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Maize ear leaves have important roles in photosynthesis, nutrient partitioning and

hormone regulation. The morphological and structural variations observed in maize

ear leaves are numerous and contribute significantly to the yield. Nevertheless,

research on the fine-scale morphology of maize leaves is less, particularly the

quantitative methods to characterize the morphology of leaves in two-dimensional

(2D) space is absent. This makes it challenging to accurately identify 2D leaf shape of

their cultivars. Therefore, this study presents the methods of 2D semantic

morphological feature extraction and atlas construction, with the ear leaf in silking

stage of maize association analysis population serving as an example. A three-

dimensional (3D) digitizer was employed to obtain data from 1,431 leaves belonging

to 518 inbred lines. The data was then processed using mesh subdivision and planar

parameterization to create 2D leaf models with area-preserving characteristics.

Additionally, averaged 2D leaf models of all the inbred lines were constructed, and

29 2D leaf features were quantified. Based on this, 11 features were extracted as

semantic features of 2D leaf shape through clustering and correlation analysis. A

comprehensive 2D leaf shape indicator L2D based on the 11 semantic features was

proposed, and a 2D leaf shape atlas was constructed in accordance with the L2D
ordering. Inbred line identification of 2D leaf shape in maize was achieved using the

atlas. The results of maize leaf inbred line identification can determine the probability

that the corresponding true inbred line ranked within the top 10 of the predicted

results is 0.706, within the top 20 is 0.810, and within the top 45 is 0.900. This

enables the generation of the corresponding maize 2D leaf shape through the

matching of semantic features. Themethodology presented in this study offers novel

insights into the construction of semantic models for the morphology of maize and

the identification of cultivars. It also provides a theoretical and technical foundation

for the generation and drawing the leaf shape based on semantic 2Dmorphological

and structural features.
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1 Introduction

Plant architecture (Godin, 2000) is used to describe the

observable characteristics of an individual or parts of plant. These

characteristics encompass leaf shape, stem morphology, tassel

structure, and root architecture, etc. Plant architecture exhibit

variation among different species, different cultivars of the same

species, and even among different individuals of the same cultivar.

These differences are closely associated with the diverse genetic

makeup. To a certain extent, plant architecture can be used as a

group of indicators of the growth status of plants, which is of great

significance to agricultural research and production. The plant

architecture (Jafari et al., 2024) can be described by phenotypic

big data, including topology, spatial geometric relationships of

multiple organs in the multi-dimensional perspective. Leaf shape

constitutes an essential element of plant architecture, encompassing

aspects such as leaf spatial disposition, local blade folds, leaf margin

amplitude, and others. The discrepancies in leaf shape directly

influence the canopy structure and radiation utilization efficiency.

Maize is an important food and energy crop. The rapid

acquisition of maize leaf shapes and analyzing the differences

among cultivars is an important component of maize breeding

(Tian et al., 2019) and dense density planting for high-yield

cultivation (Li et al., 2021). In earlier research, simple one-

dimensional (1D) measurement was the predominant way for

obtaining leaf shape data, including leaf length, width, and aspect

ratio. In further research of leaf shape, the researchers placed the

maize leaf on a horizontal plane and attempted to flatten it as much

as possible, then they used equipment, including RGB cameras

(Han et al., 2014; Robil et al., 2021), hyperspectral cameras (Gao

et al., 2021), etc., to capture images of the leaf from a position

perpendicular to the horizontal plane. These images were used to

extract 2D phenotypic features including the leaf area, leaf profile

perimeter, etc. However, the process of flattening results loss 3D

structural information, such as leaf bending and folding, which is

not conducive to more in-depth research of the leaf shape from the

3D perspective. The advent of LiDAR, 3D digitizers, multi-view

stereo (MVS), and other 3D data acquisition technologies has made

the complete acquisition of the 3D leaf morphology feasible. The

research of the leaf shape based on 3D data, in addition to obtaining

the 1D and 2D phenotypic features, can also obtain 3D phenotypic

features, such as the leaf curvature and the inclination angle (Bailey

and Mahaffee, 2017; Hosoi et al., 2011). Nevertheless, the point

cloud data obtained through LiDAR and other 3D techniques

(Chen et al., 2023) necessitate intricate processing to generate 3D

models comprising semantic information and to extract more 3D

leaf shape features (Su et al., 2018; Wen et al., 2024b). In contrast,

3D digitizers are capable of directly acquiring data containing

semantic information through the manual operation of the

instrument acquisition method (Wen et al., 2021). The utilization

of digitizers for the acquisition of 3D structural data pertaining to

plants has been a subject of extensive research and development

over a long time. This methodology has been employed in the

investigation of diverse plant organs, including roots (Danjon and

Reubens, 2008; Wu et al., 2015), leaves (Zheng et al., 2022), and the

entire plant (Zheng et al., 2008).
Frontiers in Plant Science 02
The quantitative analysis of crop leaf shape features is closely

related to the means of data acquisition. Wang et al. (2022) first

segmented the foreground and background by converting color

images to greyscale using an adaptive thresholding algorithm. After

segmentation, features such as color and compactness were

extracted in addition to conventional phenotypic features such as

length, width and surface area. Wu et al. (2022) extracted 3D

structure-related leaf features such as leaf inclination, leaf

curvature, etc. from a 3D model of a maize leaf acquired by a 3D

digitizer. Wen et al. (2024b) achieved mesh generation from the 3D

point cloud of maize leaves by a series meshing technologies. The

ARAP algorithm was used to convert the 3D mesh into 2D planar

mesh, and finally both the 2D and 3D semantic leaf mesh model was

generated. Based on the 3D semantic leaf model, 3D leaf area, leaf

surface flatness and other phenotypic features that cannot be

obtained based on 2D images can be extracted. Wen et al.

