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Advanced techniques capable of early and non-destructive detection of the

impacts of water stress on trees and estimation of the underlying photosynthetic

capacities on larger scale are necessary to meet the challenges of limiting plant

growth and ecological protection caused by drought. We tested influence of

continuous water stress on photosynthetic traits including Leaf Chlorophyll

content (LCC) and Chlorophyll Fluorescence (ChlF) and combined

hyperspectral reflectance as a high-throughput approach for early and non-

destructive assessment of LCC and ChlF traits in Rhamnus leptophylla trees. LCC

and ChlF parameters (NPQ, Fv’/Fm’, ETR, ETRmax, Fm’, qL, qP, Y(II) were

measured alongside leaf hyperspectral reflectance from Rhamnus leptophylla

suffering from constant drought during water stress. Water stress caused NPQ,

Fv’/Fm’, ETRmax, Fm’, qL, qP, Y(II) and ETR continuous decline throughout the

entire drought period. ChlF was more sensitive to drought monitoring than LCC.

The original reflectance spectra and hyperspectral vegetation indices (SVIs)

showed a strong correlation with LCC and ChlF. Reflectance in 540-560nm

and 750-1100nm and selected SVI such as Simple Ratio (SR)752/690 can track

drought responses effectively before leaves showed drought symptoms.

Multivariate Linear Regression (MLR) and three machine learning algorithms,

namely Random Forest (RF), Support Vector Machine (SVM), and K-Nearest

Neighbor (KNN) were employed to develop models for estimating LCC and

ChlF parameters. RF provided the best estimation accuracy for LCC compared to

MLR, KNN and SVM, achieving an R2 value of 0.895 for all LCC samples. The

canopy layer significantly influenced the estimation accuracy of LCC, with the

middle layer yielding the highest R2 value. RF also demonstrated superior

performance compared to MLR, KNN and SVM for estimating NPQ, Fv’/Fm’,

ETRmax, Fm’, qL, qP, Y(II) and ETR, achieving R2 value of 0.854 for NPQ, 0.610 for
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Fv’/Fm’, 0.878 for ETRmax, 0.676 for Fm’, 0.604 for qL, 0.731 for qP, 0.879 for

Y(II), and 0.740 for ETR. Our results indicate that photosynthetic traits combined

hyperspectral reflectance can monitor the effect of drought on trees effectively

with significant potential for monitoring drought over large areas.
KEYWORDS

chlorophyll fluorescence, hyperspectral reflectance, leaf chlorophyll content, machine
learning algorithms, Rhamnus leptophylla, water stress
1 Introduction

Global warming is a significant consequence of human

activities, primarily driven by the overuse of fossil fuels, which

has led to an increased concentration of greenhouse gases in the

atmosphere. This rise in greenhouse gas levels is responsible for the

increasing average surface temperature of the Earth (Al-Ghussain,

2019). Furthermore, it enhances evaporation rates and decreases

soil moisture content (Samaniego et al., 2018). Consequently,

climate change may exacerbate drought conditions, leading to

more rapid onset, increased intensity, and prolonged duration of

drought events (Trenberth et al., 2014). Water stress often leads to

plant dehydration, disrupting the ability of plant cells to maintain

normal water concentration levels for their physiological activities

(Porporato et al., 2001; Rad et al., 2022). Therefore, water stress is

one of the most important abiotic stress factors limiting plant

growth and agricultural productivity (Chaves et al., 2002;

Gerhards et al., 2019; Alagoz et al., 2023; Samadi et al., 2024).

Photosynthesis is an important physiological activity in the growth

process of green plants, which is sensitives to soil drought. And

water stress often leads to low net photosynthetic rates (Xiao et al.,

2019). Traditional water deficit monitoring was achieved by

measuring soil moisture content by using soil moisture measuring

instrument quickly. Loose voids in the soil can result to delayed and

inaccurate monitoring drought for plants. It may be the quickest

and most direct way to detect drought through leaf physiology such

as photosynthetic traits.

Chlorophyll and chlorophyll fluorescence was key traits

allowing for the assessment of photosynthetic capacity and

adaptability of plants. Chlorophyll is a key pigment in

photosynthesis which participating in acquisition and conversion

of light energy for providing essential biochemical energy for

Calvin–Benson cycle (Evans, 1989; Peng et al., 2017). leaf

chlorophyll content (LCC) and Chlorophyll fluorescence (ChlF)

serves as a natural indicator for assessing the photosynthetic

capacity of leaves, reflecting the efficiency of photosynthesis and

the allocation of photosynthetic products in plants (Linn et al.,

2021; Song et al., 2024). And it is also a non-invasive tool for

assessing plant stress and adaptation mechanisms under drought

conditions (Salvatori et al., 2016). The examination of variations in

plant chlorophyll fluorescence enhances comprehension of the
02
efficacy of light energy absorption, conversion, and utilization

within the plant photosynthetic system at a microscopic scale

(Pleban et al., 2020).

Plants can be irreversibly affected before visible symptoms of

water stress appear (Yordanov et al., 2003). Compared to traditional

field measurements, remote sensing can provide timely and reliable

information about the plant physiology with a cost-effective way

(Bouman et al., 1996). Hyperspectral data are ranging from the visible

over the near infrared to the intermediate infrared and can provide

spectral features regarding differences in leaf metabolism, structure,

and physiological and chemical traits with non-destructive ways at

different scales (Yendrek et al., 2017; Sonobe et al., 2020a, 2020b;

Streher et al., 2020; Zhou et al., 2021). Hyperspectral Reflectance have

been used for early detecting scab induced stress in apple leaves, water

stress in citrus and grapevine, salinity stress in Myrica cerifera,

Hydrogen Peroxide in Sorghum before symptoms become visible

to the naked eye (Naumann, 2008; Maimaitiyiming et al., 2017; Zhou

et al., 2021; Song et al., 2023). However, the mechanisms linking

spectra reflectance to plant functional traits are not always clear,

because application of hyperspectral spectra to assess plant function

or physiology is often complex (Gerhards et al., 2019). How to select

stable spectral parameters or vegetation index which can characterize

physiological and biochemical changes of plants in environmental

stress is still a big challenge.

