU was calculated as the ratio of

the intersection to the union of chloroplast bounding boxes

identified in two adjacent focal planes. Its values range from 0

(no overlap) to 1(complete overlap). Considering potential lateral

displacement during focal adjustments, a threshold was chosen. The
FIGURE 1

Workflow of the YOLOv7-DeepD&Cchl for chloroplast detection and counting. (A) For chloroplast detection with YOLOv7, microscopic plant cell
images were collected and labeled using labelImg. The data was split into training and validation sets for DeepD&Cchl model training. Manually
annotated data was used for comparison to train the DeepD&Cchl model. (B) Strategy and procedure for chloroplast detection and counting in 3D
model generated from muti-layer stack. Five images from different focal planes were selected as input, and the Intersection over Union (IOU)
strategy was integrated to avoid repeated detection. (C) The process for counting chloroplasts in individual cells involved the use of the Cellpose
model. First, multi-layer images were input into the model for cell segmentation. These segmented images were then processed through the trained
DeepD&Cchl model to accomplish chloroplast detection. Blocks colored in gray represented the dataset, yellow represented software, blue
represented the neural network framework, and dark green represented the models generated from the training process.
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two chloroplasts with an IOU above the threshold were considered

a single one. Otherwise, they were treated as distinct ones,

incrementing the total count by one. This approach enabled

accurate 3D volume quantification of chloroplasts (Figure 1B).

Additionally, for accurate counting of chloroplasts in individual

cells, we employed the published Cellpose tool (https://

www.github.com/mouseland/cellpose; Pachitariu and Stringer,

2022) to segment the images on a single-cell basis. Specifically,

the pre-trained Cellpose model (cyto2) was fine tuned with plant

cell images to create the suitable plant cell segmentation model

Cyto2Pro, enabling a more efficient segmentation of single plant

cells. Chloroplast counts were then calculated within each

segmented cell (Figure 1C).
2.5 Model evaluation

We utilized manually labeled data as the ground truth to

evaluate the performance of DeepD&Cchl. The mislabeled or

omitted annotations were checked and counted manually. Several

parameters were used to evaluate the performance, including

precision (P), recall (R), average precision (AP), mean average

precision (mAP) as well as F1 score (Rainio et al, 2024). Their

definitions are shown in Equations 1–5.

P =
TP

TP + FP
(1)

R =
TP

TPþ FN
(2)

AP =
Z 1

0
P(R)dR (3)

mAP =
1
No

N

i=1
APi (4)

F1 =
2TP

2TPþ FPþ FN
(5)

In this context, True Positive (TP) represents the correctly

detected number of target chloroplasts in the image, False

Positive (FP) indicates the count of misidentifications, and False

Negative (FN) signifies the number of particles in the image missed

by the network. P is a metric measuring the ratio of correctly

detected particles out of all detected chloroplasts, reflecting the

model’s accuracy in object detection. On the other hand, R

measures the ratio of correctly detected chloroplasts out of all

chloroplasts in the sample, showcasing the model’s capability in

detecting all target instances. AP is the mean precision value

calculated across different recall levels, determined by the area

under the precision-recall curve. AP offers insights into how well

the model detects targets across various recall levels. Meanwhile,

mAP is the average of AP values across all categories, providing an

evaluation of the model’s overall performance. F1 score is the
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harmonic mean of precision and recall, used to comprehensively

evaluate the balance between precision and recall of the model.
3 Results

Different DeepD&Cchl models, trained for different imaging

modalities, were tested across diverse microscopy images. Their

effectiveness in automated chloroplast counting was demonstrated

in the following subsections through 2D, 3D, and single-cell analyses.
3.1 Accurate chloroplast counting in 2D
light microscope images

To thoroughly assess the performance of DeepD&Cchl-L in

chloroplast detection, we employed the comprehensive evaluation

metric, mAP, which combines precision and recall (Figure 2A;

Supplementary Figures S3, S4). In the validation dataset, when

the confidence level was set to 0.5, the model achieved an average

precision of 0.877. Furthermore, the F1 curve peaked at 0.84, further

demonstrating the model’s excellent balance between precision and

recall (Supplementary Figure S5).

To evaluate the efficiency of DeepD&Cchl in detecting chloroplast

(Figures 1B, 2B; Supplementary Figure S6), we manually labeled 9

unseen images (3 images from each different plant) as a test dataset.

