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3Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, United States, 4Wheat,
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Hyperspectral imaging has been used to determine plant stress status. However,

the biological interpretation of the spectral changes remain less explored. This

can be addressed by building associations between stress-induced biochemical

changes and variations in spectral reflectance. To this end, we tested spectral

response of sorghum brown midrib (bmr) mutants under varying water stress

levels using hyperspectral imaging (650–1650 nm). The bmr mutants have

reduced lignin concentrations in their vegetative tissue which was reflected as

spectral differences. Under water stress, the spectral signatures diverged more

between the wildtype and mutants compared to control conditions. The

genotype-dependent variation in spectral trends under water limitation was

associated with differential sensitivity of the genotypes to water-limitation

induced changes in energy density. We show that the energy density and

relative water content of the plant tissue can be estimated accurately from

spectral reflectance. To reduce the computational load, LASSO was used to

obtain 22 wavelengths across the camera spectral range (650–1650 nm) in dried

samples, to accurately predict energy density comparable to PLSR estimates. The

reported wavelengths represent a useful screening tool for fast and reliable

calorimetric estimations in bioenergy breeding programs.
KEYWORDS

hyperspectral imaging, water content, energy concentration, chemical sensing,
machine learning, lignin, LASSO, water deficit
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1 Introduction

Major components of plant tissue, such as lignin, starch, lipids,

carbohydrates, proteins, and water, have predominantly C-C, C-H,

N-H, and/or O-H bonds. These bonds of organic molecules have

different vibration response energies that constitute the aborption

spectra (Sun, 2010). The interaction of incident radiation on a

biological tissue is defined by the relative abundance of these

compounds and their derivatives (Lu and Fei, 2014). The reflected

transformations of the radiation generated because of interactions

with different molecular structures are detected using spectroscopy

with the aim of determining the biochemical composition of a plant

tissue (Ferrari et al., 2004; Lu and Fei, 2014). Hyperspectral imaging

(HSI) is one of the spectroscopic analysis platforms to capture and

quantify reflected transformations over a continuous and wide

range of the electromagnetic spectrum (Chakrabarti and Zickler,

2011). The hyperspectral image data constitutes a three dimensional

hyperspectral cube (hypercube) that includes physical, geometric,

and chemical/molecular information about the scanned material

(Sun, 2010). This information is useful to characterize and identify

plant biological macromolecules (Sytar et al., 2017). The spectral

signature of a plant tissue is the combined signature of its complex

biochemical composition (Sun, 2010). A specific wavelength cannot

be uniquely associated with a particular compound because organic

compounds absorb light at similar wavelengths (Curran, 1989),

which presents a challenge for using traditional statistical regression

methods for hyperspectral data due to high dimensionality and

multicollinearity (Sun, 2010). Finding a correlation between

multiple hyperspectral bands (predictor) and a single parameter

of interest (predicted) requires detailed mathematical modeling

(Singh et al., 2016). Machine learning models offer powerful tools

to conduct complex mathematical modeling required to analyze

hyperspectral data (Singh et al., 2016). Previously, these models

have been used to correlate the biochemical components of plant

tissues including water, macronutrients, micronutrients, cellulose,

lignin, proteins, and secondary metabolites with hyperspectral

signatures (Thulin et al., 2014; Pandey et al., 2017; Brugger

et al., 2023).

Lignin is an essential component of plant tissue that provides

structural integrity and helps conduct water through the vascular

bundle. Lignocellulosic biomass, which is comprised of cell walls, is a

renewable energy source for biofuels and renewable chemicals

(Kyriakopoulos et al., 2010). However, lignin, an essential

component of the plant cell wall, impedes conversion of cell wall

polysaccharides to biofuels and decreases forage digestibility in

ruminant livestock (Furtado et al., 2014). The brown midrib (bmr)

mutants of sorghum and other C4 grasses are impaired in monolignol

biosynthesis, the pathway that synthesizes hydroxycinnamyl alcohols,

which are polymerized into lignin through radical coupled reactions

within the cell wall (Vanholme et al., 2010). Sorghum bmr mutants,

bmr2-ref, bmr6-ref, bmr12-ref, and “stacked” (bmr6-ref bmr12-ref),

encode loss of function alleles of 4-coumarate:CoA ligase (4CL),

cinnamyl alcohol dehydrogenase (CAD), caffeic O-methyl transferase

(COMT), and both CAD and COMT, respectively. CAD and COMT

are involved in the last two steps of monolignol biosynthesis
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(Bout and Vermerris, 2003; Sattler et al., 2009; Tetreault et al.,

2018), whereas 4CL is located at the intersection of flavonoid,

monolignol and hydroxycinnamic biosynthesis (Saballos et al.,

2012). Lignin concentrations for the bmr6-ref and 12-ref mutants

were reduced in the vegetative tissues relative to wildtypes (Oliver

et al., 2005b, a). The bmrmutants have reduced lignin concentrations

(Porter et al., 1978; Oliver et al., 2005a, b; Sattler et al., 2010a).

Mutant or population analysis for bioenergy purposes involves

biochemical assessment of lignin and energy density, which are

destructive and laborious. The lack of a rapid alternative screening

tool to measure biochemical composition is a bottleneck in high-

throughput genomics-assisted breeding strategies for sorghum

(Pandey et al., 2017).

Disrupting lignin biosynthesis can affect the plant response to

water limitation (Saluja et al., 2021). This observation can be used to

explore the effects of inherent biochemical differences as well as the

effects of water limitation on spectral response using HSI.

Numerous studies have used HSI as a tool to characterize healthy

and stressed plant tissue. However, the biological relevance of the

observed spectral differences remain less explored. Spectral

differences between healthy and stressed plant tissues correspond

to stress-induced biochemical changes (Lu and Fei, 2014).

Understanding of the relationship between stress-induced

biochemical differences and their associated changes in spectral

signatures is limited. Water deficit treatment of bmr mutants could

generate a larger diversity among the biochemical composition of

vegetative tissues and strengthen training sets for prediction

models. The compositional diversity among the biomass of bmr

mutants could be used to generate prediction models for developing

HSI-based tools for rapid alternative biochemical assessment of

sorghum vegetative tissue. Plant responses to water limitation

include but are not limited to changes in water content, lignin,

cellulose, hemicellulose, starch, and soluble sugars (Emerson et al.,

2014; Perrier et al., 2017). Energy concentration or gross energy

density is an analytical assay to gauge cumulative change in the

biochemical composition of the plant tissue (Gardner et al., 2015).

Lignin has a greater energy density than the other cell wall

components (Novaes et al., 2010), and an increase in lignin or its

related cell wall moieties is reflected in increased energy value

(concentration) with the biomass (Gardner et al., 2015; Tetreault

et al., 2018). Therefore, gross energy density can be an effective

proxy for lignin content as well as detect biochemical changes

induced by water limitation.

In this study, we sought to establish a correlation between

stress-induced biochemical changes and their corresponding

spectral responses. For this the absorption spectra from major

organic compounds was cataloged and compared against reported

NIRS (near-infrared spectroscopy) based absorption wavelengths.

Next we focused on the effect of plant tissue dehydration on spectral

reflectance. This information was then used to detect the altered

spectral response of sorghum bmr mutants under water limitation,

which could be attributed to differential sensitivity to water

limitation-induced biochemical changes. Finally, predictive

wavelengths were identified for energy density by using the

prediction models. To reduce computational burden for energy
frontiersin.org
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density estimations, LASSO was used to obtain a subset of

predictive wavelengths. The models trained for this analysis

represent a rapid and accurate approach for gross energy density

estimation in plants. Overall, this study advances our understanding

of the HSI for stress and chemical sensing in plants.
2 Materials and methods

2.1 Plant materials

Sorghum bmr mutants, bmr12-ref (COMT), bmr6-ref (CAD),

bmr2-ref (4CL), and “stacked” (bmr6-ref bmr12-ref) near-isogenic

lines in the RTx430 background were used for the study (Pedersen

et al., 2006; Saballos et al., 2012). RTx430 was used as the wild type

for this study. Hereafter, bmr12-ref, bmr6-ref, bmr2-ref, (bmr6-ref

bmr12-ref) and wildtype are referred to as bmr12, bmr6, bmr2,

“stacked”, and WT, respectively.
2.2 Plant growth conditions and
treatments

Seedlings were germinated and grown using the cigar roll

method, as described earlier (Zhu et al., 2006; Saluja et al., 2021).

Surface sterilized seeds (1 min in 70% ethanol, 5 min in 50% bleach

containing 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO), 1

min in 70% ethanol, and 6–7 rinses with sterile deionized water),

were placed on moist germination paper in Petri plates incubated at

25°C in the dark for 2 days. Uniform seedlings were selected from

the germinated set, and five seedlings were placed in each cigar roll.

