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Introduction: Verticillium wilt is a severe soil-borne disease that affects cotton

growth and yield. Traditional monitoring methods, which rely on manual

investigation, are inefficient and impractical for large-scale applications. This

study introduces a novel approach combining machine learning with feature

selection to identify sensitive spectral features for accurate and efficient

detection of cotton Verticillium wilt.

Methods: We conducted comprehensive hyperspectral measurements using

handheld devices (350–2500 nm) to analyze cotton leaves in a controlled

greenhouse environment and employed Unmanned Aerial Vehicle (UAV)

hyperspectral imaging (400–995 nm) to capture canopy-level data in field

conditions. The hyperspectral data were pre-processed to extract wavelet

coefficients and spectral indices (SIs), enabling the derivation of disease-

specific spectral features (DSSFs) through advanced feature selection

techniques. Using these DSSFs, we developed detection models to assess both

the incidence and severity of leaf damage by Verticillium wilt at the leaf scale and

the incidence at the canopy scale. Initial analysis identified critical spectral

reflectance bands, wavelet coefficients, and SIs that exhibited dynamic

responses as the disease progressed.

Results: Model validation demonstrated that the incidence detection models at

the leaf scale achieved a peak classification accuracy of 85.83%, which is about

10% higher than traditional methods without feature selection. The severity

detection models showed improved precision as disease severity of damage

increased, with accuracy ranging from 46.82% to 93.10%. At the canopy scale,

UAV-based hyperspectral data achieved a remarkable classification accuracy of

93.0% for disease incidence detection.
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Discussion: This study highlights the significant impact of feature selection on

enhancing the performance of hyperspectral-based remote sensing models

for cotton wilt monitoring. It also explores the transferability of sensitive

spectral features across different scales, laying the groundwork for future

large-scale early warning systems and monitoring cotton Verticillium wilt.
KEYWORDS
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disease detection
1 Introduction

Cotton, a pivotal agricultural commodity, is globally recognized

for its essential contribution to the textile industry. However,

annual cotton production is significantly threatened by various

pathogens, among which Verticillium dahliae (V. dahliae) is

particularly devastating, causing yield reductions of up to 30%

(Zhu et al., 2021). The pathogenic progression of V. dahliae often

remains latent until the advanced stages of infection, by which point

substantial crop damage has already occurred, leading to severe

economic losses (Calderon et al., 2015; Zhang et al., 2020). Current

management strategies for cotton Verticillium wilt face significant

challenges, primarily due to the delayed onset of visible symptoms,

which complicates early intervention efforts (Wang et al., 2016).

Traditionally, the detection of cotton Verticillium wilt has relied on

phenotypic assessments conducted by trained agronomists. While

practical for later stages of disease progression, this method is labor-

intensive and limited by the latency of symptom expression (Bardak

et al., 2021; Huang et al., 2023). As a result, there is an urgent need

for innovative detection methodologies capable of identifying

Verticillium wilt at early stages to mitigate its impact effectively.

Additionally, precision in traditional indoor germplasm screening is

critical to ensure the selection of disease-resistant cultivars, thereby

enhancing agricultural productivity and profitability.

Remote sensing has emerged as a promising technique for the

non-destructive detection of crop diseases across multiple spatial

scales (Liu et al., 2024; Wang et al., 2024; Zhu et al., 2024). Sensitive

spectral indicators can detect subtle changes in physiological

parameters or light protection mechanisms in plants under

biological stress, providing early signals of disease (Mahlein et al.,

2018; Morel et al., 2018; Zarco-Tejada et al., 2018). This spectral

technique is increasingly being applied to the early detection of

cotton Verticillium wilt and the examination of leaf biochemical

parameters (Calderon et al., 2015; Shin et al., 2023; Yang et al.,

2024). Radiative Transfer Models (RTMs) offer advantages in

interpreting and modeling spectral changes caused by pathogen

infections, making them valuable for plant disease detection at

various scales (Morel et al., 2018; Hornero et al., 2020).

Additionally, Continuous Wavelet Transform (CWT) has proven

effective in capturing subtle spectral signals induced by pathogen
02
infections (Shi et al., 2018a; Zhao et al., 2022). Spectral indices (SIs)

derived from specific bands in CWT can be highly sensitive to the

spectral responses caused by target plant diseases (Mahlein et al.,

2010; Zhang et al., 2019).

Recent studies have demonstrated that combining feature

subsets can significantly improve the efficiency of classification

models without compromising accuracy (Huang et al., 2019;

Hamed et al., 2020; Tian et al., 2021). In particular, machine

learning classifiers integrated with feature selection algorithms

have been successfully applied to reflectance spectra for the early

detection of crop diseases, enhancing both classification efficiency

and performance (Tian et al., 2021; Yang et al., 2022, 2024). Narrow

wavebands in hyperspectral data exhibit high sensitivity to subtle

plant changes induced by diseases, enabling the differentiation of

various disease types and the early detection of asymptomatic

infections (Bai and Jin, 2024). These advancements highlight the

potential of remote sensing and machine learning for

revolutionizing the early detection and management of cotton

Verticillium wilt, ultimately contributing to sustainable

agricultural practices.

In recent years, there has been a growing body of research

focused on monitoring cotton Verticillium wilt, aiming to

understand how narrow wavebands affect the detection

performance of the disease at different infection stages. Proximal

remote sensing using handheld spectrometers has been widely

implemented at the leaf scale (Jing et al., 2009; Chen et al., 2012,

2014), demonstrating the potential of sensitive spectral indicators

for the early detection of Verticillium wilt (Yang et al., 2022, 2024).

Additionally, studies have measured and analyzed physiological and

biochemical parameters, such as pigments and photosynthetic

parameters, under Verticillium wilt stress to elucidate the

mechanisms underlying the spectral response to infection (Chen

et al., 2010, 2018; Yuan et al., 2023). At the canopy scale, UAV

remote sensing has shown significant advantages in assessing the

severity of cotton Verticillium wilt. Multi-source feature fusion,

combining visible images and spectral data, has proven effective in

improving the accuracy of disease severity estimation (Kang et al.,

2023; Ma et al., 2024; Li X. et al., 2024). Furthermore, the integration

of UAV remote sensing with agricultural drones has provided a

practical framework for precision fungicide application to manage
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cotton Verticillium wilt (Li W. et al., 2024). On a broader scale,

satellite remote sensing using multispectral sensors has enabled the

monitoring of the spatial and temporal distribution of cotton

Verticillium wilt across large regions (Chen et al., 2011; Wang

et al., 2015; Gui et al., 2024).

Despite these advancements, current research on cotton

Verticillium wilt detection using hyperspectral data has several

limitations. Recent studies (Jing et al., 2009; Chen et al., 2012) have

predominantly relied on a single type of spectral feature, and the

feature selection methods employed have been relatively uniform,

potentially lacking adaptability to different types of spectral features.