Rhamnus leptophylla, a common shrub or small tree in the Three

Gorges area, plays a key role in assessing and monitoring drought

stress, which determines its potential for stabilizing side slopes in the

fluctuation zone. The selection of Rhamnus leptophylla was based on

its hypothesized adaptation strategies and potential tolerance to

drought stress. It remains unclear whether it is feasible to conduct

early drought diagnosis of Rhamnus leptophylla by combining

photosynthetic parameters and hyperspectral data. In this study, we

measured the field photosynthetic traits including LCC, ChlF

parameters and corresponding hyperspectral reflectance over

progressive water stress and aimed to (1) explore the effect of water

stress to photosynthetic capacities; (2)What is the variation in the leaf

reflectance in continuous water stress? What is the key hyperspectral

information of Rhamnus leptophylla leaves responding to water

stress? (3) compare the potential of various algorithms, including

multivariate linear regression and machine learning techniques, for

estimating LCC and ChlF under varying water stress.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1520304
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1520304
2 Materials and methods

2.1 Experimental design

This experiment was conducted using Rhamnus leptophylla as

selected planted material at the greenhouse facility of special plant

germplasm resource garden of the Institute of Endangered Plants of

the Three Gorges Reservoir. The region experiences maximum and

minimum temperatures of 44°C and -2.5°C, respectively, with an

annual average temperature of 18°C. The relative air humidity is

77% and 75% (1000 to 1025 mm) of annual precipitation take place

from April to September (Zeng et al., 2018). Nine three-year-old

plum plant was used, and their height ranged from 2 m to 2.5 m.

They were planted in 40 cm plastic pots containing potting mix of

commercial substrate and perlite. All the trees were exposed to

natural conditions in the experiment during from 15 July to 31 July

of 2024 (day 1 to day 17). All the trees were watered to field water

capacity in 15 July (onset of the water stress treatment) and not

irrigated until 27 July (13 days). Then we re-watered all the

Rhamnus leptophylla trees in 28 July (day 14). The change of soil

water content with time was illustrated in Figure 1.

Leaf chlorophyll content and spectral-related parameters were

measured almost daily from July 15 (day 1) to July 31 (day 17) on

nine leaves from the upper, middle, and lower layers of nine trees.

We also measured the chlorophyll fluorescence parameters of three

leaves from the upper, middle, and lower layers for each plant, along

with the corresponding hyperspectral reflectance, from July 15 (day

1) to July 31 (day 17).
2.2 Hyperspectral data acquisition

A portable ASD FieldSpecHH spectrometer (325-1075 nm

range, 1 nm resolution; ASD Inc., Boulder, United States) was

used to measure the spectral reflectance of Rhamnus leptophylla
Frontiers in Plant Science 03
leaves. Each leaf was measured ten times for getting mean value as

the representative reflectance of each leaf. When the measurement

was conducted, leaf veins should be kept away for obtaining the

reflectance of true leaf tissue.
2.3 Determination of leaf
chlorophyll content

LCC was measured by using a handheld chlorophyll meter

(SPAD-502Plus, Konica Minolta, Tokyo, Japan) in the field. The

chlorophyll meter primarily utilizes leaf transmittance within the

central band of 650 to 940 nm to determine chlorophyll content,

and SPAD values can more accurately reflect changes in leaf

greenness (Ta et al., 2021). Each sample value was obtained from

the same location as where spectral data were obtained. For every

sample leaf, three measurements were taken, and these values were

then averaged to derive the representative SPAD value for

the leaves.
2.4 Measurement of chlorophyll
fluorescence parameters

The chlorophyll fluorescence of the same leaves was analyzed

with a MINI-PAM-II fluorometer (Imaging PAM, Walz, Effeltrich,

Germany) by User Manual and a previously described method

(Gong et al., 2019). The photochemical efficiency of PSII in the light

(Fv’/Fm’) was measured directly under light without dark

adaptation. The nonphotochemical quenching coefficient (NPQ)

were calculated based on dark- and light-adapted fluorescence

measurements. Maximum electron transfer rate (ETRmax) was

obtained by calculating the fitting curve between a series of

photosynthetically active radiation (PAR) and ETR. In addition,

we also obtained maximal fluorescence in the presence of NPQ

(Fm’), yield of quantum efficiency(Y(II)), apparent photosynthetic

electron transport rate (ETR) and two photochemical quenching

coefficient (qP and qL).
2.5 Extraction of spectral parameters

In total, 56 vegetation indices (VIs), 4 three-edge parameters

(TEPs), and first-order differential spectrum (FODS) were selected

for LCC estimations which are presented in Table 1. The indices

included some traditional and popular vegetation indices (VIs),

such as normalized difference vegetation index (e.g., NDVI), simple

ratio indices (e.g., SR), photochemical vegetation index (e.g., PRI)

and ratio vegetation indices (e.g., RVI). VIs simplifies the

interpretation of complicated vegetation reflection patterns by

establishing indirect connections with plant physiological and

structural characteristics (Gerhards et al., 2019; Zhou et al., 2021).

FODS and TEPs can reflect the spectral attributes of green

vegetation well and exhibits sensitivity to variations in LCC (Li

et al., 2023). All data processing and spectral calculations were

conducted using the Python programming language v3.10.
FIGURE 1

Changes in soil moisture during drought conditions and subsequent
re-watering of the Rhamnus leptophylla trees.
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TABLE 1 The 61 selected spectral parameters examined in this study, along with their band-specific formulations and corresponding
principal references.

NO. Name Explanation Reference

1 Anthocyanin Reflectance Index 1 ARI1 = 1/R550 − 1/R700 (Gitelson et al., 2001)

2 Anthocyanin Reflectance Index 2 ARI2 = R800×(1/R550 − 1/R700) (Liang et al., 2016)

3 Green Normalized Difference Vegetation Index hyper 1 GNDVIhyper1 = (R750 − R550)/(R750 + R550) (Liang et al., 2016)

4 Green Normalized Difference Vegetation Index hyper 2 GNDVIhyper2 = (R800 − R550)/(R800 + R550) (Liang et al., 2016)

5 Modified Normalized Difference Vegetation Index mNDVI705 = (R750 − R705)/(R750 + R705 − 2R445) (Liang et al., 2016)

6 Modified simple ratio mSR_705 = (R750 − R445)/(R705+R445)
(Sims and

Gamon, 2002)

7 Canopy Chlorophyll Index CCI = (R777 − R747)/R673 (Liang et al., 2016)

8 Vogelmann Index 2 VOG2 = (R734 − R747)/(R715 + R726) (Liang et al., 2016)

9 Simple Ratio SR = R800/R680 (Jordan, 1969)

10 Carter1 Carte1 = R695/R420 (Carter, 1994)

11 Carter2 Carte2 = R695/R760 (Carter, 1994)

12 Carter3 Carte3 = R605/R760 (Carter, 1994)

13 Carter4 Carte4 = R710/R760 (Carter, 1994)

14 Carter5 Carte5 = R695/R670 (Carter, 1994)

15 Photochemical vegetation index PRI = (R570-R531)/(R570+R531) (Yang et al., 2023)

16 Datt1 Datt1 = (R850 − R710)/(R850 − R680) (Datt, 1999a)

17 Datt2 Datt2 = R850/R710 (Datt, 1999a)

18 Datt3 Datt3 = R754/R704 (Datt, 1999a)

19 Enhanced Vegetation Index
EVI = 2.5×((R800 − R670)/R800 − 6×R670 − 7.5×R475

+ 1))
(Huete et al., 1994)