(2024a) extracted 3D leaf features such as leaf inclination angle,

blade-included angle, blade self-twisting, blade planarity, margin

amplitude from a maize leaf model acquired by a 3D digitizer. In

addition to maize leaf phenotypes, there are also related 3D

quantitative analysis studies on wheat leaf phenotypes (Zheng

et al., 2022). The current rapid development of 2D and 3D

acquisition techniques and related quantitative analysis

techniques has made it possible to acquire crop leaf-shape data in

multiple dimensions and with high quality, thus enabling the

completion of the analysis. The extraction of phenotypic features

from crop leaves allows researchers to mine related physiological

and ecological knowledge. In the previous research, Wang et al.

(2022) validated the correlation between the sixth leaf sheath color

phenotypic traits and the corresponding candidate genes by

integrating the leaf sheath phenotypic data of the maize

association analysis population (Yang et al., 2011) through

GWAS. Wu et al. (2022) proposed a novel classification method

based on the spatial morphology of the midvein curves in maize

leaves. The analysis was also performed using GWAS to obtain the

midvein curve of the leaves. GWAS was also employed to analyze

the association between leaf midvein curves and genes.

Yang et al. (2011) constructed a large association panel in

maize, and assembled a comprehensive maize association analysis

population comprising 527 globally diverse lines representing

tropical, subtropical, and temperate germplasm. The population is

a collection of major inbred lines from around the world, which are

believed to represent the principal morphological features of the

maize genes and phenotypes. The use of the collection as a research

object ensures comprehensive coverage of the diverse leaf shapes

observed in maize leaves, thus facilitating subsequent genotype-

phenotype correlation studies. To date, numerous genotype-

phenotype related studies have been conducted on the maize

association analysis population, with all of them yielding positive

results (Gao et al., 2024; Song et al., 2024; Wang et al., 2024a, b; Wu

et al., 2024; Xia et al., 2024; Yang et al., 2024).

At present, quantitative characterization methods for 2D leaf shape

features of maize leaves are absent, and the interactions between leaf

shape features remain unclear. Furthermore, there is a pressing need

for big data analysis and knowledge mining for maize inbred

populations within a phenomics perspective. The underlying laws
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governing leaf shape features embedded in maize association analysis

population materials remain elusive. Consequently, it is not yet feasible

to achieve inbred line identification and visualization based on leaf

shape features. In this study, we utilize the maize ear position leaves of

the population proposed by Yang et al. (2011) as a case study to

investigate the quantitative extraction of maize 2D leaf shape features,

the construction of a leaf shape atlas, and the identification inbred line

according to the leaf shapes. It is anticipated to facilitate the extraction

of knowledge from the big data pertaining to leaf shapes.
2 Materials and methods

2.1 Experimental design and
data acquisition

The experiment was conducted at the Nanfan breeding station

of the Maize Research Center, Beijing Academy of Agriculture and

Forestry Sciences (BAAFS), in Yazhou District, Sanya City,

Hainan Province, China (longitude 109.1832, latitude 18.3623).

The material selected for analysis in this research was the

collection mentioned in section 1 (Yang et al., 2011). The

specific planting times and planting settings can be found in Wu

et al. (2022).

Data acquisition was carried out when themaize plants reached the

silking stage, and the process was conducted from May 17 to May 27,

2021. The acquisition process was (1) Excavation of the root system

and soil around the maize plants within a diameter of 25 cm and a

depth of 20 cm, followed by arranging each individual plant in a pot (all

sampling was done before 10 am) and transporting them indoors and

watering them to minimize significant morphological changes caused

by plant water deprivation (Wu et al., 2019). (2) 3D data of the ear

leaves of each plant were collected by a digital probe using FastScan &
Frontiers in Plant Science 03
FastRak 3D digitizers in combination with a Tx4 calibration

transmitter. The 3D coordinates of selected leaf points were obtained

manually (Figure 1A). The average acquisition time for each leaf was 5-

8 minutes. If the plant had multiple ears, the leaf of the largest ear was

selected as the ear leaf. Each data was checked visually to ascertain its

accuracy. The data acquisition rule was to collect five points at even

intervals using a digital probe starting from the leaf base perpendicular

to the direction of the leaf midvein; then continue in the same manner

upward along the direction of the leaf midvein to the tip of the leaf,

with an unique point to indicate the tip of the leaf (Figure 1B). The

number of points collected varied for different leaves due to different

leaf lengths, but the number of points collected conformed to (5×n+1)

as determined by the collection rules. The number of sampling points

for most of the leaves ranged from 66 to 91 points, and the detailed

sampling results are shown in Figure 1C.

A total of 518 distinct inbred lines were involved, with three

samples collected for each inbred line. Finally, a total of 1,522 maize

leaf model were obtained.
2.2 Overview

The general progression of the methodology is illustrated in

Figure 2. The process begins with data acquisition and processing.

Mesh subdivision and parameterization methods are employed to

transform the original rough 3D mesh data acquired by the 3D

digitizer into fine 2D mesh data. Subsequently, the average leaf

shape models of each inbred line were constructed using the 2D leaf

mesh model from the same inbred line. The morphological leaf

features were quantified, then clustered and screened to determine

the semantic features. A new phenotypic indicator L2D that

comprehensively reflect the 2D leaf shape was proposed and the

2D leaf shape atlas was constructed accordingly. For application, the
(a)

(b)

(c)

FIGURE 1

Raw data acquisition process and results. (A) Data acquisition, (B) the schematic of raw data acquisition, (C) statistics of the number of raw data points.
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atlas was used to identify the inbred line according to a given leaf, or

drawing the 2D leaf shape according to a given semantic feature.
2.3 Data processing and morphological
feature quantification of 2D leaf shapes
in maize

2.3.1 Maize leaf data preprocessing
The raw mesh data obtained by the 3D digitizer must undergo

data preprocessing prior to its utilization in subsequent operations.

The data preprocessing involves three steps: comparative

examinations of the data within the same inbred line, data

normalization, and raw mesh data subdivision.

