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Introduction: Quantitative wood anatomy (QWA) along a time series of tree rings

(known as tree-ring anatomy or dendroanatomy) has proven to be very valuable for

reconstructing climate and for investigating the responses of trees and shrubs to

environmental influences. A major obstacle to a wider use of QWA is the time-

consuming data production, which also requires specialized equipment and

expertise. This is why the research community has been striving to reduce these

limitations by defining and improving tools and protocols along the entire data

production chain. One of the remaining bottlenecks is the analysis of anatomical

images, which broadly consists of cell and ring segmentation, followed by manual

editing, measurements, and output. While dedicated software such as ROXAS can

perform these tasks, its accuracy and efficiency are limited by its reliance on classical

image analysis techniques. However, the reliability and accuracy of automatic cell

and ring detection are key to efficient QWA data production.

Methods: In this paper, we target automatic ring segmentation and deliberately

focus on the most challenging case, circular ring structures in arctic angiosperm

shrubs with partly very narrow and wedging rings. This shape requires high precision

combined with a large global context, which is a challenging combination for

instance segmentation approaches. We present a new iterative regression-based

method for more precise and reliable segmentation of tree rings.

Results and discussion:We show a performance increase inmean average recall of

up to 18.7 percentage points compared to previously published results on the publicly

available MiSCS (Microscopic Shrub Cross Sections) dataset. The newly added

uncertainty estimation of our method allows for faster and more targeted validation

of our results, saving a large amount of human labor. Furthermore, we show that

panoptic quality performance on unseen species is more than doubled using multi-

species training compared to single-species training. This will be another key step

toward an AI-based version of the currently available ROXAS implementation.
KEYWORDS

tree ring, deep learning, quantitative wood anatomy, image segmentation, neural
network, shrubs, ROXAS
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1 Introduction

Tree rings are an outstanding archive for environmental

research because of their absolute, annual dating precision and

the wide occurrence of trees in many ecosystems around the globe

(Fritts, 2001). The vast amount of applications in environmental

research of tree-ring information can be largely grouped into the

reconstruction of past variability and disturbances and the study of

the impact of environmental variability and climate change on tree

growth (Speer, 2010). Both perspectives are enabled by the

interactions between trees and their environment, which

modulate the amount and quality of wood formed in a given year.

There are different types of information stored in different parts

of tree rings that are accessible through different methodological

approaches (Frank et al., 2022). On the macroscopic scale, these

methods range from tree-ring width measurement to measuring

early- and latewood width, and to the relatively new method called

blue intensity (Speer, 2010; Björklund et al., 2024). On the

microscopic scale, they include tree-ring density based on

measurements in x-ray images (Schweingruber et al., 1978) and

high-resolution surface images (Rydval et al., 2024), and stable

isotope composition in tree rings (Siegwolf et al., 2022).

Most recently, the quantitative wood anatomy (QWA) of tree

rings (Fonti et al., 2010), also referred to as tree-ring anatomy or

dendroanatomy, which measures cell dimensions from high-

resolution digitized micro-sections or wood surfaces (von Arx

et al., 2016), has been established. QWA excels at examining tree-

ring properties at the cellular level due to its high resolution. Since

the intra-ring position of cells corresponds to an intra-seasonal time

window of cell formation (Fonti et al., 2010; Ziaco, 2020),

investigations into sub-seasonal tree-environment interactions can

be explored. The growing mechanistic understanding of the drivers,

processes, and mechanisms of wood cell formation (e.g. Rossi et al.,

2013; Cuny et al., 2014, 2019; Cabon et al., 2020; Peters et al., 2021;

Silvestro et al., 2024) further contributes to linking components of

cell structure to the corresponding cell formation processes (Carrer

et al., 2017; Castagneri et al., 2017). Another very important asset of

QWA is the structure-function link of xylem cells (Hacke et al.,

2001, 2015). Structural properties of xylem cells define their

function and inversely, tree responses to environmental variability

impact the structural properties of xylem cells (Domec et al., 2008;

Pittermann et al., 2011; Pauline S. et al., 2014; Wilkinson et al., 2015;

Rosner, 2017; Guérin et al., 2020). Thus, several metrics related to

water transport and carbon allocation can be derived from cell

anatomical measurements (Fonti and Babushkina, 2016; Ziaco

et al., 2016; Losso et al., 2018; Pacheco et al., 2018). The range of

applications is wide and includes dendroclimatology and climate

reconstructions (e.g. Ziaco et al., 2016; Björklund et al., 2020;

Edwards et al., 2022; Seftigen et al., 2022; Björklund et al., 2023;

Lopez-Saez et al., 2023); studies into wood biomass estimation

(Cuny et al., 2015; Puchi et al., 2023), tree mortality (e.g. Heres ̧ et al.,
2014; Pellizzari et al., 2016; Klesse et al., 2020) and drought
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responses (Guérin et al., 2020; Olano et al., 2022; Buras et al.,

2023); and forest ecology and climate sensitivity (Arnič et al., 2021;

Garcıá-González and Souto-Herrero, 2023; Giberti et al., 2023) to

name only a few. QWA relies on specialized software such as

ROXAS (von Arx and Carrer, 2014; Prendin et al., 2017),

WinCELL (Klisz, 2009), AutoCellRow (ACR) (Dyachuk et al.,

2020) and CARROT (Resente et al., 2024), or adjusted general

software such as QuPath (Keret et al., 2024) and ImageJ (see Scholz

et al., 2013) to measure the numerous cells and rings visible in these

thin sections.

Within the last decade, many advances in data acquisition and

processing have been made, such as the usage of slide scanners instead

of stitching single microscope images together (von Arx et al., 2016;

Fonti et al., 2025). However, the fundamental software stack of ROXAS

still relies on classical computer vision methods such as thresholding

and edge detection for cell segmentation. These detected cells, and

especially their sizes, are then used within strict given rules to predict

the tree rings (von Arx and Dietz, 2005). This method poses several

problems. First, insufficient cell segmentation results in poor tree-ring

segmentation. In recent years, the performance of cell segmentation has

drastically increased using deep learning methods (Garcia-Pedrero

et al., 2020; Resente et al., 2021; Katzenmaier et al., 2023). These

improvements will help the tree ring segmentation performance for

some species, however, other species have a low number of cells or the

cell sizes only differ slightly. For these species, better cell segmentation

will still result in suboptimal segmentation performance.

