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VMamba for plant leaf
disease identification:
design and experiment
Hewei Zhang, Shengzhou Li, Jialong Xie, Zihan Chen,
Jiyang Chen and Jianwen Guo*

School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
Introduction: The rapid spread of crop diseases poses a severe threat to

agricultural production, significantly reducing both the yield and quality of crops.

In recent years, plant disease recognition technologies based on machine vision

and artificial intelligence have made significant progress. However, current

mainstream deep learning architectures still face numerous challenges in

detecting agricultural plant diseases. These include issues such as the

complexity of agricultural environments and the reduced accuracy and

increased training time caused by small sample sizes of agricultural plant diseases.

Methods: To address these challenges, we introduce the VMamba visual

backbone model into the task of detecting agricultural plant diseases. This

model effectively reduces computational complexity through a selective

scanning mechanism while significantly improving classification accuracy by

maintaining a global receptive field and leveraging dynamic weighting

advantages. Our study proposes the DDHTLVMamba method, which combines

VMamba with diffusion models and transfer learning techniques, and applies it to

the detection of plant diseases in small-sample agricultural datasets. This

research evaluates the performance of VMamba across different datasets and

training methods, conducting comparative analyses with mainstream deep

learning architectures.

Results and discussion: Experimental results demonstrate that the VMamba

model outperforms mainstream models such as ResNet50, Vision Transformer,

and Swin Transformer in disease recognition accuracy, whether on large-scale

datasets like PlantVillage or optimized small-sample disease datasets, showcasing

superior performance. Compared to Swin Transformer, VMamba achieves a 3.49%

increase in accuracy while reducing training time by 80%. Furthermore, the

proposed DDHTLVMamba training method demonstrates its effectiveness on

small-sample datasets, significantly reducing pre-training time while maintaining

recognition accuracy comparable to that achieved with large-sample transfer

learning. This study provides an innovative approach for the efficient identification

of agricultural diseases and is expected to advance the development of intelligent

agricultural disease prevention and control technologies.
KEYWORDS

plant leaf disease, VMamba, transformer, diffusion model, transfer learning, few-
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1 Introduction

Crop diseases pose a serious threat to agricultural production,

typically caused by bacteria, fungi, microorganisms, or viruses

(Sankaran et al., 2010). Once a disease occurs, it spreads rapidly,

often leading to significant decreases in crop yield and quality

(Thomas et al., 2018). Therefore, accurate and rapid identification

and classification of crop diseases are crucial for effective disease

prevention (Shoaib et al., 2023). The physiological state of plants

can often be reflected through the leaves (Joshi and Bhavsar, 2020),

and changes in leaves accurately indicate the growth conditions of

plants and potential diseases. In recent years, significant progress

has been made in leaf disease identification using machine vision

and artificial intelligence. These technologies reduce the need for

operators to have specialized knowledge in agricultural disease

analysis, thereby reducing learning costs and labor consumption,

while being easy to transfer and widely applicable (Li et al., 2021). In

particular, deep learning visual models have excelled in handling

complex inputs and classification tasks, having been successfully

applied to disease identification in crops such as maize, wheat,

citrus, and potatoes (Lee et al., 2020).

However, images of agricultural plant diseases often present

challenges like complex backgrounds and unclear diseased areas,

especially when sample sizes are insufficient, resulting in a significant

drop in recognition performance, which poses a major challenge for

computer vision (Mohanty et al., 2016). The introduction of deep

residual networks (ResNet) addressed the gradient vanishing problem

in deep networks, making it possible to construct deeper learning

architectures (He et al., 2016). However, training and inference with

ResNet require substantial computational resources, and there is still

considerable redundancy within the network. In contrast, the Vision

Transformer (ViT) adopts a self-attention mechanism that can

process all positions in the input sequence in parallel, significantly

improving training speed and inference efficiency (Dosovitskiy et al.,

2020). However, with an increase in input scale, the computational

complexity of ViT grows quadratically, especially when dealing with

high-resolution tasks, leading to significant computational costs,

while in agricultural applications, a balance between performance

and efficiency is essential.

The VMamba visual backbone model, based on state space

models (SSMs) and a selective scanning mechanism, provides an

alternative solution to ViT for computer vision (Gu and Dao, 2023).

The selective scanning mechanism in the VMamba model

effectively reduces the complexity of attention computation.

Compared to the ViT model, VMamba maintains the advantages

of global effective receptive fields (ERF) and dynamic weights while

achieving linear computational complexity and demonstrating

excellent classification accuracy (Liu et al., 2024). Therefore, we

aim to leverage the strengths of VMamba in the complex task of

agricultural plant disease identification to not only maintain high

recognition accuracy but also effectively reduce computational

resource and data requirements.

The main objective of this paper is to introduce the VMamba

visual backbone model into the field of agricultural plant disease

identification, investigating its effectiveness in crop disease
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identification. Specifically, this study focuses on: (1) verifying the

performance advantages of the VMamba model in agricultural

disease classification; (2) exploring the effectiveness of VMamba

in small-sample plant disease identification and its performance in

complex crop growth environments; (3) examining the transfer

learning performance of VMamba in agricultural disease

identification, in combination with diffusion models and transfer

learning; and (4) designing the DDHTL-VMamba model to further

enhance recognition performance in complex agricultural

environments through diffusion models and transfer learning,

providing a new approach for agricultural disease prevention.

The remainder of this paper is organized as follows: Section 2

introduces related research work; Section 3 presents the proposed

method; Section 4 introduces the experiments; Section 5 presents

related discussions; and Section 6 provides the conclusions and

future work.
2 Related works

The identification and classification of plant leaf images are

considered effective means for disease identification (Shoaib et al.,

2023). Hossain et al. divided the machine learning identification

process of plant leaves into three steps: image preprocessing, feature

extraction, and classification (Hossain et al., 2019). However, plant

disease images often feature complex backgrounds and indistinct

disease areas, increasing the difficulty of feature extraction and

classification. Due to labor-intensive feature extraction, slow data

accumulation, and weak generalization ability, traditional machine

learning-based plant disease identification methods face significant

challenges in dealing with complex disease data (Lee et al., 2020).