2.3.1.1 Comparative examinations of the data within the
same inbred line

The objective is to ascertain the distinctions between the three

samples for each of the 518 inbred lines, with the exclusion of

samples exhibiting significant discrepancies. The four phenotypic

features of leaf length, leaf width, aspect ratio, and rawmesh average

angle were initially estimated based on the raw leaf mesh. The

similarity was calculated based on the aforementioned four features,

employing the Euclidean distance metric. The resulting similarity of
Frontiers in Plant Science 04
the samples within the same inbred line were then compared. If

there is sample with a similarity difference exceeding 0.1 with other

samples within the same group, while the similarity difference

between the remaining samples is less than 0.1, the sample

exhibiting the greatest divergence is excluded. Duplicate groups

with only two samples and one remaining sample were not

subjected to screening. A total of 91 samples with excessive

differences were excluded in this step, leaving 1,431 maize leaf

data from 518 inbred lines for subsequent analysis.

2.3.1.2 Data normalization

The principal axis direction of the maize leaf mesh model was

initially obtained through principal component analysis (PCA).

Subsequently, all principal axis directions were rotated so that the

direction of the leaf tip pointed to the positive x-axis, with the center

of mass designated as the origin [0, 0, 0]. Secondly, all leaves were

maintained in a consistent proportion relative to one another, and

the coordinate values of each point were uniformly scaled to the

range of [-1, 1].

2.3.1.3 Mesh subdivision

The normalized mesh is then subdivided using the
ffiffiffi
3

p
(sqrt3)

subdivision method (Kobbelt, 2000). The sqrt3 subdivision method

is an efficient triangular mesh subdivision algorithm that belongs to
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FIGURE 2

Overview of the overall process.
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the facet-splitting surface approximation mode. It has the

advantages of a slower increase in mesh complexity during the

refinement process and a certain degree of adaptive refinement.

Following the subdivision of the raw leaf mesh, the resulting leaf

model exhibits a shape that is more closely aligned with the actual

leaf morphology (Figure 3B) compared to the raw data (Figure 3A).

This enhanced resemblance to a more accurate reflection of the

observed features. In this study, two iterations of the sqrt3

subdivision were performed on the original mesh. Following the

operations, the number of triangular meshes was found to be nine

times that of the original data, resulting in a more uniform and

smooth mesh model.
2.3.2 2D Flattening of 3D leaf mesh models
The process of flattening a 3D mesh model in 2D is referred to

as planar parameterization. In this study, the as-rigid-as-possible

(ARAP) (Liu et al., 2008; Sorkine-Hornung and Alexa, 2007)

method is employed.

In the planar parameterization process, an energy function is

used to delineate the discrepancy between the potential

transformations and the target transformation.

E(u,   L) =o
T

t=1
At j j Jt(u) − Lt j j2F ,

In the function, the area of the 3D triangles are At   (1 ≤ t ≤ T),

For triangle t, ut = u0t  , u
1
t  , u

2
t

� �
denotes the 2D coordinates, and

xt = x0t  , x
1
t  , x

2
t

� �
denotes the 3D coordinates. The relationship

between xt and ut can be represented by a 2� 2 Jobabian matrix

Jt(u). Lt is assigned as an auxiliary linear transformation (2� 2

matrix). j j · j jF is the Frobenius norm. The variables in the energy
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function are the coordinates u of the mapping on the 2D plane and

the transformation matrix Lt . To minimize the energy function and

restrict Lt to the rotation matrix in the ARAP algorithm, the

problem can be transformed into the following optimization

problem after reconstruction and derivation:

(u,   t) = argmin(u,   t)E(u,   t),   Lt ∈ M

M =
cos q sin q

− sin q cos q

 !
,   q ∈ ½0, 2p)

This method maintains the angle of the triangles with the

greatest possible constancy during the 3D to 2D mapping process,

ensuring that the triangles are not distorted. Furthermore, the areas

of the triangles are only slightly affected, thus preserving the

invariance of the area to the greatest extent possible.

Subsequently, the 3D mesh model is transformed into a

corresponding 2D planar mesh model (Figure 3C). As illustrated

in Figure 3, the planar parameterization of the 3D mesh model

results in a deformed 2D mesh model due to the wrinkles and

distortions inherent to the original 3D model. Consequently, the

flattened 2D mesh model is not entirely symmetric along the axis of

the leaf midvein. The 2D leaf model resulting from planar

parameterization retains the basic phenotypic features of maize

leaves, such as leaf length and width, to the greatest extent possible.

Addit ional ly , the deformations introduced by planar

parameterization can also reflect certain 3D maize leaf phenotypic

features, such as leaf twist. Accordingly, the 2D maize leaf mesh

model obtained through the ARAP method is a more suitable

means of extracting relevant phenotypic features for the analysis

and research of leaf morphology.
(a) (b) (c) (d)

FIGURE 3

Illustration of key stages in data processing. (A) Raw 3D leaf data. (B) 3D leaf data after mesh subdivision (Kobbelt, 2000). (C) Parameterized 2D leaf
mesh (Liu et al., 2008; Sorkine-Hornung and Alexa, 2007). (D) Fold visualization of a 2D leaf (more blue color means less folds, more red color
means more folds).
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2.3.3 Construction of averaged 2D leaf models
Average leaf shape models were constructed for each of the

distinct inbred lines of the 2D leaf mesh models. In total, 518

models were constructed. The leaf shape model is primarily

concerned with the representation of leaf contour information,

which is ultimately conveyed through a set of contour lines. The

construction of the average model involves three steps: leaf

contour ex t rac t ion , contour sampl ing , and l ine se t

model construction.
2.3.3.1 Leaf contour extraction

2D leaf mesh model is a non-closed mesh (Figure 4A), and the

contour edges of the leaf mesh are the boundary edges. The edge

contour is obtained by collecting all the boundary edges in the leaf

mesh model. This process yields a line set comprising 1,431 leaves,

as illustrated in Figure 4B.

2.3.3.2 Contour sampling

A ray is initiated from the center point ([0, 0]) of the leaf and

rotated around the center, intersecting with the leaf contour line set

to obtain the sampling point set (Figure 4C). To guarantee the

precision of the sampling, the sampling resolution was set to 600,

thus ensuring the attainment of optimal sampling outcomes at the

leaf tip and the base, which are situated at considerable distances

from the center point (Figure 4D).