More recently, deep learning-based approaches also tackled the

problem of tree-ring segmentation by removing the dependency on

cell segmentation and directly predicting tree rings based on the

image itself. Garcıá-Hidalgo et al. (2024) showed promising results

for European beech increment core images with linear ring

structures by using a transformer-based UNet architecture to

predict the tree-ring boundary. However, this method only

predicts boundaries and not the whole ring area, making

quantitative evaluation and comparison difficult.

Gillert et al. (2023) presented an openly accessible benchmark

for circular ring segmentation in combination with a strong

specialized baseline termed Iterative Next Boundary Detection

(INBD), outperforming all evaluated general instance

segmentation approaches. These circular tree rings are difficult to

detect due to disappearing and reappearing rings, so-called wedging

rings, and their concentricity. Additionally, standard instance

segmentation approaches typically focus on compact objects and

show poor performance on the large hollow rings included in the

INBD dataset. Mask-R-CNN (He et al., 2017), a widespread

instance segmentation approach, struggles to properly detect rings

due to its two-stage approach of first detecting bounding boxes and,

in the second segment, the content of the box. Since the bounding

boxes of the rings overlap to a large degree, the non-maximum

suppression fails. Contour-based methods such as Deep Snake

(Peng et al., 2020) offer higher precision masks, however, they

suffer from the same non-maximum suppression problem. Bottom-
frontiersin.org
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up approaches such as Multicut (Kappes et al., 2011) and GASP

(Bailoni et al., 2022) detect smaller related pixel patches and cluster

those patches together. These approaches perform better, however,

they show deficits for disconnected rings and hard-to-detect

boundaries. In comparison with these off-the-shelf computer

vision algorithms, the INBD method proposed by Gillert et al.

(2023) is tailor-made for concentric rings. It shows superior

performance in ring boundary detection and better ring

segmentation, even for discontinuous rings. The key features of

the INBD approach are its iterative processing of the rings and its

use of a polar grid instead of the cartesian grid typically used by off-

the-shelf computer vision methods. We argue that the performance

achieved by the INDB approach compared to standard methods

illustrates how the very particular problem of tree-ring

segmentation is best addressed with tailored methods.

In this paper, we build on these recent advances and propose a

new circular ring detection model that achieves better performance

with improved reliability. We follow the iterative paradigm of INDB

but frame the boundary detection problem as a regression task. This

leads to better segmentation performance and enables us to predict

calibrated uncertainties on the boundary position. Additionally, we

train our model in a multi-species setting and show higher

performance on the known species and more robust predictions

for unseen species.
2 Materials and methods

2.1 Dataset

In this study, we use the ring segmentation dataset MiSCS

(Microscopic Shrub Cross Sections) introduced by Gillert et al.

(2023). It contains E = 213 thin-section samples of arctic shrubs

belonging to three different species: Dryas octopetala (DO),

Empetrum hermaphroditum (EH), and Vaccinium myrtillus (VM).

Each sample i ∈ [0,E] contains the input thin section image Xi ∈
R3×H×W and the ground truth instance mask Yi ∈ [0,ei]

H×W, with

eithe number of rings in sample i. Yiassigns to each pixel position (h,

w) of the image an integer value y(h, w)i , identifying the specific ring

to which the pixel belongs. A set of samples from the dataset can be
Frontiers in Plant Science 03
found in Figure 1. The dataset’s images have a typical size of over

3,000 pixels per dimension. With a resolution of 2.27 pixel/μm, this

results in sizes over 1,300 μm.
2.2 Method

2.2.1 Overview
Our method predicts for each input image Xi an instance mask

Ŷ i ∈ ½0, ni�H�W , matching the ground truth segmentation Yi as

accurately as possible.

As discussed in the introduction, conventional computer vision

approaches for instance segmentation tend to struggle with the

specific challenges of ring segmentation. We therefore build on

recent work by Gillert et al. (2023) and adopt a tailored approach

that addresses the task iteratively, i.e., ring by ring. Our model

processes the input image radially from pith to bark and regresses

the distance to the next ring from the previous ring.

We present an overview of our method, named INBD-R, as

pseudo-code in Algorithm 1. The main components are as follows.

A trainable semantic segmentation model processes the

downscaled input image and is followed by the iterative model.

The semantic segmentation model returns the location of the pith

from which the iterative process starts, as well as a first estimation of

the ring width. Next, starting from the position of the pith, the

position of the next ring is iteratively predicted. Each iteration

includes the following steps:
• To leverage the circular geometry of thin-slice images, the

input image is projected onto a polar grid with the origin in

the center of the pith prediction.

• The polar image is radially cropped based on the estimated

ring width.

• The cropped polar image is processed by a trainable radial

regression model that predicts the precise position of the

next ring and an uncertainty value for the ring position.
The iterative process, visualized in Figure 2, ends when the bark

or the edge/outline of the xylem tissue is reached, which is detected

via the missing ring width estimate. After the iterative process, the
FIGURE 1

Example of the image and label pair for DO, EH, and VM from left to right. The image is publicly available in the MiSCS (Microscopic Shrub Cross
Sections) dataset (Gillert et al., 2023).
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ALGORITHM 1

Pseudo-code for our iterative boundary segmentation method. Blue
represents trainable models and red non-trainable processing.
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ring positions are converted back to instance masks by drawing

their polygons from outside to inside. To gain prediction at full

resolution, the continuous polygon points are upscaled. We first

train the semantic segmentation model on the data. In the second

step, we use the trained model to preprocess the input data to

prepare it for the training of the radial regression model. Third, we

train the radial regression model using our fast iterative unrolling

training procedure. We describe each part of INBD-R in further

detail in the following sections.

2.2.2 Semantic segmentation model
Task: The semantic segmentation model aims to find the

position of the pith and produce a first estimate of each ring’s

width, as visualized in Figure 3. Following Gillert et al. (2023), we

achieve this through a semantic segmentation step, where each pixel

is classified within the three classes:
Fron
• Pith: center of the thin section

• Boundary: pixels at the interface between two consecutive rings

• Background: pixels not containing xylem or pith tissue
The boundary class itself contains most of the target

information. However, the boundary prediction as a final result is

not a viable option since a one-pixel-wide boundary prediction

cannot be easily converted to instance masks. This is because of the

insufficient robustness to wrong predictions, struggles with hard-to-
tiers in Plant Science 04
detect boundaries on small scales, and the possibility of connecting

wedging rings.

