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Detection of the stem-boring
damage by pine shoot beetle
(Tomicus spp.) to Yunan pine
(Pinus yunnanensis Franch.)
using UAV hyperspectral data
Meng-Ying Liu1, Guang-Yun Li1, Lei Shi2*, Ya-Ying Li1*

and Huai Liu1*

1Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of
Plant Protection, Southwest University, Chongqing, China, 2Institute of Highland Forest Science,
Chinese Academy of Forestry, Kunming, China
Introduction: The stem-boring damage caused by pine shoot beetle (PSB,

Tomicus spp.) cuts off the transmission of water and nutrients. The

aggregation of beetles during the stem-boring stage results in the rapid

mortality of Yunnan pines (Pinus yunnanensis Franch.). Timely identification

and precise localization of stem-boring damage caused by PSB are crucial for

removing infected wood and preventing further spread of the infestation.

Unmanned airborne vehicle (UAV) hyperspectral data demonstrate great

potential in assessing pest outbreaks in forested landscapes. However, there is

a lack of studies investigating the application and accuracy of UAV hyperspectral

data for detecting PSB stem-boring damage.

Methods: In this study, we compared the differences in spectral features of

healthy pines (H level), three levels of shoot-feeding damage (E, M and S levels),

and the stem-boring damage (T level), and then used the Random Forest (RF)

algorithm for detecting stem-boring damage by PSB.

Results: The specific canopy spectral features, including red edge (such as Dr,

SDr, and D711), blue edge (such as Db and SDb), and chlorophyll-related spectral

indices (e.g., MCARI) were sensitive to PSB stem-boring damage. The results of

RF models showed that the spectral features of first-order derivative (FD) and

spectral indices (SIs) played an important role in the PSB stem-boring damage

detection. Models incorporating FD bands, SIs and a combination of all variables

proved more effective in detecting PSB stem-boring damage.

Discussion: These findings demonstrate the potential of canopy spectral features

in detecting PSB stem-boring damage, which significantly contributed to the

prevention and management of PSB infestations.
KEYWORDS

pine shoot beetle, stem-boring damage, hyperspectral data, Random Forest, damage
level, detection
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1 Introduction

Forest ecosystems face chronic threats from human activities,

climate change, pests and diseases (Boyd et al., 2013; Fei et al., 2019;

Albert et al., 2023). Recently, the severity of disturbances caused by

pests and diseases has increased, especially in plantation forests

where monocultures are prevalent. These monocultures exhibit

poor resistance to pests and diseases, rendering them highly

susceptible to pest outbreaks (Naidoo et al., 2019; Lelana et al.,

2022). Yunnan pine (Pinus yunnanensis Franch.) is an important

plantation species in southwest China, playing a crucial role in

ecological security, the economy, and social value (Deng et al.,

2013). The pine shoot beetle (PSB, Tomicus spp.), a wood-boring

pest, poses a major threat to Yunnan pines. Since the first outbreak

in Yunnan in the last century, it has rapidly spread, damaging tens

of millions of hectares of Yunnan pine forests (Kirkendall et al.,

2008; Gao et al., 2012).

The damage caused by PSB is divided into two stages: the shoot-

feeding and the stem-boring damage (Lieutier et al., 2003). The shoot-

feeding damage caused by PSB leads to a decline in the health status of

pine trees, creating conditions for stem-boring damage (Lieutier et al.,

2003). The stem-boring damage caused by PSB disrupts the

transportation of water and nutrients in pine trees, leading to rapid

mortality of the trees (Ye et al., 2004; Lv et al., 2010). Moreover, there is

also a phenomenon of aggregation of the tip-cutting borer in the stem-

boring stage, where one ormore types of borer are jointly damaging the

same pine tree (Wu et al., 2020). In fact, multiple species of PSB

infestations occur concurrently in the same forest (Lu et al., 2014). For

example, Tomicus yunnanensis Kirkendall & Faccoli and T. minor

Hartig collectively damage on the same Yunnan pine forest (Ye and

Xue-Song, 1999; Wang et al., 2018b). In general, T. yunnanensis is the

first to invade the host plant, followed by T. minor, which gradually

penetrates and feeds on the stem of the tree, thereby accelerating the

death of pine trees (Li et al., 2006). So, the transfer of T. minor from the

branches to the stems occurs approximately one to two weeks later

than that of T. yunnanensis (Ye, 1996; Ye et al., 2004). The shoot-

feeding damage mainly occurs from April to November, and the stem-

boring damage occurs mainly fromNovember to April of the following

year. In particular, October to November is an important time point for

PSB to transfer from branch to stem for damage, and April toMay is an

important time point for the newly emerged adults to transfer from

stem to branch for damage (Ye et al., 2004; Chen et al., 2010; Lu et al.,

2014). The shoot and stem damage of PSB complement each other,

causing double damage to pine trees. Therefore, it is important to

monitor the damage caused by PSB at any stage. The early monitoring

of PSB damage represents an effective strategy for the prevention of

stem-boring damage and the reduction of tree mortality and associated

economic and ecological losses (Luo et al., 2023). The timely

identification and localization of stem-boring damage is of

paramount importance for the mitigation of the effects of PSB. This

contributes to facilitate the clearance of infected wood, and prevent the

further spread of PSB during the next stage of stem-boring damage.

