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MLP network with multi-scale
context relation decoder for
pepper leaf segmentation
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Huaqi Gu2 and Youyao Fu1*
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Introduction: Pepper leaf segmentation plays a pivotal role in monitoring pepper

leaf diseases across diverse backgrounds and ensuring healthy pepper growth.

However, existing Transformer-based segmentation methods grapple with

computational inefficiency, excessive parameterization, and inadequate

utilization of edge information.

Methods: To address these challenges, this study introduces an Adaptive Multi-

Scale MLP (AMS-MLP) framework. This framework integrates the Multi-Path

Aggregation Module (MPAM) and the Multi-Scale Context Relation Mask

Module (MCRD) to refine object boundaries in pepper leaf segmentation. The

AMS-MLP includes an encoder, an Adaptive Multi-Scale MLP (AM-MLP) module,

and a decoder. The encoder’s MPAM fuses five-scale features for accurate

boundary extraction. The AM-MLP splits features into global and local

branches, with an adaptive attention mechanism balancing them. The decoder

enhances boundary feature extraction using MCRD.

Results: To validate the proposed method, extensive experiments were

conducted on three pepper leaf datasets with varying backgrounds. Results

demonstrate mean Intersection over Union (mIoU) scores of 97.39%, 96.91%,

and 97.91%, and F1 scores of 98.29%, 97.86%, and 98.51% across the

datasets, respectively.

Discussion: Comparative analysis with U-Net and state-of-the-art models

reveals that the proposed method significantly improves the accuracy and

efficiency of pepper leaf image segmentation.
KEYWORDS

pepper leaf segmentation, multi-scale MLP, multi-path aggregation module, context

relation mask module, adaptive attention mechanism
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1 Introduction

Pepper is a crucial crop in global agriculture, with China being

the largest producer and consumer, accounting for 37% of the

world’s pepper planting area. Essential for daily consumption,

pepper plants are highly susceptible to diseases, particularly those

affecting the leaves, leading to significant economic losses if not

promptly detected and controlled (Bhavini and Sheshang, 2015;

Cruz et al., 2019). In practice, manual identification of disease spots

and severity assessment is commonly used by planters; however,

this process is labor-intensive and prone to human error (Liu

et al., 2017).

In recent years, deep learning methods, particularly

Convolutional Neural Networks (CNNs), have garnered

significant attention in the field of plant disease recognition (Pal

and Kumar, 2023; Beikmohammadi et al., 2022; Naik et al., 2022).

Current research predominantly relies on single-background

images (e.g., desktop, human palm) for recognition (He et al.,

2024; Fatima Naqvi et al., 2024; Fu et al., 2024), as their stable

backgrounds help highlight disease features, thereby improving

recognition accuracy. However, single-background images face

challenges in practical field applications, where it is often difficult

to obtain backgrounds identical to those in the training images,

which can lead to degraded model performance (Fu et al., 2024).

Therefore, precise segmentation of diseased leaves to isolate them

from complex and diverse backgrounds is crucial for enhancing the

robustness and accuracy of recognition systems.

Image segmentation techniques, especially those leveraging

advancements in deep learning, provide effective means to extract

pepper leaves from images and are foundational for detecting and

diagnosing diseases (Deb et al., 2022; Fang et al., 2021a; Ngugi et al.,

2021). Traditional segmentation methods such as threshold-based

and region-based techniques (Liu, 2012; Fang et al., 2021b) have

been widely used but are limited by their reliance on image features

and their inability to handle complex backgrounds effectively. Deep

learning-based methods, especially CNNs and U-Net architectures,

have shown promising results in semantic segmentation tasks (Long

et al., 2015; Ronneberger et al., 2015; Li et al., 2018), but they often

struggle with capturing detailed boundary information or handling

multi-scale features.

Transformer-based networks (Dosovitskiy et al., 2020) have

been proposed to address these issues by leveraging the self-

attention mechanism, which allows for the extraction of global

context information (Chen et al., 2021; Fang et al., 2023). However,

many of these models focus primarily on global features and

overlook detailed boundary information (Zhang et al., 2022).

Multi-layer perceptron (MLP)-based networks, such as the MLP-

Mixer (Tolstikhin et al., 2021), have recently demonstrated the

potential to replace attention mechanisms, achieving competitive

performance in image segmentation tasks by processing spatial

information efficiently (Lv et al., 2022).

Building on these advancements, We present a novel approach

for pepper leaf segmentation, called the adaptive multi-scale MLP

(AMS-MLP) network. This network follows an encoder-decoder

architecture, integrating the multi-path aggregation mask (MPAM)
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module with the multi-scale context relation decoder (MCRD)

module. To enhance the fusion of global and local information

between the encoder and decoder, we introduce the adaptive multi-

scale MLP (AM-MLP) module, which replaces traditional skip

connection layers. The AM-MLP module overcomes the

limitations of convolutional layers’ inductive biases by effectively

handling global information and progressively merging local details.

Additionally, the MCRD module strengthens the model’s focus on

foreground-background boundaries, especially around the

segmented edges. Our contributions are as follows:
1. We propose a novel segmentation framework designed for

accurate pepper leaf extraction from complex backgrounds.

This framework outperforms previous methods by using a

five-layer aggregation feature to generate a single-channel

mask, improving segmentation precision along the pepper

leaf boundaries.

2. We introduce the AM-MLP module, based on a self-

attention mechanism, to automatically extract multi-scale

features. This module consists of two branches: a Global

Multi-scale MLP (GMS-MLP) branch and a Local Multi-

scale MLP (LMS-MLP) branch, which capture global and

local feature maps, respectively. The attention mechanism

dynamically adjusts the weight assigned to each, ensuring

effective fusion of both.

3. The MCRD module, leveraging an attention mechanism,

combines features across adjacent scales, enhancing

boundary delineation and contextual information for the

segmented target.

4. Extensive experiments on the pepper leaf dataset

demonstrate that our model outperforms state-of-the-art

(SOTA) methods.
The remainder of the paper is structured as follows: Section 2

reviews related work on semantic segmentation methods. Section 3

details our network architecture. Section 4 describes the

experimental setup, and Section 5 presents results and discussion.

Finally, Section 6 concludes the paper.
2 Related works

2.1 Traditional semantic segmentation
methods

Several traditional methods have been proposed for segmenting

plant leaf images. Threshold-based techniques, such as fuzzy C-

means algorithms (Liu, 2012), are commonly used to iteratively

determine the optimal threshold for leaf image segmentation.