20 Modified Chlorophyll Absorption in Reflectance Index
MCARI = ((R700 − R670) − 0.2×(R700 − R550))

(R700/R670)
(Daughtry et al., 2000)

21 Modified Triangular Vegetation Index 1 MTVI1 = 1.2×(1.2×(R800 − R550) − 2.5 × (R670 − R550))
(Haboudane
et al., 2004)

22 Normalized Difference Cloud Index NDCI = (R762 − R527)/(R762 + R527) (Marshak et al., 2000)

23 Plant Senescence Reflectance Index PSRI = (R678 − R500)/R750 (Merzlyak et al., 1999)

24 Renormalized Difference Vegetation Index RDVI = (R800 − R670)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R800 + R670

p (Roujean and
Breon, 1995)

25 Red-Edge Position Linear Interpolation REP = 700 + 40×((R670 + R780)/2 − R700)/(R740 − R700) (Clevers, 1994)

26 Spectral Polygon Vegetation Index 1 SPVI1 = 0.4×3.7×(R800 − R670) − 1.2×|R530 − R670| (Vincini et al., 2005)

27 Simple Ratio Pigment Index SRPI = R430/R680 (Penuelas et al., 1995)

28 Transformed Vegetation Index TVl = 0.5×(120×(R750 − R550)) −200×(R670 − R550)
(Broge and

Leblanc, 2001)

29 Simple Ratio 440/690 SR(440,690) = R440/R690
(Lichtenthaler
et al., 1995)

30 Simple Ratio 700/670 SR(700,670) = R700/R670
(McMurtrey
et al., 1994)

31 Simple Ratio 750/550 SR(750,550) = R750/R550
(McMurtrey
et al., 1994)

32 Simple Ratio 750/700 SR(750,700) = R750/R700
(Gitelson and

Merzlyak, 1997)

(Continued)
F
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TABLE 1 Continued

NO. Name Explanation Reference

33 Simple Ratio 750/710 SR(750,710) = R750/R710
(Zarco-Tejada and

Miller, 1999)

34 Simple Ratio 752/690 SR(752,690) = R752/R690
(Zarco-Tejada and

Miller, 1999)

35 Simple Ratio 800/680 SR(800,680) = R800/R680
(Sims and

Gamon, 2002)

36 Simple Ratio 735/720 SR(735,720) = R735/R720
(Zarco-Tejada and

Miller, 1999)

37 Improved odds index MSR = (R800/R670 − 1)/(R800/R670+1)
(Broge and

Leblanc, 2001)

38 Transformed Chlorophyll Absorption Ratio TCARI = 3×((R700 − R670) − 0.2×(R700 − R550)(R700/R670))
(Haboudane
et al., 2002)

39 Optimized Soil Adjusted Vegetation Index OSAVI = (1 + 0.16)×(R800 − R670)/(R800 + R670 + 0.16)
(Rondeaux
et al., 1996)

40
Transformed Chlorophyll Absorption in Reflectance Index/Optimized

Soil Adjusted Vegetation Index

TCARI/OSAVI

=
3� ((R700 − R670) − 0:2� (R700 − R550)(R700=R670))

(1 + 0:16)� (R800 − R670)=(R800 + R670 + 0:16)

(Liang et al., 2016)

41 Triangular Vegetation Index TVI = 0.5×(120×(R750 − R550) – 200×(R670 − R550))
(Broge and

Leblanc, 2001)

42 Leaf Chlorophyll Index LCI =
jR850j − jR710j
jR850j − jR680j

(Datt, 1999b)

43 Green carotenoid index CAR_green = (1/R510-1/R550)×R770 (Gitelson et al., 2005)

44 Structure Intensive Pigment Index 1 SIPI1 = (R800 − R445)/(R800 − R680) (Blackburn, 1998)

45 Structure Intensive Pigment Index 2 SIPI2 = (R800 − R505)/(R800 − R690) (Blackburn, 1998)

46 Structure Intensive Pigment Index 3 SIPI3 = (R800 − R470)/(R800 − R680) (Blackburn, 1998)

47 Red-Edge Ratio Vegetation Index RERVI = R840/R717 (Gitelson et al., 2005)

48 Red-Edge Normalized Difference Vegetation Index RENDVI = (R840 − R717)/(R840 + R717) (Fitzgerald et al., 2010)

49 Red-edged vegetation stress index RVSI = (R712 − R670)/2 − R732 (Devadas et al., 2009)

50 Green Ratio Vegetation Index GRVI = R840/R560 (Gitelson et al., 2005)

Greenness index GI = R554/R667 (Yang et al., 2023)

51 MERIS Terrestrial Chlorophyll Index MTCI = (R753 − R708)/(R708 − R681)
(Dash and

Curran, 2004)

52 Chlorophyll Index Green CI-green = (R780/R550) − 1 (Gitelson et al., 2006)

53 Normalized chlorophyll ratio index NPCI = (R680 − R630)/(R680+R630) (Chen, 1996)

54 Ratio Vegetation Index RVI = R765/R720 (Jordan, 1969)

55 Colour content index R800 = R800 − R550 (Yang et al., 2023)

56 FODS First-order differential spectrum (Li et al., 2019)

57 SDr
First-order differential spectral integration in the

wavelength range of 680~760 nm
(Li et al., 2007)

58 SDb
First-order differential spectral integration in the

wavelength range of 490~530 nm
(Li et al., 2007)

59 SDr/SDb Ratio of the red edge area to the blue edge area (Li et al., 2007)

60 (SDr − SDb)/(SDr + SDb)
Normalized value of the red edge area and the blue

edge area
(Li et al., 2007)
F
rontiers
 in Plant Science 0
5
R, r, and b represent spectral reflectance, red edge, and blue edge, respectively. NO.1~56, 57, and 58~61 was the VIs, FODS, and TEPs, respectively.
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2.6 Data analysis

An analysis of variance (ANOVA) was conducted to examine

the effects of drought and canopy layers on the leaf chlorophyll

content (LCC) and Chlorophyll fluorescence parameters of

Rhamnus leptophylla trees. Post-hoc multiple comparisons

were performed using the least significant difference (LSD)

method. ANOVA and LSD also were applied for selecting key

hyperspectral SVIs. Three machine learning algorithms including

K-Nearest Neighbor (KNN), Support Vector Machines (SVM) and

Random Forest regression (RF), were applied to estimated LCC and

ChlF parameters.