Unmanned aerial vehicles (UAVs) offer flexibility and

manoeuvrability, and hyperspectral remote sensing (HSR) has been

demonstrated to be an effective method for detecting disturbances
Frontiers in Plant Science 02
caused by pests and diseases (Lowe et al., 2017; Yuan et al., 2019;

Zhao et al., 2022; Luo et al., 2023; Zhao et al., 2023). Consequently,

the combination of UAVs and HSR technology can be employed to

conduct large-area forest surveys, which provide detailed and

continuous spectral information to capture subtle changes in

plants. Currently, research on monitoring the damage caused by

PSB mainly focuses on the shoot-feeding damage stage. At the shoot-

feeding damage stage of PSB, the color and functional traits of the

affected branches undergo a notable transformation, which in turn

cause a substantial alteration in the host plant’s canopy spectra

(Wang et al., 2018a; Wang et al., 2019; Liu et al., 2020a, Liu et al.,

2021). Furthermore, progressive changes in canopy spectral

characteristics were observed corresponding to increasing severity

levels of PSB damage, demonstrating significant spectral response

patterns across different damage stages. The early monitoring of PSB

shoot-feeding damage can be effectively initiated through the

observation of these changes in canopy spectra. In the previous

studies by Liu et al. (2020b) and Liu et al. (2021), they identified the

characteristics of spectral changes in the canopy that are sensitive to

the damage caused by the tip borer, such as the red edge, the green

peak, and the blue edge, etc., and realized the early monitoring of the

damage caused by the tip borer by means of these characteristics.

Through these efforts, they successfully achieved the detection of

shoot-feeding damage caused by PSB. However, there is a lack of

exploration in monitoring the stem-boring damage stage. Firstly, in

terms of timing, the occurrence of stem-boring damage by PSB with

the dry season climate in Yunnan, which occurs from November to

April of the following year (Liu et al., 2022). As a result of the dry

season climate, the overall trend of pine forest cover declined, which

made it more difficult to monitor the damage caused by PSB. In

addition, the identification of stem-boring damage is still conducted

through manual and visual inspection and the removal of the affected

tree. However, this method is prohibitively expensive in terms of

human and material resources, and it is challenging to conduct

comprehensive inspections of the forest interior. It remains unclear

whether stem-boring damage can result in a distinctive and

substantial alteration to the canopy spectrum of the host plant.

Moreover, there is currently no evidence to suggest whether the

stem-boring damage of PSB can be accurately detected from UAV

hyperspectral data in forested areas. In April, the simultaneous

occurrence of shoot-feeding and stem-boring damage makes it

challenging to discern whether the canopy spectra can be employed

to differentiate between the various stages of damage caused by PSB.

Therefore, in order to promptly identify and locate the stem-

boring damage caused by PSB, thus preventing the spread of

damage in the next damage cycle, we collected hyperspectral data

from pine forests during the stem-boring damage stage and

conducted monitoring experiments on stem-boring damage

caused. Through this experiment, we aim to achieve the following

objectives: (1) Analyze the spectral variation characteristics of tree

canopies caused by stem-boring damage from PSB. (2) Compare the

differences in spectral characteristics across different damage levels

of PSB. (3) Assess the performance of spectral variables based on

machine learning algorithms (i.e., Random Forest, RF) in evaluating

stem-boring damage caused by PSB.
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2 Materials and methods

2.1 Study area and ground survey

The study was conducted in a forested area near Heilongtan

Reservoir, Lufu Street, Shilin County, Yunnan Province, China

(24.7653°–24.7730° N, 103.3302°–103.3398° E, Figure 1). This

area is dominated by Yunnan pine plantations, with scattered

farmlands interspersed.

In April 2021, during the PSB stem-boring damage stage, we

investigated PSB damage in accordance with the Standard of Forest

Pest Occurrence and Disaster (Document Number: LY/T 1681–

2006). UAV flights and field surveys were authorized by the Forest

Pest Control and Quarantine Station of Shilin. Trees were classified

into four damage levels based on canopy shoot damage rate (SDR):

healthy (H, SDR ≤10%), early damaged (E, SDR 10–20%),

moderately damaged (M, SDR 20–50%), and severely damaged (S,

SDR >50%). Additionally, trees exhibiting stem-boring damage
Frontiers in Plant Science 03
were classified as stem-boring damaged (T). These trees exhibited

stem holes from PSB, minimal new canopy growth, and PSB

galleries on branches and trunks after bark removal. A total of

122 pines (H: 28, E: 28, M: 26, S: 29, T: 11) were included in the

survey. A comprehensive assessment was conducted by comparing

the T level of stem-boring damage with each of the four levels (H, E,

M, S) of shoot-feeding damage individually and in combination, to

thoroughly evaluate the stem-boring damage of PSB.
2.2 Hyperspectral data acquisition

We collected pine canopy spectral data using a GaiaSky-Mini2

hyperspectral imager mounted on a DJI M600 Pro UAV. This image

captures electromagnetic spectra within the 400–1000 nm range

across 176 spectral bands, covering both visible and near-infrared

regions. Data were collected on 25 April 2021, between 11 a.m. and 3

p.m., under clear, windless conditions. The UAV flew above the tree
FIGURE 1

(A) Location of the study area and ground survey sites, (B) shoot-feeding damage of PSB, (C) stem-boring damage of PSB.
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canopy at an altitude of 150 meters to measure canopy reflectance

non-destructively, preserving the structure and arrangement of

branches. The company of GISHERE (Yunnan, China) handled

UAV data acquisition, image stitching, and calibration.
2.3 Feature variables extraction

Regions of interest (ROIs) corresponding to the canopy areas of

the sample trees were manually delineated using ENVI software, and

the average reflectance within these ROIs was recorded as the canopy

reflectance. The spectral data were then processed using Savitzky-

Golay smoothing (SG) and first-order derivative (FD) methods.

