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Chinese fir (Cunninghamia lanceolata) is a key native tree species in southern

China. Accurate estimation of above-ground biomass and its distribution is

essential for the sustainable use of Chinese fir forests. UAV-based high-density

point clouds and high-resolution spectral data provide critical remote sensing for

detailed 3D tree structure analysis. This study aimed to explore the aboveground

biomass allocation characteristics across the different growth stages of Chinese

fir and to develop accurate biomass models. Measurements of 20,836 Chinese fir

trees were used for the purpose. Through the comparative analysis of four basic

models, the Power Function model was identified as the optimal one, particularly

excelling in fitting the accuracy for stem and bark biomass. To further enhance

the model’s fitting performance, age groups were introduced into the dummy

model, categorizing the Chinese fir forests into the five distinct growth stages.

Results showed age groups used as dummy variables led to an average increase

in R² by 2.6%. The fitting accuracy for bark and branch biomass saw the most

significant improvements, with increases in R² by 4.2% and 3.1%. To address the

inconsistency between the sum of individual biomass components and total

biomass, we employed a seemingly unrelated regression (SUR) model. Even

though fitting accuracy for individual tree components decreased by an average

of 2.5%, from a practical perspective SUR model would be more suitable for

understanding the interrelationships between different components. These

findings offer robust support for accurately estimating the aboveground

biomass in Chinese fir forests across different growth stages.
KEYWORDS

biomass model, dummy variable model, compatibility model, growth and development
stage, Cunninghamia lanceolata
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1 Introduction

Forest ecosystems are the pillars of terrestrial ecosystems (Field

and Raupach, 2012), occupying a critical role in the Earth’s

ecological system and playing a significant regulatory function

(Subati and Jia, 2021). As fundamental attributes of forest

ecosystems, estimation of forest biomass has become key issues in

forest research and forestry applications (Lieth and Whittaker,

2012). Accurate forest biomass models not only form the basis for

evaluating forest carbon sequestration capacity but also provide

critical scientific support for carbon trading mechanisms and

climate change policy development (Ma et al., 2024; Zhang J. et

al., 2019). However, current biomass estimation methods still face

various technical challenges, such as difficulties in field data

collection, inefficiency of traditional biomass estimation

techniques, significant measurement errors, and limited

generalizability of biomass models across different regions and

tree species (Weiskittel et al., 2015). These challenges can lead to

uncertainties in forest carbon stock estimates, subsequently

affecting the accuracy of ecological management decisions

(Holdaway et al., 2014). Therefore, developing more efficient and

accurate biomass estimation models and improving existing

technologies have become pressing priorities in forest carbon sink

research (Holdaway et al., 2014).Estimating aboveground biomass,

as a crucial component of forest ecosystems, holds immense

importance within forest science and forestry practices. This is

particularly significant for carbon cycle research, ecosystem service

evaluation, and sustainable forest management (He et al., 2013).

However, there is considerable uncertainty in estimating forest

carbon sink, which can be mitigated by precise estimation of

forest biomass (Fu et al., 2022). Therefore, accurately estimating

forest biomass is of paramount importance, which can be done

using direct and indirect methods. The former method is the most

accurate, but time-consuming, labor-intensive, and highly

destructive, whereas later method involves developing biomass

models (Wang et al., 2018a). Constructing biomass models, as the

primary approach for estimating forest biomass, represent an

effective and relatively accurate method of investigation. With the

advancement of mathematical modeling techniques, the methods

for developing tree branch biomass models have evolved from

simple least squares regression to more sophisticated and precise

modeling, including constructing compatible models that account

for measurement errors (Zeng and Tang, 2010b; Zhang et al., 2016).

The advanced modeling encompasses seemingly unrelated

regression models (SUR), linear or nonlinear joint estimation

models (Tang et al., 2000), dummy variable models (Zeng et al.,

2011), and mixed-effects models (Fu et al., 2012, 2013, 2016). These

models, when applied to tree-scale data, better reflect the biomass

distribution across different parts of the tree, providing scientific

support for carbon storage and growth analysis at the individual

tree level.

When applied to tree-scale data, better reflects the biomass

distribution across different parts of the tree, providing scientific

support for carbon storage and growth analysis at the individual

tree level. Given the critical importance of accurate biomass
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estimation, the evolution from simple regression methods to

more complex and precise models underscore the need for

continual refinement in this area. As forest ecosystems continue

to play a vital role in global carbon cycles and ecosystem services,

the development and application of these sophisticated biomass

models are essential for advancing our understanding and

management of forest resources. However, traditional manual

survey techniques for obtaining individual tree biomass

parameters are time-consuming, labor-intensive, inefficient, and

lack timeliness, making them increasingly inadequate for the

precise monitoring of digitized forest resources under new

conditions (Wan et al., 2021). In contrast to conventional remote

sensing, Unmanned Aerial Vehicle Light Detection and Ranging

(UAV LiDAR) technology can penetrate forest canopies, capturing

three-dimensional structural information of forests by emitting

laser pulses and receiving reflected signals. This technology

provides complete data from the tree top to the base, which is

crucial for estimating tree volume and biomass (Wallace et al., 2012;