SVM employ a nonlinear kernel function to map input data into

a high-dimensional feature space, enabling the representation of

complex nonlinear patterns in a simplified manner (Mountrakis

et al., 2011). For optimal SVR performance, a step involved the

tuning of hyperparameters. The hyperparameters selected for

tuning were the regularization parameter (C), and the kernel

coefficient (g) for the three kernel functions: linear functions,

radial basis kernel functions, and polynomial kernel functions. C

and g were optimized within [10

KNN is a relatively simple method in which the estimation is

predicted as a weighted average value with k spectrally nearest

neighbors using a weighting method (Zhang et al., 2018). The KNN

parameters were set as follows: the type of distance measures was set

to Euclidean distance and Manhattan distance, the weighting

functions were set to uniform, algorithm was set “auto”, and

n_neighbors was set to [5,15,20,30,25] (Li et al., 2023).

RF is an ensemble machine learning technique that relies on

decision trees. It constructs numerous small regression trees to

make predictions (Boochs et al . , 1990). The primary

hyperparameters of RF model consist of the number of trees,

maximum depth, min_samples_split, and min_samples_leaf. In

this study, the hyperparameters for various photosynthetic

parameters were defined as follows: the number of trees was set

within a range of [50, 200], the maximum depth was configured as

[None, 5], and both min_samples_split and min_samples_leaf were

assigned a range of [1, 5].

We performed consecutive measurements across three layers

(three leaves per layer) and over a period of 14 days, resulting in a

large dataset suitable for model building. And the whole number of

samples was 1134. The greenhouse measured data were randomly

divided into training (80%) and testing (20%) data. To determine

the relationship between the predicted and measured values, the

overall model is evaluated in the graph including linear regression

and a 1:1 dash-line. Ten - fold cross validation was applied for

calculating RMSE to enhance the robustness. The predictive

performance of each estimation model was evaluated using the

coefficient of determination (R2), root mean square error (RMSE)

and Bias, calculated as in the following equations:

R2 = 1 −on
i=1(yi − ŷ i)

2=on
i=1(yi − �yi)

2 (1)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)
2=n

q
(2)
Frontiers in Plant Science 06
Bias =
1
no

n
i=1(yi − ŷ i) (3)

where ŷ i was the predicted values, yi was the measured values,

and �yi was the mean of measured value. N was the sample number

of validations.

Model building and validation were carried out by using the

Scikit-learn library of Python 3.10. All graphs were obtained in

OriginPro software 2019.
3 Results

3.1 Responds of photosynthetic traits of
Rhamnus leptophylla to water stress

Figure 2 illustrated the effects of water stress to LCC across the

upper layer, middle layer and lower layer during the drought

treatment period (i.e., days 3, 4, 5,7, ……, until day 13) and

rewatering period (i.e., days 15, 16 and 17). LCC decreased

concurrently with the rapid decline in soil water content, regardless

of whether the leaves were situated in the upper, middle, or lower

layers. Leaves in the upper layers were more sensitive to drought, as

LCC began to decline during the early stages of the drought (i.e., days

5). However, LCC begin to decrease significantly in day 9 and day 10

in middle layer and lower layer. After all the trees were re-watered in

day 13, LCC continued to decrease obviously and did not recover as

we expected in a short time (Figure 2).

All the ChlF parameters decreased significantly and rapidly with

reduced soil moisture content. NPQ initially increased and

subsequently declined; Fv’/Fm’, ETRmax, ERT, qL, qP, Y(II) and

Fm’ reduced significantly with severe drought. After trees were re-

watered in day 13, these three ChlF parameters increased rapidly

and almost returned to the initial level of early stage of drought

from day 15 to day 17 (Figures 3a–h).

All the measured LCC and ChlF parameters had larger variation,

which was benefit for building estimating model. The mean LCC

value of upper layer, middle layer lower layer and average of all leaves

was 38.43, 32.02, 26.70 and 31.16, respectively. The maximum LCC

value was observed in upper layer with values of 48.75 and the

minimum value was 15.35 of lower layer (Table 2). NPQ had the

mean value of 0.91, the maximum value of 2.43 and the minimum

value of 0.05. For Fv’/Fm’, the mean, maximum and minimum value

was 0.54, 0.82 and 0.10, respectively. For ETRmax, the mean,

maximum and minimum value was 20.37, 43.26 and 2.03,

respectively (Table 3). And for ETR, qL, qP, Y(II) and Fm’, the

mean value was 17.8, 0.42, 0.62, 0.34 and 680.93; the maximum value

was 29.5, 0.65, 0.83, 0.55 and 1142.0; the minimum value was 1.60,

0.20, 0.28, 0.03 and 301.00, respectively (Table 3).
3.2 Correlation between photosynthetic
traits and raw hyperspectral reflectance,
spectral prameters

In general, LCC and raw hyperspectral reflectance showed high

negative correlation coefficients (r) in the visible spectrum
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(approximately 500 nm to 710 nm) and low correlation in the

infrared region (approximately 760 nm to 1000 nm). The r value

increased and reached a maximum in 500-600nm, decreased

sharply in 680nm and then continue to increase in 700nm

(Figure 4). Different datasets from various canopy layers had a

significant impact on the correlation between LCC and raw

reflectance. |r| with all data was the highest and the maximum

was 0.57 in 573nm. The second was the middle layer and the

maximum value was 0.38 in 569nm. Upper layer had the lowest

correlation with the highest |r| value of 0.19 (Supplementary

Figure S1).

Similarly, ChlF parameters exhibited a negative correlation with

hyperspectral reflectance within the visible spectrum. Specifically,

for NPQ, the highest absolute correlation coefficient (|r| > 0.17) was

observed in the wavelength range of 400–550 nm (Supplementary

Figure S2a). For Fv’/Fm’, |r| values exceeded 0.25 in the range of

574–636 nm, with a distinct peak at 617 nm (r = - 0.29) (Figure 5b).

For ETRmax, |r| values greater than 0.3 were detected in the range

of 492–634 nm, accompanied by a peak in the range of 700–709 nm

(|r| > 0.35) (Supplementary Figure S2c). For Y(II) and ETR, |r|

values exceeded 0.2 in the range of 330–638 nm, with a similar peak

observed in the range of 694–714 nm, consistent with the trend

observed for ETRmax (Supplementary Figures S2g, h). In contrast,

qL and qP showed relatively low correlations with raw

hyperspectral reflectance, with |r| values exceeding 0.1 only

in the ranges of 736–1075 nm and 325–506 nm, respectively

(Supplementary Figures S2e, f).
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We also analyzed the correlation between LCC, NPQ, Fv’/Fm’,