Histogram-based thresholding methods, including bimodal

histograms and Otsu’s Thresholding Method (Kalaivani et al.,

2020; Fang et al., 2021b), have also been employed for

segmenting leaf images. However, these threshold-based methods

often struggle with complex images. Region-based approaches, such

as the region-based level set method (Fang et al., 2021a), region
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growing methods (Jothiaruna et al., 2021), and wavelet methods

(Xiong et al., 2020), have shown high accuracy and fast processing

speeds for plant leaf segmentation. While these methods yield

satisfactory results to some extent, their effectiveness is heavily

dependent on image features, which limits their broader

applicability. Clustering-based methods, such as fuzzy k-means

clustering (Tian et al., 2019), have been used to determine cluster

centers for leaf segmentation. However, these methods often

struggle with local optima, leading to lower segmentation accuracy.
2.2 CNN-based models for semantic
segmentation

Deep learning techniques have revolutionized the field of image

segmentation, with convolutional neural networks (CNNs) playing

a pivotal role. The introduction of fully convolutional networks

(FCN) by Long et al. (2015) marked a significant milestone,

replacing traditional fully connected layers with specialized

convolutional layers tailored for segmentation tasks. Building on

this, Ronneberger et al. (2015) proposed the U-Net architecture,

which employs an encoder-decoder structure with skip connections

to fuse low-level and high-level features. U-Net and its variants,

such as R2U-Net (Alom et al., 2018) and BIONet (Xiang et al.,

2020), have shown strong performance in segmentation,

particularly for medical and agricultural applications. However,

despite their success, CNN-based methods often face challenges

in extracting detailed boundary information, especially in complex

and varied environments.

To address these limitations, researchers have incorporated

attention mechanisms into CNNs (Oktay et al., 2018; Zhou et al.,

2019). For example, the squeeze-and-excitation network (SE-Net)

(Hu et al., 2018) uses channel-wise attention to enhance global

feature representation, while the attention-guided network (Li et al.,

2019a) focuses on suppressing irrelevant background information.

A parallel reverse attention network (PraNet) (Fan et al., 2020)

introduced a reverse attention block to build relationships among

object regions and boundaries. Despite their improvements, these

models still struggle with precise boundary delineation, especially in

complex segmentation tasks such as plant disease recognition.
2.3 Transformer-based models for
semantic segmentation

Transformer-based models, originally designed for natural

language processing (Devlin et al., 2018), have been adapted for

computer vision tasks, including image segmentation. These models

use self-attention mechanisms to capture long-range dependencies

in images, improving segmentation accuracy for global features. For

instance, TransUNet (Chen et al., 2021) combines the U-Net

architecture with transformers to leverage high-level informative

features for improved performance. Fang et al. (2023) proposed
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BAF-Net, a network combining CNNs and Swin Transformers for

plant leaf segmentation. It utilizes MSFF and FSFF branches,

enhanced by an adaptive bidirectional attention module, to

capture comprehensive features. Dai et al. (2024) introduce

AISOA-SSformer, a Transformer-based segmentation method for

rice leaf disease detection. By integrating sparse global updates,

feature attention, and optimized algorithms, it achieves high

accuracy, aiding modern farming. However, transformer models

often focus primarily on global context and struggle with capturing

fine-grained details, such as object boundaries.
2.4 MLP-based models for semantic
segmentation

Recently, multi-layer perceptron (MLP)-based models have

gained attention as a viable alternative to CNNs and transformers

for image segmentation. The MLP-Mixer (Tolstikhin et al., 2021)

demonstrated that MLPs could replace self-attention mechanisms

in image processing, achieving competitive performance in tasks

like image classification. This idea was further explored in the

Visual Transformer (ViT) (Melas-Kyriazi, 2021), where MLPs

replaced the attention layers, showing that MLP-based networks

could achieve similar results to CNNs and transformers in

recognition tasks.

In segmentation tasks, MLP-based models like RepMLPNet

(Ding et al., 2022) and MAXIM (Tu et al., 2022) have been shown to

effectively replace self-attention mechanisms while maintaining

high accuracy. These models utilize fully connected layers to

capture both local and global context information, making them

suitable for complex image segmentation tasks. Additionally, MLPs

have been integrated with CNN architectures to form hybrid

models that combine the benefits of both approaches. For

instance, Valanarasu and Patel (2022) introduced UNeXt, a

convolutional MLP-based network with a U-shaped architecture,

comprising three convolution blocks and two tokenized MLP

blocks for global information capture and pixel-wise classification.

Similarly, the CM-MLP framework (Lv et al., 2022) integrates

multi-scale feature interaction (MSFI) and axial context encoder

(ACE) blocks, enhancing local information integration and

establ i sh ing edge re la t ions between foreground and

background regions.

Inspired by the strengths of MLP-based models and

transformers, our approach, the Adaptive Multi-Scale MLP

(AMS-MLP), combines the benefits of both architectures to

address these challenges. The AMS-MLP model integrates multi-

path aggregation and multi-scale context relation modules, enabling

dynamic fusion of global and local features for accurate

segmentation, especially in complex backgrounds. To further

highlight the novelty of our work, we provide a comprehensive

comparison with existing leaf segmentation methods in Table 1.

The table focuses on summarizing the Key Features, Strengths, and

Limitations of existing methods, while explicitly outlining How
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AMS-MLP Differs/Improves over these approaches. Unlike

previous approaches, AMS-MLP uniquely leverages adaptive

multi-scale feature fusion and context-aware modeling, which

significantly improves segmentation accuracy in challenging

scenarios. This comparative analysis underscores the

advancements of our method and its distinct contributions to the

field of leaf segmentation.
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3 Methodology

3.1 Dataset

The pepper leaf image datasets utilized in this study were

sourced from a private repository maintained by the Nanchang

Academy of Agricultural Sciences. These datasets were collected
TABLE 1 Comparison of our proposed AMS-MLP with existing leaf segmentation methods.

Category Method Key Features Strengths Limitations
How AMS-MLP
Differs/Improves

Traditional
Methods

Fuzzy C-means
(Liu, 2012)

Iterative thresholding
for segmentation

Simple and effective for
basic images

Struggles with complex images;
sensitive to noise

AMS-MLP uses dynamic
feature fusion, handling

complex backgrounds and
noise robustly.

Otsu’s Thresholding
(Kalaivani et al., 2020)

Histogram-
based thresholding

Works well for bimodal
intensity distributions

Fails for images with
overlapping

intensity distributions

AMS-MLP leverages multi-scale
context, overcoming intensity

distribution challenges.

Region Growing
(Jothiaruna et al., 2021)

Region-
based segmentation

High accuracy for
simple leaf structures

Limited by seed point selection
and image features

AMS-MLP does not rely on
seed points; it adapts to varying
leaf structures dynamically.

CNN-based
Models

U-Net (Ronneberger
et al., 2015)

Encoder-decoder with
skip connections

Strong performance for
medical and

agricultural images

Struggles with detailed
boundary information

AMS-MLP integrates multi-
path aggregation for precise

boundary delineation.

