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Yaoguang Sun1,2, Vijay Yadav Tokala3, Junjun Liu1,2,
Shenshen Zhi1,2 and Yongdong Sun1,2*

1School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology,
Xinxiang, China, 2Henan Province Engineering Research Center of Horticultural Plant Resource
Utilization and Germplasm Enhancement, Henan Institute of Science and Technology,
Xinxiang, China, 3Horticulture Research and Extension, The Postharvest Education Foundation, La
Pine, OR, United States
The miR159 gene family plays an essential role in plant growth and development,

and stress response. Nevertheless, there are no reports defining its specific

function in cucumber fruit expansion and response to abiotic stresses. In this

study, we retrieved six Csa-miR159 sequences from the EnsemblPlants database,

which were located on chromosome 1, chromosome 3, and chromosome 5 of

cucumber, respectively. Phylogenetic analysis showed that Csa-miR159c/d/e/f

belonged to one branch and Csa-miR159a/b to another. Cis-acting regulatory

elements (CREs) including light response elements, phytohormone response

elements, stress response elements, regulatory elements associated with plant

growth and development were distributed unevenly in the promoter regions of

Csa-miR159s, which indicated that Csa-miR159s might mediate the stress

response, and growth and development. Moreover, it was determined that

CsMYBs were the target genes of Csa-miR159s through psRNA-Target

prediction and qRT-PCR analysis. Further findings suggested that Csa-miR159b

might negatively regulate cucumber fruit expansion by targeting Cs1RMYB9,

Cs1RMYB31, Cs2RMYB37 and Cs2RMYB64. Similarly, Csa-miR159d might

negatively regulate cucumber fruit expansion by targeting Cs2RMYB27 and

Cs2RMYB32. In addition, the differential expression of Csa-miR159s suggested

their potential response to abiotic stresses and plant phytohormones. This study

would provide valuable information on the molecular characterization of Csa-

miR159s and establish a foundation for further research on the mechanisms of

Csa-miR159s in regulating fruit expansion and stress response.
KEYWORDS

cucumber (Cucumis sativus. L), Csa-miR159s, fruit expansion, abiotic stress,
phytohormones
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1 Introduction

Cucumber (Cucumis sativus L.) is a widely cultivated vegetable

worldwide, with China being the largest producer and consumer. In

2023, China cultivated approximately 1.37 million hectares of

cucumber, with a total yield of 80.21 million tons. This accounted

for 60.40% of the global cucumber cultivation area and 82.01% of

the total production (Food and Agriculture Organization of the

United Nations, 2023). However, unfavorable environmental

conditions such as inappropriate temperature, weak light, drought

and salt stresses, have a significant impact on cucumber fruit

expansion, leading to the decreased yield and quality. Therefore,

it is important to understand the molecular mechanism of

cucumber fruit expansion in order to improve yield and stress

tolerance in cucumber.

MicroRNA (miRNA) is a class of highly conserved endogenous

non-coding small RNA, regulating the expression of its target genes

at both the levels of transcription and post-transcription by

directly cleaving or inhibiting the translation of target mRNA

(Jones-Rhoades et al., 2006). It plays crucial roles in various

physiological and metabolic processes, such as plant growth and

development, and stress response (Jeong and Green, 2013; Liu et al.,

2007; Zhang et al., 2019). miR159 has been extensively studied in

plants (Montes et al., 2014) and the studies reveal how it influences

plant growth and development by targeting MYB family genes

(Dubos et al., 2010). For instance, miR159-GAMYB pathway has

been widely implicated in plant growth, stress response, and

phytohormone signaling in various species such as Arabidopsis

(Allen et al., 2010, 2007; Alonso-Peral et al., 2010), tomato (Zhang

et al., 2020) and rice (Zhao et al., 2017). In Gloxinia (Sinningia

speciosa), expression patterns of miR159 and GAMYB were

negatively correlated during flower development (Li et al., 2013).