2.3.3.3 Averaged 2D leaf model construction

The average point set of specific inbred line and the average

point set of the entire leaves can be calculated from the sample

results. The mean value of the coordinates of the sampling points at

each position belonging to the same inbred line of samples is

estimated. The overall leaf average point set is calculated in the

same way. The points in the point set are connected sequentially in

order to finally obtain the 518 inbred lines average model.

2.3.4 Extraction of 2D leaf shape features from
2D mesh models

A total of 29 2D phenotypic leaf features were extracted from

1,431 2D mesh models of maize leaves, with reference to previous

research (Wen et al., 2024a; Wu et al., 2022; Zheng et al., 2022).

These features included 17 conventional phenotypic features and 12

leaf contour features. The conventional leaf parameters include: leaf

length, leaf width, leaf tip angle, leaf area, etc. Additionally, the

length of the left and right edges of the leaf, the offset degree of the

left and right edges, and the width of the leaf at different positions

were also extracted according to the 2D maize leaf model. The

specific phenotypic features are presented in Table 1.

The remaining 12 features pertain to the leaf contour, as illustrated

in Table 2. By dividing the leaf contour into six parts (Figure 5),

namely, the tip part, the upper (left/right) part, the lower (left/right)

part, and the base part, and calculating the distance between each part

and the center point, a quantitative value of the leaf contour reflecting

the shape of each part was obtained. The quantitative values of the

various parts were used to obtain two additional features: the “Length/

Width” and the “Upper - Lower”. This resulted in a total of 12 features.
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2.3.4.1 Calculation of 1D features (length, width and
related features)

In the case of a 1D features, the calculation is based on the

distance and angles between the points in the 2D mesh model. These

1D features include mid length (ML), maximum width (WM),

average width (WA), variance, and widest position (WP), etc.

2.3.4.2 Calculation of 2D features (area, leaf tip angle,
offset and tortuosity)

Leaf area was calculated by summing the areas of all triangular

mesh facets. Compared to traditional methods based on the formula

(leaf length �maximum leaf width  �  0:75) (Va lent inuz and

Tollenaar, 2006) or (leaf length �maximum leaf width  �  0:765)

(Lizaso et al., 2003), the approach of calculating the area of the mesh

facets individually yields a more precise estimation of the leaf area.

Leaf tip angle, offset and tortuosity are angle features. The left

and right edge angles at the leaf tip represents the leaf tip angle. The

offset values of the left and right edges and midvein of the leaf are

calculated by summing the angles obtained from the point-by-point

line calculation of the mesh vertices at the corresponding positions.

This emphasizes the overall degree of curvature of the leaf edge

contour. The tortuosity of the midvein is calculated using the mean

and deviation between the midvein and the line between the base to

the tip of the leaf. It emphasizes the curvature of the leaf after the

planar parametrization.

2.3.4.3 Calculation of the folding degree

Folding is an important morphological feature of maize leaves,

and a quantitative calculation method for folding based on data

obtained by 3D digitizer was proposed. For the folding extracted

from each sample, the average values of phenotypic features

representing the value of each inbred line were obtained by intra-

group averaging based on 518 different inbred lines. The FA mainly

reflect the level of leaf folds comprehensively. The FA parameters

were calculated as follows:

FA = o
m
i=1

o
ni
j=1a(~Ni , ~Nij)

ni

m
,  

a(~x,  ~y) = arccos j ~x ·~y
j~x j · j~y j j

� �

wherem represents the total number of mesh patches in the maize

leaf mesh model, ni represents the number of patches adjacent to

patch i, ~Ni represents the normal vector of the patch i, ~Nij represents

the normal vector of the jth patch neighboring patch i.
2.4 Maize leaf semantic feature extraction
and 2D leaf shape atlas construction

2.4.1 2D leaf shape semantic
feature determination

While the aforementioned 29 features provide comprehensive

coverage of leaf shape, some features exhibit similarities to a certain

extent. This correlation between features may result in redundancy,
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which could impede the simplicity of the feature representation. To

address this, we have selected a subset of features as the semantic

features of the 2D leaf shape, aiming to maximize feature coverage

while simplifying the representation.

The correlation and clustering analyses were conducted using

the 29 2D leaf shape features obtained above to determine the key

features. The hierarchical clustering approach employs a specified

method to quantify the degree of affinity between the features. The

process involves initially clustering the more closely related features

into one class, and then repeating this until all the features are

clustered into one class. The selection of a suitable distance metric is

paramount for accurately measuring the difference between

phenotypic features. In this study, Pearson Correlation Coefficient

is employed as the distance metric, which reflects the degree of

linear correlation between the two features under investigation. The

Pearson Correlation Coefficient is calculated as follows:

1 −
(u − �u) · (v − �v)

j j u − �u j j2 j j v − �v j j2
where �v is the mean of the elements of vector v, and x · y is the

dot product of x and y. A high correlation between two phenotypic

features indicates a significant degree of overlap and similarity in

their ability to reflect leaf phenotype. Consequently, the more

representative features were selected for characterization, with the
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objective of simplifying and refining the feature information.

Furthermore, Average Linkage is chosen as the linkage algorithm,

as it has been demonstrated to effectively calculate the average

distance between all pairs of points in two clusters, thereby

facilitating the generation of compact clusters. The Average

Linkage (average) algorithm assigns:

d(u,   v) =o
ij

d(u½i�,   v½j�)
( j u j * j v j )

for all points i and j where j u j and j v j are the cardinalities of
clusters u and v, respectively.
2.4.2 2D leaf shape atlas construction
Once the semantic features of the 2D leaf shape have been

determined, a n-dimensional feature vector vf can be constructed by

weighting and combining all the semantic features to reflect the

main characteristics of each leaf. The feature vectors were used to

sequencing the 518 inbred lines of leaves according to the

differences in the features. In this sequencing process, phenotypic

features should be comprehensively considered. The sorted result

was used to construct a atlas for 2D leaf shape, which reflected the

differences in the leaf shapes of the maize in comparison with the

evolutionary process.
(a) (b) (c) (d)

FIGURE 4

Leaf shape sampling. (A) Subdivided 2D maize leaf model. (B) Mesh contour. (C) Mesh contour sampling by emitting rays from the leaf center.
(D) Sampled points of the leaf contour.
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vf   =   (f1, f2,⋯,   fn)

w   =   (w1,  w2,⋯,  wn)

where fi is the ith semantic feature and wi is the weight

coefficient of the ith feature.