Moreover, while recent research (Yang et al., 2024) has focused on the
Frontiers in Plant Science 03
incidence detection of cotton Verticillium wilt, there has been limited

exploration of severity detection of leaf damage using feature

selection and machine learning methods. To address these gaps, the

overall goal of this study is to conduct spectral detection on cotton

leaves infected with Verticillium wilt at different stages and to

evaluate the feasibility of using Machine Learning models coupled

with wrapper-based Feature Selection algorithms (ML-FS) to identify

sensitive spectral features and perform disease detection.

The specific objectives are: (1) to investigate the physiological basis

of leaf biochemical parameters in response to cotton Verticillium wilt

infection and their relationship with spectral detection, (2) to identify

spectral features, including spectral reflectance, wavelet coefficients,
FIGURE 1

Diagram of experimental design and data collection. (A) The growth environment and planting method of cotton in Experiment 1 and Experiment 2.
(B) Schematic diagram of non-imaging spectra acquisition for cotton leaves. (C) Images of cotton leaf at different severity grades of damage.
(D) Schematic diagram of hyperspectral imaging for cotton canopy. (E) The growth environment and planting methods of cotton in Experiment 3.
(F) Typical symptoms of cotton wilt disease in a field environment.
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and SIs, using filter-based feature selection methods, and to determine

DSSF between healthy and infected leaves, (3) to evaluate the

classification accuracy and identify the Optimal Feature

Combination (OFC) using the ML-FS algorithm at the

asymptomatic, early, and mild infection stages and (4) to assess the

severity of cotton leaf damage by Verticillium wilt at different severity

grades of damage, providing a comprehensive understanding of

disease progression and detection capabilities.
2 Materials and methods

2.1 Experimental design

In the greenhouse environment, two cotton varieties—a

moderately resistant variety, Baimian 1, and a susceptible variety,

Zhongmiansuo 24—were cultivated under controlled conditions

(Figure 1A). Plants of these varieties were divided into in two

separate groups of 60 pots each, designated as Experiment 1 and

Experiment 2, to facilitate systematic data collection. Both

experiments included those two varieties to uncover the universal

spectral response patterns of cotton to Verticillium wilt, applicable

to both susceptible and mid-resistant varieties. All plants were

cultivated in a greenhouse environment, with a controlled

photoperiod of 14 hours of light followed by 10 hours of darkness

and a constant temperature of 25°C. After the first two true leaves

had unfolded, all plants were inoculated with V. dahliae. For the V.

dahliae treatments, 10 mL of conidial suspensions (107 conidia/mL

in sterile distilled water) of V. dahliae strain 991 was applied to the

bottom of pots containing seedlings (Gong et al., 2017). Control

plants were inoculated with an equal volume of sterile distilled

water. For each plant, the first two true leaves were selected and

marked, resulting in 120 samples for each experiment.

Data collection for Experiment 1 spanned the asymptomatic

stage to the mid-infection phase, while for Experiment 2, it covered

the early to late infection stages. Spectral measurements were

conducted on the marked leaves at regular intervals across

different Days After Inoculation (DAIs). Specifically, day

collection occurred from DAI 10 to DAI 36 in Experiment 1 and

from DAI 20 to DAI 40 in Experiment 2. Infected leaves were

identified in 49 out of 120 samples in Experiment 1 and 76 out of

120 samples in Experiment 2. Comprehensive spectral data for both

infected and healthy leaves were systematically recorded at each

sampling interval.

A field environment (Experiment 3) was conducted in a cotton

disease nursery (114°49′13.782″E, 36°06′47.412″N) located in

Anyang County, Anyang City, Henan Province, China

(Figure 1E). Two moderate resistant varieties, Baimian 1 and

Zhongzhimian 2, and two susceptible varieties, Zhongmiansuo 24

and Jimian 11, were planted on April 26, 2024, with 50 plots

allocated for each variety, totaling 200 plots. This setup allowed

for the evaluation of spectral responses under natural field

conditions, complementing the controlled greenhouse

experiments. The cotton leaves in the experimental region showed

significant symptoms of Verticillium wilt. (Figure 1F)
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2.2 Data acquisition

Data collected in Experiment 1 and Experiment 2 included leaf

hyperspectral reflectance and disease occurrence. Biochemical

parameters—chlorophyll, carotenoids, anthocyanins, and water

content—were estimated from reflectance spectra using the

PROCWT model (Li et al., 2018). A FieldSpec 4 Hi-Res

spectroradiometer (Analytical Spectral Devices, Boulder, USA)

equipped with a leaf clip was used to measure leaf reflectance

(Figure 1B). The spectral sampling interval was 1 nm across the

350–2500 nm range. A 1.5 m contact fiber-optic cable with a 25°

field of view captured reflected light from the target. In both

experiments, two fully unfolded true leaves per plant were

marked, and spectral reflectance was measured at three points per

leaf using the spectrometer’s leaf clip. The leaf clip, equipped with

an active light source, ensured stable operation and minimal

measurement errors in a controlled environment. Non-imaging

spectral data were obtained by measuring each leaf 10 times near the

center of the leaf vein, with the average value recorded as the

spectral measurement. Spectral acquisition began at inoculation and

continued at multiple time points post-inoculation. In Experiment

3, canopy-scale hyperspectral data in the field environment were

collected using a UAV equipped with a hyperspectral camera

(Figure 1D), consistent with previous research (Li W. et al., 2024).

Leaf classification was determined through visual interpretation

by experts. After spectral measurements, leaves were categorized as

infected or healthy based on the presence of Verticillium wilt

symptoms. Leaves with stable disease spots on the final survey

day were classified as infected, while those without spots were

classified as healthy (Wang et al., 2004; Zhang et al., 2012). Disease

severity of damage was graded as follows:Grade 0: No disease spots.

Grade 1: Initial disease spots. Grade 2: Increased spot area with

yellowing around leaf veins. Grade 3: Half-leaf symptomatic. Grade

4: Entire leaf yellowed or wilted (Figure 1C). A 5-level grading

system was applied to all cotton plants in the study area, and the

Disease Index (DI) was calculated for each plot (Zhang et al., 2023).

Visual interpretation was performed by the same expert to ensure

consistency across all experiments.
2.3 Biochemical parameters inversion

2.3.1 Radiative transfer model inversion
The spectral specificity of cotton Verticillium wilt reflects the

changes in physiological and biochemical parameters under

infection. This study employed a radiative transfer model to

invert hyperspectral signals and extract biochemical parameters,

including chlorophyll (CHL), carotenoids (CAR), anthocyanins

(ANT), and water content (EWT), at the leaf scale under

Verticillium wilt infection.

The PROSPECT model (Jacquemoud and Baret, 1990)

simulates leaf optical properties (reflectance and transmittance) in

the optical domain from 400 nm to 2500 nm based on biophysical

properties. Derived from the extended plate model (Allen et al.,

1970), PROSPECT represents leaf optical properties as conical-
frontiersin.org
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hemispherical reflectance and transmittance, typically measured

using an integrating sphere. These properties are often described

as directional-hemispherical reflectance and transmittance,

although such directional quantities are conceptual.