In addition, some studies have demonstrated the important role of

the miR159-GAMYB in fruit development. For instance, in tomato,

overexpression of Sl-MIR159 led to the down-regulation of

SlGAMYB, thereby inducing parthenocarpy and early fruit

ripening (da Silva et al., 2017). Similarly, Sly-miR159-SlGAMYB2

was also found to control fruit growth, as the inhibition of Sly-

miR159 and overexpression of SlGAMYB2 resulted in the larger

fruit, while the loss of function of SlGAMYB2 led to the smaller fruit

(Zhao et al., 2022). In the case of grape, exogenous application of

gibberellin (GA) promoted parthenocarpy, accompanied by the up-

regulation of Vvi-miR159c and the down-regulation of VvGAMYB

(Wang et al., 2018).

The miR159-GAMYB pathway is known to play a crucial role in

the response to drought and salt stresses. Studies have shown that

miR159 was induced by drought stress in plants such as Arabidopsis

(Reyes and Chua, 2007), maize (Wei et al., 2009), wheat (Akdogan

et al., 2016), barley (Hackenberg et al., 2015) and poplar (Fu et al.,

2023). However, in potato, the expression level of miR159 decreased

under drought treatment, while the expression level of GAMYB-like

homologues increased (Pieczynski et al., 2013). SlMYB33, the target

gene of Sly-miR159, was associated with the accumulation of

proline and putrescine, which enhanced plant tolerance to
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drought stress (López-Galiano et al., 2019). Furthermore, it has

been reported that miR159 can be induced by salt stress in

Arabidopsis (Liu et al., 2008) and soybean (Li et al., 2023).

Additionally, miR159-GAMYB plays a crucial role in some plant

phytohormone signaling pathways, such as abscisic acid (ABA)

(Reyes and Chua, 2007) and GA (Wang et al., 2017). For instance,

in ‘Zuijinxiang’ grape, the expression level of VvimiR159 increased

after GA treatment, while the expression level of VvGAMYB

significantly decreased (Wang et al., 2018). In ‘Rosario Bianco’

grape, the expression of miR159 was up-regulated in the pulp after

GA treatment, whereas the expression of miR159a/c was down-

regulated in the pulp and pericarp (Han et al., 2014). Overall, the

miR159-GAMYB pathway plays a role in response to abiotic stresses

and plant phytohormones. In our previous study, differential

expression of Csa-miR159b was observed between the ovary and

expanded fruit using small RNA sequencing, which suggested that

Csa-miR159b was involved in cucumber fruit expansion (Sun et al.,

2019). However, there was a scarcity of studies on the functions of

Csa-miR159s in relation to cucumber fruit expansion and

stress response.

This study aims to characterize Csa-miR159s in cucumber and

to investigate their roles in fruit expansion and stress response. In

the present study, multiple sequence alignment, chromosomal

location, secondary structure, phylogenetic relationship, cis-

regulatory elements (CREs), and the target genes of Csa-miR159s

were studied in detail. Additionally, expression profiles of Csa-

miR159s were analyzed in the ovary and expanded fruit, and in

response to different stresses and plant phytohormones. Our

findings will provide valuable information for further functional

analysis of Csa-miR159s in cucumber, and also provide references

for improving cucumber yield and resilience.
2 Materials and methods

2.1 Identification of Csa-miR159s

A search for miR159 family members in cucumber was conducted

using EnsemblPlants database (http://plants.ensembl.org/). The

mature sequences of miR159s from various crop species

(zucchini, watermelon, pumpkin, cucumber, melon, tomato, rice

and Arabidopsis) were obtained from the PmiREN database (Guo

et al., 2020). Multiple sequence alignments of Csa-miR159s were

performed using ClustalW software (Thompson et al., 1994), and

were used to generate a sequence logo diagram through the online

website (https://weblogo.berkeley.edu/). TBtools software (Chen

et al., 2023) was employed to visualize the distribution of Csa-

miR159s on cucumber chromosomes. The RNA secondary

structure of pre-MIR159s was predicted using the RNAstructure

web server (http://rna.urmc.rochester.edu/RNAstructure

WebServers/Predictl/Predictl.html). Mature sequences of miR159s

were submitted to MEGA v5.1 software (Kumar et al., 2018) to

construct phylogenetic relationships using the neighbor-joining

(NJ) method with 1000 bootstrap replicates to assess branch
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confidence. The 2000 bp promoter sequences upstream from

the initiation codon of Csa-MIR159s were extracted from

EnsemblPlants database. The putative cis-regulatory elements

(CREs) were identified and analyzed using the PlantCARE tool

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)

(Lescot et al., 2002).
2.2 Prediction of target genes

psRNA-Target uses sequence complementarity and energy-

based scoring to predict miRNA-target interactions. A score

threshold of ≤5.0 was chosen based on established standards for

psRNA-Target to ensure high confidence in predicted interactions.