In the determination of w, it should be noted that the number of

inbred lines included in this research is 518, with the data for each

inbred line consisting of only one to three samples. Given the

limited number of samples within each group, it is challenging to

achieve a superior training outcome when the sample size is

insufficient utilizing machine learning techniques. Consequently,

when determining the optimal weights, we employ the greedy

algorithm to enumerate and calculate the most suitable weights

for each semantic feature, and then as the weighting coefficients for

the final leaf feature vector.
2.5 Inbred line identification based on 2D
leaf shape atlas

Accurately identify a given inbred line based on the observed

leaf shape data is a crucial aspect of crop breeding, representing one

of the practical applications of the proposed method. The process of
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identifying a inbred line based on 2D leaf shape atlas can be divided

into two main aspects: identifying the inbred line from the given

leaf, and identifying the 2D leaf shape from the given

semantic features.

2.5.1 Inbred line identification from given leaf
shape data

The cosine similarity is a difference measure between two

vectors in an n-dimensional space. A feature vector was

constructed for each 2D mesh model of a maize leaf based on the

semantic features of the leaf. Given an example leaf shape data, the

cosine similarity was calculated by comparing the vector of this

example similar leaves in the atlas. The inbred line with the highest

similarity was selected and identified as the inbred line of the

given leaf.

2.5.2 Inbred line identification and leaf shape
drawing from given semantic feature

As with the aforementioned method for identifying a given leaf

shape, the closest maize inbred line to a given feature vector is

determined by calculating the cosine similarity. This allows the leaf

shape of that inbred line to be identified in the constructed leaf

shape atlas, which in turn permits the unique drawing

(visualization) of the 2D leaf shape for a given semantic feature.
TABLE 1 Phenotypic features extracted from 2D maize leaf model.

ID Feature name Identifier Explanation of the feature Unit

1 Left length LL Length from the left point of the base part along the left margin to the point of the leaf tip cm

2 Right length RL Length from the right point of the base part along the right margin to the point of the leaf tip cm

3
Mid length
(Leaf length)

ML Length from the midpoint of the base part along the midvein to the point of the leaf tip (Leaf length)
cm

4 Width (average) WA
The average width of the leaf obtained perpendicular to the direction of the midvein from the leaf base to
the leaf tip

cm

5 Width (max) WM
The max width of the leaf obtained perpendicular to the direction of the midvein from the leaf base to the
leaf tip

cm

6 Width variance WV
The variance of leaf width obtained perpendicular to the direction of the midvein from the leaf base to the
leaf tip

cm2

7 Widest position WP
Distance from the position of maximum leaf width to the leaf base/leaf length (WP=0 if the position of
maximum leaf width is at the leaf base; WP=1 if the position of maximum leaf width is at the leaf tip)

–

8 Length-width ratio LWR ML/WA –

9 Leaf tip angle LTA The angle value between the leaf tip point and the neighboring points on both sides rad

10 Left offset angle LOA Sum of the angle values between the lines between the points on the left edge of the leaf rad

11 Right offset angle ROA Sum of the angle values between the lines between the points on the right edge of the leaf rad

12 Mid offset angle MOA Sum of the angle values between the lines between the points on the midvein of the leaf rad

13 Mid tortuosity (average) MTA
Mean value of the angle between the line between the points on the midvein of the leaf and the line
between the leaf base and the leaf tip.

rad

14 Mid tortuosity variance MTV
The variance of the angle between the line between the points on the midvein of the leaf and the line
between the leaf base and the leaf tip.

rad2

15 Area A Total leaf mesh area cm2

16 Folding (average) FA Mean value of all triangular mesh angles of the leaf rad

17 Folding variance FV The variance of all triangular mesh angles of the leaf rad2
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2.5.3 Evaluation metric
The Top-X Accuracy metric rTop−X , is employed to evaluate the

performance of inbred line identification from either a specific 2D

leaf shape or a semantic feature vector. The value of rTop−X indicates

that the ground truth inbred line labels of the leaf instance data are

within the top X of the predicted similarity results. In this context,

rTop−1 indicates that the inbred line with the highest predicted

similarity is the ground truth. rTop−3 indicates that the ground

truth is among the top three results for similarity.
3 Results

3.1 Results and analysis of 2D flattening
from 3D leaves

The ARAP planar parameterization method is designed to

minimize changes in mesh area and shape distortion during 2D

flattening. A comparison of the area of 3D and 2D mesh models

before and after planar parameterization indicates that the area of

the mesh models after planar parameterization is generally reduced

by a very small amount. The average leaf area ratio of the 2D mesh

models to the 3D mesh models for the 1,431 leaf mesh models is

99.88%, and there is only a change of 0.12%. As illustrated in

Figure 6, the area ratio of the 2D and 3D mesh models is

consistently above 0.990 and below 1.000. The majority of the

data points are situated within the interval between 0.998 and 1.000,

with only a few instances where the ratio is below 0.998.

As illustrated in Figure 7, the ARAP planar parameterization

technique is capable of accurately retaining the morphology of the

3D leaf mesh, as evidenced by the zigzagging of the 2D leaf mesh edges,

while the projection method is susceptible to influences such as the

projection angle. The ARAP planar parameterization technique also

accurately restores the morphometrics of the entire leaf, including the

tip and the base. In contrast, the 2D mesh based on the projection
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method is unable to accurately reproduce the leaf tip and the base due

to the excessive curvature of the leaf. Additionally, the side edges of the

2D mesh lack smoothness due to the mutation of edge contour caused

by the projection, which hinders the accurate reflection of the true

shape of the original 3D leaf. It is challenging to accurately represent

the true shape of the original leaf. The extracted leaf contour, obtained

by manually flattening the leaf and photographing it, is shown in

Figure 7F. Due to the inability to eliminate wavy folds of the leaves

when flattening the leaves manually, excessive wavy zigzags can be

observed in the extracted contour. In comparison, the contour obtained

by the ARAP method exhibits a smoother contour and circumvents

substantial errors in estimating phenotypic features such as leaf area.