Before classifying PSB damage levels, we performed spectral

feature band selection using the successive projections algorithm

(SPA). The SPA is a forward iterative search method that begins with

a single wavelength and sequentially adds a new variable in each

iteration until the number of selected variables reaches a predefined

value. The primary objective of SPA is to identify wavelengths with

minimal redundancy in spectral information, thereby addressing the

issue of multicollinearity (Shu et al., 2021). To compare healthy and

stem-boring damaged trees (H vs. T), 11 SG bands and 10 FD bands

were selected. For early damaged versus stem-boring damaged trees

(E vs. T), 16 SG bands and 10 FD bands were selected. For moderately

damaged versus stem-boring damaged trees (M vs. T), 11 SG bands

and 24 FD bands were selected. For severely damaged versus stem-

boring damaged trees (S vs. T), 2 SG bands and 10 FD bands were

selected. In the combined comparison of all damage levels (H, E, M, S,

vs. T), 11 SG bands and 7 FD bands were selected (Figure 2). The

selected SG bands are named in the form “R band” and FD bands as

“D band,” such as R697 and D711.
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There is a strong correlation between canopy spectral

information and tree health, which includes canopy structure and

biochemical properties, allowing for precise estimation of tree

health through spectral data (Lowe et al., 2017). Based on the

spectral attributes of damaged canopies and existing literature, we

identified 35 spectral indices (SIs) created from band combinations

and algebraic operations (Table 1).
2.4 Variables variance analysis

To evaluate the effectiveness of PSB damage level classification, we

analyzed variance to identify spectral variables significantly different

across all damage levels, particularly those highly responsive to the T

level. For normally distributed variables, independent samples t-tests

were used to compare two damage levels, while Duncan’s one-way

ANOVA was employed to compare multiple damage levels. For

variables that were not normally distributed, non-parametric tests

were applied: the Mann-Whitney U test for comparing two damage

levels and the Kruskal-Wallis test for comparing multiple damage

levels. All samples in the dataset were included in this analysis.
2.5 Variables importance and modeling
analysis

Machine learning methods use data to find correlations and

patterns, enabling the prediction or classification of unknown data.

Random Forest (RF), a supervised learning algorithm, excels in

predicting future events or categories based on historical data (Khan

et al., 2022). Known for its strong performance in feature
FIGURE 2

Spectral band selection of the Savitzky-Golay (SG, in the first row) and the first derivative (FD, in the second row) based on the Successive
Projections Algorithm for each combination of different damage levels. The red box dots indicate the selected bands. (a) the SG and FD bands
selected by SPA for comparative analysis between levels H and T, (b) the selected SG and FD bands in levels E vs. T comparisons, (c) the selected SG
and FD bands between levels M and T, (d) the selected SG and FD bands in distinguishing level S from T, (e) the selected SG and FD bands among
levels H, E, M, S, and T.
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TABLE 1 Spectral indices.

Variables Description and formula References

Green peak Reflectance (Rg) Maximum reflectance in the range of 520–560 nm

(Gong et al., 2002)

Red valley reflectance (Rr) Minimum reflectance in the range of 640–680 nm

RgP The position of Rg

RrP The position of Rr

The max FD value in blue edge (Db) The max FD value in the range of 470–550 nm (blue edge)

The sum of FD values of blue edge (SDb) o550
i=470FDi , i reprents the band

The max FD value in yellow edge (Dy) The max FD value in the range of 560–590 nm (yellow edge)

The max FD value in near infrared (Dnir) The max FD value in the range of 760–1000 nm (near infrared)

The sum of FD values of yellow edge (SDy) o590
i=560FDi , i reprents the band

The sum of FD values of near infrared (SDnir) o1000
i=760FDi , i reprents the band

The max FD value in red edge (Dr) The max FD value in the range of 660–740 nm (red edge)

The sum of FD values of red edge (SDr) o740
i=660FDi , i reprents the band

The position of red edge (DrP) The position of the FD maximum value

Absorption depth of red valley (D) 1 −
R670

R560 +
R760−R560
760−560 � (670 − 560)

(Wu et al., 2007)

Reflection height of green peak (H) 1 −
R500 +

R670−R500
670−500 � (560 − 500)

R560

lmax
Difference in reflectance between the bands with the strongest positive and

negative correlation

Vogelmann red edge index (VOG) (R734 − R747)
(R715 + R726)

(Vogelmann
et al., 1993)

Red edge normalized difference vegetation
index (NDVI705)

(R750 − R705)
(R750 + R705)

(Sims and
Gamon, 2002)

Modified red Edge simple ratio index (mSR705) (R750 − R445)
(R705 − R445)

Modified NDVI705 (mNDVI705) (R750 − R705)
(R750 + R705 − 2� R445)