To predict the potential target relationships of Csa-miR159s and

CsMYBs, their gene sequences were submitted to the psRNA-Target

online website (https://www.zhaolab.org/psRNATarget/) (Liu et al.,

2015), and target genes with a score ≤5.0 was selected and submitted

to Cucurbit Genomics Database (CuGenDB) for further analysis.
2.3 Plant growth conditions and stress
treatments

Seeds of cucumber (cv. Jinyou No. 1) were soaked in water at a

temperature of 55°C for 15 min and then incubated at 28°C for 2

days to germinate. The germinated seeds were cultivated in a pot

filled with a medium consisting of peat soil, perlite, and vermiculite

in a 2:1:1 ratio, and placed in a climate-controlled chamber at a

temperature of 28°C with a light period of 16 h and a dark period of

8 h. Cucumber seedlings at the three-leaf stage were transferred to

the plastic greenhouse for continuous growth. Samples from ovary

(on the day of anthesis), and expanded fruit (5 days after anthesis)

were collected for gene expression analysis. For drought and NaCl

stresses, cucumber seedlings at the three-leaf stage with a similar

size and height were cultured into 40 L (113 cm × 73 cm × 5 cm)

hydroponic pots. The control group was cultured in Hoagland

nutrient solution. Drought stress was induced using a Hoagland

nutrient solution containing 10% PEG-6000, while NaCl stress was

induced using a Hoagland nutrient solution containing 150 mmol/L

NaCl (Lu et al., 2022). Leaves were collected at 0, 3, 6, 12, and 24 h

after treatment for gene expression analysis. For plant

phytohormone treatments, the cucumber seedlings at the three-

leaf stage were sprayed with 100 µmol L-1 ABA, 100 µmol L-1

salicylic acid (SA), 100 µmol L-1 jasmonic acid (JA), 50 µmol L-1

ethephon (ETH), 50 µmol L-1 2,4-dichlorophenoxyacetic acid (2,4-

D), and 50 µmol L-1 GA, respectively, while the control condition

was sprayed with double distilled water (Li et al., 2019). Plant

phytohormone treatments were conducted once a day. After three

consecutive days of treatment, cucumber leaves were collected for

gene expression analysis. All treatments were performed with three

biological replicates.
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2.4 qRT-PCR analysis

RNA was isolated from various cucumber tissues using the

TaKaRa MiniBEST Plant RNA Extraction Kit (TaKaRa, Dalian,

China). Isolated RNA was stored at -80°C until further use

to prevent degradation. The Mir-X miRNA First-Strand

Synthesis Kit (TaKaRa, Dalian, China) was then utilized for

first-strand complementary DNA (cDNA) synthesis. qRT-PCR

was conducted using the TB Green® Premix Ex TaqTM II (Tli

RnaseH Plus) (TaKaRa, Dalian, China), using U6 snRNA as the

endogenous control for Csa-miR159s, and 18S as the endogenous

control for CsMYBs. Stem-loop of mature Csa-miR159s was used

for qRT-PCR. The specific primer sequences utilized in this study

were provided in detail in Supplementary Table S1. Gene expression

levels were calculated using the 2-DDCt method (Livak and

Schmittgen, 2001), each expression level was evaluated using

three biological replicates.
3 Results

3.1 Identification of Csa-miR159s

Six Csa-miR159 sequences were identified from the

EnsemblPlants database. The mature sequences of Csa-miR159s

were 21-22 nt in length and highly conserved (Figure 1A). These

sequences were mapped to chromosome 1 (Csa-miR159a),

chromosome 3 (Csa-miR159b), and chromosome 5 (Csa-

miR159c/d/e/f), respectively, based on their physical positions

(Figure 1B). Although Csa-miR159c/d/e/f were located

on the same chromosome, their mature sequences showed

lower similarity. In contrast, Csa-miR159a and Csa-miR159b,

which were located on the different chromosomes, shared

higher similarity.