However, leaf reflectance measured with a leaf clip does not

correspond to conical-hemispherical reflectance. As a result,

comparing such reflectance with PROSPECT simulations (in

forward or inverse mode) may lead to biased or uncertain results.

To address this limitation, Li et al. (2018) developed the PROCWT

method, which integrates the PROSPECT-D model (Féret et al.,

2017) with CWT. PROCWT improves the retrieval of leaf

biochemical parameters by reducing specular reflection effects and

enhancing the absorption features of chemical constituents (Tian

et al., 2021). The PROSPECT package in R (available at https://

gitlab.com/jbferet/prospect/) was used to perform biochemical

parameter inversion on spectral reflectance data and calculate all

spectral indices.

2.3.2 Statistical analysis methods
After the radiative transfer model inversion, significant

differences in biochemical parameters between healthy and

infected samples at different DAI were tested. Before conducting

significant tests, all outliers were excluded. Outliers were defined as

data points outside the three-fold standard deviation interval
Frontiers in Plant Science 05
centered on the median and were excluded from statistical

analysis (Yang et al., 2024).

Following outlier removal, normality tests were performed on

the retained data for healthy and infected samples. For data

conforming to a normal distribution, an independent t-test was

applied (null hypothesis H₀: Infected = Healthy; alternative

hypothesis Ha: Infected ≠ Healthy; P< 0.05). For non-normally

distributed data, the Mann-Whitney U-test was used.

The performance of ML-FS methodology was evaluated based

on classification accuracy for separating infected and healthy

samples at various infection stages. All statistical analyses,

including normality tests and t-tests, were conducted using the

Scipy Python library (available at https://github.com/scipy/scipy).
2.4 Detection of cotton leaf Verticillium
wilt

The detection of Verticillium wilt infection at different stages

involved three main steps: data collection and preprocessing,

feature selection, and classification (Figure 2). Details of data

collection and preprocessing were described in the previous

section. The radiative transfer model was used to invert

biochemical parameters, while vegetation indices and wavelet
FIGURE 2

Schematic illustration of ML-FS classification methodology for the spectroscopic detection of cotton Verticillium wilt.
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coefficients were extracted from spectral reflectance data. In this

section, targeted feature selection was performed using Analysis of

Variance (ANOVA), Random Forest (RF) (Long et al., 2025), and

Partial Least Squares (PLS) regression (Li et al., 2022) for different

types of spectral features. Based on the selected DSSFs for cotton

wilt disease, machine learning models—logistic regression (LR), K-

Nearest Neighbor (KNN), and Support Vector Machine (SVM)

(Yang et al., 2024)—were constructed to detect Verticillium wilt at

the leaf scale. The transferability of these DSSFs across different

scales and conditions was also investigated.

2.4.1 Spectral feature extraction
Spectral features were extracted from the collected hyperspectral

data of cotton leaves, resulting in three types of candidate features for

Verticillium wilt detection: spectral reflectance, wavelet coefficients,

and spectral indices. This refers to the reflectance of individual bands

(1 nm width, 350–2500 nm) measured using a spectroradiometer. It

captures changes in the amplitude of the reflection spectrum of

cotton leaves following Verticillium wilt infection.

The observed spectral reflectance, a continuously changing

signal, was processed using CWT. CWT separates changes in

spectral reflectance at different frequencies by applying wavelet

functions at various transformation scales. Compared to single-

band reflectance, wavelet coefficients enhance weak spectral

absorption characteristics, making them more sensitive to subtle

changes. This study employed the Mexican hat wavelet function at

transformation scales 2, 4, 6, 8, 10, 12, 14, and 16 (scales 1 to 8)

(Yang et al., 2024). Wavelet coefficients were generated using the

pywt Python library package (available at https://github.com/

PyWavelets/pywt). Based on existing research, a total of 92

spectral indices across five categories were calculated as candidate

features for detecting Verticillium wilt (Supplementary Table 1).
2.4.2 Sensitive spectral feature selection for
cotton Verticillium wilt

The number of spectral features extracted from the three

categories (spectral reflectance, wavelet coefficients, and spectral

indices) was extensive. Given the continuous nature of spectral

reflectance and wavelet coefficients across the observation range,

there was a significant correlation between adjacent bands. To

enhance classification performance, improve learning accuracy,

reduce computational costs, and increase model interpretability,

feature selection methods were employed to reduce the

dimensionality of the spectral feature dataset.

Reflectance features were evaluated using ANOVA due to their

continuous nature. Spectral reflectance bands were ranked based on

ANOVA scores, and redundant, irrelevant, or noisy features were

removed. Wavelet coefficients, derived from reflectance data CWT,

exhibit high dimensionality and complexity. To address this, the

CWT-PLSmethod (Li et al., 2022) was used to select sensitive wavelet

features for cotton wilt detection. PLS regression identified

uncorrelated latent variables in high-dimensional wavelet coefficient

data, reducing collinearity and avoiding overfitting or underfitting.

The predictive accuracy of PLS regression was evaluated by

optimizing the number of latent variables. Projection Variable
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Importance (VIP) values were calculated for each wavelength, with

higher VIP values indicating greater importance in the CWT-PLS

model. Wavelet features with higher VIP values were selected as they

contained key spectral information and improved detection

performance compared to the full feature set. Random Forest (RF)

was used for feature selection of spectral indices. RF calculated the

Out-of-Bag (OOB) error for each decision tree, introduced random

noise to OOB features, and recalculated the error. Features causing a

larger decrease in OOB accuracy after noise addition were identified

as having a greater impact on prediction results.

The selected features constituted DSSFs for cotton leaf wilt

detection. Feature selection methods, including ANOVA, PLS

regression, and Random Forest, were implemented using the

scikit-learn Python library (available at https://github.com/scikit-

learn/scikit-learn). Finally, the Variance Inflation Factor (VIF) was

used to test multicollinearity among wavelet features, and features

with low multicollinearity were retained.

2.4.3 Construction of classification model
Two types of cotton leaf Verticillium wilt detection were

implemented, including the classification between healthy and

infected leaves and the five grades of disease severity of damage.

The classification methodology for distinguishing healthy and

infected leaves was developed using DSSFs from samples across

various DAIs in two experiments. This study employed machine

learning methods coupled with wrapper feature selection (ML-FS),

where the performance of machine learning classification models

served as the discriminator for feature selection.