30 seedlings per genotype in cigar rolls were placed in a 1 Liter

beaker. 200ml of one-tenth strength Hoagland solution (Hoagland

and Arnon, 1950), was used as nutrient medium for the cigar roll

assays. Seedlings were grown at 28°C/25°C, 13hr/11hr, day/night at

40-50% relative humidity in a controlled system incubator for 6

days. At 6 days, seedlings were transplanted to the greenhouse on

the East Campus of the University of Nebraska – Lincoln (UNL)

(lat. 40°50’N, long. 96°39’W). Plants were grown in Classic 1000c

(Nursery Supplies) = 25.71 x 23.17 x 20.63 cm pots; a total of 87 pots

were filled with the same amount (6.8 kg) of standard greenhouse

mix from the same batch. The standard greenhouse mix was

comprised of 38.5% peat, 23.1% soil, 19.2% sand, and 19.2%

vermiculite. The greenhouse conditions were set at temperature

30/27 ± 1°C, and light/dark 12/12h. For the first 21 days, all pots

were maintained at 80-90% water holding capacity (WHC) using

fertigation. Fertigation applications were made using Peters®

Professional General Purpose (20-10-20) fertilizer at 250ppm.

After 21 days, water was withheld until the desired treatment

level (WHC) was achieved. For calculating the WHC of the soil

mix, the difference between oven-dried and soil at field capacity was

recorded. For oven-dried weights, three soil mix samples of 6.8

kilograms each were oven-dried (60°C for 14 days). The soil was

then transferred to pots with drainage holes at the bottom. The soil
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was saturated with water and covered at the top to prevent

evaporative losses. The pot weights were then recorded at regular

intervals until no change in pot weight was observed and there was

no free-flowing water from the drainage holes. To test the spectral

response of sorghum to a range of water availability, four treatment

levels were defined as 80% WHC (well-watered), 60% WHC, 40%

WHC, and 30% WHC (water-deficit). Once the desired WHC

capacity was achieved, additional water was supplied every other

day to maintain treatment levels based on pot weight.
2.3 Experimental design

The experimental design included four treatment levels, five

genotypes, and four replicates per genotype per treatment

(Supplementary Figures S1, S2). To ensure that the design

allowed for the control of genetic variability and that each

genotype was well represented within each treatment group, the

overall experimental design for the layout was Randomized

Complete Block Design. We assigned a single treatment to each

block, and within each block, a complete randomized design was

adopted for the five genotypes. Four rectangular blocks, each

containing 21 pots (7×3), were laid out next to each other. Each

block also contained one treatment control pot (no plant). The

blocks were maintained at defined treatment levels until 90 days

after transplanting (DAT).
2.4 Sampling of plant tissue for
hyperspectral imaging

During this experiment, three different types of plant tissue,

including leaf samples, midrib samples, and stalk samples, were

imaged for their spectral response. A section 15 cm from the leaf tip

was harvested from the youngest fully expanded leaf for a leaf

sample. Mature midrib samples were collected as a 15 cm section

from the base of the leaf towards the tip with leaf lamina removed.

Stalk samples comprised a 15 cm section harvested above the

crown. Four Hyperspectral Imaging (HSI) time points, HSI-1,

HSI-2, HSI-3, and HSI-4, corresponded to 38, 60, 83, and 89

DAT. At HSI-1, all treatments reached the desired treatment level

except 30%WHC, which needed to further dry down. Therefore, all

treatments except 30% WHC were imaged at this time point. Leaf

samples were collected at HSI-1, HSI-2, and HSI-3. At HSI-3, due to

prolonged water limitation and stunted growth under 40% and 30%

WHC, the second youngest fully expanded leaf was selected for

sampling. Midrib samples were collected only at HSI-3. At the final

imaging session (HSI-4), only stalks were sampled. The sample sizes

and methods were consistent for all the samples across all the

blocks. Figure 1 illustrates the 2D images and the corresponding

hypercubes of example plant parts. The 2D images allow for visual

examination of the data, supporting informed decision-making,

while the hypercubes capture and quantify the spatial and spectral

characteristics of the plant tissues across multiple wavelengths.
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2.5 Hyperspectral imaging of vegetative
tissue

Both the adaxial and abaxial surfaces of a leaf (Figure 1a) or

midrib (Figure 1b) sample were scanned, and the average value of

spectral reflectance was used for further analyses. The stalk samples

were carefully split longitudinally into two equal sections using a

scalpel. The pieces of the split stalk were placed next to each other

on the flatbed platform, with sections facing the camera (Figure 1c).

The stalk sample results generated from the aforementioned

technique were denoted as “Full section results”. As a technical

replicate and to rule out the possibility of interference in Full section

results due to shadowing between the two pieces of a sample, the

split sections were also tested individually. For a given sample, each

half of the stalk was imaged and processed separately, and the
Frontiers in Plant Science 04
spectral reflectance for both halves were averaged for each sample.

The stalk sample results generated from this method were described

as “Half section results” (Figure 1d). All the results from this study

should be considered “Full section results” unless otherwise

mentioned. After collection, the samples were immediately

subjected to imaging (0 hours = fresh imaging), and the fresh

weights were also recorded. For leaf and midrib samples, following

the fresh imaging, the samples were oven-dried at 55°C for 14 days,

after which they were imaged again, and the dried weights were

recorded. For stalk samples, a uniform drying technique was used to

understand the effect of dehydration on spectral response at

different drying stages. After fresh imaging, the split stalk samples

were labeled and placed on a 38.1 × 33.02 cm plastic tray inside a

bench-mounted fume hood (Lab Crafters Inc.) at room temperature

for 120 hours. The fume hood at room temperature had a
FIGURE 1

Generated Hypercube of tested samples: (a) Abaxial surface of leaf (b) Adaxial surface of midrib (c) Full section of stalk tissue (d) Half section of
stalk tissue.
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continuous airflow at face velocity of approximately 0.59 m/s.

During the drying process, samples were imaged and weighed at

regular intervals starting 6, 12, 24, 48, 72, 96, 103, and 120 hours

after harvesting (HAH). The ambient drying allowed approximately

90 - 95% of the total water content to evaporate (percentage

evaporation); sample weights stopped changing at 120 HAH.

Percentage evaporation (PE) was calculated as,

PE =
FW − OW
FW − DW

 �100

where OW is the weight of the sample at 120 HAH, DW is the

dry weight of the sample measured after oven drying the sample,

and FW is the fresh weight of the sample measured right after

harvest. After 120 HAH to remove bonded water molecules,

samples were oven-dried at 55°C for 7 days, following which they

were imaged and weighed again. Sample weights were recorded

before each imaging session to calculate the sample water content as

a percentage of dry weight (SWC). SWC was then derived using the

equation,

SWC =
FW − DW

DW
 �100

A near perfect correlation was reported for SWC and Relative

water content of the sample (RWC) (Kovar et al., 2019). Relative

water content (RWC) was calculated as,

RWC =  
FW − DW
SW − DW

 �100  

where SW is the saturated weight of the sample measured after

overnight water saturation. In our study, the terms RWC and SWC

are used interchangeably, both defined by the same equation,

RWC or SWC =
FW − DW

DW
 �100
2.6 Bomb calorimetry

The stalk samples after oven-dried imaging were ground in a

SPEX SamplePrep Geno/Grinder® 2010. The ground samples were

subjected to calorimetric measurements to determine energy

concentrations using a Parr 6400 bomb calorimeter (Parr

Instrument Co.). As described (Tetreault et al., 2021),

approximately 200 milligrams (mg) of dried ground stalk tissue

combined with 600 mg of mineral oil were combusted to estimate

calories per gram (cal/g) of dry weight (Calories gram-1). Energy

values were calculated by subtracting the energy released from the

combustion of only the mineral oil, from the combined combustion

of mineral oil and stalk, which was standardized to the

sample weight.
2.7 Organic compound standards

Cotton fiber (at least 90% cellulose) was imaged as a cellulose

standard (Felgueiras et al., 2021). Corn starch (ARGO® corn starch)
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was imaged as a starch standard. Lignin extracted from sorghum

forage using filter bag method was imaged as purified acid detergent

lignin from sorghum (Vogel et al., 1999). Casein acid hydrolysate

(Sigma® C-9386) and casein enzymatic hydrolysate (Sigma® C-

7290) were used as the protein standards. Urea (Mallinckrodt

GenAR® 7729) was imaged as a fixed nitrogen standard.
2.8 Imaging platform and image processing

The imaging platform used in this experiment is designed and

engineered as described (Gao et al., 2021). The imaging platform

used a high-performance line-scan image spectrograph (Micro-

Hyperspec® Imaging Sensors, Extended VNIR version, Headwall

Photonics, Fitchburg, MA, USA) with spectral range extending

600–1700 nm at 5.5 nm spectral resolution. To obtain the precise

hyperspectral curve of the sample, a comprehensive multi-step

process was used in MATLAB, including derivation of an initial

sample mask through segmentation of the plant tissue from the

original image, refinement of the initial mask, applying the sample

mask to the entire hyperspectral matrix, calibration of the original

hyperspectral intensity (IO), and averaging the hyperspectral value

across the tissue’s area.