Ghanbari Parmehr and Amati, 2021). This high-precision remote

sensing technology captures detailed three-dimensional structures

of both the ground surface and vegetation (Dandois and Ellis, 2010),

acquiring critical details such as tree height, canopy density, and

terrain-key parameters for biomass estimation (Zhang D, et al.,

2019). Consequently, UAV LiDAR technology is increasingly used

to accurately measure the biomass of individual trees and their

branches. This study explores the use of UAV LiDAR data to

construct an additive biomass model for Chinese fir forests across

the full growth cycle in Guangdong. The application of this

technology not only enhances the efficiency and accuracy of

forestry resource surveys, but also provides reliable foundational

data for forest carbon storage assessment and biodiversity

conservation, thereby laying a solid foundation for long-term

monitoring and sustainable management of forest ecosystems.

This approach can subsequently be extended to biomass

estimation across entire forest stands (Fang et al., 2015).

Chinese fir (Cunninghamia lanceolata) is recognized for its

high-quality timber and significant economic value in forest

management, making it one of the most important economic tree

species in subtropical regions. Moreover, Chinese fir plays an

indispensable role in forest ecosystems (Yu et al., 2010). Its

aboveground biomass constitutes a major component of forest

carbon storage, holding significant implications for global carbon

cycle research and climate change mitigation. The biomass of

Chinese fir not only affects the carbon storage capacity of forests

but is also closely linked to biodiversity and soil quality. Therefore,

studying the adaptability and biomass allocation strategies of

Chinese fir across different growth stages has become a focal

point in global forestry science research (Dandois and Ellis,

2010). There are notable differences in the biomass allocation

strategies of Chinese fir at various growth stages (Li et al., 2022).

As the growth stages advance, particularly during the young and

middle-aged phases, the growth rate of Chinese fir accelerates

significantly, with biomass increases primarily concentrated in the

stem and branch components. The biomass growth during this

stage is especially pronounced, laying a crucial foundation for
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subsequent carbon storage. Accurately assessing the aboveground

biomass of Chinese fir at different developmental stages facilitates

more precise calculations of the forest’s carbon sequestration

capacity but also provides scientific evidence for forest

management and ecological restoration. Analyzing the biomass

structure of various branches of Chinese fir at different growth

stages allows for a deeper understanding of the role of aboveground

biomass in revealing the mechanisms by which plants adapt to

environmental changes (Peng et al., 2017; Sun et al., 2022).

Therefore, in-depth research into the biomass allocation and

growth patterns of Chinese fir not only enhances the forest’s

carbon storage capacity but also promotes the development of

sustainable forestry, supporting the achievement of both

ecological and economic benefits.

Forest biomass can be divided into aboveground and

belowground biomass, with the aboveground portion further

subdivided into four components: trunk, bark, branches, and

leaves. Previous studies have often modeled these components

independently to achieve the required precision (Jingyang et al.,

2016; Lun et al., 2018). However, in forest biomass estimation, data

are frequently subject to various errors, leading to discrepancies

where the sum of the aboveground biomass components does not

equal the total aboveground biomass. If traditional models fail to

address these errors adequately, the resulting estimates may be biased,

and their statistical power may diminish. In contrast, systems of

simultaneous equations can effectively utilize the information within

the data, optimizing statistical efficiency to address this issue. To

ensure that the predicted sum of biomass components equals the total

aboveground biomass (Wang et al., 2017) and to explore the growth

conditions of Chinese fir forests at different developmental stages, this

study employs nonlinear models, dummy variables, and systems of

simultaneous equations. These models link the total aboveground

biomass of Chinese fir and its components (including bark, stem,

branches, and leaves) with predictive factors derived from LiDAR

point cloud data, such as LiDAR tree height and LiDAR crown

diameter. For each component, an equation is established, and these

equations are combined into a system of simultaneous equations.

This approach ensures the integration and consistency of all biomass

components, providing a method for a more accurate and

comprehensive assessment of forest biomass (Parresol, 1999).

This study focuses on utilizing UAV LiDAR data to obtain high-

precisionmeasured data and ground survey data of Chinese fir forests

in Guangdong and establishes a systematic and robust modeling

system that includes nonlinear models, dummy variable models, and

systems of simultaneous equations. The aim is to accurately estimate

the aboveground biomass of Chinese fir at different growth stages

(including stemwood, bark, branches, and leaves), thereby improving

the accuracy of forest biomass estimation and ensuring the structural

consistency of biomass components. Unlike traditional biomass

estimation methods that rely on destructive sampling and empirical

models, this study leverages cutting-edge UAV LiDAR technology to

enhance efficiency, accuracy, and scalability in biomass assessment.