The DeepD&Cchl tool successfully detected 88 chloroplasts in S. squ

(missing 3), 160 chloroplasts in P. pat (missing 10), 194 chloroplasts in

R.nat (missing 20), and 475 chloroplasts in total images (missing 33),

while falsely detected 0 chloroplasts (Figure 2C). The final counting

results were calculated and the precision rates are 97.10%, 96.77%, and

92.72% respectively (Figure 2D). In all, the DeepD&Cchl-L tool

showed an expert performance on automatic chloroplast detection

and counting with light microscope images.
3.2 Counting in 3D volume with IOU
module

To accurately calculate the chloroplast in 3D, we used

DeepD&Cchl on a multilayer of light microscope images covering

the entire cell (Figures 1B and Figure 3). To avoid duplicate

counting, IOU calculations were performed between each

detected target in the second image and the targets in the

benchmark. The predetermined IOU threshold was set at 0.3. If

the IOU exceeded the preset threshold, it was classified as an

existing chloroplast in the benchmark to prevent duplicate

counting; otherwise, it was identified as a new chloroplast and

added to the benchmark as mentioned in Section 2.4 (Figure 3).

Sequenced images of S. squ, P. pat, and R.nat leaf cells were obtained

at various focal planes. The DeepD&Cchl was applied for each

individual layer, and IOU was used to monitor the overlaps of every

target between layers. The accurate counts of chloroplasts in

different plants were obtained (Figure 3; Supplementary Figure
frontiersin.org
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S7). The precision was significantly improved in multilayer statistics

than that in the single-layer image. For example, as shown in

Figure 3A, about 254 chloroplasts were detected in the first layer,

while the number was 326 in the total multilayer images. In

Figure 3B, these numbers were 74 and 184, respectively, and in

Figure 3C, they were 214 and 365. Overlaps between focused and out-
Frontiers in Plant Science 06
of-focused chloroplasts might cause errors in detection and counting in

a single layer. However, with the help of the IOU module, combined

with training on focused chloroplast images, these errors were effectively

minimized, yielding relatively accurate 3D quantification. These

accurate 3D counts provide insights into chloroplast distribution,

critical for investigating photosynthetic capacity.
FIGURE 2

Assessment of the DeepD&Cchl. (A) The detection of chloroplasts from three images of S. squ, P. pat, and R. nat, respectively. (B) The precision-
recall curve shows the model’s strong performance, achieving a precision of 87.7% at a 0.5 classification threshold. (C) Venn diagram showing the
relationship between true positive set and predicted positive set, representing the DeepD&Cchl’s performance in chloroplast detection. (D) Input
images were processed and chloroplasts were labeled with red boxes by DeepD&Cchl for comparison with chloroplasts that were manually labeled
in blue boxes. Areas where the model failed to detect chloroplasts at different focal planes were highlighted by white dashed boxes.
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3.3 Chloroplast detection for different
imaging modalities

To expand the application of the DeepD&Cchl tool, we have

incorporated various types of chloroplast microscope images,
Frontiers in Plant Science 07
including SBF-SEM and fluorescence microscopy images

(Figure 4). The same training strategies were used on various

types of images, similar to those used for light microscope images.

The evaluated metrics were also applied to DeepD&Cchl_E and

DeepD&Cchl_F. In the corresponding validation dataset, at a
FIGURE 3

Chloroplast detection and counting using DeepD&Cchl in 3D volume. (A-C) The microscopic image series and chloroplast detection results for S.
squ, P. pat, and R. nat, respectively. The labels Slice1 to 5 indicate the first to fifth layer of chosen images from each sample’s microscopic image
series. All detected chloroplasts have been included in the respective benchmark. Scale bars, 10 mm.
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confidence threshold of 0.5, DeepD&Cchl_E achieved an average

precision of 0.927 and an F1 peak of 0.86 (Supplementary Figures S8-

S11), while DeepD&Cchl_F attained a higher average precision of

0.973 and an F1 peak of 0.91 (Supplementary Figures S12-S15), both

demonstrating excellent precision-recall balance.