The prediction result of secondary structure showed that all

pre-miR159s demonstrated a typical stem-loop structures

(Figure 2). The number of sub-loops varied from 12 (Csa-

miR159f) to 18 (Csa-miR159a), and the stem-loop folding free

energy ranged from -102.5 kcal/mol (pre-miR159b) to -78.7 kcal/

mol (Csa-miR159a/f) (Figure 2).
3.2 Phylogenetic relationship of miR159s

To better understand the evolutionary relationships among

miR159s, we further analyzed the mature sequences from

cucumber (Csa-miR159a/b/c/d/e/f), melon (Cme-miR159a/b),

zucchini (Cma-miR159a/b/c/d), pumpkin (Cmo-miR159a/b),

watermelon (Cla-miR159a/b), tomato (Sly-miR159a/b), rice (Osa-

miR159a/b/c/d/e/f), and Arabidopsis (Ath-miR159a/b/c) (Figure 3).

Twenty-seven miR159s were classified into two branches based on

the evolutionary divergence. Csa-miR159c/d/e/f and Cma-
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miR159a/b belonged to one branch. Csa-miR159a/b were classified

into another branch with remaining members. The phylogenetic

tree revealed that cucumber miR159s share closer evolutionary

relationships with those of zucchini.
3.3 Cis-regulatory elements analysis of
Csa-miR159s

To investigate the potential functions of Csa-miR159s, we

analyzed the CREs in the promoter regions. As shown in

Figure 4, these CREs were grouped into four functional

categories. The most abundant category was light response

elements, which included Box 4, AAAC-motif, G-Box, TCT-

motif, AE-box, GATA-motif, GT1-motif, I-box, GA-motif,

TCCC-motif, ATCT-motif, chs-CMA2a, ATC-motif, and MRE.

We also detected various phytohormone response elements, such

as abscisic acid responsiveness (ABRE), gibberellin responsiveness

(TATC-box and P-box), ethylene responsiveness (ERE), MeJA

responsiveness (CGTCA-motif, TGACG-motif) and salicylic acid

responsiveness (TCA-element, SARE). Furthermore, stress

response elements were identified, including anaerobic induction

(ARE), drought inducibility (MBS), heat induction (STRE), low

temperature responsiveness (LTR), wound responsiveness (WUN-
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motif), and defense and stress responsiveness (TC-rich).

Additionally, regulatory elements related to plant growth and

development were also identified, such as zein metabolism

regulation (O2-site), meristem expression (CAT-box), endosperm

expression (GCN4-motif) and circadian control (circadian).
3.4 Prediction of target genes of Csa-
miR159s

To investigate the regulatory mechanisms of Csa-miR159s,

potential target genes were predicted using the psRNA-Target

tool (Table 1). All target genes were named according to their

subgroups and chromosomal positions from top to bottom (from

Cs1RMYB to Cs4RMYB). The results revealed that Cs2RMYB37,

Cs2RMYB64, Cs1RMYB31, Cs1RMYB9 and Cs2RMYB25 were

recognized as the target genes of Csa-miR159a. Similarly,

Cs2RMYB37 , Cs2RMYB64 , Cs1RMYB31 , Cs1RMYB9 and

Cs3RMYB1 were predicted as the target genes of Csa-miR159b.

Additionally, Cs2RMYB27 and Cs2RMYB32 were found to be the

target genes of Csa-miR159d. However, no target genes were

detected for Csa-miR159c, Csa-miR159e and Csa-miR159f.

Notably, all predicted target genes were classified as MYB or

MYB-like transcription factors.
FIGURE 1

Mature sequences and chromosomal positions of Csa-miR159s. The ratio is measured in megabases (Mb). (A) Mature sequences; (B) Chromosomal positions.
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3.5 Expression profiles of Csa-miR159s and
their target genes