With the development of deep learning, Geetharamani et al.

proposed a technique with higher accuracy than traditional

machine learning methods, providing a new solution for crop

disease identification (Geetharamani and Pandian, 2019). Zhang

et al. proposed a cucumber leaf disease identification technique

based on convolutional neural networks (CNN) (Zhang et al.,

2019), and Tang et al. achieved good results in grape disease

image classification using CNN (Tang et al., 2020). Kamal et al.

widely applied popular deep learning image classification

techniques like CNN to crop disease identification, significantly

improving the efficiency of disease identification (Kamal et al.,

2019). Even in cases with complex backgrounds and indistinct

disease targets, deep learning-based models still demonstrate

excellent generalization capabilities. However, CNN primarily

relies on local receptive fields, making it difficult to model global

information, which leads to certain limitations in feature extraction.

ViT is a deep learning-based image classification technology

capable of learning high-quality intermediate features while

preserving more spatial information compared to ResNet

(Dosovitskiy et al., 2020). In the field of leaf disease image

recognition, ViT more effectively selects areas with significant

features through patch segmentation, allowing its attention

mechanism to better identify disease regions and accurately

determine disease types (Fu et al., 2024). Thakur et al. applied
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ViT to plant leaf disease identification and demonstrated that it can

effectively identify various diseases in multiple crops and, due to its

lightweight structure, shows significant performance advantages in

plant disease classification tasks (Thakur et al., 2023). Borhani et al.

combined CNN and ViT for plant disease identification, further

improving prediction speed while maintaining high accuracy

(Borhani et al., 2022). However, the self-attention mechanism of

ViT results in computational complexity that is quadratically

related to the length of the input sequence. Specifically, for an

image divided into N patches, the computational complexity of the

self-attention mechanism is O(N²), meaning that when the image

resolution increases, the computational load rises sharply. Saleem

et al. proposed a new hybrid architecture with enhanced vegetative

feature isolation, combining deep learning models to improve

the performance of multi-crop disease detection, providing

important reference for this study (Saleem et al., 2024).

Naeem et al. used feature selection and feature concatenation

methods to optimize potato leaf disease identification tasks, while

our method employs state space models (SSM) for feature

extraction to further reduce computational complexity (Naeem

et al., 2025). ViT models require an ultra-large-scale dataset for

training. When training data is insufficient, its low-level attention

mechanism cannot learn local information, leading to reduced

model accuracy, limiting ViT’s performance on small-sample

datasets (Zhao, 2017).

Swin Transformer, through a local window attention

mechanism (Liu et al., 2021), associates each position with only

pixels within its local window, thereby reducing the complexity of

attention computation. Swin Transformer can learn and detect

features at different scales, adapting to targets of different scales,

thus demonstrating strong performance in tasks such as image

classification, object detection, and semantic segmentation. Zhang

et al. applied Swin Transformer to field rice disease identification

and significantly improved the accuracy of disease detection

compared to other popular models (Zhang et al., 2021). However,

due to its local window computation approach, Swin Transformer

may lead to the loss of information from certain diseased areas,

limiting its performance in agricultural disease recognition tasks

with complex environmental backgrounds. Additionally, when

processing high-resolution images, its self-attention mechanism

still causes a sharp increase in computational load.

In recent years, few-shot learning (FSL) has gained significant

attention in agricultural disease detection tasks. PDSE-Lite extracts

global features through a convolutional autoencoder (Bedi et al.,

2024), improving the accuracy of disease severity estimation.

However, its ability to model fine-grained lesions (e.g., vein

yellowing caused by Huanglongbing) is limited. Saleem et al.

proposed a multi-scale feature extraction and fusion method,

optimizing few-shot learning models for wheat disease

classification problems, providing inspiration for our approach

(Saleem et al., 2025). TrIncNet introduced a lightweight ViT

architecture optimization scheme to adapt to low-data

environments, but its attention mechanism still requires O(N²)

computational complexity, making it difficult to handle high-

resolution field images (Gole et al., 2023). Furthermore, Hybrid
Frontiers in Plant Science 03
CNN-Autoencoder combines CNNs and autoencoders, enhancing

classification accuracy in scenarios with limited data (Bedi and

Gole, 2021). Existing methods predominantly rely on large-scale

pre-trained datasets such as ImageNet, while the few-shot

generalization capability in agricultural disease scenarios remains

insufficiently validated.

VMamba is a visual backbone network based on state space

models (SSMs). Unlike traditional attention mechanisms, SSMs

allow each element in the sequence to interact with previously

scanned samples, reducing the computational complexity of

attention from quadratic to linear (Shi et al., 2024). The core

advantage of VMamba is incorporating SSMs’ global receptive

fields, input-dependent weighting parameters, and linear

computational complexity into visual processing. In image

classification tasks, VMamba outperforms popular CNN and ViT

models while maintaining linear computational complexity (Liu

et al., 2024). Chen et al. applied VMamba to fine-grained food visual

classification tasks, combining it with residual networks, and

demonstrated its superiority on high-resolution datasets,

outperforming existing state-of-the-art (SOTA) models on

ImageNet (Chen C. S. et al., 2024). Dang et al. used VMamba for

medical image segmentation tasks, achieving significantly better

performance in multiple tasks than CNN- and Transformer-based

models (Dang et al., 2024).
3 Methods

3.1 State space models

State space models (SSMs) are mathematical frameworks for

characterizing dynamic systems, establishing a mapping

relationship between input signals and output signals by

modeling the evolution of hidden states. Their core concept

originates from linear time-invariant systems (LTI) and can be

described using linear ordinary differential equations (ODEs), as

shown in Equation 1.

h 0 (t) = Ah(t) + Bu(t)

y(t)   = Ch(t) + Du(t)

(
(1)

The terminology definitions are as follows:
h(t) ∈ RN : The hidden state at time t, which carries the

historical information of the system.

u(t) ∈ R: The input signal that drives the evolution of the state.

y(t) ∈ R: The output signal, which is jointly determined by the

current state and the input.

A ∈ RN�N : The state transition matrix, which governs the

evolution of the hidden state.

B ∈ RN�1: The input projection matrix, which maps the input

to the state space.

C ∈ R1�N : The output projection matrix, which maps the state

to the output.
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Fron
D ∈ R1: The direct transmission term (usually set to 0 to

simplify the model) (Liu et al., 2024).
In deep learning, the required state transitions are discrete rather

than continuous, so the above linear ordinary differential equations

must be converted into discrete functions. Considering an input as a d-

dimensional signal stream of length L, this paper employs the Zero-

Order Hold (ZOH) method to discretize the aforementioned

differential equation. It assumes that the input remains constant over

the time interval D and solves the ODE through integration, yielding

the following discrete recurrence relation, as shown in Equation 2:

hk = �Ahk−1 + �Buk (2)

where the discretization parameters are defined as:

�A = eAD ,   �B = (
Z D

0
eA(D−t )dt )B ≈ DB

The Zero-Order Hold (ZOH) method is a standard technique

used to approximate continuous-time systems in discrete form. Its

purpose is to ensure that the behavior of the discretized system

closely resembles that of the original continuous-time system.