To assess the performance of the three DeepD&Cchl models, we

conducted tests on three distinct sets of untreated images (Figure 4;

Supplementary Figure S16). The results revealed that 66, 5, and 73

chloroplasts were individually identified from fluorescence, SBF-SEM,
Frontiers in Plant Science 08
and light microscope images, respectively. Notably, for the light

microscope images, we purposely utilized a set from multilayer cell

leaves of W. Aus. They exhibited inferior clarity compared to single-

layered cell images (Figure 4). These results not only affirm the high

adaptability and precision of the DeepD&Cchl tool in chloroplast

detection and counting across various types and complexities of

images, but also underscore the capability of deep learning methods

in precise organelle quantification within diverse biological samples,

highlighting their potential and universality in biological research.
FIGURE 4

Applications of 3D volumetric detection using the DeepD&Cchl across different image types. (A) 3D chloroplast detection in fluorescent images of A.
tha. (B) 3D chloroplast detection in electron microscopy images of S. squ. (C) 3D chloroplast detection in W. aus. The images were processed using
the DeepD&Cchl_F (A), DeepD&Cchl_E (B), and DeepD&Cchl_L (C) models, respectively.
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3.4 Single-cell chloroplast detection and
cell type clustering

To achieve single-cell counting of chloroplasts, we employed a

Cellpose segmentation tool. We re-trained the original model cyto2

with our dataset and obtained a new model named ‘cyto2pro’ as

mentioned in Section 2.4, and then utilized it to segment optical

microscope images. We specifically chose intact individual cells as

inputs for object detection, subsequently conducting chloroplast

detection and counting within those individual cells using

DeepD&Cchl at both 2D and 3D levels (Figure 5; Supplementary

Figures S17, S18). Plotting cell area against chloroplast count in

single cells of R. nat (Type A-B) and Arabidopsis thaliana (A. tha,

Type C-D) reveals cell type-specific clustering (Figure 6). This

highlights the relationship between chloroplast count and cell size
Frontiers in Plant Science 09
in determining cell type, providing valuable morphological

information for single-cell studies.
4 Discussions

4.1 The advancement of the DeepD&Cchl
tool in plant cell biology

There are currently four main chloroplasts estimation methods

widely used (Figure 6; Table 1): manual counting, semi-automated

counting, deep-learning-based DeepLearnMOR (Li et al., 2021),

and the DeepD&Cchl. Manual counting is simple but time-

consuming, labor-intensive, and prone to errors. For instance,

ImageJ offers a robust suite of counting tools like Cell Counter
FIGURE 5

Single-cell chloroplast detection using DeepD&Cchl promotes cell type-specific clustering. (A, B) Single cell segmentation was performed via
Cellpose for single-layer images, labeling cells 1–4 and detecting/counting Chloroplasts. (C, D) The same process was applied to multi-layer images,
forming 3D volumes. For (B, D), “No.Chl” refers to the number of detected chloroplasts, highlighted by red boxes. (E, F) The scatter plots showed
cell type-specific clustering by plotting chloroplast count against cell area in single cells of R. nat (, Type A-B) and (A) tha (Type C-D). The vertical
axis signified cell size, the horizontal axis represented chloroplast count.
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(Plugins-Analyze-Cell Counter) for manual labeling and auto-

numbering (Arena et al., 2017). Semi-automated counting often

needs user intervention and parameter setup for image

segmentation and object counting. For example, ImageJ’s Analyze

Particles feature allows one-click counting based on image pre-

treatment with threshold-based segmentation (Rueden et al., 2017;

Schneider et al., 2012). However, it’s worth noting that ImageJ has

limitations in counting accuracy and lacks batch processing

capabilities. Processing images one at a tim\

can be time-consuming and inconvenient for large-scale data

analysis. DeepLearnMOR, based on YOLOv5 (YOLO version 5),

counts chloroplasts in fluorescence images. It offers high precision

and speed in two-dimensional object detection and fully automated

counting. However, the need for fluoresces images limits

its practicality.

Our proposed tool, DeepD&Cchl, accurately counts

chloroplasts in 3D single cells and is versatile across an unlimited

number of plant species. As demonstrated in Figures 6B, C, either

2D or 3D images are subjected to cell segmentation using Cellpose

and chloroplast auto-detection and counting using DeepD&Cchl.