Normalized Difference Vegetation Index (NDVI) (R800 − R670)
(R800 + R670)

(Tucker, 1979)

Simple ratio index (SR) R800=R680 (Jordan, 1969)

Green normalized differential vegetation
index (GNDVI)

(R800 − R550)=(R800 + R550) (Gitelson et al., 1996)

Visible atmospherically resistant index (VARIgreen) (R560 − R670)
(R560 + R670 − R450)

(Gitelson et al., 2002a)

Plant senescence reflectance index (PSRI) (R680 − R500)
R750

(Merzlyak et al., 1999)

Photochemical reflectance index (PRI) (R570 − R531)
(R570 + R531)

(Gamon et al., 1992)

Enhanced vegetation index (EVI) 5� (R800 − R670)
(R800 + 6� R670 − 7:5� R475 + 1)

(Liu and Huete, 1995)

Optimized soil-adjusted vegetation index (OSAVI) (1 + 0:16)� (R800 − R670)
(R800 − R670 + 0:16)

(Rondeaux et al., 1996)

Modified chlorophyll absorption ratio index (MCARI) ½(R700 − R670) − 0:2(R700 − R550)� � (R700=R670) (Daughtry et al., 2000)

(Continued)
F
rontiers in Plant Science
 05
 frontiersin.org

https://doi.org/10.3389/fpls.2025.1514580
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1514580
classification, RF was used in this study to detect PSB damage levels.

The classification algorithm based on multivariate analysis has

superior performance with single variable (Nguyen and Nansen,

2020). We inputted the selected SG bands, FD bands, SIs, and their

combined variables into the RF classification model, evaluating each

variable’s importance using the mean decrease accuracy (MDA)

index. Higher MDA values indicate greater variable importance.

The model was trained on a dataset comprising all 122 samples,

with accuracy assessed using the 10-fold cross-validation method.

Evaluation metrics included overall accuracy (OA) and the Kappa

coefficient, derived from the confusion matrix, to determine

classification accuracy. The calculation formulas for OA and the

Kappa coefficient are shown in Equation 1 and Equation 2. A higher

OA value indicates a greater classification accuracy of the model. A

Kappa coefficient below 0.4 indicates poor model consistency, 0.4–

0.6 indicates moderate consistency, 0.6–0.8 indicates high

consistency, and above 0.8 indicates very strong consistency.

OA = (ok
i=1TPi)=N (1)

Kappa = (OA − Pe)=(1 − Pe) (2)

Where, TPi is the number of true levels. i is the number of damage

levels and i = 1, 2,…, k (k = 2 or 5).N is the total number of samples. Pe
is the expected agreement and Pe = ∑[(RowTotali×ColumnTotali)/N

2].

RowTotali is the sum of the i-th row in the confusion matrix (i.e., the
Frontiers in Plant Science 06
total number of samples with the true level i). ColumnTotali is the sum

of the i-th column in the confusion matrix (i.e., the total number of

samples predicted to be in level i).

Figure 3 shows the methodology and data processing workflow

employed in this study consists of three main parts, including

preparation of input data for the models, execution of the RF

models, and evaluation of the models. During the model execution

phase, we constructed four distinct categories of input datasets: (1)

datasets containing only SG bands selected through SPA method, (2)

datasets comprising solely FD bands selected by SPA method, (3)

datasets consisting of SIs, and (4) a composite dataset integrating the

aforementioned three categories. Pairwise classification was performed

between damage levels H and T (H vs. T), E and T (E vs. T), M and T

(M vs.T), and S and T (S vs.T), as well as classification among all five

levels (H, E, M, S, vs. T). Consequently, a total of 20 RF models were

executed (4 input datasets × 5 classification tasks = 20 models).

The RF algorithm is a supervised learning classification method,

where each training sample is assigned a corresponding label. To ensure

a comprehensive comparison, we selected Partial Least Squares

Discriminant Analysis (PLS-DA), a supervised multivariate statistical

analysis method, alongside Principal Component Analysis Discriminant

Analysis (PCA-DA), an unsupervised learning algorithm. The

effectiveness of these three classification methods was systematically

evaluated and compared for detecting stem-boring damage caused by

PSB. A 10-fold repetition with 10-fold cross-validation was employed.

Model performance was evaluated using OA and the Kappa coefficient.
TABLE 1 Continued

Variables Description and formula References

Triangular vegetation index (TVI) 60� (R750 − R550) − 100� (R670 − R550)
(Broge and

Leblanc, 2001)

Anthocyanin reflectance index (ARI) (1=R550) − (1=R700) (Gitelson et al., 2001)

Carotenoid reflectance index (CRI) (1=R510) − (1=R550) (Gitelson et al., 2002b)

Red edge chlorophyll index (CIrededge) Rnir=Rrededge − 1 (Gitelson et al., 2005)

Water index (WI) R900=R970 (Penuelas et al., 1997)
FIGURE 3

The data processing workflow. (A) Preparation of input data for the models; (B) RF model framework; (C) Model execution.
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2.6 Discriminant analysis of PSB damage
levels in different damage stages

In a previous study by Liu et al. (2020b), they analyzed the spectral

characteristics of pine canopies damaged by the PSB at the shoot-feeding

stage, successfully identifying the extent of PSB damage. To compare the

differences between the shoot-feeding and stem-boring damage stages,

we used pine canopy spectral data collected at the end of the shoot-

feeding stage in November 2019 and the stem-boring stage in April 2021.