ETRmax, Fm’, qL, qP, Y(II), ERT and hyperspectral parameters,

which were presented in Figure 4. LCC had the strongest positive

correlation with GNDVI and GNDVIhyper1 and the highest r value

of 0.6785; mSR_705 was the most relevant to ERT, Y(II), Fv’/Fm’

and ETRmax the highest r value of 0.3652, 0.3623, 0.4138 and

0.4289, respectively. qL and qP had lower relation with

hyperspectral parameters and the highest r value was 0.1629 and

-0.1919 in CAR_green and LCI. Considered the correaltion between

all photosynthetic traits and hyperspectral parameters, we selected

the top 22 hyperspectral parameters which were mSR_705,

CAR_green, SR(735/720), VOG1, Datt1, SR(750/710), RENDVI,

RE_NDVI, Carte4, SR(750/700), SR(752/690), Datt3, NDVI705,

VOG2, PERVI, Datt2, VOG3, MTCI, TCARI, NPCI, OSAVI2

and GNDVIhyper1. And we tracked the drought by using these

22 hyperspectral parameters.
3.3 Variation in leaf reflectance spectra for
drought and tracking of leaf hyperspectral
reflectance to drought

Water stress caused continuous and dynamic changes of the

mean spectral reflectance and absorptance over time. From day 3 to

day 17, two band range including 540-560nm and 750-1100nm were

found to distinguish the different water stress whatever the leaves

were in upper layer, middle layer or lower layer (Figures 5a–c).
FIGURE 2

One-way ANOVA test results of LCC of Rhamnus leptophylla trees for the upper layer (a), middle layer (b), and lower layer (c) of different water
stresses in the drought treatment period (i.e., Days 1, 3, 4 … until to day13) and rewatering period (i.e., Days 15, 16 and 17). The data are presented in
the form of mean ± standard error, and significant differences are indicated by different letters.
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Most vegetation indices decreased with drought and increased

after re-watering expect for VOG2, VOG3, and NPCI

(Supplementary Table S1). After suffering from a 4-day drought,

mSR_705, CAR_green, Datt1, Datt2, Datt3, SR(750/700), NPCI,

and GNDVIhyper1 present decreased significantly comparing to

day 3. SR(752/690) was the most sensitive to drought and present
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obvious decrease in day 5. VOG1, MTCI and OSAVI2 began to

decrease significantly in day 8. SR(735/720) and NDVI705

decreased in day 10. In day 12, almost all the vegetation index

reached the minimum value. But SR(752/690) was in day 9 and

mSR_705, CAR_green, Datt1, Datt2, Datt3, SR(750/700), NPCI,

and GNDVIhyper1 was in day 10 (Supplementary Table S1).
FIGURE 3

One-way ANOVA test results of ChlF of Rhamnus leptophylla trees for NPQ, Fv’/Fm’, and ETRmax of different water stresses in the drought
treatment period (i.e., Days 1, 3, 4 … until to day13) and rewatering period (i.e., Days 15, 16 and 17). (a–h) were NPQ, Fv’/Fm’, ETRmax, ERT, qL, qP, Y
(II) and Fm’. The data are presented in the form of mean ± standard error, and significant differences are indicated by different letters.
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3.4 Parameter selection

Figure 6 showed that ten sensitive hyperspectral parameters for

LCC estimation were ranked by importance to identify the top two

parameters for different layers. Those were NDCI and GRVI for all

data, Carte5 and OSAVI2 for upper layer, RENDVI and VOG2 for

middle layer, CAR_green and SR (800, 680) for lower layer,

respectively. These hyperspectral parameters were selected for

estimating LCC.

Figure 7 indicated the ten sensitive hyperspectral parameters

of ChlF estimation were ranked according to importance. The

top two parameters for NPQ, Fv’/Fm’, ETRmax, Fm’, qL, qP, Y

(II) and ETR were TCARI2 and CAR_green, ARI1 and NPCI,

CAR_green and mSR_705, PRI and SIPI3, PRI and NCPI, ARI1

and SR(440/690), mSR_705 and CAR_green, mSR_705 and

CAR_green, respectively.
3.5 Multivariate linear regression for
estimating LCC of Rhamnus leptophylla

According to the importance ranking in Figure 6, the top five

sensitive parameters were selected for MLR models. The R2 and

RMSE were 0.505 and 21.95 for all data, 0.013 and 12.78 for upper

layer, 0.126 and 12.10 for middle layer, 0.00 and 17.89 for lower

layer. And the highest R2 was only 0.505 (Table 4).
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Overall, the MLR presented to be very weak in estimating ChlF

parameters of Rhamnus leptophylla (Table 5). The R2 of NPQ,

Fv’/Fm’, ETRmax, Fm’, qL, qP, Y(II) and ETR was 0.055, 0.208,

0.065, 0.134, 0.050, 0.008, 0.142, and 0.133 respectively.
3.6 Machine-learning algorithms for
predicting leaf chlorophyll content

A comparison of the three machine learning algorithms

revealed that RF algorithm exhibited the best regression

performance, characterized by the highest R² and the lowest

RMSE, rRMSE and Bias. For LCC, the R2 value of RF was 0.895

for all samples, 0.697 for upper layer, 0.902 for middle layer and

0.795 for lower layer (Table 6); and the KNN were 0.608 for all

leaves, 0.110 for upper layer, 0.243 for middle layer, 0.00 for lower

layer; and the SVR were 0.615 for all leaves, 0.267 for upper layer,

0.145 for lower layer, and 0.00 for lower layer, respectively (Table 6).

RF not only obtained highest R2 but also lowest RMSE, r RMSE and

Bias whatever the data was acquired of all leaves, upper layer,

middle layer or lower layer. KNN and SVM presented to be weaker

in estimating LCC comparing to RF.

To ascertain the relationship between observed and predicted

LCC, the regression values were plotted (Figures 8–10). For all

leaves, RF, KNN and SVM presented similar trends to a 1:1

relationship (Figures 8a, 9a, 10a). For upper, middle and lower
TABLE 2 Descriptive data of Leaf Chlorophyll Content.

Summary Upper layer Middle layer Lower layer All data

Mean 38.43 32.02 26.70 32.16

SD 3.79 3.75 4.69 6.21

Median 38.18 32.25 27.10 32.25

Maximum 48.75 40.40 38.60 47.45

Minimum 28.80 23.00 15.35 15.35

Coefficient Variation 0.10 0.12 0.18 0.19
TABLE 3 Descriptive data of Leaf Chlorophyll fluorescence parameters.

Summary NPQ Fv’/Fm’ ETRmax Fm’ qL qP Y(II) ETR

Mean 0.91 0.54 20.37 680.93 0.42 0.62 0.34 17.80

SD 0.45 0.12 8.68 181.33 0.09 0.09 0.10 5.52

Median 0.85 0.54 19.24 660.00 0.42 0.63 0.34 18.10

Maximum 2.43 0.82 43.26 1142.00 0.65 0.83 0.55 29.50

Minimum 0.05 0.10 2.03 301.00 0.20 0.28 0.03 1.60

Coefficient Variation 0.50 0.23 0.43 0.27 0.20 0.15 0.31 0.31
frontiersin.org

https://doi.org/10.3389/fpls.2025.1520304
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1520304
layer, KNN and SVM did not show a similarity to a 1:1 relationship

(dashed-line—Figures 8b–d, Figures 9b–d, Figures 10b–d).