The CIELAB color space was utilized to derive the initial

mask, commonly denoted as L*a*b*. Here, ‘L*’ signifies the

lightness, with values extending from 0 (representing black) to

100 (indicating white). The ‘a*’ axis delineates the chromaticity

between green and red, where values range from -100 (green) to

100 (red). Similarly, the ‘b*’ axis demarcates the chromaticity

between blue and yellow, extending from -100 (blue) to 100

(yellow). This color space’s intrinsic characteristics facilitate the

differentiation between the plant object and the background,

offering a more effective segmentation than that achieved using

the RGB color space. Value ranges for each axis were manually

chosen to minimize background and maximize the sample

coverage, which enabled the generation of a binary image that

incorporated plant tissue segments with non-uniform color

distribution. The mask was refined using a disk-shaped

structuring element to fill connected plant tissue regions, and

morphological operations were employed to address any holes,

with the operation’s scope defined by the neighborhood’s shape

and size around each pixel. The refined mask was applied to each

channel of the loaded hyperspectral matrix, which encapsulates

hyperspectral intensity across 242 channels for each pixel.

Calibration of the original hyperspectral intensity (IO) was used

to correct systematic discrepancies in the imaging process,

variances in sensor performance across different devices, and the

necessity of wavelength calibration. This correction ensured

sensor accuracy and facilitated the comparisons of hyperspectral

data across sensors and over time. Calibration involved obtaining

a white reference (Iw) using a spectrally flat target under consistent

lighting and a dark reference (Id) by capturing an image with the

camera’s shutter closed. The calibrated hyperspectral intensity (Ic)

was then derived using the following equation, which integrates

these references to adjust the hyperspectral data accurately.
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Ic =
Io − Id
Iw − Id

The final intensity value for each channel was calculated by

aggregating the intensity values of all sample pixels within a channel

and then dividing them by the total number of pixels to derive the

average. This process was repeated for each spectral channel,

thereby yielding a hyperspectral curve across the entire spectrum.
2.9 Image acquisition

To acquire images, the camera controlling software

HyperSpec® III (Headwall Photonics, Fitchburg, MA, USA) was

calibrated (Gao et al., 2021) at an Exposure level of 12ms, a Frame

period of 18ms, and the Gain level set at low. After calibration, the

Exposure was changed to 6ms, while other settings remained

unchanged. The samples were scanned in Free Run mode with

Images per frame set at 1, and frames per cube set to 2010. The

source FPS and write FPS were 55.55. The platform speed was set to

1% under the manual mode of video shot settings on the controller.

A total of 3,773 images were recorded with a combined size of

5.8 terabytes.
2.10 Packages for statistical analysis

Ribbon plots and box plots were generated using the R packages

‘ggplot2’ (Wickham, 2011) and ‘reshape2’ (Wickham, 2007).

Prediction modeling, Clustering, and Classification were also

performed using R packages. R packages ‘pls’ (Mevik and

Wehrens , 2007) , ‘e1071 ’ (Dimitr iadou et al . , 2009) ,

‘randomForest’ (Breiman et al., 2021) were used for partial least

squares regression (PLSR), support vector machine (SVM) and

random forest (RF) respectively. The ‘glmnet’ (Friedman et al.,

2010) R package was used for LASSO regression, and the ‘cluster’

(Maechler, 2018) R package was used for clustering.
2.11 Clustering and classification

Exploratory K-means clustering was performed on the training

data to determine treatment structure in relation to PLSR

components. The treatment identifiers were not included as part

of the predictive mechanism in the training of the PLSR model.The

optimal number of clusters k=4 was selected using the gap-statistic.

The gap-statistic reference distribution was created using 500

bootstrap samples. Clusters were initialized with 25 random

starting centers to ensure optimal centering of the final clusters.

The components naturally clustered by treatment, and observations

included in each of the clusters belonged to the same treatment

group. For the classification of treatments using PLSR scores, SVM

C-classification with the radial basis function as the kernel was

performed. Hyperparameters were selected using a coarse grid

search. The values for gamma and the cost were selected to

minimize the cross-validation classification error.
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2.12 Machine learning based predictions

The data contained 242 predictors, representing the 242

wavelengths from hyperspectral imaging. For model selection and

estimation of prediction accuracy, the energy concentration data

were split into a training and a test set consisting of 60 and 16

observations (75/25 split), respectively. The training set was further

split into 5 folds for hyperparameter selection. Candidate predictive

models were PLSR, RF, LASSO, and SVM epsilon regression using

the radial basis function as the kernel. Hyperparameters were

chosen to minimize the cross validation root mean squared error

(RMSECV). The hyperparameters tuned consisted of the number of

components for the PLSR, the number of variables sampled at each

split and the size of the leaf for the RF, the lambda (penalty strength)

for LASSO, and the gamma value and cost for the SVM. For RF and

SVM, a coarse grid search was used to select the optimal

hyperparameters. The final models were fitted to the training

data, and the out of sample prediction error was estimated using

the test set.

The aforementioned analysis was also applied for the RWC

prediction, with the RWC data split into a training and a test set

consisting of 530 and 132 observations (80/20 split), respectively.

For each treatment level prediction models, the RWC data was split

into a training and a test set consisting of 124 and 42 observations

(75/25 split), within each treatment. The oven dried samples had

zero RWC, therefore excluded from RWC predictions. The

prediction equations generated in this study use spectral data of

only stalk samples.
3 Results

3.1 Spectral signatures of standards of
major organic compounds

To examine the ability of the HSI system to differentiate

macromolecules and understand their spectral trends in isolation,

we first imaged and analyzed standards for the major organic

compounds. The hyperspectral signature of the tested compounds

showed unique spectral patterns (Figure 2a). To test the detection of

C-H, O-H bond vibrations, purified carbohydrate samples were

used. Carbohydrate samples, including starch and cellulose, had

similar signatures; however, there were detectable differences

between starch and cellulose in the 1400–1650 nm range. Starch

absorption features were observed around 950–1000 nm, 1200 nm,

and 1400–1650 nm. Conversely, absorption features for cellulose

were observed around 1200 nm and 1400–1650 nm. Plants mainly

store nitrogen in the form of nitrate and proteins. To determine the

spectral signature of proteins, two animal protein standards were

tested. Casein acid hydrolysate and casein enzymatic hydrolysate

had similar spectral properties including absorption features

around 1100–1200 nm and 1400–1650 nm. A similar absorption

range for the tested protein standards, which was distinguishable

from the absorption range of carbohydrates, indicated that our

setup was able to differentiate between distinct classes of
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macromolecules along with reporting similarities between different

derivates of the same protein sample.

Lignin was used as a standard for C-C bond vibrations. Lignin

had a distinct spectral signature characterized by exceptionally low

reflectance in the 650–1100 nm range and a strong reflectance feature

in the 1450–1600 nm range (Figure 2a). Conversely, absorption

features for lignin were observed at 1450 nm and around 1650 nm

(Figure 2a). The observed wavelengths have been associated with

lignin absorption using NIRS previously (Curran, 1989). To further

validate the system for C-N and N-H bond vibrations, urea samples

were tested. Glutamine and asparagine are important nitrogen

transporters and storage compounds due to their high nitrogen to

carbon ratio (2:4) (Lea et al., 2007); urea shares structural similarity

with asparagine and has a higher nitrogen to carbon ratio (2:1)

(Vaughan and Donohue, 1952). Urea provides improved detection

of N-H bond vibrations with minimal noise from C-N or C-O

vibrations when compared with asparagine. Therefore, urea was

used as nitrogen standard. Urea had a unique spectral pattern with

multiple absorption features across the spectral range (Figure 2a); a

significantly strong absorption feature was detected between 1450–

1525 nm (Figure 2a).Wavelenght corresponding to 1510 nm has been

reported for nitrogen absorption feature using NIRS (Curran, 1989).

Overall, the wavelength range 650–1100 nm and beyond 1500 nm

represents regions where all tested samples had some level of

separation (Figure 2a); however, in the 1100–1500 nm range most

organic compounds had a similar spectral response. Within this

region, a spectral range between 1350–1400 nm was particularly

noteworthy because all tested samples (except urea) shared the

same absorption and reflectance features (Figure 2a). Therefore, the

1350–1400 nm spectral range had high levels of ambiguity because the

spectral signatures of different biochemical components were

overlapping at this range. Collectively, these results show the

spectral regions with overlapping and non-overlapping absorption

features among different organic compounds.
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3.2 Spectral changes in response to tissue
hydrations

To examine the spectral signature of a plant tissue with varying

levels of dehydrations, we used a dry down approach. The drying

process shifted reflectance curves upwards, exhibiting increments in

mean reflectance of the stalk samples due to dehydration (Figure 2b).

The response of stalk samples to drying was similar for all the

genotypes; drying curves for other genotypes from 80% WHC

(well-watered treatments) are shown in Supplementary Figure S3.

In oven-dried samples, the 1350–1400 nm absorption feature

matched the spectral signature for organic compounds (Figure 2a),

which was otherwise masked in fresh samples (0 HAH). The response

of reflectance curve to dehydration followed a simple linear relation,

where for most of the spectrum, the reflectance intensity was directly

proportional to level of dehydration. The absorption features related

to the biochemical composition of a sample became more evident as

the water evaporated. Therefore, oven drying eliminated interference

in the spectral signatures otherwise created by water, and oven-dried

samples are suitable for spectral-based compositional determination.
3.3 Changes in spectral properties of the
vegetative tissue in response to water
limitation

To examine how biochemical differences in vegetative tissues

affect spectral signatures in response to water limitation, bmr

mutants were grown under four water treatment levels. To

simplify visual comparisons, we focused only on three genotypes

selected as highest (WT), lowest (stacked), and an intermediate

value (bmr12) of lignin content at maturity (Sattler et al., 2010b).