By integrating advanced modeling techniques with remote sensing

data, our research not only provides a scientific basis for precise forest

carbon estimation but also supports large-scale forest monitoring and
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sustainable forest management. The findings of this study are

expected to contribute to climate change mitigation efforts by

improving the accuracy of carbon stock assessments and providing

essential data for carbon trading policies. The primary objectives of

this study are: 1) to accurately estimate the biomass of individual tree

components in Chinese fir forests in Guangdong using UAV LiDAR

data; 2) to construct biomass models for Chinese fir at different

growth stages and explore the biomass allocation characteristics

across different growth cycles; 3) to ensure the consistency between

the biomass of different components by constructing a compatibility

model, providing a reliable basis for forest carbon assessment and

sustainable management.
2 Materials and methods

2.1 Methodological framework

Figure 1 presents the flowchart of the methodology used in this

study. We developed a compatibility biomass model for the

aboveground branches of Chinese Fir (Cunninghamia lanceolata)

using LiDAR measurement data from 133 plantation sample plots

in Guangdong Province, totaling 20,836 trees. First, we used

LiDAR-derived tree height and crown width as variables to

establish a base model for the aboveground branch biomass and

compared four basic growth functions to identify the optimal base

model. Next, five age groups were introduced as dummy variables.

Finally, to address the incompatibility between the biomass of

individual components and total biomass in independent models,

we applied the SUR method to fit the compatibility biomass model.
2.2 Study area overview and sample plot
distribution

Data for this study were collected from 133 sample plots located

in Lechang City, Yingde City, Heping County, Lianshan County,

Longshan County, Yunan County, and Shixing County in

Guangdong Province, China. To ensure spatial representativeness

and reliability of these sample plots, we considered factors such as

forest distribution, age groups, and accessibility during the plot

selection process. Specifically, we collected data covering five

distinct age groups, with each group sampled in multiple counties

to encompass the entire growth cycle. For example, 29 sample plots

were assigned to the youngest age group (1–10 years) with 7,481

trees, while the oldest age group (>36 years) contained 24 sample

plots and 1,885 trees. Guangdong Province is situated in the

southernmost part of mainland China, with geographical

coordinates ranging from 109°45’ to 117°20’ east and from 20°09’

to 25°31’ north. As of 2023, the province has a forested area of

approximately 10.85 million hectares, accounting for 57.1% of the

total land area, with forest coverage reaching about 9.6 million

hectares, which corresponds to a forest coverage rate of 53.9%

(Guangdong Provincial People’s Government Portal Website, n.d).

This makes it one of the key ecological protection zones in southern
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China. The province’s topography is mainly composed of

mountains, hills, plains, and water bodies, with a general trend of

higher elevations in the north and lower in the south. Guangdong is

characterized by a subtropical monsoon climate, with distinct

seasonal variations: warm and humid in spring, hot and rainy in

summer, mild and less rainy in autumn, and cool and dry in winter.
Frontiers in Plant Science 04
There is also significant regional climatic diversity within the

province. Precipitation in the region exhibits marked monsoonal

characteristics, with abundant rainfall in the summer due to the

influence of the southeast monsoon, and dry, low-rainfall

conditions in winter under the control of cold, dry northwesterly

winds (Figure 2).
FIGURE 1

Framework.
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2.3 Data collection and pre-processing

2.3.1 UAV LiDAR data
The UAV LiDAR data were collected in March 2024 using a

HuaCe BB4 UAV equipped with an AS-1300HL LiDAR system

(Figure 3). The scanning operation utilized a Rigel VUX-1LR

scanner, which operates at a wavelength of 1500 nm, with a laser

pulse duration of 3.5 ns and a divergence angle of 0.5 m rad. The

LiDAR’s pulse repetition frequency was set to 50 kHz, with a

maximum scanning angle of 30° and a scanning frequency of

49 Hz. A crisscross flight path was employed to ensure a lateral

overlap of 50% in the point cloud data. The flight altitude was
Frontiers in Plant Science 05
maintained at 200 m, with an average flight speed of 10 m per

second, resulting in an average point cloud density of 110 points per

square meter over the sample plots.

The raw UAV LiDAR data were first visualized and interpreted

using Corepore 2.0 software, followed by further interpretation

using Lidar360 software. The interpreted LiDAR point clouds were

then processed using the distance-based clustering algorithm to

extract the radar structural features of the trees (Li et al., 2012). The

spacing threshold is a parameter used in the automatic detection of

individual trees to define the minimum acceptable distance between

two trees. When tree canopies are very close or partially overlap,

setting an appropriate spacing threshold helps to distinguish
FIGURE 2

Sample point distribution map. (The locations of the sample plots are marked with red dots).
FIGURE 3

UAV Lidar system.
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neighboring trees, preventing them from being mistakenly

identified as a single tree. The minimum spacing rule is applied

during individual tree segmentation in areas with high tree density,

ensuring that each tree is independently identified. This is typically

achieved by establishing a “buffer zone” around the detection point

of each tree, within which no new trees are recognized (as illustrated

in Figure 4). This method enabled the segmentation of individual

trees within the sample plots and the calculation of key parameters

such as tree height, crown width, and diameter at breast height

(DBH), which are critical for estimating the biomass of individual

tree components.