The shoot-feeding stage analysis focused solely on canopy damage by

PSB, categorizing trees into four damage levels (H, E, M, and S), with 20

pines in each level. These same damage levels were used for the stem-

boring stage analysis. At the shoot-feeding stage, certain vegetation

indices (mSR705, mNDVI705, and WI) were not calculated due to the

spectrometer’s band range of 450–946 nm. The data were processed as

previously described, and all samples were used for model training.
3 Results

3.1 Canopy spectral characteristics of the
different PSB damage levels at the stem-
boring stage

As PSB damage severity increased, the spectral reflectance of the

pine canopy decreased (Figure 4). Significant changes in canopy

spectral reflectance due to PSB damage were observed in the green

peak (520–580 nm, Figure 4B), red valley (650–690 nm, Figure 4C),

red edge (680–760 nm, Figure 4D), and near-infrared (760–1000
Frontiers in Plant Science 07
nm, Figure 4E) regions. Damaged pines (E, M, S, and T levels)

exhibited lower spectral reflectance in the green peak, red edge, and

near-infrared regions compared to healthy pines (H level), with

reflectance decreasing as damage severity increased. However, in

the red valley, particularly within the 730–760 nm range, the

reflectance of damaged canopies showed an increasing trend.
3.2 The variance analysis of spectral
features for PSB damage levels

The analysis of SG and FD bands showed that not all bands

selected by the SPA algorithm were sensitive to stem-boring

damage, with some showing no significant differences between

damage levels (Figures 5A, B). Notably, the variable D718

significantly differed in all comparisons (Figure 5B). The potential

of SIs for detecting stem-boring damage was also evaluated, with

nearly half showing significant differences (Figure 5C). The

significance of differences in some variables decreased as the PSB

damage levels involved in the analysis got closer to the T level. For

example, variables such as Rg, Rr, DrP, and CIrededge gradually

decreased differences. The spectral indices corresponding to blue

edge (e.g., Db and SDb), red edge (e.g., Dr), and yellow edge (such as

SDy) positions, as well as those reflecting leaf pigment

concentrations (such as MCARI and NDVI), exhibited significant

variations (P < 0.001) in all four classification tasks.

In evaluating the five damage levels, various variables exhibited

unique responses to PSB damage (Figure 6). Visualization of

variables with significant P values of difference at the P < 0.05
FIGURE 4

Mean canopy spectral reflectance (with 95% confidence intervals) of Yunnan pine at different damage levels. (A) is the whole spectral curves, and
(B) is the rest are the green peak, (C) red valley, (D) red edge (D), and (E) near-infrared (Nir) features, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1514580
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1514580
level showed a significant tendency for these variables to decrease or

increase as damage levels intensified. Substantial distinctions were

observed in the response of nearly all variables to PSB damage

fluctuations, particularly at the H and T levels. The variation in

response among these variables supports the detection of PSB
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damage. Variables D652 and H significantly differed among the

five damage levels, and variables VARIgreen and SDy significantly

differed between T and other levels. The assessment of stem-boring

damage (T level) indicated the potential for using pine canopy

spectral variables for effective detection.
FIGURE 6

Spectral variables of at different damage levels. The lowercase letters next to the boxplots represent significant difference among different
damage levels.
FIGURE 5

Analysis of variance for individual variable (H, E, M, and S damage levels compared to T level, respectively). The results of the variance analysis based
on SG bands (A), FD bands (B) and SIs (C) are shown separately.
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3.3 The importance of variables

We obtained the Mean Decrease Accuracy (MDA) values

representing the importance index of each variable through the

Random Forest (RF) model. Figure 6 displayed the MDA values of

the top 10 important variables for each model. We compared the

MDA values of input variables across each model. However, the

MDA values obtained from the RF models using exclusively SG

bands, FD bands, or spectral indices (SIs) as input datasets were not

directly comparable. Firstly, the importance of input variables was

compared across each model. It was observed that in models using

exclusively SG bands, the spectral bands around 900 nm were

particularly significant. Notably, their importance increased

progressively as the disparity between damage levels and the T level

widened (Figures 7A, E, I, M). This trend was also observed inmodels

using only FD bands (Figures 7B, F, N, R). Reflectance near 900 nm is

related to water absorption, suggesting a strong correlation between

PSB stem-boring damage and canopy water content. Additionally,

red edge bands, such as near 700 nm (e.g., D718), were crucial for

identifying stem-boring damage, consistently ranking among the top

three bands in all comparisons with the T level. In models using only

SIs, the variable H was effective in detecting stem-boring damage,

ranking in the top five in importance. The spectral indices associated

with the blue-edge position, specifically the Db and SDb,

demonstrated significant sensitivity in detecting PSB’s stem-boring

damage (Figures 7C, G, K, O). The combined results of variance

analysis and importance assessment of these variables suggest their

potential utility as robust indicators for pest infestation evaluation.