Leaf blades were imaged at HSI-1 (38 DAT). For fresh imaged

samples (Figures 3a–c), the spectral signatures of the genotypes
FIGURE 2

Spectral signatures of major organic compounds in the spectral range 650–1650 nm (a) Spectral signatures of pure standard of major organic
compounds (b) Uniform drying-based spectral response of bmr12 stalk samples from 80% WHC showing the relationship between tissue hydration
and spectral response; HAH indicates hours after harvesting. The solid line represents the mean of the samples, and the ribbon around represents
Standard Error (SE).
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overlapped across the spectrum under all treatments with one

exception observed across the treatments between 1350–1650 nm.

The spectral reflectance trends among the genotypes were unique

under each treatment. The differences in mean reflectance for the

genotypes were larger as compared to the SE (standard error) of

the means for the genotypes. For samples imaged after oven

drying (Figures 3d–f), 80% WHC had no significant differences

among the spectral signatures of the genotypes (Figure 3d). At

60% and 40% WHC (Figure 3e), the spectral signature for bmr12

had a clearly observable separation from WT and stacked.

Although the separation among spectral signatures was limited

for leaf samples at HSI-1, there were features suggesting unique

spectral responses of the genotypes. As observed for oven-dried

samples, across the treatments bmr12 had the highest reflectance
Frontiers in Plant Science 08
followed by WT and stacked; the spectral signatures of WT and

stacked overlapped across the spectrum. Conversely, the spectral

trends among the genotypes were treatment dependent for fresh

imaged samples.

For HSI-2 of leaf blades at 60 DAT, spectral signatures of the

fresh imaged samples (Figures 4a–d) overlapped across the

spectrum for all genotypes under all treatments; some separation

was observed between 1350–1650 nm. The spectral trends for 80%

and 60% WHC were similar, whereas trend shifts were observed

under water deficit conditions. At 30% WHC (Figure 4d), mean

reflectance among the samples was more distinct compared to other

treatments. For samples imaged after oven drying (Figures 4e–h),

the spectral signatures of the genotypes overlapped under all

treatment levels. The observations at HSI-2 were similar to HSI-1
FIGURE 3

The averaged leaf spectral signatures of genotypes at HSI-1 (38 DAT) under different water treatments and imaging conditions in the spectral range
650–1650 nm (n = at least 3 for each group): (a) Spectral reflectance of genotypes at 80% WHC for fresh imaged samples (b) Spectral reflectance of
genotypes at 60% WHC for fresh imaged samples (c) Spectral reflectance of genotypes at 40% WHC for fresh imaged samples (d) Spectral
reflectance of genotypes at 80% WHC for samples imaged after oven drying (e) Spectral reflectance of genotypes at 60% WHC for samples imaged
after oven drying (f) Spectral reflectance of genotypes at 40% WHC for samples imaged after oven drying; HAH and WHC indicate hours after
harvesting and water holding capacity, respectively. The solid line represents the mean of the samples and the ribbon around represents Standard
Error (SE).
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in terms of overlapped signatures across the spectrum and

separation observed between 1350–1650 nm across treatments.

Unlike HSI-1, spectral trends were not conserved at HSI-2 for

oven-dried samples.
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The final imaging timepoint (HSI-3) for leaf blades was at 83

DAT. For fresh samples, at 80% WHC (Figure 5a), stacked mutant

had a distinct and non-overlapping spectral signature. At 60%

WHC (Figure 5b), bmr12 signature separated from other
FIGURE 4

The averaged leaf spectral signatures of genotypes at HSI-2 (60 DAT) under different water treatments and imaging conditions in the spectral range 650–
1650 nm (n = at least 3 for each group): (a) Spectral reflectance of genotypes at 80% WHC for fresh imaged samples (b) Spectral reflectance of genotypes at
60% WHC for fresh imaged samples (c) Spectral reflectance of genotypes at 40% WHC for fresh imaged samples (d) Spectral reflectance of genotypes at
30% WHC for fresh imaged samples (e) Spectral reflectance of genotypes at 80% WHC for samples imaged after oven drying (f) Spectral reflectance of
genotypes at 60% WHC for samples imaged after oven drying (g) Spectral reflectance of genotypes at 40% WHC for samples imaged after oven drying (h)
Spectral reflectance of genotypes at 30% WHC for samples imaged after oven drying; HAH and WHC indicate hours after harvesting and water holding
capacity, respectively. The solid line represents the mean of the samples and the ribbon around represents Standard Error (SE).
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genotypes. At 40% WHC (Figure 5c), spectral signatures for the

genotypes were almost indistinguishable. At 30%WHC (Figure 5d),

mean reflectance for the genotypes was more distinct than that of

other treatment levels. For samples imaged after oven drying
Frontiers in Plant Science 10
(Figures 5e–h), similar to observations at HSI-1 (Figure 3) and

HSI-2 (Figure 4), the spectral signatures of the genotypes

completely overlapped across the spectrum under all treatment

levels except 30%WHC (Figure 5h), where mean reflectance for the
FIGURE 5

The averaged leaf spectral signatures of genotypes at HSI-3 (83 DAT) under different water treatments and imaging conditions in the spectral range
650 – 1650nm (n = at least 3 for each group): (a) Spectral reflectance of genotypes at 80% WHC for fresh imaged samples (b) Spectral reflectance
of genotypes at 60% WHC for fresh imaged samples (c) Spectral reflectance of genotypes at 40% WHC for fresh imaged samples (d) Spectral
reflectance of genotypes at 30% WHC for fresh imaged samples (e) Spectral reflectance of genotypes at 80% WHC for samples imaged after oven
drying (f) Spectral reflectance of genotypes at 60% WHC for samples imaged after oven drying (g) Spectral reflectance of genotypes at 40% WHC for
samples imaged after oven drying (h) Spectral reflectance of genotypes at 30% WHC for samples imaged after oven drying; HAH and WHC indicate
hours after harvesting and water holding capacity, respectively. The solid line represents the mean of the samples and the ribbon around represents
Standard Error (SE).
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genotypes was more distinct compared to other treatment levels.

For leaf blade imaging, the spectral trends across growth stages were

treatment dependent. At HSI-3, the differences among the leaf blade

spectral signatures of genotypes were more significant when

compared to HSI-1 and HSI-2. This indicated that the spectral

signatures of genotypes exhibited greater differences when leaf

blades were imaged at the end of the vegetative stage; therefore,

imaging leaf blades at this stage is more suitable for detecting

spectral differences among the genotypes.

At HSI-3, differences among the leaf midrib-based spectral

signatures of genotypes were more obvious for fresh samples

(Figures 6a–d). At 80% WHC (Figure 6a), stacked had a distinct

and non-overlapping spectral signature. At 60% WHC (Figure 6b),

all genotypes had clear separation among their spectral signatures,

where bmr12 had the highest reflectance, followed by WT, and then

stacked for most of the spectrum. At 40% (Figure 6c) and 30%

WHC (Figure 6d), spectral signatures for all the genotypes

overlapped. For oven-dried samples (Figures 6e–h), differences

among mean reflectance of the genotypes were higher than the

SE. At 80% WHC (Figure 6e), the spectral trends were comparable

to fresh imaging results (Figure 6a). At 60% WHC (Figure 6f), the

spectral trends were reversed compared to 80% WHC (Figure 6e),

where stacked had the highest mean reflectance followed by bmr12,

and WT overlapped for most part of the spectrum. At 40% WHC

(Figure 6g), spectral trends matched observations at 80% WHC

(Figure 6e). The resolution of differences among the genotype

means was higher for oven-dried samples at 40% WHC

compared to its fresh imaging counterpart. At 30% WHC

(Figure 6h), a unique trend was observed where spectral

signatures of bmr12 and stacked overlapped across the spectrum

and had higher reflectance than WT. Within the category of foliar

tissue (leaf blade and isolated midrib), spectral differences among

the genotypes had better resolution when midrib samples were used

for imaging. The spectral signatures of the genotypes across growth

stages had better separation when samples were imaged fresh;

conversely, midrib samples from water deficit treatments had

better separation when imaged after oven drying. The leaf

midrib-based spectral trends from fresh imaging at 80% WHC

and 60% WHC (Figures 6a, b) matched leaf blade-based fresh

imaging spectral trends for the same treatments (Figures 5a, b). This

result emphasizes the consistency of the system in detecting

differences among the genotypes.

Stalk spectral reflectance was measured for samples harvested

at HSI-4 (89 DAT). For 80% WHC fresh samples (Figure 7a), a

large separation was detected among the spectral signatures of the

genotypes between 750–1350 nm, and 1550–1650 nm. A higher

level of separation was observed between WT and bmr mutants

(bmr12 and stacked) as compared to between bmr12 and stacked.

The spectral trend was mostly unchanged between treatments 80%

and 60% WHC (Figures 7a and 7b). The small changes in the

spectral response of the genotypes at 60% WHC highlighted the

sensitivity of the system to capture spectral differences in response

to water treatment. For both 80% and 60% WHC, spectral

reflectance trends among the genotypes changed around 850 nm

where stacked signature crossed WT signature. Under water-
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deficit conditions, spectral reflectance among the genotypes

differed from well-watered conditions (Figures 7c, d), which

could be attributed to compositional changes associated with

long-term exposure to water deficit conditions. Samples from

40% WHC (Figure 7c), had lower separation among the spectral

signatures of the genotypes as compared to 80% and 60% WHC.