2.3.2 Ground survey data
The field survey data for Chinese fir trees were collected

simultaneously with the UAV LiDAR data in March 2024

(Table 1). We conducted ground data surveys across 133 sample

plots, each measuring 30 m × 30 m. The data were cleaned by

removing deadfall, dead branches, undergrowth, litter, missing or

incorrect measurements, and duplicate entries, resulting in a total of

20,836 Chinese fir (Cunninghamia lanceolata) trees. The survey

information included species identification, DBH, tree height,

height to the first branch, crown width, and growth condition.

The data collection and processing strictly followed standardized

field protocols to ensure accuracy as much as possible. However,

given the complexity offield measurements and inherent limitations

of the methods used, some natural measurement uncertainties may

exist, which might be slightly amplified when handling

large datasets.
2.3.3 Tree branch biomass data
To analyze the differences in aboveground biomass across

different developmental stages of Chinese fir, the sampled trees

were first classified into five stages: young forest, middle-aged forest,

near-mature forest, mature forest, and over-mature forest, based on

ground survey data. Tree height, diameter at breast height (DBH),

and other fundamental data were collected and recorded using

consistent measurement methods. After classification, the biomass
Frontiers in Plant Science 06
of stems, bark, branches, and leaves was calculated using the

biomass equations specified in the Chinese National Standard

“Biomass Models and Carbon Content Parameters for Major Tree

Species” (GB/T 43648-2024). The total-tree biomass was then

obtained by summing the biomass of each component, as shown

in Table 2. Consequently, data for stem, bark, branches, leaves, and

total aboveground biomass were obtained for 20,836 Chinese fir

trees within the study area. These biomass data were subsequently

used to model the relationship between the radar parameters

derived from processed LiDAR data and the ground survey

biomass measurements. Figure 5 shows the variation trends of

biomass components across different age groups, facilitating a direct

comparison of growth characteristics at various developmental

stages (Equations 1, 2).

MA = a0D
a 1Ha 2 (1)

M1 =
1

1+g1+g2+g3
�MA

M2 =
g1

1+g1+g2+g3
�MA

M3 =
g2

1+g1+g2+g3
�MA

M4 =
g3

1+g1+g2+g3
�MA

8>>>>>><>>>>>>:
(2)

Where MA represents the estimated value of aboveground

biomass; a0, a1, a2 are the model parameters; is the diameter at

breast height (DBH); H is the tree height; M1, M2, M3, M4 represent

the estimated biomass values for stem wood, bark, branches, and

leaves, respectively; g1, g2, g3 represent the ratios of the biomass of

bark, branches, and leaves to the biomass of stem wood, respectively.
2.4 Parametric regression model

In terms of the structure of the individual tree biomass model,

the model’s structure forms the basis for model construction (Zeng

and Tang, 2010a; Fu et al., 2018). Using the complete growth cycle

data of individual Chinese fir trees in Guangdong, this study

considered four biologically meaningful theoretical tree growth
FIGURE 4

Radar-based individual tree segmentation processing.
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models as the base models: Logistic model, Linear model,

Exponential model, and Power model (Table 3), to fit the data.

The dataset was divided into training and validation sets in a 7:3

ratio, with 70% of the data used for modeling and 30% for

validation. Stepwise regression was employed to select LIDAR

parameter variables, and VIF collinearity tests were conducted,

excluding LIDAR feature variables with VIF > 5. LIDAR tree height

(LH) and LIDAR crown width (LCD) were selected as independent

variables in the model to fit the biomass components.
Frontiers in Plant Science 07
2.5 Constructing dummy variable model

Dummy Variables are important for handling categorical

variables. Dummy variables convert categorical variables into

binary variables, allowing them to be incorporated into regression

models for analysis. By introducing the above-mentioned optimal

base parameter model into dummy variables, we can better

understand the impact of different developmental stages of

Chinese fir on biomass, thereby analyzing the effect of different
TABLE 1 Field-measured biomass statistics of Chinese-fir sample trees.