SE-Net (Hu et al., 2018)
Channel-wise attention

for global
feature enhancement

Enhances global
feature representation

Limited ability to suppress
irrelevant

background information

AMS-MLP uses adaptive
bidirectional attention to focus

on relevant regions and
suppress noise.

PraNet (Fan et al., 2020)
Reverse attention for

object-
boundary relationships

Improves object-
boundary relationships

Struggles with fine-grained
details in complex backgrounds

AMS-MLP combines multi-
scale context and local-global

feature fusion for fine-
grained details.

Transformer-
based Models

TransUNet (Chen
et al., 2021)

Combines U-Net with
transformers for
global context

Captures long-
range dependencies

Struggles with fine-grained
details and boundary delineation

AMS-MLP integrates MLP-
based local feature extraction

with global context for
better boundaries.

BAF-Net (Fang
et al., 2023)

Combines CNNs and
Swin Transformers

with adaptive
bidirectional attention

Captures
comprehensive features

Computationally expensive;
struggles with fine details

AMS-MLP is computationally
efficient and focuses on fine-
grained details through multi-

scale MLPs.

AISOA-SSformer (Dai
et al., 2024)

Transformer with
sparse global updates
and feature attention

High accuracy for rice
leaf disease detection

Limited to specific applications;
struggles with generalizability

AMS-MLP is generalizable and
adaptable to various leaf
segmentation tasks.

MLP-based
Models

MLP-Mixer (Tolstikhin
et al., 2021)

Replaces self-attention
with MLPs for

image processing

Competitive
performance in

image classification

Limited exploration in
segmentation tasks

AMS-MLP specifically targets
segmentation with multi-scale

MLPs and dynamic
feature fusion.

UNeXt (Valanarasu and
Patel, 2022)

Hybrid CNN-MLP
with U-

shaped architecture

Combines CNN and
MLP benefits

for segmentation

Limited ability to handle
complex backgrounds

AMS-MLP enhances local-
global feature integration and

handles complex
backgrounds effectively.

CM-MLP (Lv et al., 2022)
Multi-scale feature
interaction and axial
context encoder

Improves local
information integration

Struggles with edge relations in
noisy images

AMS-MLP uses adaptive multi-
scale context relations for
robust edge detection.

Our
Proposed
Method

AMS-MLP

Combines MLP-based
local feature extraction

with global
context fusion

Dynamic fusion of
global and local features;

robust to
complex backgrounds

Requires careful tuning of multi-
scale parameters

Novelty: Combines MLP and
transformer strengths; adaptive

multi-scale fusion
for segmentation.
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from their farm located in Nanchang city, Jiangxi Province, China,

specifically between August 12 and 13, 2022, using multi-view

photography techniques. The camera used for image acquisition

was equipped with an F5.6 lens and an EF-S 18-135mm f/3.5-5.6 IS

USM microlens manufactured by Canon Company (Japan). During

the data collection process, the camera was positioned at a height of

10-50 cm above the leaves to ensure high-resolution images. All

images were captured after careful focusing, and the camera

remained stationary during shooting to eliminate any motion blur

or distortion caused by movement.

To ensure the comprehensiveness and practicality of the data,

stringent inclusion criteria were established, encompassing various

instances of pepper leaf diseases, including healthy leaves and those

affected by viral infections. Specifically, the dataset includes images

of leaves severely impacted by common diseases such as early blight,

brown spot disease, and leaf mold, along with healthy pepper leaves

(HPL) and viral diseases (VD) to enrich the diversity of the dataset.

This hybrid database serves as a valuable resource for researching

and developing methodologies related to pepper leaf segmentation

and disease classification in agricultural research.

To further evaluate the effectiveness of the proposed model in

segmenting actual pepper leaves, four distinct datasets were

meticulously constructed: Early Blight Dataset (EBD), Brown Spot

Dataset (BSD), Leaf Mold Dataset (LMD), and Mixed Leaf Dataset

(MLD). These datasets were manually annotated using the open-source

tool LabelMe, assigning intensity values of 1 to foreground regions and

0 to background regions. During the data processing phase, we

conducted a meticulous statistical analysis to ensure the

representativeness and balance of the data across various disease

categories and leaf conditions. This analysis involved calculating the

distribution of images among different disease categories, conducting

rigorous checks on the completeness and quality of annotations, and

verifying the accuracy and reliability of the data. As shown in Table 2,

the datasets for EBD, BSD,LMD, and MLD comprised 1190, 1384,

1385, and 6613 images, respectively. Notably, the MLD dataset

integrates image data from EBD, BSD, LMD, as well as healthy

pepper leaves and viral diseases, with 1353 images of healthy leaves

and 1301 images of viral leaves. Figure 1 shows several representative

examples from the EBD, BSD, MLD and HPL, respectively. The

statistical analysis confirmed the balanced nature of the MLD

dataset, and all data were comprehensively annotated. Furthermore,

to facilitate a comprehensive evaluation, each dataset was divided into

training (70%), validation (10%), and testing (20%) subsets. In the
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experiment, we standardized the image size for each dataset to 512×512

pixels, facilitating consistent processing and analysis across all datasets.
3.2 Method

In this section, we will provide an overview of the AMS-MLP

model and discuss the incorporation of three key modules within

the encoder-decoder architecture. These modules consist of the

adaptive multi-scale MLP module, the multi-scale context relation

decoder module, and the multi-path aggregation mask module.

Additionally, we will present the loss function utilized in the model.

By integrating these modules and utilizing an appropriate loss

function, the AMS-MLP model demonstrates improved

performance in image segmentation tasks.

3.2.1 Overall architecture
Figure 2 illustrates the network architecture of the proposed

AMS-MLP network, based on a U-shape design. The AMS-MLP

model consists of three core components: the encoder network,

the AM-MLP module, and the decoder network. The encoder

network includes five convolutional layers with four

downsampling operations and integrates an MPAM module.

Each convolutional block within the encoder comprises a 3×3

convolutional layer, batch normalization, ReLU activation, and

max-pooling with a stride of 2. Multi-scale features from these

layers are combined in the MPAM module to generate a

preliminary mask, further refined by the MSRD module for edge

information capture. The AM-MLP module, a critical component

of the AMS-MLP network, employs self-attention to extract multi-

scale features and local information automatically. The decoder

network in the AMS-MLP model consists of five convolutional

blocks with four upsampling layers and three MSRD modules.

Each decoder block includes a 3×3 convolutional layer, batch

normalization, and ReLU activation. The first MSRD module

utilizes the mask from the MPAM module and features from the

fifth layer, while subsequent MSRD modules further refine

segmentation within the decoder. Deconvolution operations

increase image resolution by a factor of 2 per block, restoring

finer details lost during downsampling.