At 40%WHC, the spectral reflectance trends among the genotypes

were unique across the spectral range and the change in spectral

trend observed at 850 nm for other treatments occurred around

950 nm. Unlike 40% WHC, the reflectance trends among the

genotypes from 30% WHC (Figure 7d) were similar to those from

80% and 60%WHC. The spectral signatures of the genotypes from

30% WHC had the least separation and highest mean reflectance

of all the water treatment levels; the latter was similar to the drying

response of stalks (Figure 2b). The oven-dried stalk samples

notably varied from their fresh imaged counterparts in terms of

spectral trends and reflectance values (Figure 8). Each treatment

had a unique spectral trend among the genotypes. The

characteristic 1300–1350 nm range reflectance feature observed

in Figure 2 was also found in oven dried samples across the

treatments. For oven-dried samples from 80% WHC (Figure 8a), a

large separation was detected among the spectral signatures of the

genotypes between 750–850 nm. As observed for fresh imaged

samples, the differences between 80% WHC and 60% WHC

samples for oven-dried imaging data were small (Figure 8b). For

80% WHC and 60% WHC oven-dried samples, the spectral

reflectance based order of genotypes matched WT > bmr12 >

stacked for lignin content estimate. At 40% WHC (Figure 8c), WT

had the lowest mean reflectance, which was a reversed trend when

compared to 80% and 60% WHC. At 30% WHC (Figure 8d),

bmr12 had the highest mean reflectance, and separation between

the genotypes was lower as compared to other treatments. In terms

of the relative reflectance trends, as the water deficit conditions

were exacerbated, the mean reflectance for bmr12 increased,

whereas the reflectance for WT decreased (Figure 8). Across the

treatments, with the exception of 30% WHC, a higher level of

separation was observed between WT and bmr mutants (bmr12

and stacked) as compared to between bmr12 and stacked

(Figures 8a–c). Although it was difficult to distinguish mutants

from WT under water deficit conditions, they were easily

discernable under 80% and 60% WHC for both the fresh and

oven-dried samples. Irrespective of the treatment and water

content of the imaged samples, spectral signatures of the

genotypes maintained separation between 600–900 nm, and

around 1200 nm at which lignin had strong absorption features,

as observed in Figure 2 and previously reported (Curran, 1989).

Overall, the results showed that bmrmutants have distinct spectral

signatures compared to WT under both fresh and dried imaging

conditions. The stalk tissue-based spectral differences among the

genotypes resolved better than foliar tissue and are more suitable

to correlate with biochemical differences among the genotypes.

Across growth stages and tissue types, the spectral trends were

treatment dependent and had clear differences between fresh and

oven-dried samples. To further our understanding of the effect of

water availability on the spectral signatures of the genotypes, the
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response of individual genotypes under the different treatment

levels was plotted. For fresh imaged samples (Figures 9a–c), 30%

WHC had the highest mean reflectance across genotypes. There was

a genotype-dependent response of spectral signatures observed at
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60% and 40% WHC, whereas 80% WHC had the lowest mean

reflectance for all genotypes. For fresh imaged samples, WT samples

from 60% and 40% WHC overlapped for most of the spectrum

except between 700–800 nm and 1400–1650 nm (Figure 9a). For
FIGURE 6

The averaged midrib spectral signatures of genotypes at HSI-3 (83 DAT) under different water treatments and imaging conditions in the spectral
range 650–1650 nm (n = at least 3 for each group): (a) Spectral reflectance of genotypes at 80% WHC for fresh imaged samples (b) Spectral
reflectance of genotypes at 60% WHC for fresh imaged samples (c) Spectral reflectance of genotypes at 40% WHC for fresh imaged samples (d)
Spectral reflectance of genotypes at 30% WHC for fresh imaged samples (e) Spectral reflectance of genotypes at 80% WHC for samples imaged
after oven drying (f) Spectral reflectance of genotypes at 60% WHC for samples imaged after oven drying (g) Spectral reflectance of genotypes at
40% WHC for samples imaged after oven drying (h) Spectral reflectance of genotypes at 30% WHC for samples imaged after oven drying; HAH and
WHC indicate hours after harvesting and water holding capacity, respectively. The solid line represents the mean of the samples and the ribbon
around represents Standard Error (SE).
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FIGURE 7

The averaged stalk spectral signatures of genotypes at HSI-4 (89 DAT) under different water treatments and fresh imaging conditions in the spectral
range 650–1650 nm (n = at least 3 for each group): (a) Spectral reflectance of genotypes at 80% WHC (b) Spectral reflectance of genotypes at 60%
WHC (c) Spectral reflectance of genotypes at 40% WHC (d) Spectral reflectance of genotypes at 30% WHC; WHC indicates water holding capacity.
The solid line represents the mean of the samples and the ribbon around represents Standard Error (SE).
FIGURE 8

The averaged stalk spectral signatures of genotypes at HSI-4 (89 DAT) under different water treatments and oven dried imaging conditions in the
spectral range 650–1650 nm (n = at least 3 for each group): (a) Spectral reflectance of genotypes at 80% WHC (b) Spectral reflectance of genotypes
at 60% WHC (c) Spectral reflectance of genotypes at 40% WHC (d) Spectral reflectance of genotypes at 30% WHC; WHC indicates water holding
capacity. The solid line represents the mean of the samples and the ribbon around represents Standard Error (SE).
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bmr12 (Figure 9b), the mean reflectance for samples from 60%

WHC was higher than 40% WHC for most of the spectrum. The

spectral reflectance for bmr12 at 40% WHC and 80% WHC

overlapped for most parts of the spectrum. The spectral trends

for stacked (Figure 9c) were more closely related to WT. The results

for fresh imaged samples showed that certain regions of the

spectrum contained unique spectral features that distinguished

samples from the same genotype experiencing different levels of

water availability. For samples imaged after oven drying

(Figures 9d–f), the trends reversed when compared with fresh

imaged samples; 80% WHC had the highest mean reflectance.

The spectral response at other treatments followed a genotype-

dependent trend. The spectral response of bmr12 (Figure 9e) and

stacked (Figure 9f) was more similar to each other than to WT

(Figure 9d). For bmr12 (Figure 9e), samples from 60% WHC had
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the lowest spectral reflectance. Spectral reflectance of bmr12

samples from 30% WHC and 40% WHC overlapped for most of

the spectrum, and 1350 nm onwards crossed 80% WHC signature.

From 1350–1650 nm, the highest mean reflectance was observed for

samples from 40% WHC, followed by 30%, 80% and 60% WHC.

For stacked (Figure 9f), the spectral trends resembled bmr12. The

spectral signatures for oven-dried samples suggested biochemical

changes associated with water treatments. The spectral response for

fresh imaged samples at 60% and 40% WHC showed a genotype-

dependent response (Figures 9a–c), whereas the spectral response

for oven-dried samples at 40% and 30% WHC showed a genotype-

dependent response (Figures 9d–f). Irrespective of the genotype, the

spectral signatures at 80% and 30%WHC differed the most for fresh

samples (Figures 9a–c), whereas for oven-dried samples 80% and

60% WHC had the largest separation in their spectral signatures
FIGURE 9

The averaged stalk spectral signatures from different water treatments for each genotype at HSI-4 (89 DAT) under different imaging conditions in the
spectral range 650–1650 nm (n = at least 3 for each group): (a) Spectral reflectance at different treatments for WT fresh imaged samples (b) Spectral
reflectance at different treatments for bmr12 fresh imaged samples (c) Spectral reflectance at different treatments for stacked fresh imaged samples
(d) Spectral reflectance at different treatments for WT samples imaged after oven drying (e) Spectral reflectance at different treatments for bmr12
samples imaged after oven drying (f) Spectral reflectance at different treatments for stacked samples imaged after oven drying; WHC indicates water
holding capacity. The solid line represents the mean of the samples and the ribbon around represents Standard Error (SE).
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(Figures 9d–f). Overall, these results show that treatment-

dependent changes in spectral trends for vegetative tissue were

due to differential response of genotypes to water treatments.
3.4 Changes in energy concentration of
stalk tissue in response to water limitation

To determine changes in the biochemcial composition of samples

collected for HSI, oven-dried samples were used for calorimetric

measurements corresponding to the oven-dried imaging material.