Predictions of RF were comparatively well related to the observed

LCC for all leaves, upper layer, middle layer and lower layer.
3.7 Machine-learning algorithms for
predicting chlorophyll
fluorescence parameters

Three machine-learning algorithms were also used for

estimating the ChlF parameters including NPQ, Fv’/Fm’,

ETRmax, qL, qP, Y(II) and ETR. Similarly, RF performed to be

the best, achieving the highest R2 of 0.854, 0.610, 0.878, 0.676, 0.604,

0.731,0.879,0.740 for NPQ, Fv’/Fm’, ETRmax, Fm’, qL, qP, Y(II)

and ETR, respectively. Additionally, it exhibited the lowest RMSE,

rRMSE, and bias when compared to other algorithms (Table 7). R2

of KNN were 0.011 for NPQ, 0.202 for Fv’/Fm’, 0.112 for ETRmax,
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0.178 for Fm’, 0.156 for qL, 0.118 for qP, 0.204 for Y(II), 0.072 for

ERT; and the R2 of SVM were 0.057 for NPQ, 0.199 for Fv’/Fm’,

0.022 for ETRmax, 0.240 for Fm’, 0.195 for qL, 0.233 for qP, 0.109

for Y(II), 0.210 for ERT, respectively. The regression analysis based

on RF algorithm between the observed and predicted ChlF

parameters were plotted in Figure 11.
4 Discussion

Climate change caused by global warming reduced soil moisture

and resulting aggravated droughts (Trenberth et al., 2014;

Samaniego et al., 2018). Drought resistance is a combination of

physiological and biochemical adaptations that can be reflected in

the plants’ spectral signature (Figure 4 and Supplementary Table

S1) (Zovko et al., 2019). It is important for mitigating the damage of

drought by monitoring the effect of drought to plant with non-

destructive and rapid way before symptoms can be seen with eye.
FIGURE 4

Correlation coefficients between LCC, NPQ, Fv’/Fm’, ETRmax, Fm’, qL, qP, Y(II), ERT and hyperspectral parameters.
FIGURE 5

Comparison between the mean spectral reflectance and absorptance at 400–1100 nm for each of different water stress from day 3 to day 17. (a–c)
represent upper layer, middle layer and lower layer.
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Photosynthetic response to drought and its sensitivity to soil water

deficit (Figures 2, 3) (Zhou et al., 2021). The spectral properties of

plants, as a visual reflection of the chemical and physiological state

of leaves, show high sensitivity to environmental changes (Zovko

et al., 2019; Zhang et al., 2024). So, this study combined

photosynthetic factor including LCC, ChlF and leaf hyperspectral

reflectance of Rhamnus leptophylla which experienced 13 days

drought and 3 days re-watering for attempting to track the

physiological changes with hyperspectral reflectance and make

models to monitoring these variations. Rhamnus leptophylla is a

common shrub or small tree in the Three Gorges area and its

assessment for monitoring of drought resistance decided due to its

potential for side slope protection in fluctuation zone. It is urgent to

quickly and accurately monitor the response of Rhamnus

leptophylla to drought, as its ability to withstand drought and the

mechanisms involved remain unknown.

Drought significantly can impact chlorophyll content and

chlorophyll fluorescence in plants, leading to alterations in

photosynthetic efficiency. Our results showed that LCC, Fv’/Fm’,

ETRmax, Fm’, qL, qP, Y(II) and ETR decreased with decreasing soil

moisture content; NPQ increased firstly and then decreased as

severe drought (Figures 2, 3). Because under drought conditions,
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reduced chlorophyll synthesis and closed stomata were contributed

to lower chlorophyll concentrations. Fv’/Fm’ represents the

maximum photochemical efficiency of PSII under light

adaptation, which can reflect the photosynthetic capacity of

plants under light conditions., FV’/FM’ tended to decrease under

drought stress (Figure 3b). Drought stress can bring stomatal

closure of plant leaves contributing to the reduction of

intercellular CO2 concentration, which makes the fixation of CO2

in the dark reaction inhibited. Light response and electron transport

chain of photosynthesis was also affected. This blocked state

decreased the opening ratio of the PSII reaction center, which will

decrease the value of Fv’/Fm’. ETRmax showed a decreasing trend

with the aggravation of drought (Figure 3c). This was because that

drought can damage electron transport chain in the photosynthetic

system. Salvucci and Crafts-Brandner (2004) showed that drought

stress significantly reduces the photosynthetic capacity of plants,

including ETRmax.

There was a high negative correlation between the raw

hyperspectral reflectance (green and red bands) and LCC in this

study, which may be attributed to several physiological and spectral

mechanisms inherent to plant leaves. These mechanisms are

influenced by leaf structural characteristics and external
FIGURE 6

Ranking the importance of 10 sensitive hyperspectral parameters. (a-d) indicated all LCC, LCC of upper layer, LCC of middle layer and LCC of
lower layer.
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FIGURE 7

Ranking the importance of 10 sensitive hyperspectral parameters. (a–h) were NPQ, Fv’/Fm’, ETRmax, Fm’, qL, qP, Y(II) and ETR respectively.
TABLE 4 Performance of MLR for estimating LCC by using different data.

Models R2 RMSE

All data y=0.816 + 26.433×x1+1.670×x2+7.184×x3-18.214×x4+20.324×x5 0.505 21.95

Upper layer y=68.684-20.275×x1-25.029×x2+7.185×x3-17.043×x4-0.513×x5 0.013 12.78

Middle layer y=38.062-9.402×x1+3.945×x2-8.231×x3-2.687×x4-49.215×x5 0.126 12.10

Lower layer y=20.306-0.686×x1+3.776×x2+52.041×x3-0.372×x4-41.383×x5 0.000 17.89
F
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x1, x2, and x3 represented the parameters of the best-fitting model. For all data, x1, x2, x3, x4and x5 were NDCI, GRVI, R800, RENDVI, Datt1; For upper layer, x1, x2, x3, x4and x5 were Carte5,
OSAVI2, SR(700, 670), Carte3, mNDVI705; For middle layer, x1, x2, x3, x4and x5 were NDVI, CI_green, TCARI/OSAVI, SR(750, 550), VOG2; For lower layer, x1, x2, x3, x4and x5 were SR(800,
680), RENDVI, DCI, CAR_green, GNDVIhyper2.
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environmental factors such as moisture conditions and soil nutrient

(Gitelson and Merzlyak, 1997; Sims and Gamon, 2002; Ustin and

Gamon, 2010). Leaf internal structure and water content

significantly influence spectral reflectance. For instance, increased

leaf thickness or lower water content may lead to an apparent
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negative correlation between hyperspectral bands and chlorophyll

levels. Drought stress can modify the traditional correlation

between chlorophyll content and hyperspectral reflectance.