Then, the variable importance derived from RF models trained

for the classification task involving five damage levels was

systematically compared (Figures 7Q–T). This analysis enabled

the identification of sensitive spectral features, including specific

SG bands, FD bands, and SIs, which demonstrated significant

potential for distinguishing among the damage levels. In the SG

band model, R718 was the most crucial variable, while D690 stood

out in the FD band model, and MCARI was prominent in the SIs

model. In the combined variable model, the top ten important

variables included spectral reflectance and absorbance variables H

and D, differential variables such as D690, D711, Db, SDb, SDr, and

SDy, and multiple band combinations of SIs like MCARI and TVI

associated with changes in chlorophyll content. Most of these

variables were in the visible light bands and were strongly linked

to changes in canopy color, indicating a significant relationship

between PSB damage and canopy chlorosis. Analyzing the

combined importance values across all models revealed that

canopy spectra’s FDs and SIs were more significant for detecting

PSB damage. Specifically, variables like H, D718, and Db showed

relative sensitivity to stem-boring damage caused by PSB.
3.4 Multivariate-based detection of PSB
stem-boring damage

The OA and Kappa values for each RF model were assessed, as

shown in Figure 8A. The results indicated that FD bands, SIs, and
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combined variable models outperformed the SG band model in

detecting PSB stem-boring damage, similar to the performance of

individual variable models. The combined variables model was

particularly effective as the number of damage levels to

discriminate increased. Confusion matrices for the best-

performing models in each comparison were compiled

(Figures 8B–F). These included the combined variables model for

the H and T levels, the E and T levels, and the five damage levels, as

well as the FD bands model for the M and T levels, and the S and T

levels. The overall classification accuracy for all damage levels was

57.38%, with a kappa coefficient of 0.4573 (Figure 8B). The H level

had the highest class accuracy (0.86), followed by the T level (0.73).

In contrast, the E, M, and S levels exhibited lower accuracy, with

nearly half of the samples in the E and S levels and about 80% of the

samples in the M level being misclassified into other levels. For

classification between the T level and other damage levels, the H

and E levels differed significantly from the T level, achieving an

overall accuracy of 100% and kappa coefficients of 1 in both cases

(Figures 8C, D). The accuracy was slightly lower for the M

(Figure 8E) and S (Figure 8F) levels.
3.5 Model compare

In the model comparison, integrated compositive datasets were

consistently used as input data for all models. Figure 9 presents the

classification accuracy and Kappa coefficients obtained from the

three classification methods: RF, PLS-DA, and PCA-DA. From the

perspective of concentration degree and fluctuation range in

classification accuracy and Kappa coefficient distribution,

supervised learning methods (RF and PLS-DA) exhibited superior

classification performance compared to unsupervised learning

approaches (PCA-DA) in detecting of stem-boring damage

caused by PSB. Among the supervised learning classification

methods, PLS-DA demonstrated superior values in both

classification accuracy and Kappa coefficient compared to RF.

However, analysis of the distribution patterns revealed that the

RF method exhibited greater stability, as evidenced by shorter

interquartile ranges and more compact data clustering in boxplot

visualizations for both performance metrics (Figures 9A, B, I, J).

The reduced variability in RF’s classification results suggests its

potential advantage in practical applications requiring consistent

detection performance.
3.6 Differences in the detection of PSB
damage levels between shoot-feeding and
stem-boring damage stages

The majority of selected feature bands associated with PSB

damage at the shoot-feeding and stem-boring stages were

concentrated in the red to near-infrared regions, particularly in the

red edge region (Figures 10A–D). The analysis of variable importance

demonstrated that the MDA values of variables at the stem-boring

damage stage were generally lower than those at the shoot-feeding
frontiersin.org

https://doi.org/10.3389/fpls.2025.1514580
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1514580
damage stage. Bubble plots were used to illustrate the MDA values of

the ten most important variables, with OSAVI being identified as the

most important at the shoot-feeding damage stage (Figure 10E) and

MCARI at the stem-boring damage stage (Figure 10F). It is

noteworthy that SDr and Dr were consistently among the top ten

variables for detecting PSB damage in both stages. The classification
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accuracy was higher for the shoot-feeding damage stage (OA: 82.50%,

kappa: 0.7667, Figure 10G) compared to the stem-boring damage

stage (OA: 62.16%, kappa: 0.4945, Figure 10H). The confusion

matrices indicated that the H level exhibited the highest accuracy

in both stages, followed by the S level. However, higher

misclassification rates were observed for the E and M levels.
FIGURE 7

The top ten important spectral variables in detecting the damage levels at the stem-boring stage of pine shoot beetle (Tomicus spp.). In cases where
the input variables was less than ten, the importance of all variables were showed. Each row represents a classification task, while each column
represents an input dataset for a specific category.
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4 Discussion

Given the lethal behavior of PSB predominantly occurring at

the stem-boring damage stage, we aimed to assess the potential of

canopy hyperspectral data in differentiating the damage levels of

PSB at this critical phase. Our results suggest that damaged pine

trees displaying stem-boring symptoms can be distinguished based

on the distinct spectral features of individual pine canopies. In

pairwise comparisons of damage levels H, E, M, and S with the T

level, the T level was identified with an accuracy (OA) above 80%.