Furthermore, the 2D mesh model, following ARAP planar

parameterization, can effectively visualize and demonstrate the

folds of the 3D mesh model (Figures 3B, 7H). The visualization

of 3D leaf folds on a 2D leaf after planar parameterization reveals

that the red regions correspond to larger folds. Firstly, it can be

observed in Figure 7H that the majority of leaves exhibit a large

percent red area in the base midline portion, this distinct feature is

also evident in Figure 7I. This phenomenon can be attributed to the

bending morphology exhibited by ear leaves, which is evident from

the base of the leaf midvein to the leaf sheath connection. Given that

ear leaves are longer and wider, this bending structure is more

pronounced, providing greater support for the leaves. It should be

noted that, with the exception of the base of the leaf, the folds can be

observed in the position of the midvein. This is due to the fact that

all the leaves exhibit a bent morphology at the position of the leaf

midveins. Secondly, as illustrated in Figure 7I, the folds of the maize

leaves are predominantly concentrated in the lower middle portion

of the leaf, where the overall distribution of the folds is characterized

by a dense area with a curved boundary. This boundary is a

consequence of the widespread bending of the left and right edges

of the middle and lower parts of the leaf towards the back of the

leaves, as well as the pronounced wavy folds of the leaf

perpendicular to the direction of the leaf veins in this region.
TABLE 2 2D leaf contour features.

ID Feature name Identifier Explanation of the feature

1 Tip part distance TP Mean distance of sampling points of the tip part from leaf center point cm

2 Right upper part distance RUP Mean distance of sampling points of the upper right part from leaf center point cm

3 Left upper part distance LUP Mean distance of sampling points of the upper left part from leaf center point cm

5 Left lower part distance LLP Mean distance of sampling points of the lower left part from leaf center point cm

6 Base part distance BP Mean distance of sampling points of the base part from leaf center point cm

7 Upper part distance UP
Mean distance of sampling points of the upper left part and upper right part from

leaf center point
cm

8 Lower part distance LP
Mean distance of sampling points of the lower left part and lower right part from

leaf center point
cm

9 Length L Overall leaf length calculated from TP and BP correspondence cm

10 Width W Overall leaf width calculated from RUP, LUP, RLP, LLP correspondingly cm

11 Upper - Lower UL
Difference between the widths of the upper and lower parts of the leaf calculated

from the correspondence between UP and LP
cm

12 Length/Width LW Length width ratio of leaf calculated from L and W –
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Thirdly, a specific distribution of folds is observed at the tip of the

leaf. This distribution is not so dense than that observed at the lower

middle portion of the leaf, primarily due to the overall amplitude of

the folds at the tip being smaller than that observed at the lower

middle portion of the leaf. The formation of folds at the tip of the

leaf can be attributed to the fact that the tip is more susceptible to

rotation and deflection than other regions. At last, the upper-middle

region exhibits the lowest degree of folding when compared to other

regions. Except the bend of the midveins in the middle region

displays a notable degree of folding, the surface of this portion is

more smoothed than that of the remainder.
3.2 Semantic feature of 2D leaf shape

11 out of 29 2D leaf-shape features are identified as semantic

features (WP, LWR, L, LTA, WV, W, FA, MTV, MTA, LOA, ROA)

by setting the clustering threshold to 0.25 and using the “average”
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method and the “correlation” metric in hierarchical clustering, as

shown in Figure 8. The determination of an optimal clustering

threshold is a critical step. Through experimental analysis, a

threshold value of 0.25 has been determined to achieve optimal

distinction between phenotypic features based on their correlation.

That is, most of the 2D leaf-shape characteristics can be

characterized using these 11 semantic features.

Figure 9 depicts the fitted distribution functions of the 11 semantic

features. To determine the weights of each semantic feature, seven

values were taken from the interval of [0, 3] with step length of 0.5 for

each semantic feature to validate the optimal weight. We sequentially

traversed to test the identification ability corresponding to seven

different weights with the weights of the other semantic features had

been set to 1, then we selected the weight with the best identification

ability to be determined as the corresponding weight of the semantic

feature. The 11 semantic features were systematically traversed to

ascertain the optimal weights, and a set of optimal weights is

determined. Following the validation and normalization of the
Tip part 

Upper part

Lower part

Base part
FIGURE 5

Leaf Contour Segmentation.
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features, the correspondence between the semantic features and the

corresponding optimal weights is presented in Table 3. Notably, L,

which reflects the length of the leaf, plays a pivotal role in the

identification process. Additionally, the two features, MTA and

MTV, measure the degree of tortuosity of the leaf and the variation

degree of tortuosity, both of which are crucial for identify between

different leaf shapes. Additionally, the W reflects the width of the leaf.

Consequently, the aforementioned four parameters are assigned the

highest weights.
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3.3 Results of 2D leaf shape
atlas construction

In accordance with the methodology in section 2.4.2, the

semantic feature vectors of 2D leaf shape can be determined by

the 11 semantic features with the corresponding weights. The

complete semantic feature vectors vf and the corresponding

weight vectors w are as follows:

vf   =   (WP,   LWR,   L,   LTA,  

WV ,  W ,   FA,  MTV ,  MTA,   LOA,  ROA)

w   =   (0:028,   0:056,   0:167,   0:111,   0:028,   0:111,  

0:083,   0:139,   0:167,   0:056,   0:056)

To establish a rule for ranking the 2D leaf shapes, a weighted

vector vf _w is defined using the feature vector vf with the weight

vector w. L2D = j j vf _w j j, the modulus of the weighted vector vf _w,

is then calculated as the rule for ranking the 2D leaf shape of all the

inbred lines, thus generating a atlas. L2D serves as a comprehensive

indicator reflecting the overall 2D morphology features of a maize

leaf. L2D increases along with the semantic characteristics of the leaf

become more pronounced (e.g., longer length, wider width, more

curved edges, etc.). Conversely, L2D also decreases as the phenotypic

characteristics of the leaf become less pronounced.