We use a convolutional neural network with sigmoid activation

in the final layer to predict one binary mask for each of the four

classes. To reduce the computational load and to increase the spatial

context, the semantic segmentation model operates on a ×4

downscaled version of the input image.

Architecture and training: We employ a UNet (Ronneberger

et al., 2015) with a Res2Net (Gao et al., 2021) backbone and train it

with a binary dice loss (Sudre et al., 2017) defined in Equations 1, 2.

This loss is applied to each mask individually. Therefore, y

represents the ground truth binary mask and ŷ the predicted

binary mask.

LDice(y, ŷ ) = 1 − o(y · ŷ ) + ϵ

o(y + ŷ ) + ϵ
(1)

L = a0LPith + a1LBackground + a2LBoundary (2)

The binary dice losses are weighted with a0 = 0.1, a1 = 0.01, and

a2 = 1. Binary segmentation per class is superior to multi-class

cross-entropy training because it prevents the model from

exclusively deciding between the background and the pith since

they can look similar if the pre-processing of the xylem damaged the

pith tissue, as seen in Figure 4.

2.2.3 Polar grid
Initial boundary position: We convert the predicted binary

mask of the pith into the initial boundary position. This position is

defined by the center point of the binary mask and equally spaced

outer edge points of the mask of shape R2×M. M represents the

adaptive angular resolution, which grows proportionally to the

distance to the center, ensuring similar spacing between boundary

points across ring positions. The center point is reused for all

boundaries. The actual value M for the next ring is set to 2p times

the average distance between the center and the current

ring boundary.

Polar transformation: The downsampled input image is

converted into an image in polar space (polar image) where the

upper row of pixels corresponds to the current boundary. The
FIGURE 2

Overview of the iterative process. We initialize the boundary with the pith prediction from the semantic segmentation network. Based on this
boundary and the ring width estimate from the semantic segmentation model, we create the polar grid to interpolate the polar image. We feed this
image to the radial regression model, yielding the radial regression prediction, which we use to predict the next boundary. With this boundary, we
start the next iteration. This process repeats until the end of the xylem is reached.
frontiersin.org
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current boundary equals the initial boundary in the first iteration

and is updated with the next predicted boundary in each iteration

step. The rough estimate for the next ring width P ∈ R is computed

based on the current ring and the binary mask for the boundary

class of the semantic segmentation model. P is obtained by taking

1.5 × the 95th percentile of the distances from the current ring to

the next boundary pixel in a radial direction evaluated at each

boundary point within the current ring. This overcomes outliers

and ensures that the next ring boundary is within the polar image.

Further details on the angular resolution M and the rough ring

width estimate P can be found in the work by Gillert et al. (2023).

The polar image is constructed by interpolating the downsampled

image on a polar grid of shape N × M, with N = 256 the number of

points in a radial direction. These points start at the current

boundary and fan out in a radial direction with a distance of P/N

between the points. We generate the polar image of shape R6×N×M

by interpolating the down-sampled image as well as the background

and boundary predictions without applying the activation function

of the semantic segmentation model. For the 6th channel, we

calculate the distance from each interpolation point to the center

and normalize its values from 0 to 1. This helps the model to
Frontiers in Plant Science 05
understand jumps in the previous boundary and gives information

on the global scale.

2.2.4 Radial regression model
Regression: Different from previous work (Gillert et al., 2023), we

frame the prediction of the next boundary prediction as a regression

task. To this end, we employ a second deep net, the radial regression

model, visualized in Figure 5. It predicts a real-valued distance to the

next boundary for each of the M angular positions of the polar grid.

Addressing this problem as a regression task has several decisive

advantages. First, it completely alleviates ambiguous predictions

occurring with a segmentation approach such as predicting multiple

edges within a pixel column, described by Gillert et al. (2023). In

other words, our approach enforces by-design that only one

boundary is predicted at each step. A second advantage is that the

architecture implicitly enforces a smoothness constraint on the ring

width because it uses bilinear upsampling in the segmentation head.

Third, our design also makes the model predictions directly

interpretable as they correspond to angular ring widths. In

particular, this enables us to additionally predict an uncertainty

value for the ring position, as described in Section 2.2.5.
FIGURE 4

Image and label pair from the dataset by Gillert et al. (2023) where the pith has been torn off by the thin-sectioning process. Additionally, the xylem
is interrupted on one side so that the pith and background labels touch.
FIGURE 3

Overview of the semantic segmentation model. The input is passed through the semantic segmentation model, predicting binary masks, which are
converted to the initial boundary and a ring width estimate.
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Architecture and training: We use the DeeplabV3+ (Chen

et al., 2018) architecture with a fast MobileNet (Howard et al., 2017)

backbone as a basis and modified it. First, we reduce the number of

convolution filters from 256 to 64 in the altrous spatial pyramid

pooling module of the DeeplabV3+. Second, we remove the

normalization layer after the atrous spatial pyramid pooling.

Third, we convert the convolutions into circular convolutions

proposed by Peng et al. (2020). These convolutions wrap around

in angular direction, which accounts for the circular polar space.

Finally, we replace the batch norm layers (Ioffe, 2015) with instance

norms (Ulyanov et al., 2016).

The change to instance norms is necessary since the circular

convolutions in combination with the adaptive angular resolution

M prevent conventional batching of input samples by concatenating

them along the batch dimension due to shape mismatches. The lack

of batching prevents the use of batch norm layers. To emulate batch

training, we use gradient accumulation, collecting gradients of

multiple forward passes before the weights update. The

normalization layer after the atrous spatial pyramid pooling had

to be removed because of the necessary change from batch to

instance norm.

We add a bypass for the features from the semantic

segmentation model by concatenating them to the output of the

previously described modified DeeplabV3+, as visualized in

Figure 5. This allows the further use of the already processed

features from the semantic segmentation model. Since

concatenations does not change the spatial shape, we still have

the same shape as the input N × M polar image. We reduce the

height dimension to one with a radial average pooling with a kernel

of shape N × 1. Finally, we apply a 1 × 1 convolution to reduce the

channel dimension to one, and output the predicted distances to the

next ring at each angular position D = [d1,···,dM] ∈ RM.

We train the radial regression model with L1 loss. We find that

the optimization is more stable if the target distances is first

normalized to values in [−1,1] as follows:
Frontiers in Plant Science 06
n(d) =
d − N

2
N
2

(3)

Hence our radial regression model is trained by minimizing

(Equation 4)

L1 = o
M

m=1
dm − n(dm)j j (4)

withD = [d1,···,dM] ∈ RM the ground truth distances to the next ring.