Calorimetric measurements depicted compositional differences for

WT, bmr12, and stacked under well-watered conditions

(Figure 10a). At 80% WHC, WT and bmr2 had comparable cal/g

values, followed by bmr12 and stacked, which were significantly lower

than WT; bmr6 had the lowest mean cal/g value but not significantly

different from stacked. At 60% WHC (Figure 10b), consistent with

80% WHC results, WT had the highest energy concentration (cal/g),

and all the bmr mutants had lower values than the WT. This finding

was consistent with the observed spectral differences at the same
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treatment level, where bmr12 and stacked were more distinguishable

from WT when imaged fresh and after oven drying (Figure 8b). All

genotypes except bmr6 had lower energy concentration at 60% WHC

compared to 80% WHC; the change was greater for bmr12

(Supplementary Figure S4). At 40% WHC (Figure 10c;

Supplementary Figure S4), a significant reduction in energy values

for all genotypes was observed. The energy density for bmr12 was the

lowest, and bmr2was the highest, whereasWT, bmr6, and stacked had

comparable values. At 30% WHC (Figure 10d), the trend reversed for

all genotypes. After a gradual reduction in energy density values from

80% to 40% WHC, genotypes generally had higher energy

concentration at 30% WHC (Supplementary Figure S4). At 30%

WHC, calorimetric values were comparable for bmr6, bmr2, and

stacked, followed by WT and bmr12. Plants at 30% WHC showed

symptoms of severe water limitation (Supplementary Figure S2). The

phenotypes ranged from senescence, leaf rolling and stunted growth.

The energy values for bmr6, bmr2 and stacked at 30% WHC were

comparable to 80% WHC. Interestingly, as observed in Figures 9d–f,

the spectral signatures for 80% WHC and 30% WHC were more

similar compared to other treatments.
FIGURE 10

Total energy content of the imaged stalk samples from HSI-4 (89 DAT) under different water treatments (n = at least 4) (a) Total energy content of
bmr mutants and WT at 80% WHC (b) Total energy content of bmr mutants and WT at 60% WHC (c) Total energy content of bmr mutants and WT
at 40% WHC (d) Total energy content of bmr mutants and WT at 30% WHC; WHC indicates water holding capacity. The boxes represent the
interquartile range (IQR) of the data. The horizontal line inside each box is median and whiskers extend to the minimum and maximum values within
1.5 times of IQR. Significance based on t-test with p<0.05.
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Genotypes displayed a small decrease in energy value at 60%

WHC, which may explain the differences in spectral signatures

among samples from 80% and 60% WHC (Figure 8). Larger

changes in cal/g and spectral trends were detected under water

deficit conditions (Figures 7, 8). As observed in Supplementary

Figure S4, bmr12 tissues showed the greatest changes in energy

value in response to water-deficit conditions, whereas bmr2 and

bmr6 tissues were more impervious to this water stress regime. Each

genotype varied in direction and magnitude of change in cal/g,

which could potentially explain the genotype-dependent response

of spectral signatures under this water stress regime (Figure 9).

These results further support the differential genotypic sensitivity to

water stress.
3.5 Classification and clustering

To test the possibility of classifying samples into different

treatment levels based on spectral signals, a C-classification SVM

classifier with a radial kernel was used. As observed in Figure 11a,

the SVM classifier effectively partitioned observations from fresh

imaging data into treatments, based on spectral data. The SVM

classifier achieved 100% accuracy on the training and test data with

components from the final selected PLSR model as input

(Supplementary Table S1). Clustering was then extended to oven-

dried imaging data. The observations did not cluster naturally, and

the gap statistic did not recognize clustering as beneficial. However,

with the final PLSR components as input, SVM classification

yielded near perfect accuracy in the training data and the test

data (Figure 11b; Supplementary Table S2). The algorithm did not

effectively differentiate spectral signatures from 40% WHC. SVM

classification was more effective for fresh imaging data; the spectral

changes induced in response to water limitation were useful to

differentiate plants experiencing water-deficit conditions. This
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analysis provided novel insight into the spectral response of

sorghum to water-deficit conditions. Although the treatment

identifiers were not included as part of the predictive mechanism

in the training of the PLSR model, clustering and classification using

the PLSR components show that PLSR components encode

treatment information. This exploratory analysis based on the

spectral data, showed that the PLSR components are accurate for

treatment classification.
3.6 Modeling for energy concentration
using full spectral range

Statistical models including partial least squares regression

(PLSR), support vector machine (SVM) and random forest (RF)

were applied to establish the quantitative relationship among the

extracted reflectance spectral data within the full spectral range of

242 wavelength bands (predictors) and the corresponding

calorimetric data represented by 60 training and 16 test entries

(response). The models were then validated using an external

validation set to estimate the actual predictive ability. Table 1

shows the results of the calibration, cross-validation, and

prediction statistics of the models. As summarized in Table 1A

for fresh imaging data, the PLSR model had a RMSEtrain of 35.76, a

rtest of 0.4697 and RMSEtest of 50.13 in prediction. When models

were built using RF, the model obtained a RMSEtrain of 20.64 in

training, a rtest of 0.206 and RMSEtest 54.51 in prediction. The SVM

model had least accuracy with RMSEtrain of 49.32 in training, a rtest
of 0.249 and RMSEtest 54.88 in prediction. The PLSR model

outperformed other models.

The calorimetric measurements were conducted on oven-dried

samples. Therefore, oven-dried spectral data-based modeling was

performed with the hypothesis that prediction should be better for

oven-dried data as compared to fresh imaging data. As shown in
FIGURE 11

Support Vector Machine (SVM) classification for spectral data from different treatments along with the shaded decision boundaries. (a) SVM classifier
for fresh imaging data (b) SVM classifier for oven dried imaging data. For a given treatment, training data points are denoted by O’s, support vectors
are denoted by X’s, and test data points are denoted by squares. O's, X's, and squares for each treatment class are denoted by the same color, 80%
(blue), 60% (green), 40% (red), and 30% (black).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1515998
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chopra et al. 10.3389/fpls.2025.1515998
Table 1B, the oven-dried prediction models outperformed fresh

imaging-based models. The PLSR model had a RMSEtrain of 29.34 in

training, a rtest of 0.602 and RMSEtest 44.33 in prediction. When

models were built using RF, the model obtained a RMSEtrain of

24.22 in training, a rtest of 0.255 and RMSEtest 56.607 in prediction.

The SVM model had least accuracy with RMSEtrain of 49.83 in

training, a rtest of 0.170, and RMSEtest 55.33 in prediction. As

observed for fresh imaging data, the PLSR model outperformed

other models. RF and SVM functioned better for fresh imaging data

compared to oven-dried data; however, overall, they were not

accurate enough for predictive use. PLSR outperformed all the

models. Although fresh imaging data was useful for predicting cal/g

based on PLSR, the accuracy of the PLSR model was significantly

higher for the oven-dried data, as expected (Supplementary

Figure S5).
3.7 Modeling energy concentration using
optimal wavelengths

Although PLSR based predictions using full spectral range of 242

wavelength bands (predictors) was efficient, an equation with smaller

group of predictors can be more tractable. To develop an equation

using relevant predictive wavelengths, the LASSO approach was used

to obtain a sparse prediction equation. LASSO regression allowed us

to generate a sparse model with non-zero coefficients for a small

subset of wavelengths. As shown in Table 2A, the LASSO model had

marginally lower prediction accuracy than PLSR for fresh imaging

data, whereas its prediction accuracy for oven-dried data was

comparable to that of PLSR (Supplementary Figure S6). For fresh

imaging data, the LASSO model had a RMSEtrain of 37.366 in

training, a rtest of 0.389 and RMSEtest 51.83 in prediction. For oven

dried imaging data, the LASSO model had a RMSEtrain of 28.325 in

training, a rtest of 0.604 and RMSEtest 43.675 in prediction. The

LASSO model for fresh imaging data used 14 wavelengths with non-

zero coefficients to establish predictions (Table 2B). The reported

wavelengths had the strongest predictive power for calorimetric
Frontiers in Plant Science 17
content of the samples compared to other wavelengths for fresh

imaging data. For samples imaged after oven drying, 22 wavelengths

had high predictive power for calorimetric content of the samples

(Table 2B). Most differences among the spectral signatures of the

genotypes were detected between 600–900 nm and around 1200 nm

(Figures 7, 8). The wavelength vectors with non-zero coefficients

primarily resolved to the same spectral range. These results

demonstrated that the differences in spectral signatures were based

on changes in biochemical composition and could gauge

calorimetric measurements.
3.8 Modeling for relative water content
using full spectral range

RWC was recorded for drying samples at regular intervals of

fresh (0), 6, 12, 24, 48, 72, 96, 103, 120 HAH and oven-dried

samples. This avoided double counting as the samples were imaged

at every time point and had an updated RWC value for every

recording. For every treatment with at least 18 samples and 10 time

points, a total of at least 180 data points were available, which made

it possible to generate treatment-based prediction equations and

provided a comprehensive data frame to conduct prediction

modeling. Calibration algorithms of PLSR, RF, and SVM were

applied to establish the quantitative relationship between the

extracted reflectance spectral data within the full spectral range of

242 wavelength bands (predictors) and the corresponding

dependent RWC (predicted). Table 3 shows the results of the

calibration, cross-validation, and prediction statistical parameters

of the models. As summarized in Table 3A for overall prediction

(not including treatments as a factor) modeling, all models had high

accuracy. The PLSR model had a RMSEtrain of 0.330 in training, a

rtest of 0.985 and RMSEtest 0.240 in prediction. When models were

built using RF, the model obtained RMSEtrain of 0.188 in training, a

rtest of 0.975, and RMSEtest 0.302 in prediction. Meanwhile, the

SVMmodel was least accurate with RMSEtrain of 1.121 in training, a

rtest of 0.867, and RMSEtest 0.702 in prediction. Table 3B

summarizes the statistical parameters for treatment-based

prediction models. All models predicted RWC under all

treatments accurately. Supplementary Figure S7 presents the

scatter plots of measured versus predicted values of the PLSR and

RF models.
3.9 Prediction accuracies between half and
full section imaging are comparable

To minimize the potential for error due to shadowing between

the adjacent split stalk sections, we used half-sections (Figure 1). As

shown in Supplementary Table S3, there was no significant

improvement in prediction accuracy for cal/g. Supplementary

Table S4 summarizes no significant improvement in prediction

accuracy for RWC. The scatter plots of measured versus predicted

value of the PLSR and RF models are shown for cal/g

(Supplementary Figure S8) and for RWC (Supplementary Figure
TABLE 1 Cross-validation and test results of using full spectrum to
predict cal/g with Partial Least Squares Regression (PLSR), Random
Forest (RF), and Support Vector Machine (SVM).