The Sequential Forward Floating Selection (SFFS) algorithm was

chosen as the wrapper feature selection method, providing

suboptimal solutions for computationally intensive exhaustive

searches. The three types of spectral features selected from filter-

based feature selection were set as the initial feature set F, and the

feature subset began as an empty set X0 . Then, SFFS iteratively

selected features x+ and added them to the feature subset Xk to form

Xk+1, optimizing the feature function J(X). In the context of wrapper

feature selection, J(X) represented the performance of the target

machine learning models on the given feature set. This process was

repeated until the number of features (k) reached a preset value. The

above process can be represented by Equation 1 and Equation 2.

x+ = argmax   J(Xk   +   x) (1)

Xk+1 = Xk   +   x
+ (2)

where x ∈ F−Xk . Finally, the corresponding feature subset Xk

was selected as the optimal feature combination, and the

classification accuracy corresponding to this optimal feature

combination was obtained.

This study employed commonly used machine learning models,

such as LR, KNN, and SVM, for cotton Verticillium wilt detection,

coupled with wrapper feature selection (Tian et al., 2021; Yang et al.,

2024). LR uses a logistic function (sigmoid function) to map the

output of linear regression to the range [0, 1]. The model is

optimized using the maximum likelihood method for parameter

estimation. KNN partitions the feature vector space using training
frontiersin.org
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data and determines the category of a new sample based on the

categories of its K nearest neighbors. This study used Euclidean

distance for distance measurement in KNN. SVM constructs an

optimal class-separation hyperplane to maximize the margin

between classes using a small number of support vectors (training

samples). A linear kernel function was chosen as the decision

function for SVM. During the feature selection process, 10-fold

cross-validation was used to evaluate the accuracy of the

classification models (LR, KNN, and SVM). For the classification

of cotton leaf severity of damage and canopy incidence, the

methodology was developed directly using the selected disease-

specific spectral features (DSSFs) from filter-based feature selection,

incorporating samples across all DAIs from both experiments. The

same classification methods (LR, KNN, and SVM) were applied.

The performance of the severity classification models was assessed

using the classification accuracy of different severity grades of

damage. All machine learning methods were implemented using

the scikit-learn Python library, with wrapper feature selection

provided by the mlxtend package (available at https://github.com/

rasbt/mlxtend). The dataset was split into a training set (80%) and a

testing set (20%). The training set was used to train the models,

while the testing set evaluated model performance. Performance

was evaluated using 10-fold cross-validation. The training set was

divided into 10 subsamples, with one subsample retained as

validation data and the remaining nine used for training. This

process was repeated 10 times, with each subsample validated once.

The average of the 10 validation results was taken as the final

evaluation metric. The performance of the wilt diseasedetection

models was evaluated using accuracy and F1-score (Li L. et al.,

2024),calculated according to Equation 3-6 as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 = 2� Precision� Recall
Precision + Recall

(6)

where TP is True Positive, FP is False Positive, TN is True

Negative, and FN is False Negative.
3 Experimental results and analysis

3.1 Assessment of leaf biochemical
parameters following Verticillium dahliae
inoculation

Compared to healthy leaves, cotton leaves infected with V.

dahliae exhibited dynamic changes in biochemical parameters

following inoculation (Figure 3). These changes aligned with the

typical symptomatology of Verticillium wilt.
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Levels of chlorophyll and carotenoids, key photosynthetic

pigments, demonstrated the most rapid response to infection. Both

pigments consistently declined as the disease progressed, with

significant reductions observed fromDay After Inoculation (DAI) 18.

Changes in anthocyanins and water content were slightly

delayed, with no significant differences in the early stages of the

disease. However, variability became evident in the middle to late

stages. As the disease progressed, the rate of change in these

parameters accelerated, showing strong differences in the late

stages. A significant reduction in water content was observed

from DAI 22. A marked increase in anthocyanins was noted from

DAI 24. Due to varying disease progression rates among individual

leaves, some leaves with faster symptom development appeared as

outliers in the box plot compared to others. In summary, our

findings demonstrate that cotton leaves infected with V. dahliae

undergo significant biochemical changes, particularly in

photosynthetic pigments and water content, reflecting the

physiological impact of Verticillium wilt.
3.2 Spectral response patterns of cotton
leaves post infection

Overall, the spectral response of cotton leaves infected with V.

dahliae showed an increasing trend in reflectance across the entire

wavelength range (350–2500 nm) as the disease progressed.

Experiment 1 primarily covered the asymptomatic and early

stages of infection, while Experiment 2 focused on the early to

mid-stages (Figure 4). During the asymptomatic and early stages in

Experiment 1, the spectral response was relatively weak (Figure 4A),

but a significantly stronger response was observed in the early to

mid-stages of Experiment 2 (Figure 4B). In the visible light range

(400–680 nm), dominated by photosynthetic pigments such as

chlorophyll and carotenoids, the response to infection was rapid

and sensitive, with a gradual weakening of absorption in the green

and red regions and a consistent upward trend in reflectance that

continued into the mid and late stages. In contrast, the near-

infrared (750–1350 nm) and shortwave infrared (1350–2500 nm)

ranges showed weaker reflectance changes during the asymptomatic

stage but exhibited a more pronounced upward trend as DAI

increased. This was particularly evident in the water absorption

valleys around 1450 nm and 1950 nm, where spectral absorption

weakened significantly in the later stages, mirroring the patterns

observed in the visible range. These findings indicate that the

absorption characteristics of photosynthetic pigments and water

are significantly reduced in infected leaves, aligning with the

biochemical changes shown in Figure 3, where chlorophyll,

carotenoids, and water content decreased as DAI increased.
3.3 Selection of sensitive spectral features
for cotton Verticillium wilt

Significant reflectance features for both healthy and infected

leaves were identified using filter feature selection based on
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AVOVA (Figure 5). In Experiment 1, ANOVA analysis revealed

that sensitive spectral bands for cotton Verticillium wilt primarily

resided within the 350–735 nm visible light range, especially during

the asymptomatic to early stages. At the asymptomatic stage, a few

bands began to show significant differences, with substantial

differences emerging around 450 nm and 700 nm from DAI 16.

As the disease progressed, significant differences became more

pronounced across the entire visible light range, with stable
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sensitive spectral features identifiable between DAI 26 and DAI

36. In the shortwave infrared range (SWIR), no significant

differences were observed during the asymptomatic stage, but

differences emerged in later stages. Both experiments showed

stable sensitive spectral features in the mid to late stages. The

intersection of ANOVA results confirmed that the visible light

range exhibited sensitive spectral features for differentiating healthy

and infected leaves early on, with stable differences as the disease
FIGURE 3

Comparison of leaf biochemical parameters between the infected and healthy leaves. The left panel shows data from Experiment 1, while the right
panel presents data from Experiment 2. In each boxplot, the top edge, black line, and the bottom edge of the box represent the upper (Q3), median
(Q2), and lower (Q1) quartile, respectively. The whiskers represent the maximum (Q3 + 1.5 × IQR) and minimum (Q1–1.5×IQR) valid values defined
by inter-quartile ranges (IQR = Q3-Q1). The dots outside the boxplot represent outliers. Asterisks at the top of the pairs of box plots indicate
significant differences in biochemical variables between healthy and infected samples, as determined by Student's t-test.
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progressed. Although no significant differences were detected in the

SWIR during the asymptomatic stage, significant distinctions

aligned with water absorption characteristics in later stages.