To encounter every ring with a similar frequency in training, we

initialize the iterative process with every ground truth ring boundary

as a starting point and limit the number of iterations to K = 3.

2.2.5 Uncertainty estimation
In the previous work of Gillert et al. (2023), the prediction of the

next boundary is cast as a pixelwise segmentation problem of the

polar image. In our work, instead of pixelwise class scores, we

regress a distance for each angular position m. Hence, the

predictions returned by our model are straightforward to

understand. This also enables us to train our model to predict an

uncertainty value that is directly expressed in terms of ring width,

instead of a more abstract uncertainty on each pixel’s class

prediction. For this, we modify the final one-by-one convolution

of our radial regression model to predict two parameters instead of

one: in addition to the distance D, the model also outputs

uncertainty values for each radial position: B = [b1,···,bM] ∈ RM.

We train these predictions using a Negative Log Likelihood (NLL)

with Laplacian distribution, as recommended by Yeo et al. (2021),

meaning that d and b are interpreted as the mean and scaling

parameter of a Laplace distribution (Equation 5):

f (xjd ,   b) =  
1
2b

exp( −
x − dj j
b

) (5)

and both are supervised using the following loss function (Equation

6):
FIGURE 5

We feed the polar image through a DeepLabV3+ (Chen et al., 2018) model and it is concatenated with the feature dimensions of the polar image.
We follow this with a radial average pooling which reduces the height dimension to one. A final 1x1 convolution is used to get to our final
radial regression.
frontiersin.org
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LNLL = o
M

m=1

dm − n(dm)j j
bm

+ log(bm) (6)

This loss enables the model to predict a higher uncertainty b for

samples where the regression error is hard to minimize, and thus

reduce their impact on the overall loss at the cost of increasing the

second term. After convergence, the model learns to predict higher

uncertainty b only for samples for which the error is more likely to

be high. The predictive uncertainty b is the scaling factor of the

Laplace distribution expressed in normalized units, we transform it

to a standard deviation sm of the distance expressed in original

units as follows (Equation 7):

sm =
ffiffiffi
2

p
· bm ·

P
2

(7)
2.3 Training and implementation details

2.3.1 Training
Dataset splits: We follow the given training and testing splits,

resulting in only 22, 24, and 22 training samples with average

diameters of 3,700, 3,260, and 3,979 pixels for DO, EH, and VM.

Example images and ground truth labels can be seen in Figure 1.

Semantic Segmentation Model: We train this model for 1,000

epochs using a cosine annealing learning rate schedule with a

starting learning rate of 1e − 3 and an end learning rate of 1e − 5.

The samples are augmented with random scaling, rotation, flipping,

and color jitter and cropped to a size of 512. We apply the standard

ImageNet pixel normalization. These samples are stacked into

batches of size 8. For the backbone, we use the default

hyperparameters and pre-trained on ImageNet.

Radial Regression Model: We train our radial regression model

for 500 epochs with a cosine annealing learning rate schedule

starting at 1e − 3 and ending at 1e − 5. As augmentation, we use

color jitter since the other augmentations we used for the semantic

segmentation model do not work in polar space. We apply the

standard ImageNet pixel normalisation. As described in section

2.2.4, we emulate the batch size of 8 with gradient accumulation.

2.3.2 Iterative unrolling
In the original implementation by Gillert et al. (2023), a training

step consists of running the semantic segmentation model, K = 3

consecutive iterative steps, which include polar grid construction

and interpolation and running the regression model.

We propose a more efficient implementation that enables faster

training. Our efficient implementation is based on 1) saving the

predictions of the segmentation model to disk instead of re-running

it at each epoch and 2) unrolling the iterative steps onto different

epochs. Indeed, we identified the polar grid construction and

interpolation as the main bottleneck in the training process.

The polar grid construction cannot be done in an offline pre-

processing step since it depends on the predicted ring of the

previous iterative step. However, we can offload the polar grid

construction and interpolation to other threads, allowing for

parallelizability during radial regression model training. To
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achieve this, we propose a new training process named iterative

unrolling. We unroll the iterative steps over K epochs. In iterative

unrolling, we only run one iterative step per training step. However,

we require the main thread to save the predicted ring to disk in the

current epoch. In the next epoch, this boundary will be read by the

data loader, which calculates the polar grid and interpolates the next

polar image. Therefore, this sample is effectively in the next iterative

step for this epoch. Splitting the iterative process over multiple

epochs avoids race conditions between saving and loading the

boundary files. After 3 epochs, we start over with the ground

truth ring, as is done in the original implementation.

In the original iterative implementation, the model sees each

sample K times per epoch. To mimic this, we duplicate each sample

K times and start the iterative process in a staggered manner where

the i-th copy starts in the i-th epoch using the predicted values. This

allows for the duplicate samples to be in different steps in the

iterative process. Another advantage of iterative unrolling is the

possibility to gain batches with polar images from many different

input images, as visualized in Figure 6. This is more difficult in the

original implementation due to the K steps with the same input

image. These more diverse batches result in more stable gradients,

which is especially useful for multi-species training where images of

different species display larger diversity. Besides the more stable

gradients, we achieve a speedup of two to three times using four

parallel threads.
2.4 Metrics

To estimate the performance of an instance segmentation

approach a measurement of mask similarity is necessary. The most

common mask similarity measurement is the Intersection over Union

(IoU) also referred to as the Jaccard index. It is defined as Equation 8.

IoU   (y, ŷ ) =  
y ∩  ŷj j
y ∪  ŷj j (8)

Naively calculating the average IoU between each prediction

mask and all label masks will not result in a desired metric. Gillert

et al. (2023) proposed to use the mean Average Recall (mAR)

[Equation 9] by Hosang et al. (2015) and Adapted Rand errors

(ARAND) [Equation 10] by Arganda-Carreras et al. (2015) for this

dataset. These two metrics effectively measure the performance but

are less intuitive. Therefore, we additionally evaluate the methods

with the Panoptic Quality (PQ) respective to its two parts

Segmentation Quality (SQ) and Recognition Quality (RQ)

introduced by Kirillov et al. (2019).

mAR = 2
Z 1

0:5
recall(o)   do =  

2
ko

k

i=1
max(IoU(gti) − 0:5,   0) (9)

ARAND = 1 − oijp
2
ij

aoks
2
k + (1 − a)okt

2
k

(10)

PQ, SQ, and RQ are defined in Equation 11 and give a good

overview of the performance. SQ gives an intuition on how well

instances with an IoU > 0.5 are segmented and RQ measures how
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many instances are matched.