Table 1A Error metrics for fresh imaging data

Method RMSEtrain RMSECV RMSEtest rcv rtest

PLSR 35.76 43.67 50.13 0.517 0.470

RF 20.64 43.94 54.51 0.448 0.206

SVM 49.32 51.2 54.88 0.106 0.249

Table 1B
Error metrics for oven dried
imaging data

Method RMSEtrain RMSECV RMSEtest rcv rtest

PLSR 29.34 39.05 44.33 0.644 0.602

RF 24.22 51.22 56.607 0.065 0.255

SVM 49.83 51.29 55.33 0.087 0.170
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TABLE 2 Cross-validation and test results of using optimal wavelengths based on LASSO model to predict cal/g.

Table 2A Error metrics for LASSO model

Method RMSEtrain RMSECV RMSEtest rcv rtest

Fresh 37.366 44.748 51.839 0.449 0.389

Oven Dried 28.326 44.781 43.676 0.505 0.604

Table 2B Wavelengths with non-zero coefficients used by LASSO model to establish prediction

Dataset Wavelength (nm) Coefficient

Fresh 651.095 75.180

Fresh 671.82 -2151.522

Fresh 688.4 2190.856

Fresh 729.851 -579.684

Fresh 829.331 400.314

Fresh 999.276 -324.228

Fresh 1020 -968.309

Fresh 1181.66 -1167.202

Fresh 1185.8 -156.534

Fresh 1289.43 0.062

Fresh 1293.57 33.131

Fresh 1301.86 155.861

Fresh 1306.01 314.797

Fresh 1310.15 2049.670

Oven Dried 667.675 -1238.971

Oven Dried 671.82 -858.982

Oven Dried 684.255 789.914

Oven Dried 688.4 2311.060

Oven Dried 709.126 -1862.389

Oven Dried 738.141 139.271

Oven Dried 779.591 0.009

Oven Dried 783.736 1106.862

Oven Dried 866.636 10.645

Oven Dried 1136.06 -2188.964

Oven Dried 1223.11 2234.857

Oven Dried 1231.4 134.342

Oven Dried 1359.89 -986.749

Oven Dried 1372.33 1783.041

Oven Dried 1397.2 6.115

Oven Dried 1401.34 871.405

Oven Dried 1430.36 -46.357

Oven Dried 1434.5 -5421.559

Oven Dried 1438.65 -1628.416

(Continued)
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S7). These results suggest that shadow effect between the adjacent

split stalk sections was not an issue, and confirmed the reliability of

this approach. The comparable predictions from both methods

emphasize that the half-section results served as a technical

replicate for the full-section method.
4 Discussion

In this study, we aimed to link known biochemical composition

differences with their spectral signatures under four water

treatments. The HSI setup effectively differentiated among

different classes of macromolecules, and the system was able to

distinguish the subclasses of carbohydrates, including starch and

cellulose (Figure 2a), reflecting the sensitivity of the technique.

Starch has a(1→4) glycosidic bonds, whereas cellulose has b(1→4)

glycosidic bonds where alternate beta-glucose monomers are
Frontiers in Plant Science 19
oriented 180° to each other (Richardson and Gorton, 2003). The

a(1→6) glycosidic bonds establish branching in starch, whereas

linear cellulose establishes interchain hydrogen bonding with

parallel chains (Richardson and Gorton, 2003). The differentiating

spectral features between starch and cellulose reported in this study

could correspond to differences in the orientation of alternate

monomers or branching. The spectral differences observed in this

study were larger between different classes as compared to between

different subclasses. To test the reliability of the setup, different

derivatives of the same casein protein sample were examined, casein

acid hydrolysate and casein enzymatic hydrolysate, which all had

the same spectral signature (Figure 2a). Lignin has a unique spectral

signature, which could be a feature of its ether bonds and aromatic

rings. The absorption wavelengths associated with various organic

compounds based on NIRS (Curran, 1989), fall into the observed

absorption range using HSI (Figure 2a). This served as a validation

of the technique for its reliability in detecting true biochemical
TABLE 2 Continued

Table 2B Wavelengths with non-zero coefficients used by LASSO model to establish prediction

Oven Dried 1484.24 233.635

Oven Dried 1492.53 6281.460

Oven Dried 1650.04 -1819.286
TABLE 3 Cross-validation and test results of using full spectrum to predict Relative Water Content (RWC) with Partial Least Squares Regression
(PLSR), Random Forest (RF), and Support Vector Machine (SVM).

Table 3A Error metrics for overall data

Method RMSEtrain RMSECV RMSEtest rcv rtest

PLSR 0.330 0.359 0.240 0.969 0.985

RF 0.188 0.424 0.302 0.957 0.975

SVM 1.121 1.003 0.702 0.791 0.867

Table 3B Treatment-wise error metrics using treatment as factor

Treatment Method RMSEtrain RMSECV RMSEtest rcv rtest

80% WHC PLSR 0.276 0.328 0.218 0.959 0.981

80% WHC RF 0.133 0.287 0.228 0.969 0.973

80% WHC SVM 1.091 1.057 0.828 0.627 0.651

60% WHC PLSR 0.184 0.259 0.243 0.983 0.989

60% WHC RF 0.183 0.426 0.434 0.954 0.960

60% WHC SVM 1.376 1.320 1.467 0.487 0.691

40% WHC PLSR 0.297 0.380 0.575 0.963 0.952

40% WHC RF 0.169 0.412 0.687 0.956 0.936

40% WHC SVM 1.345 1.185 1.406 0.641 0.764

30% WHC PLSR 0.283 0.324 0.377 0.976 0.975

30% WHC RF 0.149 0.294 0.420 0.981 0.970

30% WHC SVM 1.425 1.349 1.229 0.658 0.666
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differences. The tested standards shared the same absorption feature

between 1350–1400 nm, validating that biological compounds

absorb light at similar wavelengths (Curran, 1989). It also

suggests that this feature could be indicative of a specific chemical

bond present in all the samples, which, from the structure of these

compounds, could be covalent bonds such as C-C and C-H bonds.

We have ruled out the C-O bond because it is also shared by urea,

which has a unique spectral signature lacking a strong 1350–1400

nm feature. The unique spectral signature of urea could be a

combined feature of amide bonds, high N:C ratio, and planar

geometry (Vaughan and Donohue, 1952). The spectral signature

of standards (Figure 2a) could be further expanded and developed

into a library where the spectral signatures of plant tissue samples

could be screened for potential matches. Percentage identity

indicators could be provided based on matching features of

reflectance (crest) and absorption (trough) across the spectral

range. We propose the possibility of developing an algorithm for

local alignment of the spectral signatures of a plant tissue sample,

based on percent identity or similarity score in comparison with the

signature of standards of organic compounds. The technique

suggests the next step in narrowing down the biological basis of

spectral differences between plant samples.

To identify plant-specific spectral features for differences in

biochemical composition, the sorghum bmr mutants impaired in

the monolignol biosynthesis were used as a model. For varying level

of dehydration of stalks (Figure 2b), there is a linear relationship

between sample dehydration and reflectance. The observed trend,

shared by the tested standards between 1350–1400 nm, was also

detected for oven dried plant tissue (Figure 2) across tissue types

and growth stages. Lack of this trend in fresh tissue is likely due to

water masking the biochemical spectral signatures. The differences

targeted in this study are based on cell wall composition/

biochemical changes. The differences in spectral trends due to

water limitation for fresh samples might be partly explained by

varying relative water content; however, detecting differences in

spectral trends for samples imaged after oven drying emphasizes

biochemical differences between the samples. The information from

fresh tissue imaging is useful in detecting plants experiencing water

stress. There are identifying features from the spectrum that are

useful for distinguishing samples from different levels of water-

deficit conditions for a given genotype (Figures 9a–c). This example

shows the potential use case scenario where fresh sample imaging is

more useful than dried sample imaging. The SVM classifier

effectively separates both training and test samples into respective

treatment classes based on spectral signatures (Figure 11). This

setup was able to identify plants experiencing 60% WHC, when

symptoms of limited water availability were not visible to the

human eye, which emphasizes the potential of this technique to

sense plant stress at the initial stages. Fresh and dried imaging data

from the same samples yield unique information for each category.

Therefore, to explore spectral differences between samples using

HSI, studies should, where feasible, incorporate both fresh and

oven-dried samples into their experimental designs. The ability of

the system to not only detect differences between different

genotypes under varying treatment levels but also differentiate a
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given genotype under varying water-deficit treatments suggests that

it is a robust technology to identify compositional differences and

changes induced by water-deficit conditions.