Changes in leaf structure and water content induced by drought

can cause an overall shift in spectral characteristics, thereby leading
TABLE 5 Performance of MLR for estimating Chlorophyll fluorescence parameters.

models R2 RMSE

NPQ y=0.938-0.091×x1-0.091×x2+4.388×x3+2.664×x4-0.930×x5 0.055 0.217

Fv’/Fm’ y=0.530-0.022×x1+0.353×x2-0.022×x3+0.018×x4-0.003×x5 0.208 0.011

ETRmax y=6.342 + 12.718×x1+2.293×x2-4.172×x3+3.285×x4-2.139×x5 0.065 77.83

Fm’ y=-331.799-3875.452×x1-241.854×x2-0.555×x3+ 3.932×x4+1069.851×x5 0.134 33250.991

qL y=0.419 + 0.203×x1-0.291×x2-0.006×x3 +2.079×x4-1.401×x5 0.050 0.006

qP y=-0.160-0.008×x1+ 0.054×x2+0.655×x3-0.054×x4+0.038×x5 0.008 0.008

Y(II) y=-0.431 + 0.026×x1-0.725×x2-0.028×x3+0.137×x4+0.630×x5 0.142 0.01

ETR y=-57.013-2.17×x1+2.149×x2-1.515×x3+72.218×x4-33.321×x5 0.133 26.936
x1, x2, and x3 represented the parameters of the best-fitting model. For NPQ, x1, x2, x3, x4and x5 were TCARI2,CAR_green,RVSI, MTVI1,MCARI; For Fv’/Fm’, x1, x2, x3, x4and x5 were ARI1,
NPCI, ARI, CAR_green, mSR_705; For Fm’, x1, x2, x3, x4 and x5 were PRI, SR(440/690), Carte1, CAR_green and SIPI3; For qL, x1, x2, x3, x4 and x5 were PRI, NPCI, LCI, R800, SPVI2; For qP,
x1, x2, x3, x4 and x5 were PSRI, SR(440/690), ARI1, Carte1; For Y(II), x1, x2, x3, x4 and x5 were CAR_green, RENDVI, SR(752/690), mSR_705, RVI; For ETR, x1, x2, x3, x4 and x5 were mSR705,
CAR_green, SR(752/690), RVI, RENDVI.
FIGURE 8

Estimated and measured along the 1:1 line of the RF model. (a), (b), (c), and (d) were all samples, upper layer, middle layer and lower
layer, respectively.
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TABLE 6 Performance of different machine-learning algorithms employed for the LCC estimation.

RF KNN SVM Parameters

All leaves

R2 0.895 0.608 0.615

NDCI, GRVI, R800, RENDVI, Datt1
RMSE 2.155 4.012 4.131

rRMSE 0.066 0.124 0.130

Bias -0.057 0.034 -0.028

Upper layer

R2 0.697 0.110 0.267

Carte5, OSAVI2, SR(700, 670), Carte3, mNDVI705
RMSE 1.982 3.361 3.079

rRMSE 0.051 0.087 0.080

Bias -0.016 0.210 -0.400

Middle layer

R2 0.902 0.243 0.145

NDCI, RENDVI, TCARI/OSAVI, Datt1, VOG2
RMSE 1.213 3.295 3.441

rRMSE 0.036 0.103 0.107

Bias 0.081 0.094 0.152

Lower layer

R2 0.795 0.00 0.00

SR(800, 680), RENDVI, DCI, CAR_green, GNDVIhyper2
RMSE 1.859 4.218 4.139

rRMSE 0.069 0.156 0.153

Bias 0.598 -0.234 0.138
F
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FIGURE 9

Estimated and measured along the 1:1 line of the KNN model. (a), (b), (c), and (d) were all samples, upper layer, middle layer and lower
layer, respectively.
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FIGURE 10

Estimated and measured along the 1:1 line of the SVM model. (a), (b), (c) and (d) were all samples, upper layer, middle layer and lower
layer, respectively.
TABLE 7 Performance of different machine-learning algorithms employed for the estimation of Chlorophyll fluorescence parameters.

RF KNN SVM Parameters

NPQ

R2 0.854 0.011 0.057

TCARI2,CAR_green,RVSI, MTVI1,MCARI
RMSE 0.183 0.461 0.466

rRMSE 0.206 0.511 0.053

Bias 0.007 -0.034 -0.024

Fv’/Fm’

R2 0.610 0.202 0.199

ARI1,NPCI,ARI,CAR_green, mSR_705
RMSE 0.074 0.103 0.106

rRMSE 0.141 0.192 0.202

Bias 0.006 0.001 0.014

ETRmax

R2 0.878 0.112 0.022

mSR_705, CAR_green, TCARI/OSAVI, VOG1,SR(752/690)
RMSE 3.185 8.784 9.021

rRMSE 0.147 0.418 0.416

Bias -0.143 -1.099 -2.075

Fm’

R2 0.676 0.178 0.240

PRI, SR(440/690), Carte1, CAR_green, SIPI3
RMSE 111.613 183.850 188.851

rRMSE 0.152 0.264 0.257

Bias -10.657 -17.870 -88.947

(Continued)
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to the negative relationship between LCC and reflectance (Sims and

Gamon, 2002; Li et al., 2024b). The canopy layer exerts a

remarkable influence on the LCC and its corresponding

estimating accuracy. This conclusion is applicable to both

seedlings and mature trees, regardless of the growth stage (Zhou

et al., 2021; Li et al., 2023). These results may be contributed to

leaves of different maturity level at distinct canopy levels. When

leaves are confronted with drought stress, the responses of leaves

with varying maturity levels to drought, which in turn results in

diverse changes in chlorophyll content (Table 2). Leaves at different

levels respond differently to drought stress in terms of their spectral

characteristics (Figure 5). NPQ was related with spectral reflectance

in blue band (400-550nm), Fv’/Fm’ was in green and red band(570-

635nm) and ETRmax was in blue, green and red edge band (480-

630nm, 690-715nm), respectively. That was because the chlorophyll

absorption and reflection characteristics of light in this region are

remarkable in visible light region. These results were similar to

other studies which also revealed the utility of the visible light

region for estimating photosynthetic characteristic. The green (500–

599 nm) and red (601–696 nm) regions were selected for ФF and

qL, respectively (Song et al., 2024). 486 nm, 668 nm, 690 nm and725

nm were used for constructing new index for estimating

Chlorophyll Fluorescence Parameters (Zheng et al., 2021).

However, selection of hyperspectral band or hyperspectral

parameters was uncertain and specific band for LCC or ChlF

parameters was necessary to determine.