Overall, the accuracy rate for the five damage levels was 57.38%,

with the T level showing a 73% accuracy rate. Comparing detection

results for PSB damage levels between the shoot-feeding and stem-

boring stages revealed significantly higher accuracy at the shoot-

feeding damage stage. Variables Dr and SDr emerged as crucial in
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both stages, underscoring the importance of the red edge feature in

the canopy spectrum for detecting PSB’s damage.
4.1 The potential of canopy spectra for
detecting PSB stem-boring damage

PSB stem-boring damage destroys the phloem and xylem of the

stem, cutting off nutrient transport. This lethal behavior typically

occurs at the stem-boring damage stage, leading to the rapid death of

pine trees (Lieutier et al., 2003; Ye et al., 2004). Our survey indicated

that stem-boring damaged pines exhibited more severe damage than

healthy and shoot-feeding damaged pines. These pines showed holes

on the stem, had shed all needles, and only dry stems remained.

Peeling back the bark revealed crisscross galleries (Figure 1C).
FIGURE 8

The results of RF model execution. (A) The OA and Kappa coefficients of the models for detecting stem-boring damage by pine shoot beetle to
Yunan pine based on SG, FD, SIs, and a combination of them. (B) Confusion matrix for all damage levels classification. (C) Confusion matrix for the
classification of H and T levels. (D) Confusion matrix for the classification of E and T levels. (E) confusion matrix for the classification of M and T
levels. (F) Confusion matrix for the classification of S and T levels. The numbers in the figure are all rounded.
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The changes in pine canopy color, structure, and physiology

due to PSB stem-boring damage can be detected in the spectral

reflectance characteristics of the canopy. In the visible region, leaf

pigmentation primarily controls spectral reflectance (Wong and

Gamon, 2015; Falcioni et al., 2020; Zhang et al., 2020). Previous

studies have shown that PSB damage decreases chlorophyll content

in tree canopies, causing fluctuations in spectral reflectance in the

green peak, red valley, and red edge regions (Liu et al., 2020b; Liu

et al., 2021). In fact, stem-boring damage significantly affects canopy

spectral features associated with pigmentation, leading to decreased

reflectance at the green peak and increased reflectance at the red

valley. Studies indicate that chlorophyll depletion affects leaf

spectral reflectance in the near-infrared region, particularly

around 800 nm (Prabhakar et al., 2012; Abdullah et al., 2018;

Klouček et al., 2019). Our observations showed a trend of reduced

canopy spectra near 800 nm and reduced reflectance around 900

nm, consistent with findings that the 900–970 nm range is sensitive

to plant water content (Penuelas et al., 1997).
Frontiers in Plant Science 12
Various vegetation indices, such as NDVI, SR, EVI, OSAVI, and

red edge features, are widely used for detecting plant biotic or

abiotic stress (Khodaee et al., 2020; Cañete-Salinas et al., 2024;

Zhang et al., 2024). In this study, H, VARIgreen, and red edge

features responded rapidly to chlorophyll changes, differentiating

between stem-boring damage, shoot-feeding damage, and healthy

pines. Additionally, FD features of the canopy spectra, such as

D652, Db, and SDb, were sensitive to stem-boring damage. These

findings help us better detect PSB stem-boring damage for

effective control.

The variable importance analysis showed that FD and SIs

features of the canopy spectra were superior to SG features for

detecting PSB stem-boring damage, especially in the FD band

around 710 nm and SIs related to the blue edge feature (e.g., Db).

This finding aligns with the observed variations in canopy spectral

features following PSB stem-boring damage. Future research should

focus on these specific spectral features to comprehensively detect

PSB stem-boring damage.
FIGURE 9

Comparison of classification results among three discriminant models: RF, PLS-DA, and PCA-DA. The first to fifth rows represent the model
evaluation results for classification tasks H, E, M, S, vs. T, H vs. T, E vs. T, M vs. T, and S vs. T. The first column shows the model’s OA, and the second
column shows the model’s Kappa coefficient. The results showed in the figure represent the aggregated OA and Kappa coefficients obtained from
50 repetitions. In subplots (C–F), both OA and Kappa coefficients consistently achieved a value of 1, which is represented as a vertical line in
the figure.
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4.2 The detection method for PSB’s stem-
boring damage

This study comprehensively described the stem-boring damage

caused by PSB and proposed a framework for its detection. Spectral

features were determined using the SPA algorithm and SIs

construction to reduce computational redundancy. These features

were then input into the RF classification model for detecting PSB

stem-boring damage. The RF model performed well in pairwise

comparisons of the four levels (H, E, M, and S) with the T level for

PSB shoot-damage detection. However, accuracy decreased

significantly in the joint comparison of all damage levels, primarily

due to classification errors in the E, M, and S levels. The model

performed best for the H level, followed by the T level. This

framework allows for the quick and effective identification of pines

with stem damage, aiding in removing damaged trees and preventing

the spread of PSB damage in the next shoot-feeding damage stage.
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Selecting feature variables from a pool of redundant and

complex variables is crucial in spectral analysis as it directly

impacts prediction model performance. SPA is commonly used

for spectral feature band screening due to its adaptability and

capability to address covariance issues (Zhang et al., 2022; Shu

et al., 2023). However, as an unsupervised screening method, SPA

may lack explanatory power. Future studies should compare other

feature selection algorithms, such as Competitive Adaptive

Reweighted Sampling, to identify methods that offer superior

processing results and faster processing times.