Training sample Test sample

AGE Branch Max Min Average
Standard
deviation

Max Min Average
Standard
deviation

AG1

Bark 13.1381 0.1096 3.3632 2.1627 13.6484 0.1078 3.3480 2.1404

Trunk 82.1074 0.4052 17.8427 12.5648 82.2535 0.3908 17.7663 12.3915

Branch 24.0875 0.1859 5.4190 3.5186 20.7011 0.1999 5.3753 3.5153

Leaves 12.6573 0.2178 3.6598 1.8578 11.6341 0.3181 3.6286 1.8696

Above
ground biomass

121.232 1.032 30.285 19.8221 126.284 1.0660 30.118 19.63353

AG2

Bark 27.7597 0.1905 4.2946 2.6693 18.4729 0.1616 4.2767 2.7001

Trunk 114.5734 0.2389 23.7724 16.2536 117.290 0.664 23.706 16.5119

Branch 27.7597 0.1905 6.3721 4.0636 26.7768 0.1962 6.3189 4.0678

Leaves 13.1418 0.3621 3.9614 1.9822 12.3967 0.2959 3.9307 1.9809

Above
ground biomass

167.7102 0.9027 38.4005 24.5177 172.002 1.3180 38.2320 24.7832

AG3

Bark 18.203 0.2100 5.6330 3.1345 17.3344 0.2384 5.6755 3.2327

Trunk 119.9051 0.8125 5.6330 19.4172 119.5493 32.4140 32.4140 20.2089

Branch 30.9941 0.3836 8.1419 4.7029 28.8945 0.3809 8.1836 4.7461

Leaves 13.8340 0.5250 4.6920 2.1299 13.3614 0.5477 4.7083 2.1188

Above
ground biomass

172.8820 1.9910 50.5760 28.9169 170.803 2.126 50.9810 29.8144

AG4

Bark 30.2370 0.3516 9.6597 5.0867 29.1160 0.5170 9.6740 5.1307

Trunk 202.511 1.415 58.025 33.8275 202.1930 2.2330 9.6740 34.2114

Branch 43.9100 0.6700 13.9670 7.3899 41.6285 0.5713 13.9616 7.4742

Leaves 20.7530 0.8990 6.9680 2.8834 17.8720 0.6087 6.9545 2.9362

Above
ground biomass

288.847 3.3350 88.6200 48.1882 276.6640 4.1920 88.7440 48.6847

AG5

Bark 28.2904 0.3132 8.9868 5.1823 32.9320 0.2010 8.9860 5.1799

Trunk 196.453 1.1780 54.831 34.1049 219.7082 0.7777 53.8313 34.1237

Branch 41.3550 0.5135 6.4952 7.3607 47.2662 0.3596 12.9217 7.4495

Leaves 16.7751 0.7119 6.4952 2.8506 17.1669 0.4503 6.5330 2.9408

Above
ground biomass

279.8830 2.6970 82.1660 48.7637 316.848 1.891 82.272 48.8275
AG1, young forests, with stand ages ranging from 1 to 10 years; AG2, middle-aged forests, aged 11 to 20 years; AG3, near-mature forests, aged 21 to 25 years; AG4, mature forests, aged 26 to 35
years; AG5, over-mature forests, aged 36 years and above.
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age groups on total biomass. When processing the data, we

converted the categorical variable “Age Group (AG)” into dummy

variables. we introduced five age groups (AG) as categorical dummy

variables: young stand (1–10 years), middle-aged stand (11–20

years), near-mature stand (21–25 years), mature stand (26–35

years), and over-mature stand (>36 years). The categorical

variable “Age Group 1-5 (AG1-5)” represents five categories:

young forest, middle-aged forest, near-mature forest, mature

forest, and over-mature forest.

When using the age group as a dummy variable, it is necessary

to convert the age group variable into a quantitative variable,

usually taking the value of 0 or 1 in regression analysis. When

there are n categorical attributes for the independent variable, one

category is typically set as a reference, so the number of dummy

variables is n-1. The formula is as follows (Equations 3, 4):

AGi =
1    When for age group i

0    If not

(
(3)

Y = (ob0i � Si) � (LHb)� (LCDc) (4)

where Si represents the dummy variables reflecting different age

groups (i= 1, 2,…, 5); boi   represents the parameters for different
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forest types; LH represents the Lidar tree height; LCD represents the

LiDAR crown width.
2.6 Compatibility models

In forestry research, accurately estimating the biomass of

individual tree components is crucial, especially when assessing

biomass distribution and ecological functions within forest

ecosystems. When both independent and dependent variables

contain errors, traditional modeling methods are no longer

suitable for model fitting (Wang et al., 2018b). To ensure that the

predicted value of individual tree biomass equals the sum of the

predicted values of its components, we must consider the additivity

or compatibility among the component biomass models (Affleck

and Diéguez-Aranda, 2016). Ensuring that the sum of the

components is compatible with the total is of great importance

for constructing biomass model systems. Additionally, additive

models can account for the intrinsic relationships between

components and the total, making it necessary to establish a

system of simultaneous equations to achieve model compatibility.

In this study, we employed the seemingly unrelated regression

(SUR) model to independently model the biomass components of
TABLE 2 Summary of UAV-LiDAR-derived tree metrics.