Specifically, ZOH assumes that the input signal remains constant

within the sampling interval, thereby simplifying the computation

of hidden state updates. The advantage of this approach lies in its

ability to accurately capture the dynamics of the input signal while

maintaining linear computational complexity, ensuring numerical

stability for high-resolution image inputs.
3.2 Selective scanning mechanism

The static parameters A, B, and C in traditional State Space

Models (SSMs) limit their adaptability to context. To address this,

the Selective Scanning Mechanism (S6) introduces input-dependent

dynamic parameters: Bk ,  Ck ,  Dk  = fq(uk). The selective scanning

mechanism (called S6) allows the model to selectively process

information to focus on or ignore specific inputs. S6 transforms

the dimensions of the matrices affecting the input B and the state-

influencing C to (B, L, N), where these parameters correspond to

batch size, sequence length, and hidden state size, respectively, and
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changes the size of D to (B, L, D). This means that during inference,

the model can dynamically calculate the values of matrices Bk, Ck,

and step length  Dk based on different input data, thus achieving the

goal of selectively retaining content in the hidden state and ignoring

certain content (Gu and Dao, 2023). In S6, for the input sequence u1
, u1,…, uT , the hidden state is updated as follows, as shown in

Equation 3:

hk = wk ⊙ hk−1 +ok
i=1

Yk

j=i
e−AjDj

� �
Biui (3)

Here, wk = eAkDk represents the dynamic decay weight, and ⊙
denotes element-wise multiplication.

For an input feature map X ∈ RH�W�C , the output is given by

Equation 4:

Y =od∈ Four directionsf gReshape(S6d(Flattend(X))) (4)

In the VMamba architecture, the Selective Scanning

Mechanism is applied within the SS2D module. To account for

the two-dimensional nature of visual data, a Cross Scan Module

(CSM) is used to generate sequential inputs. The input sequence is

expanded along multiple scanning paths, extending them into

sequences along rows and columns (cross-scanning).

Subsequently, the sequences are scanned in four different

directions. Cross-Scan: This process divides the input image data

into multiple patches and unfolds them along four distinct scanning

paths (horizontal, vertical, and two diagonal directions). This allows

each patch to interact with others in different orders, thereby

collecting contextual information from various directions. Parallel

Processing: Parallel processing employs S6 Blocks, which are

modules based on State Space Models (SSMs). In each scanning

path, the S6 module is responsible for selectively weighting and

processing each image patch. The S6 module dynamically adjusts

the weight of each patch through an input-dependent selection

mechanism, enabling the model to focus on important regions.

Cross-Merge: After the four scanning paths complete their

respective processing, the Cross-Merge block combines the results

from the four scanning paths into a final two-dimensional feature

map. This process integrates information from the four different

scanning directions, ensuring that each patch receives contextual

information from all directions. This is illustrated in Figure 1.
Input Patches Cross-scan

S6 

Blocks

Cross-merge

Output 

Patches

SS2D
Selective Scan 

Mechanism (S6)

State Space 

Model(SSM)
ViT

Input Patches

FIGURE 1

SS2D architecture.
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Transformer-based models like ViT divide the input image into

smaller patches, flatten these patches, and feed them as sequences

into the Transformer model (Dosovitskiy et al., 2020), as shown in

Figure 1. This approach inevitably leads to a limited receptive

field. Moreover, in the self-attention mechanism, each input

element interacts computationally with all other elements,

resulting in a quadratic computational complexity of O(N²),

where N is the length of the input sequence. Specifically, ViT’s

self-attention mechanism computes the similarity between every

pair of input elements, leading to high computational and

memory costs when handling high-resolution images.VMamba

adopts the Selective Scan mechanism, allowing each input

element to interact only with its neighboring elements, thereby

reducing the computational complexity to linear. This approach not

only enhances computational efficiency but also maintains a global

receptive field, ensuring the model’s effectiveness in handling

visual tasks.
3.3 VMamba architecture

The VMamba architecture is shown in Figure 2, where all these

stages together build a hierarchical representation similar to CNN

and ViT models (Liu et al., 2024). The stages are described as

follows: Patch Partition: Input images are divided into multiple

patches using a Patch Partition similar to ViT (Dosovitskiy et al.,

2020), obtaining a feature map of size. Stage 1: Several VSS blocks

are stacked on the feature map, maintaining the same dimensions.

Stage 2: The feature map from Stage 1 is downsampled, and more

VSS Blocks are stacked to produce an output resolution of. Stage 3

& Stage 4: Repeat the process of Stage 2 to create feature maps with

resolutions of and, respectively.

The VSS Block is the core of the VMamba architecture. In the

VSS Block, the input is passed through Layer Normalization (LN),

and the output is split into two streams of information. One stream
Frontiers in Plant Science 05
passes through a 3x3 Depthwise Convolution (DWConv) layer

(Chollet, 2017), followed by SiLU activation and entering the core

SS2D module. The SS2D output is then passed through a

normalization layer and added to the output of the other stream.

SS2D is the key element of the VSS Block, integrating the S6

Block with the Cross Scan Module (CSM), as shown in Figure 1. To

address the limitations of LTI SSMs in capturing contextual

information, the S6 Block combines S6 with SSMs, allowing each

element in a 1D array to interact with any previously scanned sample

by compressing the hidden state, effectively reducing quadratic

complexity to linear (Liu et al., 2024). VMamba incorporates the

selective scanning mechanism (S6) as the core SSMs operator,

processing input data causally, thereby capturing information only

within the scanned portion of the data. Although the order of

operations in the S6 Block aligns with NLP tasks involving

temporal data, it faces significant challenges when applied to non-

temporal data (e.g., images, graphs, sets) because visual sequences are

inherently non-sequential (Liu et al., 2024). To solve this problem,

Chen et al. proposed the Cross Scan Module (CSM). CSM selects

image patches, expands them into sequences along rows and columns

(cross-scan), and then scans in four different directions: top-left to

bottom-right, bottom-right to top-left, top-right to bottom-left, and

bottom-left to top-right (Chen C. S. et al., 2024). This allows any pixel

to integrate information from all other pixels in different directions.

Each sequence is independently processed by different S6 blocks, then

reshaped into a single image, and all sequences are merged into a new

sequence (cross-merge).