3.2.2 Adaptive multi-scale MLP module
The MLP module has demonstrated promising performance in

the computer vision task, but it struggles with capturing spatial

information and extracting global context due to its fully connected

nature. To overcome these limitations, MAXIM (Tu et al., 2022)

employs multi-scale MLP modules to extract global and local

information. Inspired by MAXIM, we introduce an adaptive

multi-scale MLP module that utilizes the self-attention

mechanism to automatically extract multi-scale features and local

information. As illustrated in Figure 3, the network initially splits

the feature maps into two branches: the global multi-scale MLP

(GMS-MLP) branch and the local multi-scale MLP (LMS-MLP)

branch. The GMS-MLP branch focuses on extracting global

features, while the LMS-MLP branch is dedicated to capturing
TABLE 2 The distribution of the four image datasets.

Dataset Test Training Validation Total

Early Blight
Dataset (EBD)

238 833 119 1190

Brown Spot
Dataset (BSD)

277 970 138 1385

Leaf Mold Dataset (LMD) 277 969 138 1384

Mixed Leaf Dataset(MLD) 1323 4629 661 6613
Bold values indicate the best performance metrics in each category.
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local feature maps. Figure 4 illustrates the GMS-MLP and LMS-

MLP modules. To effectively combine these features, we introduce

an adaptive attention module that dynamically adjusts the weights

of the global and local features based on their importance and

relevance to the task. By incorporating the adaptive multi-scale

MLP module, the AM-MLP module enabled the extraction of both

global and local information in an adaptive manner while

preserving spatial information and capturing contextual cues

from different scales.

Specially, the input features F ∈ ℜ ½B, C,  H, W� undergo an initial

split into two branches based on the channel dimension, namely the

GMS-MLP branch FG ∈ R½B, C=2,  H, W� and the LMS-MLP branch

FL ∈ ℜ ½B, C=2,  H, W�, where B represents the batch size, C

represents the channel number, and H and W represent the

height and width of the image, respectively. In the GMS-MLP

branch, the input features are first passed through a fully connected

(FC) layer, followed by a layer normalization (LN) layer. The next

step involves applying an additional fully connected (FC) layer and

a GELU activation layer to generate the feature map FGfc ∈
ℜ ½B, C=2,  H, W�. The generated feature map is then transformed

into non-overlapping image patches, where each patch consists of a

certain number of g� g grids. These patched features FGpatch ∈
ℜB, C, g�g, Hg�Wg are further processed through three

consecutive multi-scale MLP modules, where  Hg = H=g,  Wg =
Frontiers in Plant Science 06
W=g, and g is the kernel size. This process leads to the generation

of novel feature maps FGmlp, which can be denoted as Equations 1–4:

FG,  FL = split(F)  F ∈ ℜB, C, H, W,  FG,  FL ∈ ℜB, C=2, H, W (1)

FGfc = fc(Ln(fc(Gelu(FG)))) (2)

FGpatch = Reshape(FGfc)   FGpatch ∈ ℜB, C, g�g, Hg�Wg (3)

FGmlp = mlpg(F
G
patch)        g ∈ ½g1,  g2,  g3� (4)

where split( · ) denoting dividing a multidimensional matrix or

tensor into multiple sub-tensors along a channel dimension, and

fc( · ) denotes the full connection layer. Ln( · ) denotes layer

normalization layer, Gelu( · ) denotes the GELU activation

function, R eshape( · ) denotes the operation of changing the

shape or dimensions of two feature matrices. The GMS-MLP

branch mlpg( · )  is three continuous MLP modules with the grid

sizes of g1 � g1, g2 � g2, and g3 � g3, respectively.

Similarly, in the LMS-MLP branch, the LMS-MLP feature FL

passes through a FC layer, a layer normalization (LN) layer.

Subsequently, it passes a FC layer and a GELU activation layer.

The novel feature maps FLFc ∈ ℜ ½B, C=2,  H, W� are projected into non-

overlapping image patches and generate a new feature maps FLblock
FIGURE 1

The sample images in different pure backgrounds.
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∈ ℜB, C, b�b, Hb�Wb , where  Hb = H=b,  Wb = W=b, b is the kernel

size, and the size of each image patch is b� b grids. Then, the

feature maps FLfc pass three continuous multi-scale MLP modules to

obtain the spatial information, which is written as Equations 5–7:

FLfc = fc(Ln(fc(Gelu(FL)))) (5)

FLblock = Reshape(FLfc)      F
L
block ∈ ℜ ½B, C, b�b, Hb�Wb� (6)
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FLmlp = mlpb(F
L
block)       b ∈ ½b1, b2, b3� (7)

where mlpb( · ) is three continuous MLP modules with the grid

sizes of b1 � b1, b2 � b2, and b3 � b3, respectively.

A self-attention module is employed to effectively fuse two

features FLmlp and F
L
mlp obtained from the GMS-MLP and LMS-MLP

branches, and it guides the segmented network to select more

representative features from the channel dimension. Specially, two

features FGmlp and FLmlp are fused, and followed by the global average
FIGURE 3

The network architecture of the AM-MLP module. The input feature map F is split into the global multi-scale MLP (GMS-MLP) branch FG and the
local multi-scale MLP (LMS-MLP) branch FL. After each branch with multiple Cascade MLP blocks, the resulting features are alternately multiplied to
enhance information interaction and then added together. Then, multi-scale features and local information are automatically extracted using an
adaptive attention mechanism.
FIGURE 2

Overview of the AMS-MLP framework including the encoder network, the adaptive multi-scale MLP (AM-MLP) module, and the decoder network.
The encoder network comprises five convolutional layers incorporating four downsampling operations and a multi-path aggregation mask (MPAM)
module. The decoder network comprises five convolutional layers, incorporating four upsampling layers and three MSRD modules. The AM-MLP
module is used for the skip connection layer.
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pooling (GAP) operation to compress the channel dimension,

which can be represented as follows Equation 8:

FGH = GAP(FGmlp ⊕ FLmlp) (8)

where FGH is the output features of the GAP layer. Then, the

features FGH are input into a FC layer, followed by a batch

normalization layer, and a softmax function. The probability

feature maps FFCH can be expressed as Equation 9:

FFCH = s BN(fc(FGH))
� �

(9)

where s ( · ) denotes the sigmoid activation function, and BN( · )

is a batch normalization layer. Then, we perform another FC layer on

the features FFCH followed by the softmax activation function, and the

channel attention map a is written as Equation 10:

a = ssf fc(FFCH )
� �

(10)

where ssf ( · ) denotes the softmax activation layer. We regard

the channel attention map a ∈ ½0,  1� as the weight of the features,
where a ∈ ℜC�1�1. The channel attention map a

0
∈ ½0,  1� is from

the value a , and it satisfies a
0
= 1 − a. An important observation is

that the channel attention maps a and a
0
enable the adaptive

adjustment of weights for the two channel attention feature maps. It

also demonstrates that the two feature maps are capable of

extracting feature representations from different receptive fields.