In this study, qRT-PCR was used to confirm the expression

profiles of Csa-miR159s and their target genes in the ovary and

expanded fruit (Figure 5). The expression of Csa-miR159b in the

ovary was 2.44-fold higher than that in the expanded fruit, while the

expression levels of Csa-miR159a/c/e/f in the ovary were lower than

those in the expanded fruit. Notably, Csa-miR159d was only
Frontiers in Plant Science 05
expressed in the ovary and was not detected in the expanded

fruit. In terms of the target genes, Cs1RMYB9, Cs1RMYB31,

Cs2RMYB37, Cs2RMYB64, Cs2RMYB27 and Cs2RMYB32 showed

lower expression in the ovary compared to the expanded fruit,

except for Cs3RMYB1 which exhibited the opposite trend. These

findings suggested that Csa-miR159b might negatively regulate

cucumber fruit expansion by targeting Cs1RMYB9, Cs1RMYB31,

Cs2RMYB37 and Cs2RMYB64. Additionally, Csa-miR159d might

negatively regulate cucumber fruit expansion by targeting
FIGURE 2

Secondary structures of Csa-miR159s.
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Cs2RMYB27 and Cs2RMYB32. Taken together, these results

highlighted the tissue specificity and functional diversity of

Csa-miR159s.
3.6 Csa-miR159s response to abiotic
stresses and plant phytohormones

The study investigated the expression patterns of Csa-miR159s

under different treatments including PEG, NaCl and plant

phytohormones. Under PEG stress, the expression levels of Csa-

miR159a/f increased gradually, reaching the top at 24 h after

treatment. Specifically, Csa-miR159a was 24.4-fold higher than

the control, and Csa-miR159f was 174.1-fold higher. Conversely,

Csa-miR159c exhibited the increased expression, peaking at 12 h,
Frontiers in Plant Science 06
and then decreasing to the lowest level at 24 h after treatment, 1.3-

fold lower than the control. However, Csa-miR159b/d/e were

significantly down-regulated under PEG stress. Compared to the

control, their expression levels decreased by 76.9, 2.4 and 4.3-fold,

respectively (Figure 6). Under NaCl stress, Csa-miR159a/d/e were

all significantly up-regulated at 6 h, with increases of 88.5, 33.2 and

3.9-fold compared to the control. While Csa-miR159b was

remarkably down-regulated from 3 h to 24 h. In contrast, the

expression levels of Csa-miR159c initially decreased at 3 h, then

increased at 6 h, and peaked at 24 h. Csa-miR159f showed the

increased expression, peaking at 12 h, and then decreasing at 24 h

(Figure 7). In relation to plant phytohormones, it was observed that

Csa-miR159a/b/c were significantly induced by SA, ETH and 2,4-D.

On the other hand, Csa-miR159d showed significant up-regulation

in response to ABA, GA, SA, ETH, and 2,4-D. Furthermore, Csa-
FIGURE 3

Phylogenetic analysis of miR159s from cucumber, melon, zucchini, pumpkin, watermelon, tomato, rice and Arabidopsis. Csa, cucumber; Cme,
melon; Cma, zucchini; Cmo, pumpkin; Cla, watermelon; Sly, tomato; Osa, rice; Ath, Arabidopsis.
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miR159e exhibited a remarkable down-regulation when exposed to

ABA, GA, JA, ETH, and 2,4-D. Additionally, Csa-miR159f

displayed significant up-regulation specifically in response to SA,

ETH, and 2,4-D (Figure 8). These findings indicated that Csa-

miR159s might be involved in plant stress response and

phytohormone regulation.
4 Discussion

miRNA plays a crucial role in plant growth and development,

and stress response by regulating the expression of their target genes.

Among these miRNAs, miR159 has been extensively identified and

characterized in numerous plant species, such as Arabidopsis

(Palatnik et al., 2007), grape (Zhang et al., 2019), soybean (Li et al.,

2023) and Dendrobium officinale (Hao and Zhang, 2022). However,

there is limited research on the functions of Csa-miR159s regarding

fruit expansion and abiotic stress response in cucumber. In this study,

we identified six Csa-miR159s and their target genes. Csa-miR159s

were unevenly distributed on chromosome 1, chromosome 3, and

chromosome 5. Interestingly, Csa-miR159c/d/e/f, which had different

mature sequences, were located on the same chromosome.

Conversely, Csa-miR159a/b, which had higher sequence homology,
Frontiers in Plant Science 07
were distributed on the different chromosomes. This suggested that

the divergent chromosomal localization of Csa-miR159s could be a

result of gene duplication events or evolutionary pressures that had

caused their dispersion across different chromosomes, and this

dispersion might have promoted the diversified functions of Csa-

miR159s. Phylogenetic analysis revealed a close relationship between

miR159s in cucumber and those in zucchini, possibly due to common

evolutionary processes as the members of the Cucurbitaceae family.