This method enables automated chloroplast detection and holds

significant potential for widespread application in single-cell

resolution correlation studies, linking single-cell transcriptomics

with individual chloroplast status.
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DeepD&Cchl introduces an innovative approach to plant cell

research, particularly in understanding photosynthesis efficiency

and plant adaptability to changing conditions. Usually, scientists

perform chloroplast detection using single-layer images, because it’s

challenging and time-consuming to avoid repeated chloroplast

counting in multilayer images (Grishagin, 2015). In contrast,

DeepD&Cchl offers an effective method to detect and count the

chloroplasts in multilayer images. It addresses counting errors in 2D

counting due to severe out-of-focus and defocusing issues,

enhancing efficiency, particularly for studying organelles within

whole cells. DeepD&Cchl enables precise quantification of

chloroplasts, providing insights into a plant’s photosynthetic

capacity, growth, and developmental stages (Xiong et al., 2017;

Fujiwara et al., 2019). This tool can also monitor changes in

chloroplast distribution in response to environmental stresses,

aiding in the study of plant adaptability (Zahra et al., 2022; Liu

et al., 2018; Feng et al., 2019).
4.2 Limitations and potential improvements
for the DeepD&Cchl Tool

The current version of DeepD&Cchl includes three distinct

chloroplast detection models trained for light microscope images,
FIGURE 6

Summary of chloroplast detection techniques. (A) Overview of the major methods for counting chloroplasts, ranging from manual techniques to our
proposed 3D single-cell detection method. (B) Process of chloroplast detection in 2D cells. (C) Workflow for chloroplast detection in 3D cells using
series of multi-focal plane images.
TABLE 1 A comprehensive comparison of chloroplast detection methods.

Method Scope of observation Staining (Yes/No) Live Cell (Yes/No) References

Manual 2D Slice No Yes Lutz and Dzik, 1993

Semi-auto 2D Slice No Yes Arena et al., 2017

DeepLearn MOR 2D Slice Yes No Li et al., 2021

DeepD&Cchl 3D,
whole cell

No Yes This study
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fluorescence microscope images, and SBF-SEM images,

respectively. While effective within their specific scopes, these

models require specialized knowledge for selection and operation,

potentially limiting widespread adoption. To address this, further

development of a multimodal model that can process diverse

microscope images automatically is needed. Future research

should focus on integrating various detection and classification

techniques to create an efficient, accurate, and user-friendly

chloroplast image analysis system. This will boost the model’s

adaptability and flexibility, ensuring high-quality results across

various observation scenarios.

The DeepD&Cchl method, utilizing deep learning, provides an

innovative solution for accurately counting chloroplasts in plant cells. Its

effectiveness would be amplified when integrated with object detection

frameworks like Faster R-CNN (Faster Region-CNN) or SSD (Single

Shot MultiBox Detector), improving precision and segmentation

accuracy (Liu et al., 2016; Girshick et al., 2015). When combined with

time series analysis tools like LSTM (Long Short-TermMemory), it can

allow real-time monitoring of chloroplast dynamics under various

environmental conditions (Hochreiter and Schmidhuber, 1997). The

addition of multimodal data and technologies like autoencoders and

VAEs (Variational Autoencoders) may enhance deep extraction of

cellular features, offering a more efficient and comprehensive

approach to plant cell research.

Despite these advances, limitations remain. For instance, the

models may fail in out-of-focus cases or overlap errors in single-

layer images (Section 3.2). Perhaps, some slightly out-of-focus

images and overlapped cases in the training dataset could address

these issues. However, beyond these limitations, DeepD&Cchl still

has potential for broader applications within plant cells. Its robust

and accurate image analysis makes it suitable for detecting and

quantifying other cellular structures and organelles with further

training. This could enrich our understanding of cellular

mechanisms and processes, advancing plant cell biology.
5 Conclusion

In conclusion, DeepD&Cchl offers a reliable method for detecting

and counting chloroplasts across various imaging modalities. Testing

on light microscope images showed the precision rates of 92.72% to

97.10%, while multilayer analysis with the IOU module improved

accuracy by reducing misses from out-of-focus and overlapping

chloroplasts. It has been shown to accurately identify and count

chloroplasts in fluorescence and SBF-SEM images. With Cellpose, it

also enables chloroplast counting in single cells and cell classification

based on these counts. These features provide insights into

chloroplast distribution, potentially supporting the studies of

photosynthetic capacity. However, limitations remain, including

detection failures in out-of-focus cases and overlap errors in single-

layer images. Additional training with diverse focus conditions may

be needed to address the issues. Future efforts could refine 3D

quantification techniques to enhance accuracy and accessibility for

plant cell research.
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