By flexibly adjusting the adaptive weights of two features FGFc and

FLFc, the feature maps can be expressed as Equations 11–13:

F
0
G=a�FGFC (11)

F
0
L=a

0�FLFC (12)
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Fout=F
0
G ⊙ F

0
L (13)

where ⊙ denotes the concatenation operator, F
0
G,     

F
0
L ∈ ℜ ½B, C=2, H, W� are two output features from the adaptive dot-

product features, respectively.

Notably, the grid size g and the block size b satisfy a specific

relationship. As exemplified in Figure 3, the network structure of

the GMS-MLP and LMS-MLP branches is depicted. When reducing

the patch size in the GMS-MLP block, the block size in the LMS-

MLP branch increases accordingly. For instance, when considering

an image size of 32, the grid sizes in the GMS-MLP branch are set to

8, 4, and 2, while the corresponding grid sizes in the LMS-MLP

branch are 4, 8, and 16, respectively. This arrangement results in a

larger number of patches within the global MLP, enabling the

capture of spatial information among the patches. Conversely, in

the LMS-MLP branch, a larger number of pixels in each block

allows for the retention of local spatial information between pixels.

Consequently, by fusing the GMS-MLP and LMS-MLP blocks, a

comprehensive feature map can be generated, encompassing both

global and local information in a progressively richer manner.
3.2.3 Multi-scale context relation decoder
module

The accurate extraction of boundaries between foreground and

background regions relies on the presence of both local and

contextual information. To address this, the Mask refinement

network (Tang et al., 2021) leverages contextual relationships to

improve the pixel boundaries in these regions. In line with this, we

propose an MCRD module to enhance the target boundary features

and contextual information. As shown in Figure 5, our approach

involves initial upsampling of the high feature maps Fi+1 through
FIGURE 4

Illustration of the GMS-MLP and LMS-MLP modules. As an example, we used F ∈ ℜ ½B,     C,  H,     W� (W = 16; H = 16) as input, where B is the batch size,

and C is the channel number. Input feature F will be processed by GMS-MLP and LMS-MLP branches. In the GMS-MLP branch, the feature map FG is
initially divided into non-overlapping patches of size 2 × 2, resulting in a grid of size 8× 8. These patches are then flattened and fed into a fully
connected (FC) layer along the first axis. Finally, the output is reshaped back and ungridded to restore the original size. In the LMS-MLP branch, the

feature map FL is divided into non-overlapping patches of size 8 × 8, resulting in a blocking of size 2 × 2. These patches are flattened and processed
through an FC layer along the second axis. Following that, the output is reshaped back and unblocked to regain the original size, resulting in the

feature map FLmlp .
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non-linear interpolation with a rate of 2, followed by a sigmoid

activation function. The novel feature maps are then fed into a 1� 1

convolutional block, which generates an output with a single

channel. The process is formulated as Equations 14, 15:

Fup = up(Fi+1) (14)

Fmask=Conv1�1 s (Fup)ð Þ (15)

where up( · ) denotes the upsampling operator, Conv1�1( · ) is a

1� 1 convolutional operation.

Then, the mask maps Fmask is used to assign different weights of

the foreground and background feature maps, which are written as

Equations 16, 17:

Ffg=Conv3�3(F
i ⊗Fmask) (16)

Fbg=Conv3�3(F
i ⊗ (1 − Fmask)) (17)

where ⊗ denotes the dot product, Conv3�3( · ) is a 3� 3

convolutional block.

Finally, we concatenate two feature maps Ffg and Fbg on the

channel dimension, and it then perform a 3� 3 convolutional layer,

which is written as Equation 18

Fbg=Conv3�3(F
fg ⊙ Fbg) (18)
3.2.4 Multi-path aggregation mask module
The multi-scale nature of features in deep neural networks offers

different levels of information, with deeper layers capturing coarser

details and shallower layers preserving finer details. To leverage the

benefits of each layer, we introduce an MPAM module to enhance

the extraction of accurate boundary information and facilitate the

generation of masks. As shown in Figure 6, for the feature map Fi
from the fifth layer to the second layer in the encoder, each feature
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map is subjected to a 1� 1 convolutional operation to decrease the

channel dimensions. The resulting feature maps have the same

channel number as the first layer in the encoder. Additionally, we

employ an upsampling operation with a rate of 2 on these feature

maps. This procedure can be expressed as Equation 19:

Fupi−1=up(Conv1�1(Fi))     i = 2,⋯ 5 (19)

Subsequently, the generated feature maps are further processed

by the Sigmoid activation function. We then concatenate the

generated feature Fupi−1 and the previous feature maps Fi−1, and the

final feature maps are written as Equation 20:

Fouti−1 =s (Fupi−1 )⊙   Fi� 1     i = 2,⋯ 5 (20)

To incorporate information from various scales, we utilize an

element-wise addition operation between four upsampling feature

maps and the feature maps Fupi−1 obtained from the first layer in the

encoder. This operation produces multi-scale fusion feature maps

(MSFF), which can be denoted as Equation 21:

Fcat= Fupi ⊙
n o4

i=1
 F1 (21)

In the final step, we concatenate the MSFF maps Fcat  with the

feature maps Fout1 obtained from the first layer. The concatenated

feature maps Fen1 are then fed into a convolutional block with 3� 3

filters. To generate the mask for the foreground and background

regions, we apply a 1� 1 convolutional operation with a single

output channel, followed by a downsampling operation.

Mathematically, this can be represented as Equations 22, 23:

Fen1 =Fcat ⊙   Fout1 (22)

Fupi−1=dn Conv3�3(Fi)ð Þ     i = 2,⋯ 5 (23)

where dn( · ) denotes the downsampling operator.
FIGURE 5

Illustration of the multi-scale context relation decoder (MCRD) module. Two feature maps Fi and F i+1 are input into the MCRD module, the high
features is first performed on the upsampling operation. The generated feature maps Fup pass through the sigmoid activation function and a 1� 1

convolutional operation, which generates the mask maps Fmask representing the foreground and background regions.
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4 Experimental setup

4.1 Experimental environment
configuration

The proposed AMS-MLP network was implemented on a

specific hardware configuration consisting of a 12th Gen Intel(R)

Core(TM) i7-12700K 3.60 GHz processor and an NVIDIA GeForce

RTX 3090 40 GB GPU with 32 GB of RAM. The operating system

employed was Windows 11, and the Conda environment was

utilized to ensure a consistent software environment for

the execution.
4.2 Experimental scheme

For the parameter settings of the AMS-MLP network, we

employed a batch size of 2 and trained the model for a total of 60

epochs. The optimization process was performed using stochastic

gradient descent (SGD) with an initial learning rate of 0.001, and

the learning rate was adjusted according to the learning rate

schedule. During training, these parameter choices facilitated

effective convergence of the AMS-MLP network. To assess the

model’s performance, we compared it against several state-of-the-

art (SOTA) models using various performance metrics.