PQ = o(y,ŷ )∈TPIoU(y, ŷ )

TPj j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Segmentation Quality(SQ)

� TPj j
TPj j + 1

2
FPj j + 1

2
FNj j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Recognition Quality (RQ)

(11)

These metrics are instance-based and do not give any intuition

of how far the ring boundary is from the ground truth label. To

further increase interpretability, we introduce a new metric that

measures the ring segmentation error in pixels because the scaling

between pixel and µm is not provided with the dataset.

To measure the error, we first match prediction and ground

truth instances with IoU > 0.5, similar to PQ. Once the matches are

established, we calculate the minimum distance from each

boundary point of the prediction to the closest boundary pixel of

the label. This is formally stated in Equation 12 where AEi
represents the absolute error for predicted boundary points ŷ i

and the label boundary pixel yj. We use these absolute errors to

calculate the mean Absolute Error (MAE) and the medium

Absolute Error (MedAE).

AEi = min
j

‖ ŷ i − yi ‖ (12)

For the evaluation of the uncertainty estimation, we use the

Expected Normalized Calibration Error (ENCE) introduced by Levi

et al. (2022). It is defined in Equations 13–15 and estimates the

calibration of the uncertainty, where s is the unnormalized

standard deviation and µ is the predicted mean. The RMSE is

calculated in the same manner as the MAE and MedAE using the

instance matching beforehand.

mVAR(a) =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Baj j ot∈Ba

s 2
t

s
(13)

RMSE(a) =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Baj j   ot∈Ba

(min
j

‖mt − yj ‖ )2
s

(14)
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ENCE =  
1
Oo

O

n=1

mVAR(a) − RMSE(a)j j
mVAR(a)

(15)

The ENCE formula uses binning according to the predicted

uncertainty. Therefore, the samples are separated into U bins where

B1 contains the Q samples with the lowest uncertainty and BU with

the highest uncertainty. Q = T/U where T is the number of predicted

boundary points and we set U to 100 for our experiments.
3 Results and discussion

3.1 Competing approaches

The main competing approach we compare to is INBD (Gillert

et al., 2023), as it was superior to all other approaches in their

experiments on the same dataset. We report the performance of the

INDB model as implemented in the original paper of Gillert et al.

(2023). For a fair comparison, we also report the performance of an

INBD variant with the same segmentation backbone as ours and

with tuned hyperparameters.

Next, we report the performance of four variants of

our approach:
• INBD-R: with L1 loss and trained on a single species

• INBD-Ru: with uncertainty estimation and trained on a

single species

• INBD-Rm: with L1 loss and multi-species training

• INBD-Rum: with uncertainty estimation and multi-

species training
Note that we report the average metric over three different runs

to ensure the stability of our results, given the small dataset size.

This explains why the numbers reported for INBD do not exactly

match those of Gillert et al. (2023), but they are consistent with their

reported error bars.
FIGURE 6

Comparison of batch construction for the naive implementation and the iterative unrolling. Each block represents a polar image. Colors indicate the
starting ring and numbers indicate the iteration step. For example, all yellow belongs to one input image and the number indicates which iteration
the individual polar image belongs to. The naive implementation has only the same input image in a sample. Iterative unrolling randomly mixes input
samples and iteration steps. Additionally, iterative unrolling allows for setting the batch size independent from the iteration depth.
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3.2 Main results

We report the performance of the different models on the three

species of the dataset in Table 1. Overall, our proposed INBD-R

outperforms the previous best existing approach by a large margin,

ranging from 7.4% to 18.7% for mAR and 8.4% to 23.5% for PQ,

depending on the species. Our results show that our approach

significantly improves the state of the art for ring detection in

anatomical images.

Comparison with INBD: More specifically, Table 1 shows

improvements of 3.5 pts for mAR, 1.7 pts for ARAND, and 7.4

pts for PQ for our single species model averaged over all species

compared to the tuned INBD model. This performance increase

from tuned INBD to INBD-R is solely from the reformulation from

segmentation to regression. The improvement is not only visible in

the metrics but also visually apparent, as seen in Figure 7. There are

several cases where INBD jumps between two different rings,

resulting in unnatural tree ring results. Our regression approach,

in contrast, displays smooth rings even in cases where this is not

directly visible. Figure 7 additionally shows the difficulty in

segmenting rings on a single image since both algorithms show in

the top two rings plausible additional rings for which experts need

additional input to find a definite answer. Besides the instance-

based metrics, our approach also improves on the more
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interpretable MAE and MedAE metrics, which directly show the

mean and median distance between the predicted and ground truth

ring boundary. The differences in these metrics seem small,

however, since these metrics are only calculated for detected

rings. Our approach shows lower offsets even though it includes

the more difficult rings. This difference in included rings is

displayed by the RQ metric for which our approach shows a

significantly higher performance of up to 12 pts. This is especially

impressive if we take the resolution of 2.27 pixel/μm into account, as

then the median absolute error becomes only 2.5 μm for DO and 1

μm for EH and VM.

Multi-species training: Training our method on all species

instead of on a single one shows further performance improvement

of 2.7 pts for VM and 1.9 pts for EH with only a slight decrease of

1.4 pts for DO, but still outperforming the tuned INBD by a

significant margin. This performance increase can be attributed in

part to the increased amount of training data, however, it also forces

the model to focus on more general concepts that apply to more

than one species. These more general concepts can then be easily

transferred to unseen species, as we demonstrate in the next section.

In section 3.3.3, we further investigate the performance differences

between the species.

Uncertainty estimation: Adding uncertainty estimation to our

model does not affect the segmentation performance significantly.
TABLE 1 Results of the method comparison.