L2D = j j vf _w j j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(wi · vf _ i)

s

o
n

i=1
wi = 1
Number of fitting points: 1431

average error: 0.118%

maximum error: 1.006%

FIGURE 6

Leaf area ratio of 2D model to 3D model after
planar parameterization.
(a)

(b) (c) (d) (h) (i)

(a)

(b) (c) (d)

(a)

(e) (f) (g)

FIGURE 7

Comparison of the results of the planar parameterization. (A) 3D mesh model of the maize leaf. (B) 2D mesh model after ARAP planar
parameterization. (C) Front view of the 3D mesh model of the maize leaf. (D) Front view projection of the 3D mesh model. (E) Top view image of a
manually flattened maize leaf. (F) Extracted leaf contour of (E). (G) Extracted leaf contour after ARAP flattened. (H) The result of planar
parameterization for different leaves. (I) Fold visualization of the average model for all leaves (more blue means less folds, more red means
more folds).
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where wi is the ith parameter in the weight vector w, and vf _ i is

the ith parameter in the feature vector vf .

The 518 inbred lines were ranked according to the L2D to form

the final 2D leaf shape atlas (Figure 10). As illustrated in

Figure 10, the maize leaves in the inner circle are relatively

diminutive in both overall length and width, and the leaf

contour is relatively smooth, exhibiting no discernible

zigzagging at the edges. In contrast, the leaves in the outer

circle are larger in both overall length and width, displaying

pronounced zigzagging at the edges, and the phenotypic

characteristics of the leaves are more pronounced.
3.4 2D leaf shape identification results

3.4.1 Inbred line identification results for given
leaf shape

A total of 1,431 leaves were utilized to conduct inbred line

identification, and using rTop−X as the performance evaluator. For

comparison, experiments were conducted in three setups: (1) using

the full 29 features, (2) using unweighted 11 semantic features, and

(3) using 11 semantic features with trained weights according to the

random forest. The results of the experiment are presented in

Figure 11 and Table 4. The weighted features, calculated using the

greedy algorithm, demonstrated the optimal performance.
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Furthermore, the proposed method outperforms the other three

feature vector design methods in rTop−1, and the accuracy remains

superior as X increases. The rTop−X of this method exhibited

accelerated improvement with increasing of X, attaining rTop−10 of

0.706, rTop−20 of 0.810, and rTop−45 of 0.900. Due to the considerable

number of inbred lines included in this study (a total of 518), rTop−10
has been possible to identify the inbred lines within 2% of the total

number of inbred lines. Furthermore, rTop−20 and rTop−45 have been

achieved, whereby the inbred lines have been identified within 4%

and 9% of the total number of inbred lines, respectively. Given the

limited number of samples obtained from the various inbred lines

and the observed variability in the characteristics of the leaves, the

outcomes of this study are noteworthy.

3.4.2 Identification results for given
semantic features

For semantic features of a 2D leaf, the model with the highest

weighted cosine similarity among the 518 inbred line models can

be identified as the one that most closely aligns with and

represents the corresponding 2D model of the leaf (Figure 12).

To guarantee that the leaf illustration accurately reflects the

semantic features, the matching threshold is set to 0.9. This

implies that when the highest match between a specific semantic

feature and the inbred line model library is less than 0.9, it is

assumed that this particular structure of a maize leaf does not
FIGURE 8

Cluster analysis of 2D leaf shape features.
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exist, and thus, the specified maize leaf model cannot be generated.

This is a straightforward method for generating 2D leaf models

based on feature matching. The data template library in this study

provides comprehensive coverage of maize 2D leaf models, and

the feature vectors constructed in this study encompass the

majority of features observed in maize 2D leaf models.

Furthermore, the 518 inbred line models are all generated based

on true leaves, ensuring that the generated results are rich,

authentic, and of significant research value.
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4 Discussion

4.1 Leaf shape atlas promotes plant
phenotypic identification

This study benefits from “human face recognition” technology

to identify and categorize 2D maize leaves. The key point is that to

quantify the morphological features of 2D leaf, and ascertain the

typical characteristics as semantic features, which then allows for

focused exploration and classification. In comparison to existing

research on crop leaf shapes and phenotypic identification, this

study presents the following novel contributions and advances:
(1) Construction method of leaf 2D mesh model. This study

applied the ARAP planar parameterization in converting

3D mesh model to 2D planar mesh. The method allows for

the more precise retention of the 3D structure, surpassing

the traditional methods such as projection or manual

flattening (Wang et al., 2022). Furthermore, the method

avoids the potential loss of information due to projection

angle (Figures 7B, D). For example, the leaf area is highly

accurately reserved in the 2D mesh model obtained by

ARAP planar parameterization method.

(2) Quantification and determination of semantic leaf features. A

multitude of phenotypes for expressing leaves have been put

forth in previous studies. However, the divergence of research

directions have resulted in numerous redundancies of

phenotypic features. For example, the terms “upper leaf

midrib sag” and “leaf midrib curvature” in the work of

Wu et al. (2022) were used to describe the curvature of the
FIGURE 9

Distribution function of the 11 semantic features.
TABLE 3 Semantic features with corresponding weights.