The promoter region typically contains specific CREs with

distinct functions. Analysis of CREs can offer insights into the

potential functions of genes in the growth and development, and

stress response. In our study, we identified stress-related elements in

Csa-miR159s, including MBS, ARE, LTR, STRE and TC-rich, which

suggested that Csa-miR159s might be associated with stress

response in cucumber. Previous studies have demonstrated that

up-regulated expression of miR159 enhanced stress tolerance in

Arabidopsis (Reyes and Chua, 2007; Liu et al., 2008) and sweet

potato (Yang et al., 2020). Conversely, some reports indicated that

miR159 was down-regulated under salt stress and drought stress

(Yang et al., 2020), and overexpression of miR159 increased stress

sensitivity in rice (Wang et al., 2012) and potato (Pieczynski et al.,

2013). In addition, Peng et al. (2018) observed that the expression of

miR159 in rice was down-regulated after 3 h of salt stress treatment,
FIGURE 4

CREs in the promoter regions of Csa-miR159s. Different CRE was presented in the different color shape.
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TABLE 1 Target genes prediction of Csa-miR159s.

miRNA_ACC Rename Target_Acc Expectation
Target
regions

Inhibition Multiplicity Description

Csa-miR159a
Cs2RMYB37 Csa4G022940.1 0.5

CDS:2507239-
2508535

Cleavage 1
MYB-related transcription
factor

Cs2RMYB64 Csa7G043580.1 0.5
CDS:2401528-
2403473

Cleavage 1
MYB transcription factor

Cs1RMYB31 Csa6G105150.1 2.0
CDS:6908538-
6908833

Cleavage 1
MYB-like transcription
factor

Cs1RMYB9 Csa2G035350.1 3.0
CDS:3526253-
3527734

Translation 1
MYB transcription factor

Cs2RMYB25 Csa3G264750.1 5.0
CDS:16264809-
16266219

Cleavage 1
MYB family transcription
factor

Csa-miR159b
Cs2RMYB37 Csa4G022940.1 0.5

CDS:2507239-
2508535

Cleavage 11
MYB-related transcription
factor

Cs2RMYB64 Csa7G043580.1 0.5
CDS:2401528-
2403473

Cleavage 1
MYB transcription factor

Cs1RMYB31 Csa6G105150.1 2.0
CDS:6908538-
6908833

Cleavage 1
MYB-like transcription
factor

Cs1RMYB9 Csa2G035350.1 3.0
CDS:3526253-
3527734

Translation 1
MYB transcription factor

Cs3RMYB1 Csa2G375240.1 5.0
CDS:18863762-
18872002

Cleavage 1
Putative MYB
transcription factor

Csa-miR159d
Cs2RMYB27 Csa3G386830.1 4.5

CDS:18944049-
18946409

Cleavage 1
Putative MYB
transcription factor

Cs2RMYB32 Csa3G816030.1 5.0
CDS:31548636-
31550625

Cleavage 1
MYB transcription factor
F
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FIGURE 5

Relative expression of Csa-miR159s and CsMYBs in the ovary and the expanded fruit of cucumber by qRT-PCR. The X-axis indicated the tested
tissue samples. Error bars represented ± standard deviation (SD) with three biological replicates. Different asterisks above the bars indicated
significant differences. (** p < 0.01, *** p < 0.001, **** p < 0.0001).
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FIGURE 6

Relative expression of Csa-miR159s in response to 10% PEG-6000 treatment (0, 3, 6, 12 and 24 h). Error bars represented ± standard deviation (SD)
with three biological replicates. Different asterisks above the bars indicated significant differences. (* p < 0.05, *** p < 0.001, **** p < 0.0001).
FIGURE 7

Relative expression of Csa-miR159s in response to 150 mmol/L NaCl treatment (0, 3, 6, 12 and 24 h). Error bars represented ± standard deviation
(SD) with three biological replicates. Different asterisks above the bars indicated significant differences. (*** p < 0.001, **** p < 0.0001).
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followed by up-regulation. Our results confirmed that Csa-miR159s

could respond to PEG and NaCl stresses by qRT-PCR, and

significant differences were observed in their expression patterns.