In this study, we established MLR and three machine learning

models (RF, KNN and SVM) using field-measured hyperspectral

data to estimate LCC and eight ChlF parameters. Our result

indicated that RF performed to be the best in estimating LCC and
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ChlF (Tables 6, 7). R2 of 0.895, 0.854, 0.610, 0.878, 0.676, 0.604,

0.731,0.879,0.740 for LCC, NPQ, Fv’/Fm’, ETRmax, Fm’, qL, qP, Y

(II) and ETR, respectively (Figure 11). RF is composed of multiple

trees trained through bagging and a random variable selection

process. RF was proved to be robustness against outliers and

noise (Maimaitijiang et al., 2020; Khruschev et al., 2022).

Moreover, it is excellent in handle the substantial common

multivariate collinearity inherent in the functional relationship

between spectral variables and biophysical or biochemical

parameters (Liang et al., 2016). RF as a supervised learning

technique for regression has been already consistently reported to

obtain high accuracy in estimating photosynthetic parameters (An

et al., 2020; Zhou et al., 2021; Li et al., 2023; Shi et al., 2023). Canopy

layer influenced the LCC and corresponding estimation accuracy

and need to be considered seriously. This conclusion was indicated

in photosynthesis and nutrients utility of citrus trees (Zhou et al.,

2021; Dian et al., 2023; Li et al., 2024a).
5 Conclusions

Linking leaf hyperspectral reflectance and plant photosynthetic

traits can achieve accurate and non-destructive drought monitoring

before visible symptoms appeared in plants. In this study,

photosynthetic traits including LCC, NPQ, Fv’/Fm’, ETRmax, Fm’,

qL, qP, Y(II) and ETR presented rapid decrease with reduced soil

moisture. Chlorophyll fluorescence was more sensitive than LCC.

The original reflectance and hyperspectral SVIs had high correlation

with LCC and chlorophyll fluorescence parameters. Spectral bands in

540-560nm and 750-1100nm can distinguish different water stress.
TABLE 7 Continued

RF KNN SVM Parameters

qL

R2 0.604 0.156 0.195

PRI, NPCI, LCI, R800, SPVI2
RMSE 0.050 0.078 0.082

rRMSE 0.121 0.186 0.198

Bias 0.001 0.006 0.002

qP

R2 0.731 0.118 0.233

PSRI, SR(440/690), ARI1, Carte1
RMSE 0.471 0.101 0.092

rRMSE 0.076 0.165 0.150

Bias -0.001 0.015 0.008

Y(II)

R2 0.879 0.204 0.109

CAR_green, RENDVI, SR(752/690), mSR_705, RVI
RMSE 0.038 0.108 0.103

rRMSE 0.112 0.324 0.303

Bias -0.002 -0.002 -0.011

ETR

R2 0.740 0.072 0.210

mSR705, CAR_green, SR(752/690), RVI, RENDVI
RMSE 1.307 5.337 4.956

rRMSE 0.074 0.303 0.286

Bias -0.017 0.202 0.265
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Selected hyperspectral SVIs including mSR_705, CAR_green, Datt1,

Datt2, Datt3, SR(750/700), NPCI, and NDVI present can effectively

track the water stress after plant experienced 6 days’ drought. SR(752/

690) was the most sensitive to drought and present obvious decrease

in day 4. Photosynthetic traits such as LCC, NPQ, Fv’/Fm’, ETRmax,

Fm’, qL, qP, Y(II) and ETR could be estimated with the highest

precision by applying hyperspectral leaf reflectance and RF models

compared to MLR, SVM and KNN. And the canopy layer should be
Frontiers in Plant Science 17
considered when physiological factors were estimated. In short,

hyperspectral reflectance was very effective in testing drought

advanced by combining physiological traits. To our knowledge, this

is one of the first applications of hyperspectral parameters as

indicators for drought and input for the estimation of

photosynthetic traits in Rhamnus leptophylla and provides a basis

for expanding the applications to other observing platforms, such as

unmanned aerial and satellite remote sensing.
FIGURE 11

Estimated and measured along the 1:1 line of the RF model. (a–h) were NPQ, Fv’/Fm’, ETRmax, Fm’, qL, qP, Y(II) and ETR respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1520304
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1520304
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

LL: Writing – original draft, Writing – review & editing. GH:

Writing – original draft. JW: Resources, Writing – original draft.

YY: Investigation, Writing – review & editing. GZ: Investigation,

Writing – review & editing. YS: Investigation, Writing – review &

editing. XW: Formal analysis, Software, Writing – review

& editing. HC: Formal analysis, Validation, Writing – review &

editing. YW: Visualization, Writing – review & editing. DW:

Conceptualization, Writing – review & editing, Funding

acquisition, Supervision.
Funding

The author(s) declare that financial support was received

for the research and/or publication of this article. This work was

supported by the Ecological Environmental Protection Fund of

China Three Gorges Corporation (WWKY-2020-0249) and the

National Natural Science Foundation of China (U2240222).
Frontiers in Plant Science 18
Conflict of interest

Authors LL, GH, JW, YY, GZ, YS, XW, HC, and DW were

employed by the company China Three Gorges Corporation.

The remaining author declares that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1520304/

full#supplementary-material
References
Alagoz, S. M., Zahra, N., Kamrani, M. H., Lajayer, B. A., Nobaharan, K., Astatkie, T.,
et al. (2023). Role of Root Hydraulics in Plant Drought Tolerance. J. Plant Growth
Regul. 42, 6228–6243. doi: 10.1007/s00344-022-10807-x

Al-Ghussain, L. (2019). Global warming: review on driving forces and mitigation.
Environ. Prog. Sustain. Energy 38, 13–21. doi: 10.1002/ep.13041

An, G., Xing, M., He, B., Liao, C., Huang, X., Shang, J., et al. (2020). Using Machine
Learning for Estimating Rice Chlorophyll Content from In Situ Hyperspectral Data.
Remote Sens. 12, 3104. doi: 10.3390/rs12183104

Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment
concentrations: a test using senescent tree leaves. Int. J. Remote Sens. 19, 657–675.
doi: 10.1080/014311698215919

Boochs, F., Kupfer, G., Dockter, K., and Kuhbauch, W. (1990). Shape of the red edge
as vitality indication for plants. Int. J. Remote Sens. 11, 1741–1753. doi: 10.1080/
01431169008955127

Bouman, B. A. M., vanKeulen, H., vanLaar, H. H., and Rabbinge, R. (1996). The
'School of de Wit' crop growth simulation models: A pedigree and historical overview.
Agric. Syst. 52, 171–198. doi: 10.1016/0308-521x(96)00011-x

Broge, N. H., and Leblanc, E. (2001). Comparing prediction power and stability of
broadband and hyperspectral vegetation indices for estimation of green leaf area index
and canopy chlorophyll density. Remote Sens. Environ. 76, 156–172. doi: 10.1016/
s0034-4257(00)00197-8

Carter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicatiors of
plant stress. Int. J. Remote Sens. 15, 697–703. doi: 10.1080/01431169408954109

Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório,
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