Method mAR↑ ARAND↓ PQ↑ SQ↑ RQ↑ MAE↓ MedAE↓ ENCE↓

EH INBD 0.760 0.100 0.783 0.861 0.893 8.71 2.81 –

INBD tuned 0.788 0.091 0.802 0.884 0.908 8.87 2.56 –

INBD-R 0.823 0.077 0.837 0.897 0.932 6.91 2.49 –

INBD-Ru 0.823 0.075 0.844 0.897 0.940 6.51 2.42 0.973

INBD-Rm 0.842 0.072 0.867 0.906 0.951 5.90 2.35 –

INBD-Rum 0.832 0.074 0.855 0.902 0.948 5.76 2.31 0.699

DO INBD 0.573 0.183 0.616 0.800 0.770 20.1 8.24 –

INBD tuned 0.727 0.120 0.709 0.854 0.830 14.9 5.57 –

INBD-R 0.760 0.103 0.797 0.862 0.925 13.2 5.85 –

INBD-Ru 0.755 0.107 0.792 0.861 0.920 13.0 5.79 4.57

INBD-Rm 0.746 0.110 0.769 0.867 0.887 14.8 5.52 –

INBD-Rum 0.751 0.108 0.785 0.865 0.907 16.3 5.44 7.17

VM INBD 0.688 0.121 0.608 0.872 0.697 16.6 3.64 –

INBD tuned 0.791 0.076 0.724 0.902 0.803 10.2 2.60 –

INBD-R 0.826 0.061 0.795 0.907 0.877 7.96 2.66 –

INBD-Ru 0.821 0.062 0.790 0.910 0.868 7.42 2.45 0.582

INBD-Rm 0.853 0.054 0.839 0.916 0.917 7.37 2.38 –

INBD-Rum 0.848 0.055 0.843 0.915 0.921 6.36 2.22 0.753
The addition of u and m to our INBD-R method stands for the addition of uncertainty and multispecies training, respectively. INBD is the method proposed by Gillert et al. (2023). These
numbers slightly differ from those previously published since we reran their method to generate an average of three runs. However, the average falls into the standard deviation provided in their
paper. INBD tuned is further tuned with our semantic segmentation model and additional hyperparameter tuning. Arrows indicate values of higher performance. Bold highlights the best
performance and underlined highlights the second best performance.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1516635
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Katzenmaier et al. 10.3389/fpls.2025.1516635
The performance decrease is less than 0.5 pts for mAR and 0.5 pts

for ARAND. For PQ, we can see a performance change from −0.5

pts to +0.7 pts. The uncertainty prediction can be used to focus

manual validation and editing to uncertain areas to ultimately

decrease the amount of human labor needed to validate and

further improve the measurements of our method. Figure 8

visualizes the predicted instances with their uncertainty. It turns

out that our method has a small uncertainty for clearly visible rings
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and larger uncertainties for areas with many smaller rings where

jumps between ring boundaries are more probable.

3.2.1 Generalization to unseen species
One of the benefits of our efficient implementation of the

iterative detection is that it enables multi-species training. In this

section, we showcase how multi-species training leads to better

generalization to species not seen in the training data.
FIGURE 7

Visual results for ring segmentation. Each row shows, from left to right, the original anatomical image, expert label, and the model predictions using
our approach and the INBD approach. (a) highlights the additional ring added by both our model and the INBD model. The comparably larger vessel
lumina in this region resembles the characteristics of an additional ring. This demonstrates the difficulty of accurately determining the ring
boundaries in a single image. (b) highlights a region from where an adventitious root is originating, which the deep learning models mistake as
extended pith. Additionally, it can be seen that distinguishing between rings is more difficult for narrow rings, but our model’s prediction remains
closer to the expert annotation. (c) shows different results for the region where the bark is folded over the xylem. We can clearly see the jump
between rings of INBD [also visible in (a)]. Our results show a ring completed with a similar width (green), which increases the robustness of ring
width estimation compared to the expert label, while the INBD predicted unrealistic rings.
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To measure the better generalization, we compare our multi-

species model to a species-specific model on images from unseen

shrub and tree species. These samples belong to Salix polaris, Fagus

sylvatica, Fraxinus excelsior, and Vaccinium vitis-idea. All samples are

of markedly different quality to those in the training set as they were

produced in different labs using different equipment and slightly

different protocols. Due to the large visual differences, no method

was able to detect the pith. Therefore, we provide the methods with the

ground truth pith, which is an acceptable amount of user input if the

subsequent automatic ring segmentation is of sufficient quality.

The results in Table 2 show clear improvement for the multi-

species method, surpassing the single-species methods by more

than 10 pts for mAR, 10 pts for ARAND, and 20 pts for PQ. For

MAE andMedAE, we observe high values in all cases, but the multi-

species values are clearly smaller. This is especially impressive since

the higher RQ value of 0.544 indicates that more rings are included

for the MAE and MedAE calculations. These additional rings

include rings that were too difficult to detect for the single species

model. The displayed performance improvements are achieved by a

larger and more diverse dataset. Nonetheless, the multi-species

training still contains only 68 images, which explains the large

performance drop for unseen species. Further diversifying and

increasing the training set will reduce the number of completely

unseen species and allow for better generalization of our model.

We display qualitative results on unseen species in Figure 9.

These segmentations vary widely in quality depending on the

specific images, as seen in the first two rows, which display results
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for visually similar images. Therefore, validating the results for

unseen species is even more important. This figure also displays

plausible mistakes (b) and missing species-specific knowledge (b

and c) from the multi-species model. However, it is the only model

that provides acceptable ring estimates for unseen species.
3.3 Additional results

In the following subsections, we support our model design

choices with experimental evidence.

3.3.1 Radial regression model
We single out the design decisions for the radial regression

model loss and show the step-wise improvements achieved by each

component. All experiments are done with the same semantic

segmentation model per species to exclude variances in the

semantic prediction. We investigate the influence of the loss type

and the target normalization, which maps the regression values

from 0 to 255 to −1 to 1. Table 3 shows clear improvements for each

step, supporting our model design choices. Switching to the L1 loss,

which is more robust against outliers, significantly improves

performance with an average gain of 7 pts for mAR and 6 pts for

PQ. For the DO, the performance difference is drastic, changing the

MAE from 26.6 to 16.1, which is a reduction of nearly 40%. Adding

the target normalization, formally described in Equation 3, displays

similar improvements for EH and DO. For VM, however, this step
FIGURE 8

Visualization of the uncertainty. The additional lines display one standard deviation estimated by the model. (a) displays problematic large
uncertainties for ring boundaries close to the bark. One reason for this is the low amount of training data for such cases. (b) shows, as desired,
increased uncertainty where the ring boundary is difficult to detect. (c) shows a case where the pith bulges outwards, making exact ring detection
more difficult and, therefore, resulting in increased uncertainty.
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is necessary to gain proper segmentation results, improving the

performance by 34.6 pts for mAR, 20 pts for ARAND, and 27.5 pts

for PQ. This resulted in an improvement from 37.1 to 7.96 for MAE

and 22.2 to 2.66 for MedAE, which represents error reductions of

78% for MAE and 88% for MedAE. These results show the need for

the L1 loss in combination with target normalization, which

stabilizes the training and, therefore, results in the best

performance for each species.