In the SS2D Block, input blocks are traversed along four

different scanning paths (cross-scan), each sequence is

independently processed by different S6 blocks, and the results

are subsequently fused to construct a 2D feature map (cross-merge)

as the final output. Data forwarding in the SS2D Block is divided

into three steps: cross-scan, S6 block selective scanning, and cross-

merge. The SS2D Block allows visual data to use 1D selective

scanning, processes image blocks in parallel through S6 blocks,
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and merges the results to form a 2D feature map, thereby effectively

utilizing the S6 module. It inherits the linear complexity of the

selective scanning mechanism while retaining a global receptive

field (Liu et al., 2024).
3.4 Denoising diffusion probabilistic
models

In deep learning image classification tasks, data augmentation

techniques are widely used to address the issue of insufficient

training data. By applying transformations such as rotation,

translation, scaling, cropping, flipping, and adding Gaussian or

salt-and-pepper noise to the original data, the diversity of the data is

increased, thereby enhancing the model’s generalization ability and

robustness. However, traditional data augmentation methods have

certain limitations. These methods typically rely on manually

designed rules, which may fail to fully capture the complex

features of the data, resulting in limited diversity of the generated

samples and an inability to cover the full scope of the data

distribution. Moreover, excessive reliance on data augmentation

can lead to overfitting of the model to specific transformations,

affecting its performance on unseen samples. To overcome these

limitations, DDPM offers a new approach to image augmentation

(Ho et al., 2020).

Denoising Diffusion Probabilistic Models (DDPM) are latent

variable models inspired by non-equilibrium thermodynamics. The

structure of DDPM is shown in Figure 3. DDPM defines a Markov

chain for the diffusion steps, gradually adding random noise to the data,

and then learns the reverse diffusion process to reconstruct the desired

data sample from noise, thus generating target data samples from noise

(Ho et al., 2020). The diffusionmodel consists of twomain processes: the

forward process (diffusion process) and the reverse process. By training a

DDPM diffusion model to learn the diffusion of image data, we input

randomly generated noisy images into the DDPM diffusion model and

perform the reverse diffusion process to ultimately obtain synthesized

images similar to real images. A visual comparison between images

generated byDDPM and traditional image generationmethods is shown

in Figure 4.

Unlike other generative models, such as Variational

Autoencoders (VAEs) and Generative Adversarial Networks

(GANs), diffusion models gradually add noise to images during the
Frontiers in Plant Science 06
forward process until the image is completely destroyed, becoming

Gaussian noise. During the reverse process, the model learns how to

recover the original image from Gaussian noise (Li et al., 2023). This

stepwise noise addition and denoising process make diffusion models

exhibit superior stability and diversity when generating samples,

making them an important focus of recent generative model research.
3.5 Transfer learning

Transfer learning (Zhuang et al., 2020) is a machine learning

technique that applies knowledge learned from one domain (source

domain) to another related domain (target domain) to improve

model performance on a new task. This method is especially

suitable for situations with limited data, as it leverages existing

knowledge to reduce the amount of training data required for new

tasks. Transfer learning offers the advantage of saving time and

computational resources, as it avoids the need to train a model from

scratch, particularly for complex tasks. Moreover, pretrained

models provide better initial weights, accelerating convergence

and improving accuracy (Yao et al., 2020). The main steps of

transfer learning are as follows: (1) Pretraining: A deep learning

model is trained on a large dataset (e.g., ImageNet) to learn general

features. For instance, convolutional neural networks (CNNs) can

extract edges, textures, and other low-level features from images. (2)

Feature Transfer: The weights and structure of the pretrained model

are transferred to the target task. The model is fine-tuned on a small

amount of data to adjust its parameters. (3) Evaluation and

Optimization: The transferred model is evaluated using data from

the target domain and further optimized as needed.
3.6 Integration of DDPM, transfer learning,
and VMamba for disease identification

To evaluate the performance and characteristics of the

VMamba model in recognizing plant leaf diseases, we designed

five methods that integrate DDPM, transfer learning, and VMamba.

Method 1: A Plant Disease Recognition Method Using

VMamba (Large Image Dataset). This method applies the

VMamba model to a large dataset of plant leaf diseases to

evaluate its performance on a big dataset.
Original

Image

Process

Image

Noise

Image

Add Gaussian Noise

Noise Removal

Diffusion Process

Reverse Diffusion Process

Add Gaussian Noise

Noise Removal

FIGURE 3

Diffusion process.
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Method 2: A Plant Disease Recognition Method Using

VMamba (Small Image Dataset). This method uses the VMamba

model on a small sample dataset of plant leaf diseases, testing its

performance with limited data.

Method 3: A Transfer Learning-Based Disease Recognition

Method with VMamba. As shown in Figure 5, this method first

pre-trains the VMamba model on a large-scale plant disease dataset,

generating a pre-trained model. Transfer learning is then used to

transfer the learned network architecture and weights to the small

sample dataset for recognizing diseases in plant leaf images with

limited data.

Method 4: Diffusion-Driven Transfer Learning with VMamba

(Small Image Dataset). As shown in Figure 6, this method combines

DDPM and transfer learning for VMamba on small datasets.

DDPM is used to augment the small plant disease dataset by

generating additional images, thereby increasing the training data

and enhancing the model’s generalization. The model trained on

the augmented images is used as a pre-trained model. Transfer

learning (Zhuang et al., 2020) is then applied to fine-tune this pre-

trained model on the original small sample dataset, aiming to

improve the robustness of the VMamba model, reduce sensitivity

to image variations, and ultimately improve accuracy.

Method 5: Diffusion-Driven Hybrid Transfer Learning with

VMamba (DDHTL-VMamba). As shown in Figure 7, this method

consists of two stages:
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1. Pre-training Stage: In this stage, DDPM (Denoising

Diffusion Probabilistic Models) is used to generate an

augmented image dataset based on a small-sample dataset

(In-field small dataset). This augmented dataset is then

combined with a larger dataset (PlantVillage dataset) for

pre-training the model. The goal of this stage is to leverage

the generative capabilities of DDPM to enrich the diversity

of the training data, thereby improving the model’s ability

to learn robust features.