LiDAR data

Training sample Test sample

Max Min Average
Standard
deviation

Max Min Average
Standard
deviation

LiDAR tree height 31.6296 2.9455 13.1114 4.0801 28.771 2.7577 13.1416 4.0674

LiDAR crown diameter 16.474 0.13624 2.3081 1.4899 12.046 0.1612 2.3401 1.5169
FIGURE 5

Aboveground biomass distribution across five growth stages of Chinese fir.
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aboveground biomass for Chinese fir and to jointly estimate the

model parameters. This approach ensures that the stem, bark,

branches, and leaves of individual trees in Chinese fir forests

adhere to the principle of compatibility, thereby resolving issues

of model incompatibility (Giri et al., 2019). This method not only

ensures compatibility among the biomass components but also

yields more optimized parameter estimates, enhancing the stability

of the model (Fu et al., 2014) (Equations 5).

Mds = Msg +Msp +Msz +Msy

Msg = (a1 � AG1 + a2 � AG2 + a3 � AG3 + a4 � AG4 + a5 � AG5)� (LHe1 )� (LCDf1 )

Msp = (b1 � AG1 + b2 � AG2 + b3 � AG3 + b4 � AG4 + b5 � AG5)� (LHe2 )� (LCDf2 )

Msz = (c1 � AG1 + c2 � AG2 + c3 � AG3 + c4 � AG4 + c5 � AG5)� (LHe3 )� (LCDf3 )

Msy = (d1 � AG1 + d2 � AG2 + d3 � AG3 + d4 � AG4 + d5 � AG5)� (LHe4 )� (LCDf4 )

8>>>>>>>><>>>>>>>>:
(5)

where AG1-5 represents the different age group categories; a, b,
c, d, e, and f are the model parameters; LH represents the Lidar tree

height; LCD represents LiDAR crown width. Msg represents the

Measured trunk biomass; Msp represents the Measured bark

biomass; Msz represents the Measured branch biomass; Msy
represents the Measured leaf biomass; Mds represents the

Measured total aboveground biomass.
2.7 Model evaluation metrics

The fitting results were evaluated using four metrics: the

coefficient of determination (R²), Root Mean Squared Error

(RMSE), Total Relative Error (TRE), and Akaike Information

Criterion (AIC). A larger R² indicates a higher fitting accuracy of

the model, a smaller RMSE suggests higher precision in the model’s

predictions, a smaller TRE indicates better predictive performance,

and a smaller AIC represents a better model fit. The expressions are

as follows (Equations 6–9):

R2 = 1 −o
n

i=1
(yi � byi)2=on

i=1
(yi � yi)

2 (6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi � byi)2=(n − 1)

s
(7)

TRE = o yi � byij j
oyi

(8)
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AIC = 2k − 2 ln (L) (9)

where yi is the observed value of the dependent variable; ŷi is the

predicted value of the dependent variable by the model; yi is the

mean of the observed values; n is the number of observations; k is

the number of parameters in the model. L is the maximum

likelihood of the model.

3 Results and analysis

3.1 Optimal model selection

Based on the goodness-of-fit plot results of the 4 basic models

(Figure 6), the Power model was determined to be the optimal

model through comprehensive consideration of AIC, R², RMSE, and

TRE. Since the Logistic model and the Power Function model had

similar validation parameters, we chose the Power Function model

as the optimal model due to its fewer parameters.

The Power Function Model exhibited the highest R² values,

particularly for stem and bark biomass, effectively capturing

allometric growth relationships but lacking adaptability to

different growth stages. In terms of the fitting performance of the

aboveground biomass component models, the R² values for all

components except leaves and branches were above 0.7, with the

fitting accuracy order being stem > bark > branches >

leaves (Table 4).

Table 4 includes standard errors (SE) for key parameters. Lower

SE values typically indicate more stable parameter estimates,

whereas higher SE values suggest potential variability or

limitations in data coverage for those biomass components. These

SE values help illustrate how reliably each model parameter can be

estimated from the available data, thereby offering insight into the

overall robustness of each model’s predictions (Equations 10–14).

Msg = 0:1312LH
2:0123LCD0:1932

(10)

Msp = 0:0636LH
1:8773LCD0:1752

(11)

Msz = 0:1302LH
1:4902LCD0:2832

(12)

Msy = 0:3362LH
0:9419LCD0:2484

(13)

Mds = 0:3551LH
1:8102LCD0:2109

(14)

where Msg represents the stem biomass; Msz represents the

branch biomass; Msy represents the leaf biomass; LH stands for

radar tree height; and LCD stands for radar crown width.
3.2 Dummy variables model

In this study, the qualitative factors of the five age groups—

young forest, middle-aged forest, near-mature forest, mature forest,
TABLE 3 Basic model formulae.

Kinds of models Forms of models

Logistic Function BM =
a

1 + bexp( − cLH − dLCD)

Linear Function BM = aLH + bLCD − c

Exponential Function BM = aexp( − bLH − cLCD)

Power Function BM = aLH
bLCDc
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TABLE 4 Detailed parameters and fitting accuracy of the 4 types of base models.