3.3.2 Uncertainty estimation
We investigate how well uncertainties are calibrated and determine

if the additional uncertainty estimation deteriorates the overall

performance. This is done for each species individually. We evaluate

the uncertainty calibration with the previously described ENCE metric,

which gives a good intuition of the uncertainty quality.

We report the ring segmentation metrics in Table 4. They show

similar performance between the method with and without

uncertainty calibration if we use the Laplace distribution for the

NLL loss. We additionally investigate the performance with the

Gaussian distribution that is commonly used by default for

uncertainty estimation. Since NLL with a Gaussian distribution is

related to an L2 loss, we can see some performance degradation, as

shown in Table 4. Additionally, we see a large difference between

the Gaussian and Laplacian NLL for the ENCE metric. On average,

the ENCE metric is 97% lower for the Laplacian NLL, clearly

showing a better calibration of the uncertainty.

3.3.3 Multi-species training
In this evaluation, we further investigate the results of our multi-

species training and, specifically, the performance increase for EH and

VM and the decrease for DO. By looking at the performance of the

semantic segmentation model, we see a clear difference between the

species, shown in Table 5. In each species, the boundary segmentation

improves by roughly 1pt, however, we can see a drop in performance

for the pith and background only for DO. The DO species contains

samples with piths that were torn off during the thin-sectioning

process, giving it the same visual appearance as the background.

Additionally, some samples have no rings on one side, so there is a

direct connection between the pith and the background. Both these

cases make differentiating between the pith and the background more

difficult. An example for both cases can be seen in Figure 4. This is

especially true for the multi-species case, where these difficult cases are

an even smaller percentage compared to the single-species case. These
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errors in pith prediction will propagate through multiple iterative steps,

resulting in a decreased segmentation performance for DO. In the

other species, the improved boundary prediction increases the overall

performance even further.
3.4 Limitations and further work

We observe problems with improper pith predictions if the pith

of the sample is broken or looks visually similar to the background,

or for species unseen during training. These improperly segmented

piths lead to follow-up errors due to the iterative nature of our

method. The same difficulties can be seen in the INBD method.

Additionally, not detecting a pith automatically prevents the model

from being used on unseen species without human intervention.

Since pith prediction is only necessary for the first step, any pith

prediction method can be directly integrated into the existing

method, which makes it an ideal area for further development.

Another problem is when the rings are very narrow on one side of

the pith. For these rings, properly detecting the correct boundary

becomes nearly impossible. Even experts struggle in these regions,

which makes the annotations less reliable, increasing the difficulty even

further. These less reliable labels directly influence the uncertainty

estimation and make evaluation even more challenging. Further

research could investigate increasing the robustness of the

uncertainty, incorporating the uncertainty directly in the iterative

process, and adding uncertainty prediction to the pith prediction.
4 Conclusion

In this study, we aimed to develop a deep learning-based

model for ring boundary detection in anatomical images using the

existing INBD model as a starting point and benchmark. Using a

regression approach shows clear performance improvements in

combination with the possibility of further enhancing usability

through uncertainty estimation. The indication of uncertain rings

and ring segments is particularly important for downstream

applications as it can guide human users to target specific rings

for editing, thus substantially reducing operator time.

Additionally, uncertainties could be used to automatically select

the most certain portion of the ring for ring width estimation or

exclude the most uncertain ring segments. Moreover, we showed
TABLE 2 Ring detection performance for unseen species [Fagus sylvatica (14 images from two different datasets), Fraxinus excelsior (3), Salix
polaris (10)].

Method mAR↑ ARAND↓ PQ↑ SQ↑ RQ↑ MAE↓ MedAE↓

Single (DO) 0.318 0.503 0.207 0.810 0.256 95.6 13.3

Single (EH) 0.323 0.558 0.149 0.810 0.184 48.1 9.59

Single (VM) 0.376 0.423 0.212 0.833 0.254 92.8 17.9

Multi (DO, EH,
and VM)

0.504 0.285 0.434 0.798 0.544 48.5 8.49
The names in brackets show which species the model was trained on. Bold highlights the best performance. Arrows indicate values of higher performance.
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that training our model on multiple species can double the

segmentation performance as measured by certain quality

metrics for unseen species. This is facilitated by our iterative

unrolling training procedure, which allows our model to be

trained on larger datasets. However, the performance drop

between unseen and seen species clearly shows the need for
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larger and more diverse datasets to train a model that achieves

human-level segmentation performance on unseen species. Our

work lays the methodological foundation to use such a large and

diverse dataset. This methodological foundation will help to tackle

the related problem of linear tree ring structures and conifer

anatomies, bringing us one step closer to an AI-based ROXAS.
FIGURE 9

Visual results on unseen species. Each row shows, from left to right, the original anatomical image, expert label, and the model predictions using
multi- and single-species (in this figure: VM) training. The improved performance between multi- and single-species training is clearly visible.
However, different qualities of ring detection are visible for similar images (first and second row). (a) shows visually different-looking rings within a
sample that the model predicts wrongly. (b) shows additional false rings that were detected because of lines of comparably wide vessels in this ring-
porous species that did not match any of the diffuse-porous training species. (c) shows cases where narrow rings are not always properly detected,
although dark tangential bands indicate the rings well. All these properties were not present in the training species, explaining the difficulty in making
a correct prediction.
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TABLE 5 Results of multi-species training for the semantic segmentation model.

Dataset mIoU Pith↑ mIoU Bark↑ mIoU Rings↑ mIoU Boundary↑

EH Single 0.888 0.983 0.981 0.463

Multi 0.900 0.980 0.981 0.470

DO Single 0.880 0.974 0.965 0.288

Multi 0.790 0.964 0.967 0.298

VM Single 0.943 0.997 0.983 0.419

Multi 0.942 0.997 0.985 0.430
F
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The values are marked bold if the difference is larger than 0.5%. Arrows indicate values of higher performance.
TABLE 4 Results of the ablation study for uncertainty estimation.