2. Transfer Learning Stage: After pre-training, the model is

fine-tuned on a small-sample plant disease dataset using

transfer learning techniques. This involves adapting the

pre-trained model to the specific characteristics of the

target dataset, which typically contains limited labeled

data. By doing so, the model can better capture the

nuances of the target task while retaining the

generalization benefits gained during pre-training.
The purpose of this approach is to enhance the accuracy and

performance of the VMamba model in identifying plant diseases

from small-sample datasets, as well as to improve its generalization

capability in real-world application scenarios. This hybrid strategy

effectively addresses the challenges posed by limited data

availability, ensuring that the model performs reliably even when

trained on smaller, domain-specific datasets.
Big Image Dataset

Model Model

Pretraining Model

Small Image Dataset

Disease 

Prediction  

FIGURE 5

Transfer learning-based plant disease recognition method
using VMamba.
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of Small Image Dataset

Model Model
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Small Image Dataset
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Prediction  

FIGURE 6

The workflow of method 4.
FIGURE 4

Comparison of data enhancement methods.
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4 Experiment

4.1 Experimental datasets and environment

In this study, we utilized the PlantVillage dataset as the large

dataset and the In-field small dataset constructed by our team (Li et al.,

2023; Chen et al., 2024a; Chen et al., 2024b) as the small sample dataset.

PlantVillage dataset consists of 54,303 images of healthy and

diseased plant leaves, covering 38 different species and diseases.

This includes crops such as tomatoes, apples, bananas, and their

related diseases. This dataset provides a diverse set of images,

creating an ideal environment for evaluating the performance of

models in plant disease recognition tasks.

In-field small dataset is a small sample dataset focused on citrus

plant diseases, collected from real-world field environments. It

contains a total of 3,250 high-resolution (4000×3000) color images,

divided into three categories: HLB-infected leaves (758 images),

magnesium-deficient leaves (739 images), and healthy leaves (1,151

images). This dataset is particularly useful for testing the model’s

performance in small-sample plant disease recognition tasks.
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4.2 Performance evaluation metrics

The performance of the models was evaluated using several key

metrics, including Params, Gflops, Time per epoch, AccTop1,

AccTop5, Precision, Recall, and F1 Score, as detailed in Table 1.

Additionally, Confusion Matrix analysis was employed in some

experiments to further assess the classification performance of the

models, ensuring accuracy in the results, as shown in Figure 8. The

Confusion Matrix is a tool for evaluating classification model

performance by visualizing the relationship between predicted

and true labels. It helps analyze how well the model classifies

different categories. Typically presented as a square matrix, each

row represents the true class, and each column represents the

predicted class, as shown in Figure 8. In this matrix, True

Positive (TP) refers to the correctly predicted positive samples,

True Negative (TN) refers to correctly predicted negative samples,

False Positive (FP) represents the negative samples incorrectly

predicted as positive (false alarms), and False Negative (FN)

represents the positive samples incorrectly predicted as negative

(missed detections).
Model Model

Pretraining Model

Small Image

Dataset

Disease 

Prediction  

Big

Dataset

DDPM Composite Image 

of Small Image Dataset

FIGURE 7

The Workflow of Method 5.
TABLE 1 Evaluation metrics.

Evaluation Metrics Description

Params
The number of parameters in the model, typically used to assess the model’s complexity and capacity. A higher number of parameters
generally indicates greater model complexity, but it may also lead to overfitting.

Gflops
Gflops (Giga Floating Point Operations Per Second), measures the computational complexity and processing speed of the model, reflecting
its computational efficiency.

Time per epoch
The time required for each training epoch, often used to evaluate the efficiency of the training process. Shorter times indicate that the
model can iterate through training more quickly.

Acc-Top1
The accuracy of the model in correctly identifying the top predicted class in classification tasks. Higher values indicate better
model performance.

Acc-Top5
The accuracy of the model in correctly identifying one of the top five predicted classes in classification tasks, reflecting the model’s
robustness in multi-class recognition.

Precision
Precision measures the proportion of correctly predicted positive samples out of all samples predicted as positive. A high precision
indicates the model’s strong accuracy in predicting the positive class.

Recall
Recall measures the proportion of actual positive samples that were correctly predicted as positive. A high recall indicates the model’s
effectiveness in identifying positive samples.

F1 Score
The F1 Score is the harmonic mean of precision and recall, providing a balanced evaluation of the model’s performance, especially in cases
of class imbalance. A higher F1 score indicates better overall performance.
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4.3 Experiments

The experiments conducted in this study are summarized in

Table 2. To ensure data consistency and facilitate model processing,

all images were resized to a uniform resolution of 224×224 pixels

during the data preprocessing stage of model training. Additionally,

random cropping was applied to the input images within a specified

range to augment the dataset and improve model robustness.The

dataset was split into training, validation, and test sets in a 6:2:2

ratio, ensuring that the training and validation conditions remained

consistent across different datasets. All computations were

performed on the same hardware and operating environment to

ensure controlled variables. The setup includes: CPU: R9 7940H,

RAM: 16 GB, GPU: RTX 4060 Max-Q 8 GB, SYSTEM: Ubuntu

22.04, Python: 3.10, PyTorch: 2.0.0, and CUDA: 11.8. In terms of

hyperparameter settings, we used a batch size of 16 for the VMamba

network. A linear learning rate scaling strategy was employed for

scheduling, and the AdamW optimizer was utilized for training.

The number of training epochs was uniformly set to 300, and an

Early-Stop mechanism was implemented to prevent overfitting and
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optimize training efficiency. This systematic approach ensures that

the experimental results are reliable, reproducible, and reflective of

the model’s true performance.

4.3.1 Results and analysis of experiment 1
The results of Experiment 1 are shown in Table 3. The findings

demonstrate that the VMamba model outperformed other models

across various metrics, including Acc-Top1, Acc-Top5, Precision,

Recall, and F1 Score. Notably, VMamba achieved an Acc-Top1

accuracy of 99.81%, with the Swin Transformer coming in second at

99.18%. Furthermore, VMamba exhibited significant advantages in

training speed, especially when compared to the ViT model, with

much shorter training times per epoch.

The results show that although the ViT model has the highest

parameter count (85.68M) and computational complexity (16.86

Gflops), its performance did not significantly surpass that of

VMamba. Particularly in terms of Acc-Top1 and Acc-Top5

accuracy, ViT lagged behind VMamba, possibly due to its reliance

on large datasets to maintain performance in large-scale tasks. The

VMamba model, with its efficient selective scanning mechanism (S6),

achieved higher accuracy and precision while maintaining lower

computational complexity (4.85 Gflops). While the ResNet50

model has fewer parameters (23.59M), its performance was inferior

to VMamba, especially in Precision and Recall. The DeiT model

showed good results in certain metrics, particularly in terms of faster

training times per epoch, but its overall predictive performance was

still behind that of VMamba and Swin Transformer.