In this study, genotypic spectral differences were detected using

foliar tissue (leaf blade and isolated midrib) samples. Different growth

conditions and growth stages alter the spectral signature of leaf

samples (Figures 3–5). There we cannot discount the possibility of

interference in the leaf or midrib spectral signatures from pigments

contributing to the brown midrib color (Figure 6). The changing

spectral trends among the genotypes between growth stages and

treatments emphasize the fact that HSI-based feature detection

depends on biochemical composition during growth (Kamstra

et al., 1958; McBee and Miller, 1993) or stress exposure (Emerson

et al., 2014; Perrier et al., 2017). Our HSI was able to record changes

in spectral signatures during the early stages of water limitation

(Figure 3) when the effects are not visible to the human eye. We

detected features that potentially link to lignin content, but

considering large sections of the spectrum with overlapping means

and SE for the genotypes (Figures 3–6), the accuracy of the statistical

regression models may be relatively low compared to direct chemical

analyses of compounds. This could be due to relatively low

concentration of lignin in foliar tissue (McBee and Miller, 1993).

Overall, midribs sampled at the end of the vegetative stage were the

more suitable foliar tissue to establish spectral trends based on

biochemical differences.

Stalk tissue contributes most to plant stover (stalks and leaves)

in terms of biomass. Stalks are also enriched in lignin due to the

elaborate vascular bundles contained inside (McBee and Miller,

1993; Hatfield et al., 1999). Based on larger separation in the means

and SE among the genotypes, stalk tissue was the preferred sample

for detecting lignin-based differences between the genotypes and

treatments. Water limitation alters the hyperspectral signature

(Emerson et al., 2014; Perrier et al., 2017). Our results show that

sorghum bmr mutants have altered spectral response under water

limitation (Figures 9d–f), which likely reflects differential sensitivity

to water limitation-induced biochemical changes.

Lignin has the highest energy density of all biochemical

components of a plant cell wall (Novaes et al., 2010) and a high

degree of correlation with calorimetric (energy) data (Gardner et al.,

2015). Calorimetric data reflect changes in the overall biochemical

composition of the plant tissue and also serves as a proxy for lignin

content. A representative 15 cm stalk tissue above the crown was

sufficient to detect calorimetric differences among the genotypes.

Machine learning models were developed using spectral data from

the stalk tissue to effectively determine the energy value of test data.

PLSR performed better than other models because of its ability to

effectively handle multicollinearity in our study, which is a feature

of hyperspectral data (Sun, 2010). Oven-dried tissue is most suitable

for estimating calorimetric content based on spectral information,

which is logical given calorimetric estimations were based on data

from oven-dried samples. The models trained using stalk tissue are

a useful tool to estimate the energy value of samples using a lot less

tissue, simplifying the sample processing. This study shows that the

features evaluated through the HSI system could be used to

characterize forages with altered lignin content. The most
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effective calibration models use a selection of optimal wavelengths,

defined by regression coefficient analysis, to reduce the

computational burden of this multivariate analysis (Liu et al.,

2014). Equations using fewer wavelengths address the same

biological question in a shorter period and requires lower

computational power (Liu et al., 2014). Based on LASSO, this

study presented 14 wavelengths for fresh imaging data and 22

wavelengths for oven-dried imaging data (Table 2B). The reported

wavelengths have the strongest predictive power for the

calorimetric content of the samples compared to other

wavelengths. These wavelengths should be further tested for

improving prediction accuracy. The methods from this study can

be useful for large breeding programs because energy density

measurements per sample could be conducted on a representative

15 cm stalk tissue without time and labor intensive sample grinding

and bomb calorimetry.
5 Conclusion

This study presents a rapid, accurate, and alternative gross

energy density measurement technique for sorghum stalks. Our

results indicate the robustness of HSI for chemical sensing,

wavelength range of strong absorption features for major organic

compounds included absorption wavelengths previously reported

using NIRS. Stalk tissues were most suitable for resolving spectral

differences between genotypes. The spectral response of the

genotypes was treatment dependent associated well with the

calorimetric measurements. Prediction models indicated that

fresh imaging is more useful to differentiate plants experiencing

water-deficit conditions whereas oven dried data performed better

for calorimetric estimations from the spectral data. This highlighted

the importance of using tissues with varying hydrations because

there were independent useful inferences from oven dried and fresh

imaging data. LASSO regression generated wavelengths with high

predictive power for calorimetric content of the samples. Since

calorimetric measurements were used as a proxy for lignin, same

subset of wavelength should have high predictive power for lignin

content estimations. The wavelengths reported in this study can

further broaden the applications of high-throughput energy density

screening as it would enable the use of less expensive multispectral

camera systems with limited spectral bands.
6 Limitations and future directions

Similar to most machine learning models, LASSO is limited by

multicollinearity. Under situations of multicollinearity, LASSO

randomly selects between highly correlated predictors, therefore a

different set of wavelengths from the range of 242 predictors could

also have similar prediction accuracy. This does not rule out the

biological relevance of wavelengths identified in this study. Future

studies will include higher number of diverse sorghum accessions to

make the training data more robust and to further refine subset of

wavelengths for energy density estimations from spectral data.
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SUPPLEMENTARY FIGURE 1

Experimental design based on a Randomized Complete Block Design (RCBD).

SUPPLEMENTARY FIGURE 2

Greenhouse setup of the experimental design.

SUPPLEMENTARY FIGURE 3

Uniform drying-based spectral response of stalk samples from 80% WHC

showing relationship between tissue hydration and spectral response. (A) WT
(B) bmr2 (C) bmr6 (D) stacked; HAH indicates hours after harvesting. The solid

line represents the mean of the samples and the ribbon around represents
Standard Error (SE).

SUPPLEMENTARY FIGURE 4

Total energy content of the imaged stalk samples from HSI-4 (89 DAT),

genotype response under different water treatments (n = at least 4) (A) Total
energy content of WT under different water treatments (B) Total energy

content of bmr12 under different water treatments (C) Total energy content
of bmr6 under different water treatments (D) Total energy content of bmr2

under different water treatments (E) Total energy content of stacked under

different water treatments; WHC indicates water holding capacity. The boxes
represent the interquartile range (IQR) of the data. The horizontal line inside

each box is median and whiskers extend to the minimum and maximum
values within 1.5 times of IQR. Significance based on t-test with p<0.05.
Frontiers in Plant Science 22
SUPPLEMENTARY FIGURE 5

Scatterplot of the lab-measured value vs. the image-predicted value of cal/g

based on the full spectrum for at least n = 75. The data were split into a

training and a test set consisting of 60 and 16 observations (75/25 split),
respectively. The cross validation set is denoted by dot and test data set by

triangle. Grey line represents the regression line for cross validation set, red
line represents the test fit regression line, and the dotted line represents 1:1

regression fit. (A) Partial Least Squares Regression (PLSR) for fresh imaging
data (B) Random Forest (RF) for fresh imaging data (C) Partial Least Squares
Regression (PLSR) for oven dried imaging data (D) Random Forest (RF) for

oven dried imaging data. The error metrics are available in Table 1.

SUPPLEMENTARY FIGURE 6

Scatterplot of the lab-measured value vs. the image-predicted value of cal/g

based on the optimum wavelengths from LASSO model for at least n = 75.
The data were split into a training and a test set consisting of 60 and 16

observations (75/25 split), respectively. The cross validation set is denoted by

dot and test data set by triangle. Grey line represents the regression line for
cross validation set, red line represents the test fit regression line, and the

dotted line represents 1:1 regression fit. (A) Fresh imaging data (B)Oven dried
imaging data. The error metrics are available in Table 2.

SUPPLEMENTARY FIGURE 7

Scatterplot of the lab-measured value vs. the image-predicted value of Relative

Water Content (RWC) based on the full spectrum for at least n = 660. The data
were split into a training and a test set consisting of 530 and 132 observations

(80/20 split), respectively. The cross validation set is denoted by dot and test
data set by triangle. Grey line represents the regression line for cross validation

set, red line represents the test fit regression line, and the dotted line represents
1:1 regression fit. (A) Partial Least Squares Regression (PLSR) for full section

imaging (B) Random Forest (RF) for full section imaging (C) Partial Least Squares
Regression (PLSR) for half section imaging (D) Random Forest (RF) for half
section imaging. The error metrics are available in Table 3 and S4.

SUPPLEMENTARY FIGURE 8

Scatterplot of the lab-measured value vs. the image-predicted value of cal/g
based on the full spectrum for half section results with at least n = 75. The data

were split into a training and a test set consisting of 60 and 16 observations (75/25
split), respectively. The cross validation set is denoted by dot and test data set by

triangle. Grey line represents the regression line for cross validation set, red line

represents the test fit regression line, and the dotted line represents 1:1 regression
fit. (A) Partial Least Squares Regression (PLSR) for fresh imaging data (B) Random
Forest (RF) for fresh imaging data (C) Partial Least Squares Regression (PLSR) for
oven dried imaging data (D) Random Forest (RF) for oven dried imaging data. The

error metrics are available in Supplementary Table S3.
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