Consequently, the red (665 nm) and green (560 nm) bands were

selected to reflect pigment responses, while the SWIR water

absorption ranges (1450–1850 nm and 2000–2500 nm) were

chosen to reflect changes in water content. Based on ANOVA

scores, 560 nm, 665 nm, 1610 nm, and 2185 nm were identified as

sensitive spectral bands for cotton Verticillium wilt at the leaf scale.

Sensitive wavelet features for cotton leaf Verticillium wilt

detection were selected by calculating VIP values following PLS

regression using data from both experiments (Figure 6). The VIP

value curves for wavelet features showed similar trends across the

spectral range in both experiments. As the transformation scale

increased, VIP values decreased, resulting in smoother curves due to

the filtering of high-frequency signals by CWT. A VIP threshold of

1.9 was applied to filter potential sensitive wavelet features, followed

by manual selection to confirm DSSFs. Peaks in VIP values were

predominantly concentrated in the visible light and SWIR ranges

across different transformation scales. Ultimately, 13 wavelet
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features were identified as DSSFs for cotton leaf Verticillium wilt

detection (Table 1).

All 92 candidate spectral indices (Supplementary Table 1) were

ranked by feature importance using a random forest approach

based on data from both experiments. The top 20 indices with

the highest importance included Car_rededge, PRI, PSSRc, PSRI,

NDII, LIC3, HI_2014, mARI, ARI, BF5, BF1, BF2, VOG2, BGI1,

CCI, WI, MDATT, BF3, NDWI, and RI1062_1393 (Figure 7). These

indices were primarily related to photosynthetic pigments, plant

stress, and water content. Specifically, Car_rededge, PRI, PSSRc,

VOG2, CCI, and MDATT were linked to chlorophyll and

carotenoids, while mARI, ARI, PSRI, and HI_2014 were

associated with plant stress. Indices such as NDII, WI, NDWI,

and RI1062_1393 were related to water content. Additionally, RGB

color indices (LIC3, BF5, BF1, BF2, BGI1, and BF3) showed

relationships with photosynthetic pigments. The top 10 sensitive

spectral indices were selected for cotton leaf Verticillium

wilt detection.

Based on the feature selection results from both experiments, 27

features were ultimately identified as DSSFs for cotton Verticillium
FIGURE 4

Mean leaf reflectance of healthy and infected leaves across different days after infection (DAIs), spanning wavelengths from 350 to 2500 nm. (A) Leaf
reflectance data collected on days 10, 18, 26, 32, and 36 DAI in Experiment 1. (B) Leaf reflectance data collected on days 20, 24, 28, 32, and 40 DAIs
in Experiment 2. The colored lines represent the reflectance of specimens at different DAIs.
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wilt detection, including spectral reflectance and wavelet

coefficients (Table 1). This comprehensive analysis highlights the

importance of specific wavelengths and features in monitoring plant

health and disease progression, providing critical insights for the

early detection of cotton Verticillium wilt.
3.4 Incidence detection of cotton leaf
Verticillium wilt coupled with wrapper
feature selection

To enhance the selection of spectral features, we employed the

SFFS as a wrapper feature selection algorithm. This method refined

the preliminary selection of spectral features from infected and

healthy cotton leaves at different infection stages, identified through

filter-based feature selection. The selected features were then used as

input data to construct classification models for cotton Verticillium

wilt using three machine learning methods: LR, KNN, and SVM.

The optimal feature combinations and classification performance of

each model at different DAIs were evaluated (Table 2).
Frontiers in Plant Science 10
Results from the two experiments revealed that the machine

learning classification model based on wrapper feature selection

achieved a classification accuracy slightly above 60% during the

asymptomatic stage. As the disease progressed, the model’s

accuracy improved incrementally, ultimately exceeding 85%.

Notably, the KNN model consistently outperformed LR and SVM

across all disease stages. In Experiment 1, KNN achieved the highest

accuracy of 77.50%, while in Experiment 2, it reached 85.83%. The

superiority of KNN was particularly evident during the

asymptomatic stage, where its performance significantly exceeded

that of LR and SVM. As the infection progressed, the performance

gap between the three algorithms narrowed. While SVM initially

showed lower accuracy during the asymptomatic and early stages,

its accuracy at the final DAI in both experiments reached 76.67%

and 83.33%, closely matching or even surpassing the other

algorithms in some cases. Additionally, the OFC selected by the

three algorithms varied slightly across different DAIs and models.

As the disease progressed, both the traditional KNN model and

the KNN model using OFC showed gradual increases in

classification accuracy and F1 score (Figure 8). The KNN model
FIGURE 5

ANOVA result of reflectance spectra of the leaves collected from Experiment 1 and in Experiment 2. The intersection of sensitive bands identified
from both datasets is highlighted. The X-axis has spectral wavebands from 350 to 2500 nm. The patches in red represent the intersection of the
most sensitive features.
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using OFC achieved an accuracy exceeding 85% and an F1 score of

82%, while the model using all features achieved an accuracy close

to 80% and an F1 score of approximately 75%. Across all

observations, the KNN model enhanced by wrapper feature

selection consistently outperformed the standard KNN algorithm.

This advantage was particularly pronounced in the early stage of

Experiment 1, where the wrapper-based KNN model achieved 29%

higher accuracy and 25% higher F1 score compared to the standard

KNN. Although the performance gap narrowed during the mid-

stage of the disease, the wrapper-based KNN maintained a clear

advantage. Overall, the KNN model, enhanced by wrapper feature

selection, demonstrated superior accuracy in detecting cotton leaf
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Verticillium wilt, achieving over 85% accuracy and 82% F1 score as

the disease progressed, significantly outperforming LR and SVM

models, especially during the asymptomatic stage.
3.5 Severity detection of cotton leaf
damage by Verticillium wilt

Using the selected DSSFs from the first stage of feature selection

as input data, along with the corresponding severity grades of

damage as labels, we constructed classification models to assess

the severity of cotton leaf damage by Verticillium wilt. The same
FIGURE 6

VIP values over observed wavelengths of the CWT-PLS model for incidence and severity detection of cotton Verticillium wilt in different
transformation scales. The images (A-H) from top to bottom, correspond to transformation scales 2 to 16, respectively. The gray dashed line in each
image represents a VIP threshold of 1.9.
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three machine learning methods—LR, KNN, and SVM—were

employed, and the classification performance for different severity

grades of damage was evaluated (Figure 9).