Additionally, ablation studies were conducted to evaluate the

impact of different network components, such as the choice of

activation functions and the depth of layers, on the overall

performance. In our experiments, we also tested other values for

batch size, learning rate, and epoch count, but found that the chosen
Frontiers in Plant Science 10
configuration yielded the best performance in terms of both

training stability and testing accuracy.
4.3 Training loss

The proposed AMS-MLP network involves two loss functions

to optimize the predicted result and the ground truth (GT),

including the binary cross entropy (BCE) Lb and the Dice Ld . The

two loss functions are defined as Equations 24, 25:

Lb(f , g) = −oN
i=1½gx log (fx) + (1 − gx) log (1 − fx)� (24)

Ld(f , g) = 1 −
2oN

i=1fx · gx

oN
i=1fx +oN

i=1gx
(25)

where f denotes the input predicted result, and g denotes the

corresponding ground truth label.

Therefore, our final loss Lloss can be expressed as Equation 26:

Lloss(f , g) = aLbce(f , g) + Ld(f , g) (26)
4.4 Performance evaluation

To rigorously evaluate the performance of the proposed method

and other compared methods, six metrics are employed as

evaluation criteria: accuracy, recall, precision, specificity, F1-score,

and intersection over union (IoU). Here’s a detailed breakdown of

these metrics. These metrics are defined as follows:
FIGURE 6

Illustration of the multi-path mask decoder module. From the fifth to second layers, the feature maps Fi in the encoder are first passing a 1� 1
convolutional operation to suppress the channel number, and the generated channel number of the output features is the same to that of the first
layer in the encoder.
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4.4.1 Accuracy
Accuracy measures the overall correctness of the predictions,

calculated as the ratio of correctly predicted pixels (both foreground

and background) to the total number of pixels.

4.4.2 Recall
Recall (also known as sensitivity) measures the ability of the

model to identify all relevant instances (foreground pixels),

calculated as the ratio of true positives (TP) to the sum of true

positives and false negatives (FN).

4.4.3 Precision
Precision measures the accuracy of the positive predictions,

calculated as the ratio of true positives to the sum of true positives

and false positives (FP).

4.4.4 Specificity
Specificity measures the ability of the model to identify all

irrelevant instances (background pixels), calculated as the ratio of

true negatives (TN) to the sum of true negatives and false positives.

4.4.5 F1-score
F1-score is a harmonic mean of precision and recall, providing a

single metric that balances both the precision and the recall of the

model. It is particularly useful when the classes are of unequal size

or when there is a trade-off between precision and recall.

4.4.6 Intersection over Union
Intersection over Union (IoU) is a metric commonly used to

evaluate the accuracy of boundary predictions. It measures the

overlap between the predicted border and the real border by

calculating the ratio of their intersection to their union.

These metrics are standard measures widely used for

performance evaluation, and they are defined as Equations 27–31:

accuracy =
TP + TN

TP + TN + FP + FN
(27)

recall =
TP

TP + FN
(28)
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precision =
TP

TP + FP
(29)

specificity =
TN

TN + FP
(30)

F1 =
2� PR · PP
PR + PP

(30)

IoU =
TP

TP + FP + FN
(31)

where TP (true positive) represents the number of pixels that

are correctly predicted as foreground, TN (true negative) indicates

the number of pixels that are correctly predicted as background, FP

(false positive) refers to the number of pixels that are predicted as

foreground but actually belong to the background according to the

ground truth. On the other hand, FN (false negative) represents the

number of pixels that are predicted as background but actually

belong to the foreground according to the ground truth.
5 Results and discussion

5.1 Comparison with the SOTA models

To evaluate the segmentation performance of the AMS-MLP

model, we conducted a comparative study against state-of-the-art

(SOTA) models using three distinct leaf datasets: EBD, BSD, and

MLD. The models included FCN-VGG16, U-Net (Ronneberger

et al., 2015), attention U-Net (AttU-Net) (Oktay et al., 2018), UNet

++ (Zhou et al., 2019), UNeXt (Valanarasu and Patel, 2022), and

CM-MLP model (Lv et al., 2022). To ensure a fair and

comprehensive comparison, all models were trained, validated,

and tested on the same three datasets. By maintaining consistency

across the training, validation, and test datasets, we aim to eliminate

any potential bias or variation that may affect the results and

evaluate the segmentation performance exclusively on the

test dataset.

Table 3 and Figure 7 present the segmentation results of the

AMS-MLP model compared to seven other models on the EBD

dataset, evaluated across six metrics: accuracy, recall, precision,
TABLE 3 The results of segmenting the EBD dataset using seven different models.

Model Accuracy (%) Recall (%) Specificity (%) Precision (%) mIoU (%) F1-score (%)

FCN FCN-16s 99.45 97.33 99.79 98.67 97.04 98.00

UNet-based

U-Net 99.53 97.31 99.85 98.92 87.47 98.11

AttU-Net 99.26 96.29 99.74 98.38 96.06 97.33

UNet++ 99.43 97.04 99.82 98.87 96.95 97.94

MLP-based

UNeXt 99.31 96.31 99.79 98.67 96.38 97.48

CM-MLP 99.44 97.41 99.77 98.54 96.96 97.97

Ours 99.53 97.61 99.84 98.97 97.39 98.29
Bold values indicate the best performance metrics in each category.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1515105
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fang et al. 10.3389/fpls.2025.1515105
mean Intersection over Union (mIoU), and F1-score. Our model

achieves the highest scores across five of these metrics, notably

achieving 97.39% in mIoU and 98.29% in F1-score, surpassing FCN

by 0.35% and 0.29%, respectively. These superior metrics reflect the

AMS-MLP model’s ability to leverage the GMS-MLP and LMS-

MLP modules effectively. The GMS-MLP module captures global

context, enabling robust feature extraction across the entire image,

while the LMS-MLP module enhances local detail recognition

within specific leaf structures. This dual-stream approach ensures

comprehensive information integration, leading to enhanced

segmentation accuracy. Compared to U-Net, our model

demonstrates significant improvements with increases of 9.92% in

mIoU, 0.18% in F1-score, and 0.29% in recall. This enhancement

can be attributed to the AMS-MLP’s capacity to combine both

global and local features effectively, thereby improving boundary

delineation and reducing segmentation errors. Furthermore,

compared to other semantic segmentation models, our approach

achieves the highest scores in accuracy, recall, precision, mIoU, and

F1-score, underscoring its robust performance across multiple

evaluation criteria. Qualitative examples in Figure 8 highlight the

models’ ability to locate object regions accurately, with our

proposed model notably delineating pepper leaf boundaries with

precision. This visual evidence further substantiates the

effectiveness and superiority of the AMS-MLP model in leaf

segmentation tasks.