Additional experimental validation is necessary to elucidate the

transcriptional regulation mechanisms of Csa-miR159s under PEG

and NaCl stresses.

Several studies have indicated that miR159 can respond to some

plant phytohormones, including ABA (Reyes and Chua, 2007) and

GA (Wang et al., 2017). For instance, the application of exogenous

GA led to a significant decrease in the expression level of Fa-

miR159a, while the expression level of Fa-miR159b remained

unchanged in strawberry (Csukasi et al., 2012). Similarly,

exogenous GA treatment resulted in the up-regulated expression

of VvmiR159c during flowering, whereas VvmiR159a/b showed no

significant changes in grape (Wang et al., 2018). In this study, CREs

of six Csa-miR159s included various plant phytohormone response

elements such as ABA, GA, SARE, ABRE, MeJA and ETH. Csa-

miR159s exhibited distinct expression patterns under ABA, GA, SA,

JA, ETH and 2,4-D treatments. This suggested that Csa-miR159s

might play a significant role in plant phytohormone signaling

pathways with varying response mechanisms.

Fruit development is a crucial stage in the life cycle of plants,

encompassing a variety of intricate physiological and molecular

processes. miR159 has been found to be crucial for ovule

development and fruit set in tomato. Overexpression of Sly-

miR159 caused abnormal ovule development, premature

maturation, and seedless fruit in tomato (da Silva et al., 2017;

Deng, 2020). Furthermore, Sly-miR159-SlGAMYB2 pathway has

been identified to regulate fruit morphology, whereby inhibition of

Sly-miR159 led to larger fruit and a reduced length/width ratio
Frontiers in Plant Science 10
(Zhao et al., 2022). Here, we discovered that the expression of Csa-

miR159b/d was significantly higher in the ovary than that in the

expanded fruit. Conversely, the expression levels of Csa-miR159a/c/

e/f in the ovary were lower than those in the expanded fruit. These

findings suggested that Csa-miR159s could be involved in fruit

expansion in cucumber. miRNA regulates the growth and

development in plants by inhibiting the expression of its target

genes. In this study, Cs2RMYB37, Cs2RMYB64, Cs1RMYB31,

Cs1RMYB9 and Cs3RMYB1 were predicted as the target genes of

Csa-miR159b based on the PsRNA-Target results. While,

Cs2RMYB27 and Cs2RMYB32 were found to be the target genes

of Csa-miR159d. Furthermore, we found that Cs1RMYB9,

Cs1RMYB31, Cs2RMYB37, Cs2RMYB64, Cs2RMYB27 and

Cs2RMYB32 showed lower expression in the ovary compared to

the expanded fruit by qRT-PCR. These findings suggested that Csa-

miR159b might negatively regulate cucumber fruit expansion by

targeting Cs1RMYB9, Cs1RMYB31, Cs2RMYB37 and Cs2RMYB64.

Similarly, Csa-miR159d might negatively regulate cucumber fruit

expansion by targeting Cs2RMYB27 and Cs2RMYB32. Taken

together, our results suggested a vital role of Csa-miR159s in fruit

expansion and stress response in cucumber. Further research is

required to comprehend the functions of Csa-miR159s by

performing a gain of function or loss of function assay.
5 Conclusions

In this study, six miR159 family members were identified in

cucumber. Bioinformatics and expression profiles of Csa-miR159s

were performed to discover their potential functions. The results
FIGURE 8

Relative expression of Csa-miR159s in response to different plant phytohormones, such as, ABA, GA, SA, JA, ETH and 2,4-D. Error bars represented ±
standard deviation (SD) with three biological replicates. Different asterisks above the bars indicated significant differences. (* p < 0.05, ** p < 0.01, ***
p < 0.001, **** p < 0.0001).
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showed that Csa-miR159s played a crucial role in the response to

PEG, NaCl and plant phytohormones. Additionally, it was found

that Csa-miR159b/d might inhibit the cucumber fruit expansion by

targeting their target genes. Our study provided a theoretical

foundation for further investigation into the roles of Csa-miR159s

under fruit expansion and abiotic stresses in cucumber.
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