ID Identifier Physiological significance Weight

1 WP Widest position of leaf 0.028

2 LWR Leaf aspect ratio 0.056

3 L Average leaf length based on leaf contour 0.167

4 LTA Leaf tip angle 0.111

5 WV Variance of the width of the leaf 0.028

6 W Average leaf width based on leaf contour 0.111

7 FA Fold 0.083

8 MTV Variance of leaf midvein tortuosity 0.139

9 MTA Mean value of leaf midvein tortuosity 0.167

10 LOA
Degree of curvature of the left edge of

the leaf
0.056

11 ROA
Degree of curvature of the right edge of

the leaf
0.056
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leaf midrib from different perspectives. Zheng et al. (2022) put

forth the terms “leaf sag” and “leaf bending” to describe the

sagging curvature and overall bending curvature of the leaf,

respectively. The two aforementioned metrics exhibit a high

degree of similarity. Consequently, the ability to effectively

screen the features, ensuring both concise representation and

comprehensive coverage, becomes a pivotal determinant of

the success of subsequent research. In this study, a
tiers in Plant Science 14
hierarchical clustering method was employed to screen and

categorize the phenotypic features proposed in previous

studies, resulting in the determination of 11 parameters of

2D maize leaf features that were not duplicated by each other

and could be more comprehensively covered. This approach

enabled the condensation and compression of the 2D leaf

features, laying the foundation for the construction of feature

vectors and the identification of leaf cultivars or inbred lines.
FIGURE 11

Top-X Accuracy trend in inbred line identification using leaf shape features.
FIGURE 10

2D leaf shape atlas ranked using L2D (L2D increasing from inside to outside).
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(3) 2D leaf shape atlas construction. Given the considerable

number of phenotypic features employed to describe leaf

shapes, a comprehensive ranking of all leaf shapes is

essential to fully reflect the observed variation between

leaf shapes. In previous studies (Åström et al., 2015;

Cohen, 2011; Dubey et al., 2024), the screening of features

are remain qualitative, and comprehensive quantitative

ranking integration is lacking. In this study, a

comprehensive 2D leaf shape indicator L2D was obtained

by weighting the 11 semantic features and estimating the

module length of the vector. The 2D leaf shape atlas was

obtained by ranking the 2D leaves according to L2D. This

approach allows for sequencing leaf shapes based on the

main leaf features. Additionally, it demonstrates the

relationship between the expression of the 2D leaf shape

features, from weak to strong, in a population comprising a

vast array of inbred lines.

(4) Inbred line identification and 2D leaf shape generation. In

contrast to previous identification studies, which have been
tiers in Plant Science 15
conducted across species (Kumar et al., 2019) and plants

with substantial variation (Dubey and Thanikkal, 2023), the

identification of the inbred lines to which a given leaf shape

belongs has enabled phenotyping to reach “cultivar-level

resolution,” which is crucial for the advancement of

phenotyping. The creation of leaf shape models based on

semantic features is a highly interpretable process, and this

study is of great significance in promoting the generation of

both 2D and 3D models based on semantic features. This

study presents a research pipeline for the analysis of crop

phenotypic big data and the generation of models based on

phenotypic big data. The pipeline includes feature

extraction, semantic feature extraction and screening,

construction of comprehensive indexes and atlas, and

inbred line identification based on atlas. It offers novel

methodologies and strategies for the extraction of

knowledge from phenotypic big data, as well as a

comprehensive workflow that serves as a valuable

reference for the identification of plant cultivars.
= (0.45, 7.60, 61.62, 0.43, 3.53, 8.14, 0.15, 0.01, 0.11, 0.18, 0.23)

= (0.52, 9.84, 76.89, 0.37, 2.10, 7.81, 0.19, 0.00, 0.09, 0.17, 0.16)

= (0.33, 7.82, 74.61, 0.77, 2.58, 9.53, 0.18, 0.02, 0.14, 0.28, 0.30)

FIGURE 12

Three examples of generating and drawing 2D leaf models from feature vectors.
TABLE 4 The rTopX comparison obtained using the four methods.

rTop−X
Unweighted 11 semantic

features
Full features (29)

Weighted 11 semantic features
(random forest)

Weighted 11 semantic features
(ours)

rTop−1 0.298 0.355 0.299 0.361

rTop−2 0.393 0.452 0.391 0.458

rTop−3 0.454 0.505 0.450 0.525

rTop−4 0.495 0.551 0.494 0.570

rTop−5 0.536 0.587 0.532 0.600

rTop−6 0.563 0.616 0.555 0.625

rTop−7 0.584 0.636 0.580 0.653

rTop−8 0.604 0.651 0.602 0.679

rTop−9 0.619 0.672 0.618 0.692

rTop−10 0.637 0.690 0.636 0.706
Optimal performance is indicated by the use of bold text.
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4.2 Limitations and future works

The study focuses on the process of analyzing 2D shape of maize

leaves, with less attention on the 3D morphology and related analyses.

In subsequent studies, the identification based on 2D features will be

expanded to 3D features. The feature extraction and quantitative

analysis will be conducted based on the 3D mesh of maize leaves.

The phenotypic features obtained from the 2D and 3D meshes will be

combined to realize more efficient and accurate variety identification.

Additionally, further studies on the physiological properties of maize

leaves, such as light interception capacity (Song et al., 2023) and the

relationship between phenotype, genes, and environment, based on the

3D structure, will be conducted. For instance, the correlation between

leaf phenotype and genome through GWAS will be conducted. The

study also has the advantage of non-destructive acquisition of 3D

models of leaves and extraction of phenotypic features. The substantial

number of samples collected ensures comprehensive coverage of leaf

shape diversity, and the results indicate that the 3D flattening method

is area-preserving. Consequently, the method should be applied in leaf

monitoring at different growth stages.

Moreover, the 2D leaf shape generation method employed in

this study, while maintaining interpretability, requires further

enhancement through the integration of deep learning and other

techniques to augment the degree of freedom and flexibility in

generation. This study serves as an initial investigation of deep

learning-based 2D leaf generation, with the objective of providing

accurate leaf parameter metrics and 2D leaf shape reference

standards for subsequent studies. Subsequently, we will employ a

deep learning-based approach to achieve the objective of 2D leaf

shape generation by integrating techniques associated with

generative AI, such as the diffusion model and CLIP.

Concurrently, upon completion of the analysis and research of

the 3D maize leaf shapes, in conjunction with the findings of the 2D

models generation, the generation of 3D maize leaves with a sense

of realism will be pursued as the ultimate objective of the research.
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