Additionally, for a comprehensive evaluation of training

performance, we conducted a comparative analysis of the AMS-

MLP network against FCN-based, U-Net-based, and additional

MLP-based models, utilizing the BSD and MLD datasets as

benchmarks. The results of this comparison are presented in

Tables 4, 5, and Figures 9, 10. Our method consistently
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outperformed other models across five evaluation metrics. This

improvement can be attributed to the integration of GMS-MLP and

LMS-MLP modules, enabling the extraction of both global and local

information crucial for enhancing segmentation accuracy. The

FCN-16s model’s superior performance over U-Net is attributed

to its use of pretrained VGG16, which enriches feature extraction

and representation within the encoder. Similarly, the CM-MLP

model, by leveraging MLP instead of traditional attention

mechanisms, achieves superior segmentation results by effectively

considering pixel relationships.

Figure 11, 12 provide visual insights into segmentation outputs,

revealing that U-Net and UNet++ models exhibit certain false

positive regions in lesion segmentation. In contrast, AttU-Net

shows improved performance over U-Net, while the AMS-MLP

model closely approximates ground truth, demonstrating precise

extraction of pepper leaf boundaries and reduced false positive

regions. This performance superiority is facilitated by the MCRD

module and the utilization of GMS-MLP and LMS-MLP auxiliary

streams, which facilitate effective cascaded contraction and

expansion processes within the network.

Despite these advancements, our study acknowledges areas for

further improvement, particularly in optimizing computational

efficiency for real-time applications and scaling the model to

larger datasets. Specifically, we recognize that, in terms of model

size, our proposed AMS-MLP does not demonstrate a significant

advantage compared to other models, such as CM-MLP, FCN-16s,

U-Net, AttU-Net, and UNet++, as evidenced by our analysis of

memory footprint and storage requirements. Nevertheless, we

believe our method retains value in other critical aspects, such as

potentially offering higher accuracy or efficiency in specific data

processing scenarios. Future research will focus on refining
FIGURE 7

Bar chart comparison of seven models’ performance on the EBD dataset.
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architectural designs, exploring advanced training strategies, and

actively working on optimizing our method to address these

challenges and further elevate segmentation performance. Our

ongoing efforts include strategies to reduce resource consumption

and enhance overall performance, aiming to better meet practical

application needs.
5.2 Ablation study

In this section, we conducted a comprehensive ablation study to

systematically evaluate the impact of individual modules on
Frontiers in Plant Science 13
segmentation performance using the MLD dataset. Our baseline

model was derived from the BU-Net architecture, with a modified

channel configuration to reduce model complexity. To assess the

contribution of each module, we adopted a phased integration

approach. Initially, we introduced the BAM-MLP model by

incorporating the AM-MLP module into the BU-Net architecture.

The AM-MLP module enhances the network’s ability to capture

global context information, which improves the focus on

informative regions, thereby boosting segmentation performance.

Subsequently, we integrated the MPAM module into the encoder,

specifically at the fifth layer, resulting in the BMAM-MLP model.

The MPAMmodule is crucial for generating precise masks, refining
TABLE 4 The results of segmenting the BSD dataset using seven different models.

Model Accuracy (%) Recall (%) Specificity (%) Precision (%) mIoU (%) F1-score (%)

FCN FCN-16s 99.69 97.17 99.87 98.11 96.62 97.64

UNet-based

U-Net 98.83 93.85 99.18 88.95 96.14 91.33

AttU-Net 99.62 98.05 99.73 96.26 95.97 97.14

UNet++ 99.37 98.08 99.46 92.68 95.75 95.31

MLP-based

UNeXt 99.37 97.70 99.49 93.06 94.66 95.33

CM-MLP 99.66 96.95 99.85 97.83 95.68 97.39

Ours 99.72 97.47 99.88 98.26 96.91 97.86
Bold values indicate the best performance metrics in each category.
FIGURE 8

Qualitative comparison of the proposed model compared with six models on the EBD dataset, and five examples of the predicted results are shown.
From the 1st column to 9th column: the original image, the predicted results corresponding to FCN-VGG16, U-Net, AttUNet, UNet++, UNeXt, CM-
MLP, our model, and the ground truth, respectively.
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the segmentation process by better delineating object boundaries.

Further, to explore the synergistic effects of incorporating multiple

modules, we tested the BMRD-MLP model, which integrates both

the AM-MLP and MCRD modules into the BU-Net architecture.

The MCRD module enhances the network’s ability to preserve

boundary details, improving segmentation accuracy by focusing on

fine-grained features. Finally, we developed the AMS-MLP model

by progressively combining the AM-MLP, MPAM, and MCRD

modules. This multi-module integration demonstrated superior

performance across multiple evaluation metrics, illustrating the

complementary effects of these modules in enhancing

segmentation accuracy. Through this incremental approach, we

were able to systematically assess the contribution of each module.

As shown in Figure 13, the results clearly demonstrate the positive

impac t o f e ach modu l e on enhanc ing the ove r a l l

segmentation performance.
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Table 6 presents the detailed results of all ablation experiments.

As illustrated in Table 5, our study commenced with the BU-Net

model, which achieved the following performance metrics: 97.65%

accuracy, 93.92% recall, 79.11% precision, 97.96% specificity,

97.74% mIoU, and 85.88% F1-score. To improve upon this

baseline, we incorporated the AM-MLP module into the BU-Net

architecture, resulting in the BAM-MLP model. A comparative

analysis revealed that BAM-MLP outperformed BU-Net across all

metrics, achieving 98.37% accuracy, 96.70% recall, 84.20%

precision, 98.51% mIoU, and 90.02% F1-score—improvements of

0.72%, 2.78%, 0.55%, 0.32%, and 4.14%, respectively. Building on

these results, we investigated the synergistic effects of adding more

modules to the BAM-MLP model. We first integrated the MPAM

module, leading to the BMAM-MLP model, and then included the

MCRD module, resulting in the BMRD-MLP model. Both

modifications brought about substantial improvements in
FIGURE 9

Bar chart comparison of seven models’ performance on the BSD dataset.
TABLE 5 The results of segmenting the MLD dataset using seven different models.