Analysis of samples from both experiments revealed that the

precision of the machine learning models improved as the severity

grade of infected cotton leaves increased. The models achieved their

highest precision for the most severe grade (Grade 4), with precision

ranging from 87.88% to 93.10%. In contrast, precision was lower

and more comparable for the other grades: Grade 1 (47.22%–

53.75%), Grade 2 (46.82%–49.26%), and Grade 3 (55.17%–
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60.00%). For Grade 0, classification performance varied, with the

SVM model achieving a maximum precision of 75.93%, while the

KNN model recorded only 51.39%. The LR and SVM models

showed similar precision across all severity grades, with

differences not exceeding 5%. Although the KNN model was

generally less accurate than LR and SVM, it performed slightly

better for Grade 2. The F1 scores exhibited similar trends to

precision across severity grades. The highest F1 scores from

Grade 0 to Grade 4 were 68.33%, 45.33%, 57.05%, 57.97%, and

87.88%, respectively.
3.6 Incidence detection of cotton
Verticillium wilt at canopy scale

Furthermore, this study explored the potential for upscaling the

application of DSSFs selected at the leaf scale to the canopy level.

Using field hyperspectral data collected by UAV, we investigated

the detection of cotton canopy Verticillium wilt incidence. Due to

differences in spectral ranges between the leaf-scale spectrometer

and the airborne hyperspectral camera, sensitive spectral features

compatible with UAV data were filtered from the DSSFs identified

in the first stage of feature selection (Table 1). These filtered features

were used as input data for constructing an incidence detection

model at the canopy scale.

A total of 19 DSSFs matching the UAV hyperspectral data were

used as input for the canopy-scale incidence detection model. On

different Days After Sowing (DASs), the accuracy of the model was

evaluated using three machine learning methods (Table 3). Over the

observation period, the classification accuracy of the models

increased from approximately 50% at DAS 52 to over 90% at

DAS 101, while F1 scores improved from slightly above 60% to

over 95%. Notably, from DAS 87 to DAS 101, the performance of all

three models was highly consistent, with classification accuracy

exceeding 90% and F1 scores above 95%, demonstrating effective

and stable identification of cotton canopy Verticillium wilt during

this period. Between DAS 59 and DAS 80, the KNN model

outperformed the others, showing faster improvement in

classification accuracy before converging with the performance of

the other models.
4 Discussion

4.1 Physiological explanation of the
spectral response of cotton Verticillium
wilt

V. dahliae induces symptoms in cotton leaves by colonizing the

xylem, leading to xylem blockage and the secretion of toxins

(Yadeta and J Thomma, 2013; Chen et al., 2016; Zhang et al.,

2022). Following infection, cotton undergoes a series of

physiological reactions, and changes in various biochemical

parameters can trigger significant responses within specific

spectral ranges (Yang et al., 2024). Due to the complexity of

cotton’s physiological response to V. dahliae, there may be an
TABLE 1 Summary of the selected disease-specific spectral features
(DSSFs) for cotton Verticillium wilt.

Feature type Feature number Feature name

Spectral reflectance

F1 R560*

F2 R665*

F3 R1610

F4 R2185

Wavelet coefficients

F5 W2-598*

F6 W2-629*

F7 W2-645*

F8 W2-1801

F9 W4-598*

F10 W4-645*

F11 W4-904*

F12 W6-646*

F13 W6-1801

F14 W10-468*

F15 W12-366

F16 W14-353

F17 W14-1803

Spectral index

F18 Car_rededge*

F19 PRI*

F20 PSSRc*

F21 PSRI*

F22 NDII

F23 LIC3*

F24 HI_2014*

F25 mARI*

F26 ARI*

F27 BF5*
The feature type column is the type of spectral features. The feature number column is the
number of spectral features used to refer to the corresponding spectral features in subsequent
sections. The feature name column is the name of the selected spectral feature, where spectral
reflectance is represented by R with subscripts as bands, wavelet features are represented byW
with subscripts as transform scales and bands, and spectral indices are detailed in
Supplementary Table 1. The asterisk indicates that this feature has also been applied in the
severity assessment models of cotton Verticillium wilt at the canopy scale.
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imbalance in the spectral features selected from the visible-near

infrared (VNIR) and SWIR ranges.

This study reveals that the temporal response pattern of leaf

biochemical parameters to Verticillium wilt infection aligns with

the physiological response of cotton to the disease. In the early

stages of infection, only a small amount of V. dahliae infects the

cotton plants, which is insufficient to block the xylem. As a result,

there are no significant differences in biochemical parameters

between infected and healthy leaves. However, as the fungus

grows and the xylem becomes blocked, photosynthetic pigments

(chlorophyll and carotenoids) in cotton plants respond rapidly to

the infection, and their response remains stable and continuous

until the end of the observation period (Figure 3). By the mid to late

stages, anthocyanins and water content begin to show responses to

the infection, with more intense changes than those observed in

photosynthetic pigments, indicating a severe progression of

the disease.

The rapid proliferation of V. dahliae damages the internal

structure of leaves and disrupts the transport of water and

nutrients (Tian and Kong, 2022). VNIR spectral features are highly

sensitive to changes in the internal structure of leaves and pigment

content (Jacquemoud et al., 2009; Ustin et al., 2009). CWT is widely

recognized for its ability to detect subtle spectral signals (Lin et al.,

2021), and the extracted small wavelet features are highly

interpretable (Li et al., 2021). These techniques highlight subtle

changes in the local spectrum of cotton infected with Verticillium

wilt, significantly improving the detection accuracy of the biophysical

dynamic characteristics of infected leaves (Zhang et al., 2019).

The biochemical response of cotton to Verticillium wilt

infection, based on physiological mechanisms, can guide the
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selection of disease-specific spectral features (DSSFs). The

sensitivity of numerous spectral features in the VNIR region

during feature selection (Figure 5) suggests that pigment content

may respond rapidly to pathogen infection. Spectral characteristics

in the SWIR region also exhibit sensitivity to Verticillium wilt,

particularly in the later stages of infection. Correspondingly, the

water content of infected cotton leaves shows a significant decrease

in the late stages (Figure 3), indicating that water stress caused by

Verticillium wilt occurs relatively later. Specifically, the 665 nm

spectral band selected during sensitive spectral feature selection

coincides with the chlorophyll absorption center, suggesting that

this band can effectively capture changes in chlorophyll content due

to Verticillium wilt infection. The selected wavelet features (W4-

613, W4-629) characterize changes in the spectral shape near the

yellow range, primarily influenced by the overlapping absorption of

several pigments, particularly chlorophyll and anthocyanins (Féret

et al., 2017). Most of the selected SIs are also related to chlorophyll

and carotenoids (Car_rededge, PRI, PSSRc, VOG2, CCI, MDATT,

mARI, ARI, PSRI, and HI_2014), which can be explained by the

strong correlation between chlorophyll and carotenoid content in

crop leaves (Féret et al., 2011).

This study, through dense sampling, reveals the physiological

and spectral responses of cotton plants to Verticillium wilt infection

at the leaf level. Determining disease-specific spectral features based

on the physiological mechanisms of specific disease stress is crucial

(Zarco-Tejada et al., 2018). The delayed response of anthocyanins

and water content in detecting various disease stresses suggests that

traditional methods relying on these indicators may not be sufficient

for early detection of cotton Verticillium wilt (Morel et al., 2018).