Model form Type
Model parameter Training sample Test sample

a b c d AIC BIC R2 RMSE TRE R2 RMSE TRE

Logistic Function

Bark 152.4712 74.0495 0.1849 0.1210 118516 118554. 0.6968 14.0616 14.7311 0.7017 13.8441 14.0853

SE 3.0908 1.6807 0.0025 0.0036

Trunk 23.0897 51.4099 0.1729 0.1297 64684 64721 0.6938 2.2213 12.2229 0.6981 2.1869 12.2229

SE 0.4412 1.0812 0.0024 0.0037

Branch 31.6152 37.0484 0.1477 0.1911 78855 78893 0.6172 3.6106 15.9090 0.6209 3.5423 15.0717

SE 0.6479 0.8338 0.0024 0.0048

Leaves 12.0925 13.1769 0.1164 0.2228 57095 57133 0.5346 1.7125 12.1670 0.5355 1.6915 11.7104

SE 0.2203 0.2831 0.0025 0.0062

Above
ground
biomass 222.2174 54.6878 0.1699 0.1358 130137 130175 0.6862 20.9428 13.6838 0.6911 20.5834 13.0369

SE 4.5191 1.1468 0.0023 0.0037

Linear Function
Bark 4.4580 3.4427 -36.5957 119805 119835 0.6687 14.6976 16.3161 0.6751 14.4483 15.5760

SE 0.0326 0.0891 0.4069

(Continued)
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FIGURE 6

Goodness-of-fit plots of the base models.(The x-axis represents the actual values, and the y-axis represents the predicted values. The R² is the
coefficient of determination, RMSE is Root Mean Squared Error, and TRE is Total Relative Error).
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and over-mature forest—were converted into quantitative factors

using the method of dummy variables. These were then introduced

into the optimal models for the biomass components of Chinese fir,

including stem, bark, branches, and leaves. By analyzing Chinese fir

at different developmental stages, we can better understand the

impact of these stages on biomass.
Frontiers in Plant Science 11
When comparing the dummy variable model with the

previously determined optimal base models, we found that the

RMSE of the model decreased by an average of 3%. Among the

components, the reduction was most significant for bark, which

decreased by 4.2%, followed by branches with a reduction of 3.1%.

The reductions for stem and leaves were the smallest, both at 2.4%.
TABLE 4 Continued

Model form Type
Model parameter Training sample Test sample

a b c d AIC BIC R2 RMSE TRE R2 RMSE TRE

Trunk 0.6944 0.5907 -5.2291 65453 65483 0.6772 2.2808 13.5626 0.6728 2.2417 12.9435

SE 0.0051 0.0138 0.0633

Branch 0.8556 1.2093 -6.2027 79155 79185 0.6092 3.6481 16.2959 0.6145 3.5723 15.3925

SE 0.0081 0.0221 0.1011

Leaves 0.3155 0.5897 -0.9447 57008 57038 0.5373 1.7075 12.0880 0.5392 1.6846 11.6163

SE 0.0038 0.0104 0.0476

Above
ground
biomass

6.3235 5.8324 -48.9722 131043 131073 0.6660 21.6046 14.6914 0.6723 21.2003 13.9661

SE 0.0479 0.1311 0.5986

Exponential Function

Bark 5.2187 -0.1140 -0.0580 119897 119927 0.6666 14.7439 16.4360 0.6772 14.4000 15.4322

SE 0.0672 0.0007 0.0016

Trunk 1.0704 -0.1033 -0.5915 66102 66133 0.6624 2.3322 14.2688 0.6715 2.2812 13.4594

SE 0.0126 0.0007 0.0016

Branch 1.8708 -0.0884 -0.0819 80057 80087 0.5843 3.7627 17.5174 0.5933 3.6692 16.4382

SE 0.0241 0.0008 0.0017

Leaves 1.8960 -0.1027 -0.0517 80235 80266 0.6736 3.7858 12.9121 0.6814 3.7180 12.2863

SE 0.0178 0.0007 0.0016

Above
ground
biomass

9.4116 -0.1045 -0.0634 131449 131479 0.6566 21.9076 15.1694 0.6668 21.3776 14.2346

SE 0.1147 0.0008 0.0016

Power Function

Bark 0.1312 2.0123 0.1932 118537 118567 0.6963 14.0724 14.7571 0.7133 13.8063 13.9398

SE 0.0051 0.0136 0.0051

Trunk 0.0636 1.8773 0.1752 83695 83726 0.6994 2.2056 13.0076 0.7052 2.2386 12.3850

SE 0.0015 0.0124 0.0047

Branch 0.1302 1.4902 0.2832 78998 79028 0.6134 3.6286 16.0935 0.6175 3.5583 15.2033

SE 0.0003 0.0191 0.0066

Leaves 0.3362 0.9419 0.2484 57404 57434 0.5246 1.7308 12.4618 0.5234 1.7133 12.0541