Conclusion of Experiment: The VMamba model demonstrated

outstanding performance in large-scale plant disease recognition tasks,

surpassing other models in terms of accuracy and computational

efficiency. This indicates that the VMamba model holds great

potential for applications in agricultural disease identification,

especially in scenarios with limited computational resources.

4.3.2 Results and analysis of experiment 2
The results of Experiment 2 are shown in Table 4. This

experiment primarily evaluates the performance of VMamba on

small-sample datasets to verify its generalization capabilities in low-

data environments. A key challenge in agricultural disease detection

is the difficulty of collecting large-scale, high-quality annotated data

in real-world applications. Therefore, we used the In-field small
TABLE 2 Experiments.

Experiment Objective Method Dataset

Experiment 1 Evaluating VMamba’s Disease Identification Ability Method 1
Big Image Dataset

PlantVillage

Experiment 2
Evaluating VMamba’s Disease Identification Ability on Small

Image Dataset
Method 2

Small Image Dataset
In-field small dataset

Experiment 3
Evaluating the Performance of VMamba Integrated with

Transfer Learning
Method 3 same as above

Experiment 4
Evaluating the Performance of VMamba Integrated with

DDPM and Transfer Learning
Method 4

Big Image Dataset
PlantVillage; Small Image Dataset In-field small dataset

Experiment 5 Evaluating the Performance of DDHTL-VMamba Method 5 same as above
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dataset as the experimental object. This dataset contains 3,250

images, divided into three categories: HLB-infected leaves (758

images), magnesium-deficient leaves (739 images), and healthy

leaves (1,151 images).This small-sample dataset reflects the

practical challenges of data acquisition in real agricultural

environments. The images vary in lighting conditions,

background complexity, and leaf angles, simulating the

complexities of disease detection tasks in small-sample scenarios.

The findings indicate that VMamba performed exceptionally

well in the small-sample plant disease identification task, surpassing

models such as ResNet50, ViT, and DeiT in key performance

metrics like Acc-Top1, Precision, Recall, and F1 Score.

Additionally, VMamba demonstrated superior efficiency in

training time. VMamba achieved an Acc-Top1 accuracy of

93.21%, while the Swin Transformer model slightly outperformed

VMamba with 93.37%. Although Swin Transformer had a slight

advantage in Acc-Top1, its training time per epoch (228 seconds)

was 286% longer than that of VMamba (59 seconds), indicating that

VMamba has a significant advantage in computational efficiency.

To comprehensively evaluate model performance, we conducted

statistical significance tests and calculated confidence intervals for

metrics such as accuracy, precision, recall, and F1 score.

Compared to ViT, VMamba’s performance was particularly

strong. ViT’s performance dropped significantly on the small-

sample dataset, achieving an Acc-Top1 of only 71.59%, much

lower than its results on the large-scale PlantVillage dataset. This

shows that ViT struggles with small-sample data, whereas
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VMamba’s efficient architecture helps mitigate the performance

degradation associated with small-sample datasets. ResNet50

showed results close to VMamba’s but fell short in both precision

and computational efficiency. VMamba’s training time per epoch

was 59 seconds, while ResNet50 required 241 seconds, indicating

that VMamba is more computationally efficient. Swin Transformer

performed well on the small-sample dataset, especially in Acc-Top1

and Precision, slightly outperforming VMamba. This could be

attributed to its Window-based Multi-Head Self-Attention (W-

MSA) mechanism, which helps extract local features effectively on

small datasets (Liu et al., 2021). However, Swin Transformer’s

training time per epoch was 228 seconds, which was 286% longer

than VMamba’s. Overall, VMamba strikes a better balance between

efficiency and accuracy.

Conclusion of Experiment 2: VMamba outperformed

ResNet50, ViT, and DeiT on small-sample agricultural disease

datasets in terms of both accuracy and computational efficiency.

It also performed comparably or better than Swin Transformer on

metrics like Acc-Top1 and Time per epoch. VMamba’s efficient

selective scanning mechanism and state-space model architecture

provide strong adaptability and robustness, maintaining high

classification performance while keeping computational

complexity low.

4.3.3 Results and analysis of experiment 3
The results of Experiment 3 are shown in Table 5. Transfer

learning based on the PlantVillage dataset significantly improved
TABLE 4 Results of Experiment 2.

Model VMamba ResNet50 DeiT ViT Swin Transformer

Params 30.7M 25.56M 5.71M 85.80M 27.53M

Gflops 4.85 4.13 1.08 68.72 4.37

Acc-Top1 (%) 93.21 91.84 82.26 71.59 93.37

Precision (%) 91.74 91.12 82.57 71.68 92.81

Recall (%) 90.49 89.86 80.75 70.16 92.70

F1 Score (%) 90.94 90.26 81.41 70.74 92.69

Time per epoch 59s 241s 34s 94s 228s
TABLE 3 Experiment 1 results.

Model VMamba ResNet50 DeiT ViT Swin Transformer

Params 30.7M 23.59M 5.71M 85.68M 27.53M

Gflops 4.85 4.13 1.08 16.86 4.37

Acc-Top1 (%) 99.81 97.5 99.10 97.28 99.18

Acc-Top5 (%) 99.99 99.91 99.97 99.91 99.98

Precision (%) 99.51 96.06 98.65 96.61 98.88

Recall (%) 99.20 96.50 98.58 96.71 98.76

F1 Score (%) 99.34 96.21 98.60 97.29 98.81

Time per epoch 287s 237s 57s 655s 336s
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VMamba’s performance in the small-sample plant disease

identification task. In terms of Acc-Top1, Precision, Recall, and

F1 Score, the PV-In-field-VMamba model outperformed PV-In-

field-ViT, PV-In-field-ResNet50, and PV-In-field-Swin

Transformer. Specifically, VMamba achieved an Acc-Top1

accuracy of 99.81%, significantly higher than ViT’s 93.06% and

ResNet50’s 98.26%. In addition to the accuracy advantage,
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VMamba was also much more efficient. Due to its large

parameter size (85.68M) and high computational complexity

(16.86 Gflops), ViT took 275 seconds per epoch, while VMamba

required only 47 seconds per epoch, with a lower complexity of 4.86

Gflops. Moreover, VMamba showed more stable overall

performance across Precision, Recall, and F1 Score after transfer

learning. While Swin Transformer performed closely to VMamba in
FIGURE 9

Confusion matrix: Experiment 3.
TABLE 5 Results of Experiment 3.