Instead, photosynthetic pigments such as chlorophyll and
FIGURE 7

The top 20 spectral indices ranked by feature importance. Random forest analysis was conducted using data from both Experiment 1 and
Experiment 2 to determine the significance of each index.
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carotenoids should be prioritized as sensitive indicators. This study

analyzes the universal spectral response patterns of cotton to

Verticillium wilt stress based on spectral data from different

cotton varieties and selects DSSFs suitable for various cotton

varieties. There are slight differences in the spectral responses of

different cotton varieties to Verticillium wilt stress. Therefore,

future research should focus on exploring sensitive spectral

features with variety specificity to enhance the accuracy of

detecting Verticillium wilt in different cotton varieties.
4.2 Advantages of machine learning
methods based on feature selection

Compared to traditional machine learning methods that utilize

all features for classification, the wrapper-based feature selection

approach adopted in this study enhances the performance of the

classification model by identifying the optimal feature combination.

As DAI increases, the classification accuracy of both methods

improves significantly, but the ML-FS (Machine Learning with

Feature Selection) method consistently achieves higher accuracy

than traditional methods (Figure 8). This demonstrates that models

constructed with OFC not only reduce computational costs but also
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provide superior classification accuracy compared to models

trained using all features. Recent studies have increasingly focused

on identifying optimal features to improve classification

performance (Liu et al., 2019; Hornero et al., 2020; Tian et al.,

2021; Yang et al., 2024). By optimizing the combination of sensitive

spectral features, it is possible to effectively amplify the weak

spectral signals generated by the physiological response of plants

to pathogen stress during the early stages of disease. In terms of

computational efficiency, the ML-FS method has more advantages

than methods based on radiative transfer models. Due to the need to

use all hyperspectral data for model inversion of biochemical

parameters, the radiative transfer model requires a longer

calculation time, limiting its application in disease detection

(Hornero et al., 2020). On the contrary, feature selection

algorithms greatly improve computational efficiency by selecting

the optimal combination from hyperspectral data while retaining

useful information (Huang et al., 2019).

Another advantage of the ML-FS method is its ability to ensure

the rationality and interpretability of the OFC obtained through

feature selection. Previous studies (Garcia Furuya et al., 2021;

Poblete et al., 2021; Yu et al., 2022) have employed large numbers

of unselected features as inputs for machine learning to achieve

effective disease detection, but the specificity of these features for
TABLE 2 Performance of the ML-FS techniques in accuracy for classifying healthy and infected samples by 10-fold cross-validation, including Logistic
Regression, K-Nearest Neighbor, and Support Vector Machine.

Experiment
Day
After

Inoculation

Logistic Regression K-Nearest Neighbor Support Vector Machine

Optimal
Feature

Combination

Mean
Accuracy

Optimal
Feature

Combination

Mean
Accuracy

Optimal
Feature

Combination

Mean
Accuracy

Experiment 1

10 F2,F1,F3,F4 63.33% F5,F7,F9,F22 65.00% F2,F1,F3,F4 63.33%

14 F2,F1,F3,F4 64.17% F5,F6,F9,F9 72.50% F2,F1,F3,F4 63.33%

18 F2,F1,F18,F20 65.00% F7,F6,F9,F24 78.33% F2,F1,F3,F4 63.33%

22 F2,F1,F3,F4 67.50% F1,F5,F7,F6 67.50% F2,F1,F3,F4 65.00%

26 F2,F1,F3,F4 65.83% F2,F5,F7,F12 75.00% F2,F1,F3,F4 63.33%

30 F2,F18,F20,F27 72.50% F7,F10,F17,F22 72.50% F2,F1,F20,F26 71.67%

32 F2,F1,F18,F20 69.17% F5,F7,F19,F26 77.50% F2,F3,F20,F25 68.33%

34 F2,F20,F25,F27 76.67% F3,F4,F23,F26 81.67% F2,F1,F20,F26 75.00%

36 F2,F1,F20,F26 75.83% F5,F12,F17,F23 77.50% F2,F20,F25,F26 76.67%

Experiment 2

20 F4,F5,F26,F27 67.50% F2,F5,F18,F23 74.17% F2,F18,F20,F26 65.83%

22 F2,F1,F3,F26 72.50% F7,F6,F8,F19 70.83% F2,F1,F20,F26 72.50%

24 F2,F1,F18,F27 70.00% F2,F15,F23,F25 75.00% F2,F1,F3,F26 69.17%

26 F2,F1,F3,F26 70.00% F2,F20,F21,F22 72.50% F2,F1,F20,F26 67.50%

28 F1,F5,F18,F25 70.83% F5,F7,F6,F27 72.50% F2,F18,F20,F26 70.00%

30 F2,F18,F20,F27 72.50% F5,F16,F21,F23 73.33% F2,F1,F3,F20 69.17%

32 F2,F1,F18,F20 74.17% F5,F7,F8,F23 70.83% F2,F1,F18,F20 71.67%

36 F2,F1,F3,F20 77.50% F5,F7,F23,F27 76.67% F1,F3,F4,F20 76.67%

40 F2,F1,F3,F20 83.33% F4,F5,F7,F21 85.83% F1,F3,F20,F27 83.33%
Bold indicates the best predictor for each observation period.
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particular diseases remains unclear. This study, however, identifies

sensitive features for cotton Verticillium wilt with high information

content through feature selection, providing insights into the

response mechanisms of these features to disease occurrence.

Filter-based feature selection methods evaluate features based on

general performance metrics such as target correlation,

autocorrelation, and divergence without considering specific

models. The advantages of this approach include low

computational cost and effective avoidance of overfitting.

However, its drawback is that it does not account for the specific

learners to be used in the future, which may weaken the learners’

fitting ability. This method is well-suited for applications requiring

strong universality, such as spectral reflectance. PLS offers

advantages such as handling highly collinear data, suitability for

small-sample, large-feature problems, and insensitivity to outliers.

However, its disadvantages include high computational cost, poor

interpretability, and limited applicability. Continuous Wavelet

Transform (CWT) decomposes spectra into numerous wavelet

features, effectively characterizing spectral signals but potentially

introducing multicollinearity, which can be mitigated by using PLS

as the feature selection method.
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RF excels in processing high-dimensional data without the need

for dimensionality reduction, evaluating feature importance during

model training, and reducing redundant features to enhance model

performance. However, RF is sensitive to noisy data, lacks model

interpretability, and has an opaque feature selection process.