Method mAR↑ ARAND↓ PQ↑ SQ↑ RQ↑ MAE↓ MedAE↓ ENCE↓

EH L1 0.823 0.077 0.837 0.897 0.932 6.91 2.49 –

NLL gauss 0.791 0.086 0.815 0.884 0.922 8.06 2.82 20.6

NLL 0.823 0.075 0.844 0.897 0.940 6.51 2.42 0.973

DO L1 0.760 0.103 0.797 0.862 0.925 13.2 5.85 –

NLL gauss 0.739 0.113 0.783 0.852 0.918 13.5 6.06 329.

NLL 0.755 0.107 0.792 0.861 0.920 13.0 5.79 4.57

VM L1 0.826 0.061 0.795 0.907 0.877 7.96 2.66 –

NLL gauss 0.818 0.065 0.799 0.904 0.884 8.25 2.85 35.1

NLL 0.821 0.062 0.790 0.910 0.868 7.42 2.45 0.528
L1 loss represents the baseline results without uncertainty, NLL represents the method with uncertainty using a Laplacian noise assumption, and NLL gauss represents the comparison method
using a Gaussian noise assumption. See Methods for an explanation of the different performance metrics. Arrows indicate values of higher performance. Bold highlights the best performance.
TABLE 3 Results of the ablation study for loss type.

Method mAR↑ ARAND↓ PQ↑ SQ↑ RQ↑ MAE↓ MedAE↓

EH L2 0.746 0.101 0.788 0.865 0.911 11.9 4.09

L1 0.777 0.089 0.810 0.878 0.923 10.2 3.17

L1 target norm 0.823 0.077 0.837 0.897 0.932 6.91 2.49

DO L2 0.579 0.193 0.661 0.799 0.827 26.6 15.2

L1 0.686 0.142 0.747 0.843 0.886 16.1 7.84

L1 target norm 0.760 0.103 0.797 0.862 0.925 13.2 5.85

VM L2 0.410 0.300 0.446 0.728 0.614 52.4 38.6

L1 0.480 0.260 0.520 0.759 0.685 37.1 22.2

L1 target norm 0.826 0.061 0.795 0.907 0.877 7.96 2.66
This study shows the importance of the used L1 loss in combination with the target normalization and compares it to the commonly used L2 loss. Bold highlights the best performance. Arrows
indicate values of higher performance.
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Garcıá-Hidalgo, M., Garcıá-Pedrero, Á, Rozas, V., Sangüesa-Barreda, G., Garcıá-
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Guérin, M., von Arx, G., Martin-Benito, D., Andreu-Hayles, L., Griffin, K. L.,
McDowell, N. G., et al. (2020). Distinct xylem responses to acute vs prolonged
drought in pine trees. Tree Physiol. 40, 605–620. doi: 10.1093/treephys/tpz144

Hacke, U. G., Lachenbruch, B., Pittermann, J., Mayr, S., Domec, J.-C., and Schulte, P.
J. (2015). The Hydraulic Architecture of Conifers (Cham: Springer International
Publishing), 39–75. doi: 10.1007/978-3-319-15783-22

Hacke, U., Sperry, J., Pockman, W., Davis, S., and McCulloh, K. (2001). Trends in
wood density and structure are linked to prevention of xylem implosion by negative
pressure. Oecologia 126, 457–461. doi: 10.1007/s004420100628

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask r-cnn,” in 2017 IEEE
International Conference on Computer Vision (ICCV), (Venice, Italy: IEEE). 2961–
2969.
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Quantitative wood anatomy—practical guidelines. Front. Plant Sci. 7. doi: 10.3389/
fpls.2016.00781

von Arx, G., and Dietz, H. (2005). Automated image analysis of annual rings in the
roots of perennial forbs. Int. J. Plant Sci. 166, 723–732. doi: 10.1086/431230

Wilkinson, S., Ogée, J., Domec, J.-C., Rayment, M., and Wingate, L. (2015).
Biophysical modelling of intra-ring variations in tracheid features and wood density
of pinus pinaster trees exposed to seasonal droughts. Tree Physiol. 35, 305–318.
doi: 10.1093/treephys/tpv010

Yeo, T., Kar, O. F., and Zamir, A. (2021). “Robustness via cross-domain ensembles,”
in 2021 IEEE International Conference on Computer Vision (ICCV, (Montreal, QC,
Canada: IEEE). 12189–12199.

Ziaco, E. (2020). A phenology-based approach to the analysis of conifers intra-
annual xylem anatomy in water-limited environments. Dendrochronologia 59, 125662.
doi: 10.1016/j.dendro.2019.125662

Ziaco, E., Biondi, F., and Heinrich, I. (2016). Wood cellular dendroclimatology:
Testing new proxies in great basin bristlecone pine. Front. Plant Sci. 7. doi: 10.3389/
fpls.2016.01602
frontiersin.org

https://doi.org/10.3389/fpls.2013.00056
https://doi.org/10.5194/cp-18-1151-2022
https://doi.org/10.1007/978-3-030-92698-4
https://doi.org/10.1038/s41467-024-49494-5
https://doi.org/10.1007/978-3-319-67558-928
https://doi.org/10.48550/arXiv.1607.08022
https://doi.org/10.1016/j.dendro.2013.12.001
https://doi.org/10.1016/j.dendro.2013.12.001
https://doi.org/10.3389/fpls.2016.00781
https://doi.org/10.3389/fpls.2016.00781
https://doi.org/10.1086/431230
https://doi.org/10.1093/treephys/tpv010
https://doi.org/10.1016/j.dendro.2019.125662
https://doi.org/10.3389/fpls.2016.01602
https://doi.org/10.3389/fpls.2016.01602
https://doi.org/10.3389/fpls.2025.1516635
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Towards ROXAS AI: automatic multi-species ring boundaries segmentation as regression in anatomical images
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 Method
	2.2.1 Overview
	2.2.2 Semantic segmentation model
	2.2.3 Polar grid
	2.2.4 Radial regression model
	2.2.5 Uncertainty estimation

	2.3 Training and implementation details
	2.3.1 Training
	2.3.2 Iterative unrolling

	2.4 Metrics

	3 Results and discussion
	3.1 Competing approaches
	3.2 Main results
	3.2.1 Generalization to unseen species

	3.3 Additional results
	3.3.1 Radial regression model
	3.3.2 Uncertainty estimation
	3.3.3 Multi-species training

	3.4 Limitations and further work

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