Model PV-In-field-VMamba PV-In-field-ViT
PV-In-

field-ResNet50
PV-In-field-

Swin Transformer

Params 30.7M 85.68M 23.59M 27.53M

Gflops 4.86 16.86 4.13 4.37

Acc-Top1 (%) 99.81 93.06 98.26 96.32

Precision (%) 99.78 91.76 97.79 95.70

Recall (%) 99.78 92.69 98.00 96.17

F1 Score (%) 99.78 92.09 97.89 95.91

Time per epoch 47s 275s 254s 235s
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some metrics, it lagged behind in terms of accuracy, especially when

handling small-sample disease identification tasks where

VMamba’s advantages were more pronounced.

The Confusion Matrix for each model is shown in Figure 9,

where PV-In-field-VMamba performed best across all categories. In

particular, VMamba showed the highest accuracy in identifying

Huanglong disease, while ViT and ResNet50 struggled with

misclassification and confusion in recognizing Huanglong disease

and Magnesium deficiency. VMamba effectively avoided these

errors, indicating stronger distinction and robustness in handling

complex agricultural disease categories.

Conclusion of Experiment 3: The transfer learning performance

of the VMamba model on small-sample agricultural disease datasets

was superior to ViT, ResNet50, and Swin Transformer. VMamba

not only excelled in accuracy but also exhibited exceptional

computational efficiency, particularly in small-sample disease

identification tasks. Through transfer learning, VMamba was able

to retain useful features from the pre-trained model while adapting

to different datasets with outstanding results.

4.3.4 Results and analysis of experiment 4
The results of Experiment 4 are shown in Table 6. The use of the

DDPM data augmentation method significantly expanded the

small-sample dataset and improved the performance of all

models. Specifically, the DDPM-In-field-VMamba model achieved

the best results in terms of Acc-Top1, Precision, Recall, and F1

Score, with an Acc-Top1 of 97.93%, far surpassing other models,

particularly Swin Transformer (92.83%). In terms of precision and

recall, VMamba remained the top performer even after DDPM data

augmentation. Although ViT and ResNet50 showed some

improvement, they were still unable to outperform VMamba,

indicating that VMamba’s architecture continues to excel in

handling augmented datasets with outstanding generalization and

stability. Additionally, the experiments revealed that DDPM-

augmented datasets not only improved model accuracy but also

shortened training times per epoch. VMamba took only 49 seconds

per epoch, compared to ViT’s 276 seconds and ResNet50’s 253

seconds, achieving a good balance between performance and

training efficiency.

The Confusion Matrix for each model is shown in Figure 10,

where DDPM-In-field-VMamba outperformed other models in all
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categories, particularly in Huanglong disease and Magnesium

deficiency recognition. ViT and ResNet50 were more prone to

misclassification in these categories, showing less stability when

handling complex categories compared to VMamba. The data

results were subjected to statistical significance tests, indicating

that the Acc-Top1 metric of VMamba was significantly higher

than that of other models (a p-value less than 0.05 indicates a

significant difference).

Conclusion of Experiment 4: The DDPM data augmentation

method significantly improved the model’s performance when

working with small-sample agricultural disease datasets.

Particularly in the VMamba model, data augmentation after

transfer learning led to the best results across metrics such as

Acc-Top1, Precision, Recall, and F1 Score, while also greatly

improving training efficiency. Compared to other models,

VMamba not only achieved higher accuracy but also significantly

reduced training time. The comparison of confusion matrices

further shows that VMamba exhibited superior accuracy and

robustness across different disease categories.

4.3.5 Results and analysis of experiment 5
The results of Experiment 5 are presented in Table 7. When

using the DDHTL-VMamba training method, the model’s accuracy

showed a slight decrease compared to the PV pre-trained transfer

learning method, but the time required for the pre-training phase

was significantly reduced by 43.88%, which greatly lowered the

training cost. Compared to the transfer learning method using

DDPM-augmented datasets, the DDHTL-VMamba method

showed improvements in model accuracy. The Confusion Matrix

is shown in Figure 11, where we can observe a clear improvement in

identifying Huanglong disease compared to the DDPM-augmented

pre-training method. The results demonstrate that the DDHTL-

VMamba method can more effectively balance model accuracy and

training cost.
5 Discussion

Through a series of experiments using the VMamba model on

different datasets and training methods, this study found that

VMamba exhibits outstanding performance in agricultural disease
TABLE 6 Results of Experiment 4.

Model
DDPM-In-

field-VMamba
DDPM-In-field-ViT

DDPM-In-
field-ResNet50

DDPM-In-field-
Swin Transformer

Params 30.7M 85.68M 23.59M 27.53M

Gflops 4.86 16.86 4.13 4.37

Acc-Top1 (%) 97.93 96.00 96.53 92.83

Precision (%) 97.80 95.14 95.73 92.02

Recall (%) 97.65 95.32 95.92 92.16

F1 Score (%) 97.70 95.23 95.82 92.08

Time per epoch 49s 276s 253s 250s
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identification, especially on small-sample datasets. Compared to

other popular vision models such as ResNet50, ViT, and Swin

Transformer, VMamba consistently outperformed them on several

key metrics (Acc-Top1, Acc-Top5, Precision, Recall, F1 Score). This

was particularly evident in small-sample conditions and when

transfer learning and DDPM data augmentation were applied,

where VMamba’s performance further stood out.
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In Experiment 1, the VMamba model demonstrated superior

performance on the PlantVillage dataset. Compared to models like

ResNet50, ViT and Swin Transformer, VMamba’s architecture,

based on state-space modeling, was better at handling complex

visual features. In Experiment 2, VMamba continued to outperform

ResNet50, DeiT, and ViT on the In-field small dataset, showcasing

its effectiveness in small-sample data scenarios. This advantage can
TABLE 7 Results of Experiment 5.