Therefore, RF is suitable for selecting a large number of vegetation

indices, and the selected indices can be interpreted based on their

inherent characteristics and remote sensing mechanisms.
4.3 Potential applications and limitations

Among the selected Disease-Specific Spectral Features (DSSFs)

for cotton Verticillium wilt (Table 1), a significant number of

features are related to photosynthetic pigments (chlorophyll and

carotenoids), such as R665, ChlRE_opt, RI_708_775, PSSRa, PSSRc,

PSNDb, PR, and PRIm2 (Supplementary Table 1). These features,

originating from the visible and near-infrared (VNIR) region,

demonstrate strong potential for detecting cotton Verticillium

wilt due to their connection with the physiological effects induced

by the disease. Photosynthetic pigments exhibit a significant
FIGURE 8

Comparison of classification accuracy and F1-score between standard KNN and KNN with wrapper feature selection. (A) Results of accuracy from
Experiment 1. (B) Results of accuracy from Experiment 2. (C) Results of F1-score from Experiment 1. (D) Results of F1-score from Experiment 2. "ALL"
represents models trained with all features, while "OFC" indicates models constructed using the ML-FS algorithm.
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FIGURE 9

Assessment in precision for classifying different severities of samples. Three models—Logistic Regression (LR), K-Nearest Neighbors (KNN), and
Support Vector Machine (SVM)—were employed for this evaluation. (A) Results of precision for all samples. (B) Results of F1-Score for all samples.
TABLE 3 Performance of the incidence detection models of cotton canopy Verticillium wilt by 10-fold cross-validation, including Logistic Regression,
K-Nearest Neighbor, and Support Vector Machine.

Day
after Sowing

Logistic Regression K-Nearest Neighbor Support Vector Machine

Mean
Accuracy

Mean
F1 Score

Mean
Accuracy

Mean
F1 Score

Mean
Accuracy

Mean
F1 Score

52 49.00% 61.59% 52.00% 60.36% 51.00% 64.84%

59 59.50% 72.89% 59.50% 64.36% 59.50% 74.60%

66 58.50% 65.78% 68.50% 70.31% 58.50% 66.68%

73 61.50% 75.19% 71.00% 76.26% 65.50% 74.25%

80 72.00% 83.70% 71.00% 79.88% 72.00% 83.70%

87 91.50% 95.55% 88.50% 94.12% 91.50% 95.55%

94 92.50% 96.09% 90.00% 94.99% 92.50% 96.09%

101 93.00% 96.36% 92.50% 95.80% 93.00% 96.36%
F
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Bold indicates the best predictor for each observation period.
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response to the onset of cotton wilt disease even during the

asymptomatic stage, suggesting that they can serve as effective

and consistent indicators for early detection. Recent studies have

confirmed the feasibility of accurately estimating leaf chlorophyll

content at various scales (Gitelson and Solovchenko, 2017; Gitelson

et al., 2019; Xu et al., 2019; Li et al., 2020), highlighting the

transferability and potential applications of these features for

early detection across different datasets, cotton varieties, and

environmental conditions. Additionally, the advantages of

Continuous Wavelet Transform (CWT) in quantifying plant

disease severity have been well-documented (Cheng et al., 2010;

Zhang et al., 2014; Shi et al., 2018b). Our results further indicate that

wavelet analysis can effectively capture subtle changes in spectral

shape, enhancing the detection of disease-induced signals.

This study also demonstrates that the DSSFs selected for cotton

wilt disease detection exhibit potential transferability across tasks,

scales, and environments. These features can be adapted for severity

of damage assessment at the leaf scale and incidence detection at the

canopy scale in field conditions using machine learning methods.

Based on the sensitive spectral features identified for disease

occurrence detection, the classification of disease severity of

damage at the leaf level shows promising results. The

classification accuracy for severely infected leaves reaches 93.1%,

while the accuracy for mildly infected leaves ranges between 45%

and 60%. This indicates that the selected spectral features possess

good cross-task transferability. Furthermore, when applied to

canopy-scale disease detection using UAV hyperspectral data,

these features also perform well. After DAS 80, the classification

accuracy of most detection models exceeds 90%, and for samples

with mild early symptoms, the accuracy remains above 50%. This

underscores the strong transferability of these features across

environments and scales, providing a foundation for future work

on early detection of cotton wilt disease. Since different severity

grades of damage represent different stages of the disease, the ability

to detect subtle changes at the asymptomatic stage is critical.

Sensitive narrow wavebands in hyperspectral data can respond to

these subtle changes, making them valuable for early disease

detection (Bai and Jin, 2024). However, while the severity

assessment models perform well for severely infected leaves, the

detection accuracy for mildly infected leaves remains suboptimal,

highlighting the limitations of the current DSSFs for early detection.

Therefore, more specific spectral features tailored for early detection

need to be developed from hyperspectral data.

Compared to previous studies on cotton wilt disease, the

innovation of this study lies in its use of feature selection methods

to identify sensitive spectral features in greenhouse environments and

investigate their transferability across tasks, environments, and scales.

While recent studies have begun to explore the role of feature selection

in identifying sensitive features for cotton wilt disease (Yang et al.,

2022; Yuan et al., 2023; Yang et al., 2024), the methods employed have

often been limited in scope. This study adopts more suitable feature

selection methods for different types of spectral features and identifies

sensitive spectral features at the canopy scale. Previous research on

cotton wilt using hyperspectral technology has primarily focused on

the leaf scale, utilizing handheld hyperspectral imaging devices to
Frontiers in Plant Science 17
collect data (Jing et al., 2009; Chen et al., 2010, 2012; Yang et al., 2022,

2024). In contrast, this study extends the application of sensitive

spectral features from the leaf scale to canopy-scale in field

environments, providing a more comprehensive approach to remote

sensing monitoring of cotton wilt disease.

Remote sensing offers a non-destructive, large-scale, and rapid

method for detecting crop diseases, particularly for early

monitoring, which is crucial for minimizing crop losses and

ensuring agricultural productivity. Future research should

continue to explore remote sensing monitoring of cotton

Verticillium wilt using multispectral and hyperspectral satellite

sensors. In addition to the widely used vegetation indices and the

DSSFs selected in this study, further development of new spectral

indices tailored for cotton Verticillium wilt is essential. These

indices could enable monitoring at multiple growth stages (leaf,

canopy, and regional scales) and across different disease progression

levels. The multi-temporal detection and severity assessment of leaf

diseases in this study provide a solid foundation for detecting cotton

wilt disease at various stages. However, more specific spectral

features need to be constructed and selected from hyperspectral

data to improve early detection capabilities.

It is also important to note that the spatial heterogeneity of

cotton wilt disease necessitates the expansion of datasets to include

different varieties, regions, and growth stages. This will enable a

deeper understanding of the spatiotemporal heterogeneity of the

disease and facilitate the development of remote sensing monitoring

models with strong generalization capabilities. Such models are

critical for formulating effective prevention and control strategies

for cotton wilt disease.

Furthermore, the near-infrared region plays a significant role in

detecting various plant diseases and pests (Zhang et al., 2019).

However, due to the complexity of spectral responses in this

region, existing literature has not fully explored the local spectral

shape changes in the NIR region. By applying wavelet transform,

subtle disease-specific information in the NIR region can be

enhanced and effectively utilized, significantly improving the

detection of weak signals induced by cotton wilt disease. This

approach holds great promise for advancing early detection and

monitoring of the disease.
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