Model Accuracy (%) Recall (%) Specificity (%) Precision (%) mIoU (%) F1-score (%)

FCN FCN-16s 99.61 96.93 99.89 98.94 97.10 97.92

UNet-based

U-Net 99.46 95.40 99.88 98.80 96.19 97.07

AttU-Net 99.57 96.43 99.90 99.03 97.05 97.71

UNet++ 98.87 89.58 99.83 98.25 92.15 93.71

MLP-based

UNeXt 99.20 92.84 99.86 98.56 94.24 95.61

CM-MLP 99.71 98.02 99.88 98.85 97.32 98.44

Ours 99.72 97.79 99.92 99.24 97.91 98.51
Bold values indicate the best performance metrics in each category.
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FIGURE 10

Bar chart comparison of seven models’ performance on the MLD dataset.
FIGURE 11

Qualitative comparison of the proposed model compared with six models on the BSD dataset, and five examples of the predicted results are shown.
From the 1st column to 9th column: the original image, the predicted results corresponding to FCN-VGG16, U-Net, AttUNet, UNet++, UNeXt, CM-
MLP, our model, and the ground truth, respectively.
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segmentation performance, with noticeable gains in accuracy, recall,

precision, specificity, and F1-score compared to the BAM-MLP

model. Lastly, we constructed the AMS-MLP network by

incorporating both the MPAM and MCRD modules into the

BAM-MLP architecture. The MPAM and MCRD modules

effectively harnessed multi-scale features, preserving boundary

details and further enhancing segmentation performance. The

integration of these three modules—AMSS-MLP, MPAM, and

MCRD—yielded the best overall performance, as demonstrated

by a thorough analysis of the combined metrics. This analysis

clearly highlights the distinct contributions of each module when

applied to the MLD dataset.
5.3 Real-world applications for ground-
based mobile disease recognition

The primary goal of this study is to develop a precise pepper leaf

segmentation model to support ground-based mobile disease

recognition systems. The proposed Adaptive Multi-Scale MLP

(AMS-MLP) model is specifically designed to segment diseased

leaves from images captured under various pure backgrounds (e.g.,

palm, ground, or desktop), which are commonly used in ground-
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based data collection scenarios. By accurately extracting leaves from

complex backgrounds, the segmented leaves can be fed into disease

recognition models, significantly improving their accuracy

and robustness.

The AMS-MLP model is optimized for deployment on mobile

devices (e.g., smartphones), making it highly accessible and

practical for small-scale farmers. In real-world applications,

farmers or agricultural workers can use a smartphone to capture

images of pepper leaves placed on different pure backgrounds in the

field. The AMS-MLP model will then precisely segment the leaves,

enabling subsequent disease recognition models to perform more

effectively. This approach is particularly beneficial for farmers who

rely on mobile devices for crop monitoring and disease detection, as

it provides a cost-effective and user-friendly solution.

While our current focus is on ground-based mobile

applications, the AMS-MLP model can also be adapted for other

platforms, such as UAVs (drones) or robotic systems, in future

work. For example, integrating the model into drones could enable

large-scale monitoring of pepper fields, while embedding it into

agricultural robots could support automated disease detection and

precision farming. However, the immediate application of our

research is to enhance the performance of mobile-based disease

recognition systems by improving leaf segmentation accuracy under

varying backgrounds.
FIGURE 12

Qualitative comparison of the proposed model compared with six models on the MLD dataset, and five examples of the predicted results are shown.
From the 1st column to the 9th column: the original image, the predicted results corresponding to FCN-VGG16, U-Net, attention U-Net (AttUNet),
UNet++, UNeXt, CM-MLP, our model, and the ground truth, respectively.
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6 Conclusion

Accurate extraction of plant leaves from diverse backgrounds is

of significant importance for building robust plant disease

recognition models. In this study, we propose a lightweight and

high-precision leaf segmentation model specifically designed for

extracting pepper leaves in complex and variable backgrounds. The
Frontiers in Plant Science 17
model adopts an encoder-decoder architecture, innovatively

integrating an Adaptive Multi-scale MLP (AM-MLP) network, a

Multi-scale Pyramid Aggregation Module (MPAM), and a Multi-

channel Residual Decoding (MCRD) module. In the encoder, the

MPAM module enhances the accuracy of leaf edge feature

extraction through cross-layer feature aggregation and single-

channel masking. The AM-MLP module employs a dual-branch
FIGURE 13

Qualitative comparison for the ablation study on the MLD dataset, and six predicted results are shown. From the 1st column to 8th column: the
original image, the predicted results corresponding to BU-Net, BM-MLP, BAM-MLP, BMAM-MLP, BMRD-MLP, our model, and the ground
truth, respectively.
TABLE 6 The Compared results for the ablation experiment of pepper leaf segmentation.

Model
AM-
MLP

MPAM MCRD
Accuracy

(%)
Recall
(%)

Specificity
(%)

Precision
(%)

mIoU
(%)

F1-
score (%)

Baseline
(BU-Net)

97.65 93.92 79.11 97.96 97.74 85.88

BAM-MLP ✓ 98.37 96.70 84.20 98.51 98.06 90.02

BMAM-MLP ✓ ✓ 99.04 96.78 91.36 99.25 96.88 93.87

BMRD-MLP ✓ ✓ 98.90 97.02 92.10 99.28 98.18 94.29

Ours ✓ ✓ ✓ 99.63 97.98 97.20 99.77 98.28 97.59
Bold values indicate the best performance metrics in each category.
√ denotes the module is included in the model architecture for this ablation variant.
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structure: the Global Multi-scale MLP (GMS-MLP) branch extracts

global contextual features, while the Local Multi-scale MLP (LMS-

MLP) branch generates local feature maps and optimizes feature

representation through a dynamic attention mechanism. The

decoder integrates the MCRD module, leveraging convolutional

layers to improve boundary localization capabilities. The results

demonstrate that the proposed method exhibits excellent

robustness and generalization capabilities, achieving mean

Intersection over Union (mIoU) scores of 97.39%, 96.91%, and

97.91%, as well as F1 scores of 98.29%, 97.86%, and 98.51%,

respectively. Ablation studies further confirm that the progressive

integration of the AM-MLP, MPAM, and MCRD modules

significantly improves the model’s performance across six key

evaluation metrics.

Despite the outstanding performance of the proposed AMS-

MLP network in pepper leaf segmentation tasks, certain limitations

remain. First, the model relies entirely on supervised learning,

requiring a large amount of precisely annotated training data.

Second, there is still room for optimization in computational

efficiency. Based on these observations, we outline the following

future research directions: (1) exploring weakly supervised and self-

supervised learning methods to reduce dependency on annotated

data; (2) investigating model fine-tuning strategies to enhance

generalization across different scenarios; (3) further optimizing

computational efficiency to meet real-t ime processing

requirements on ground mobile devices; (4) extending the model

to platforms such as drones and robotic systems; and (5) improving

network architecture design and exploring advanced training

strategies to further enhance segmentation performance. These

research directions will provide more efficient and versatile

solutions for plant leaf segmentation in complex backgrounds.
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