Model DDHTL-VMamba PV-In-field-VMamba
DDPM-In-

field-VMamba

Common data
enhancement-

VMamba

Params 30.7M 30.7M 30.7M 30.7M

Gflops 4.86 4.86 4.86 4.86

Acc-Top1 (%) 99.434 99.811 97.925 92.830

Precision (%) 99.338 99.776 97.797 92.554

Recall (%) 99.342 99.781 97.650 91.819

F1 Score (%) 99.333 99.778 97.704 92.109

Pretrained time 14,496s 25,830s 12,200s —
FIGURE 10

Confusion matrix: Experiment 4.
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be attributed to VMamba’s selective scanning mechanism (S6),

which maintains a global receptive field while reducing

computational complexity, thereby enhancing the model’s

generalization ability. Although ResNet50 performs well on large-

scale datasets, it struggles with generalization on small-sample

datasets. Similarly, the ViT model, due to its high parameter

count and reliance on large datasets, performed poorly when data

was limited. In Experiment 3, the introduction of transfer learning

significantly improved VMamba’s performance on small-sample

datasets. After pre-training on the PlantVillage dataset, the model

could learn general features that maintained high recognition

accuracy when transferred to small-sample datasets. This finding

aligns with existing literature, which indicates that transfer learning

can greatly enhance model performance on small datasets (Zhao,

2017; Zhao et al., 2020). In Experiment 4, the DDPM diffusion

model was used to generate additional images, further improving

the model’s recognition capability. The augmented dataset provided

richer features for the small-sample data, increasing the model’s
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robustness. The results showed that VMamba performed the best

across multiple metrics after DDPM augmentation, confirming the

effectiveness of data augmentation for small-sample challenges. In

Experiment 5, the DDHTL-VMamba training method was

proposed, which pre-trains on a combination of DDPM-

augmented and original datasets and then transfers to the In-field

small dataset. The results indicate that this method effectively

balances model accuracy with reduced pre-training time,

significantly lowering training costs. Compared to traditional data

augmentation methods (which include transformations such as

rotation, scaling, cropping, flipping, and noise addition like

Gaussian and salt-and-pepper noise), both DDPM and DDHTL

demonstrated superior performance. This shows that the DDHTL-

VMamba training method is ideal for agricultural disease

identification tasks where balancing training cost and model

performance is critical.

The VMamba model addresses the limitations of traditional

The VMamba model addresses the limitations of traditional ViT
FIGURE 12

PV-In-field performance radar comparison chart.
FIGURE 11

Confusion matrix of Experiment 5.
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and ResNet models in handling small-sample data and complex

agricultural background data, demonstrating superior performance.

Compared to Swin Transformer, proposed by Liu et al. (2021),

which is currently the state-of-the-art (SOTA) method, the

VMamba model shows better performance on complex

agricultural images and small-sample agricultural data, as shown

in Figure 12. Swin Transformer is a hierarchical architecture based

on Transformers, which significantly reduces computational

complexity by introducing local window multi-head self-attention

mechanisms (W-MSA) while retaining feature extraction

capabilities. Its W-MSA mechanism divides images into fixed-

size, non-overlapping windows, making it difficult to capture

global dependencies across windows, thus limiting its

performance in agricultural disease identification tasks. For

example, in citrus leaves infected with Huanglongbing (HLB),

lesions may be scattered across the leaf tip, leaf margin, and

petiole regions. Window partitioning can disrupt the association

between these areas, reducing the model’s overall perception of

the disease.

The VMamba model, based on state-space models (SSM), uses a

selective scanning mechanism (S6) to achieve global context

modeling through linear scanning. VMamba processes image

sequences independently from four directions and integrates

multi-directional context information during the merging stage.

This design allows it to capture various distribution patterns of leaf

diseases, whereas the single-direction window partitioning of Swin

Transformer struggles to adapt to such complex morphologies.

Experiment 3 shows that VMamba’s Acc-Top1 is 3.49% higher than

Swin Transformer (99.81% vs. 96.32%) in complex background

interference, validating its advantage in global modeling. In small-

sample datasets, the W-MSA mechanism of Swin Transformer

initially provides a slight accuracy advantage over VMamba in

early training stages. However, after DDPM data augmentation and

pre-training optimization, VMamba’s global attention-aware

capability surpasses that of Swin Transformer, ResNet50, and

ViT models.

Although the VMamba model showed excellent performance in

this study, there are some limitations. First, while data

augmentation and transfer learning significantly improve small-

sample dataset performance, these methods rely on high-quality

augmented data and pre-trained models. If the original data quality

is poor, it may negatively affect the model’s performance. Moreover,

this study only experimented with disease identification in citrus

plants; future research should further evaluate VMamba’s

applicability in other crops and disease identification tasks.
6 Conclusions and future work

6.1 Limitations

VMamba performs exceptionally well in high-performance

computing environments, but its deployment on mobile and edge

computing devices presents certain challenges. These devices
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typically have limited computational power and memory, which

may lead to issues such as memory overflow and high

computational latency when running VMamba directly. Although

VMamba reduces computational complexity through its S6

mechanism, with a computational cost of 4.85 Gflops, which is

significantly lower than that of mainstream models like ViT (16.86

Gflops), its real-time performance on edge devices—such as frame

rate and power consumption—still requires further testing. In

practical applications like farmland monitoring, additional

optimizations may be necessary, such as model pruning, to

reduce the model size and computational load.

The current experiments were primarily validated on citrus

diseases. While VMamba demonstrated excellent transfer learning

performance on multi-crop datasets (e.g., PlantVillage) and small-

sample datasets (e.g., In-field small dataset), its transferability to

other crops such as rice and wheat remains to be further explored.

The small-sample dataset used in this study was sourced from real

agricultural environments and exhibits certain regional

characteristics. Although we adhered to ethical standards during

data collection to ensure the legality and accuracy of the data, and

took measures to minimize bias, future research should aim to

collect image data from different regions and crop types. This will

help validate VMamba’s performance across diverse conditions and

reduce errors.
6.2 Conclutions

In this study, we introduced the emerging VMamba vision

backbone model for the task of agricultural plant disease

identification, including small-sample plant disease recognition.

Experimental results demonstrated that, whether applied to large

datasets like PlantVillage or optimized small-sample agricultural

disease datasets, VMamba consistently outperformed popular

models such as ResNet50, Vision Transformer (ViT), and Swin

Transformer in terms of accuracy for plant disease identification.

These results verify VMamba’s excellent performance in the field,

offering a novel approach for agricultural plant disease recognition.

Additionally, we proposed the DDHTL-VMamba training method

for small-sample agricultural disease datasets. Compared to transfer

learning using large datasets, this method largely maintained the

accuracy of plant disease identification while significantly reducing

the time required for pre-training, thereby providing a more

efficient and balanced solution.
6.3 Future work

Future research could focus on evaluating VMamba’s

performance on larger and more diverse field datasets,

particularly in real-world agricultural environments where crop

conditions and disease manifestations are often more complex.

Further improvements could be made by integrating other data

augmentation techniques or optimizing transfer learning strategies
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to enhance the model’s generalization capabilities on small-sample

datasets. Another promising direction would be exploring the

application of VMamba in multimodal data (e.g., spectral images

and sensor data) to broaden its potential in precision agriculture.
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