Deep learning (DL) algorithms are increasingly employed in

forest pest and disease detection due to their robust computational

and learning capabilities, which can enhance detection accuracy

(Istiak et al., 2023; Marvasti-Zadeh et al., 2023). However, DL

algorithms have specific data requirements, and when data

volumes are limited, their performance may not surpass RF and

support vector machine (SVM) algorithms in identifying
FIGURE 10

Comparison of the discrimination results between the shoot-feeding and stem-boring damage stages. The results of the feature band screening,
variable importance analysis, and RF classification are presented. (A, B) are the selected bands of shoot-feeding damage stage, while (C, D) are the
selected bands of stem-boring damage stage, with the red rectangular boxes indicating the locations of the screened bands. (E, F) emphasize the
top 10 variables in importance for the shoot-feeding (E) and stem-boring (F) damage stages. The final two figures illustrate the confusion matrices,
showing the classification results for the shoot-feeding (G) and stem-boring (H) damage stages. The numbers on the confusion matrices
were rounded.
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pest-infested trees. Traditional machine learning methods, while

capable of achieving high accuracy in detection tasks, are limited in

their direct applicability to image data processing. In contrast,

advanced deep learning architectures such as Convolutional

Neural Networks (CNNs) and You Only Look Once (YOLO)

algorithms offer native support for image data analysis. Significant

advancements have been made in this domain, as demonstrated by

Wang et al. (2024), who developed the YOLO-PWD model based

on YOLOv5s model, achieving enhanced accuracy in pine wilt

disease (PWD) detection. Furthermore, Feng et al. (2024) proposed

the SC-RTDETR, which is primarily structured with Real Time

Detection Transformer (RTDETR) and combines modules Soft-

threshold and Cascaded-Group-Attention (CGA). Their

comparative analysis against the other advanced models

including YOLOv8s, YOLOv5s, and RTDETR revealed that SC-

RTDETR exhibits superior accuracy and robustness in complex

background recognition tasks, particularly in challenging

detection scenarios. These findings provide valuable theoretical

foundations and methodological references for subsequent

research endeavors. Future studies will focus on exploring the

potential applications of these advanced algorithms in precision

agriculture and forest management, with particular emphasis on

developing stronger detection systems for pest and disease damage

detection, thereby contributing to sustainable pest and disease

control strategies.
4.3 Differences between the shoot-feeding
and the stem-boring damage stages of PSB

In this study, the accuracy of classifying PSB damage levels at

the shoot-feeding stage was notably higher than that at the stem-

boring stage, especially for damage levels E, M, and S, where

misclassification rates were significantly elevated at the stem-

boring stage. The spectral curves for each damage level differed

between the two stages. The stem-boring damage stage of PSB in

Yunnan coincides with the dry season. Previous research confirmed

a consistent decline in the spectra of Yunnan pine forests during

this season (Liu et al., 2022). Beyond environmental and equipment

factors, the growth characteristics of Yunnan pine significantly

contribute to spectral variation between the shoot-feeding and

stem-boring damage stages. During the dry season, 2- and 3-year-

old needles of Yunnan pine are shed, reducing canopy needle

density and affecting the canopy spectrum. Consequently, the

spectral characteristics among different damage levels may have

become more similar at the stem-boring damage stage.
4.4 Error sources

The RF model predicts by aggregating the results of multiple

decision tree classifications through voting or averaging (Scornet,

2016). In this study, the RF model showed a higher misclassification

rate for the E and M levels of PSB damage. This increased error rate

can be attributed to the small sample size, which may cause the
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prediction results from individual decision trees to be

unrepresentative. Additionally, the similarity in spectral features

among the E and M damage levels could also contribute to

misclassification. It was observed that many pines showed stem-

boring damage symptoms were predominantly dead, potentially

showing similar canopy spectral characteristics with trees deceased

from other causes. To mitigate this interference, the integration of

additional discriminative features, such as canopy morphological

parameters (Lin et al., 2019), has been proposed. Furthermore, the

detection accuracy could enhance through the application of time-

series spectral analysis to capture distinctive infestation

progression patterns.
5 Conclusion

This study conducted a comprehensive spectral analysis

distinguishing the stem-boring damage (T level) from the other

four levels of shoot-feeding damage caused by PSB, using the

hyperspectral data of pine canopy for detecting stem-boring

damage. The results showed significant correlations between

PSB’s stem-boring damage and specific canopy spectral features,

including red edge (such as Dr, SDr, and D711), blue edge (such as

Db and SDb), and chlorophyll-related spectral indices (e.g.,

MCARI). These spectral indicators exhibited strong predictive

capabilities for infestation severity, suggesting their potential as

reliable biomarkers for early detection of bark beetle damage.

Comparative analysis of detection accuracy across damage stages

revealed superior performance at the shoot-feeding damage stage

compared to the stem-boring damage stage. The findings of this

study demonstrate that the optimal period for detecting PSB shoot-

feeding occurs at the terminal phase of the shoot-feeding damage

stage, rather than at arbitrary time points. These results underscore

the critical importance of temporal considerations in pest detection

and highlight the limitations of single-time-point assessments for

effective PSB damage management. Early detection at shoot-feeding

damage stage of PSB facilitates timely intervention to prevent

successful stem-boring establishment, while identification of

stem-boring damage enables targeted removal of infested wood,

thereby mitigating PSB spread during the subsequent shoot-feeding

damage stage.
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