SE 0.0102 0.0112 0.0049

Above
ground
biomass

0.3551 1.8102 0.2109 130208 130238 0.6846 20.9950 13.7616 0.6909 20.5870 12.9989

SE 0.0129 0.0129 0.0049
front
a,b,c,d, the model parameters; AIC, Akaike Information Criterion; R2, Coeffcient Of Determination; RMSE, Root Mean Square Error; TRE, Total Relative Error; SE, Standard Error.
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The R² increased by an average of 2.6%, with the most notable

improvements in the precision of leaves and branches, which

increased by 3% and 2.8%, respectively. The remaining

components showed an average improvement in precision of 2%

(Table 5). This highlights the importance of considering growth

stages in biomass estimation, making the dummy variable model

more adaptable to complex mixed forests with coexisting age

groups. This indicates that incorporating dummy variables into

the base models allows for a better fit of the data and can effectively

model the biomass components of individual trees across different

age groups.

In addition, Table 5 provides the SE of key parameters for each

age group, illustrating potential uncertainties in parameter

estimates. Generally, smaller SE values indicate more stable

parameter estimates, whereas larger SE values may suggest data

limitations or higher variability in certain developmental stages.

Overall, incorporating dummy variables into the base models yields

a better data fit and can effectively capture the biomass components

of individual trees across different age groups.
3.3 Compatible biomass modeling

The compatibility of the aboveground biomass model is

achieved by jointly modeling the biomass components of the tree,

including stem, bark, branches, and leaves, and simultaneously

solving the model parameters. This approach addresses the

inconsistency between the component biomass and total biomass

that can occur with independent models. The SUR (Seemingly

Unrelated Regression) method was used to fit the additive biomass

model, and the results showed that the model had a good

fit (Figure 7).

As shown in Table 6, compared to the dummy variable model,

the accuracy of the R² values decreased by an average of 2.5%. The
Frontiers in Plant Science 12
Root Mean Squared Error RMSE for the biomass components—

stem, bark, branches, and leaves—and the total aboveground

biomass are 13.6057, 2.2191, 3.4749, 1.7175, and 20.9835,

respectively. Compared to the dummy variable model, the RMSE

increased by 2.6%. This reduction in predictive accuracy may be due

to the constraints imposed by the simultaneous equation system to

maintain consistency among biomass components. Minimizing

residuals for one component might introduce slight errors in

others. Additionally, the joint estimation of multiple equations

may amplify estimation variance due to correlations among error

terms, further affecting model performance.
4 Discussion

4.1 Main findings and patterns

Chinese fir (Cunninghamia lanceolata), as one of the main tree

species in Guangdong and the entire southern region of China,

plays a significant role in ecosystem services, enhancing forest

carbon sequestration, climate regulation, and economic benefits

(Zeng et al., 2017). With the increasing pressures of climate change

and ecological environmental stress, the technological methods for

acquiring and analyzing forestry data have become increasingly

important. The timely and effective acquisition of biomass, carbon

storage, and other forest survey data has become a focal point

in forest science research (He et al., 2013; Chen et al., 2023). In this

study, we utilized UAV LiDAR technology to collect data on

20,836 Chinese fir trees across 133 sample plots in Guangdong

Province and calculated the biomass for each tree component.

Following the initial selection of the optimal base model, we

further introduced age groups as dummy variables to model

the different age stages of the Chinese fir. Finally, we applied

the Seemingly Unrelated Regression (SUR) model to ensure
TABLE 5 Dummy variable parameters and fitting accuracy.

Model
form

Type
Model parameter Training sample Test sample

a1 a2 a3 a4 a5 b c R2 RMSE TRE R2 RMSE TRE

Power
function

Bark 0.2221 0.2034 0.1929 0.2582 0.2524 1.8152 0.1936 0.7193 13.5287 13.4880 0.7198 13.4717 13.0373

SE 0.0094 0.0097 0.0093 0.0129 0.0123 0.0178 0.0049

Trunk 0.0682 0.0627 0.0598 0.0781 0.0763 1.6104 0.1939 0.7147 2.1441 11.7994 0.7140 2.1287 11.4484

SE 0.0027 0.0026 0.0027 0.0036 0.0035 0.0164 0.0046

Branch 0.2290 0.2088 0.2024 0.2756 0.2635 1.2731 0.2870 0.6434 3.4849 14.6613 0.6403 3.4507 14.1326

SE 0.0099 0.0098 0.0101 0.0141 0.0132 0.0181 0.0055

Leaves 0.4902 0.4537 0.4476 0.5695 0.5447 0.7961 0.2508 0.5533 1.6777 11.6213 0.5461 1.6720 11.3978

SE 0.0176 0.0175 0.0187 0.0246 0.0231 0.0151 0.0048

Above
ground biomass

0.5919 0.5405 0.5156 0.6873 0.6685 1.6189 0.2122 0.7095 20.1484 12.5377 0.7091 19.9734 12.1172

SE 0.0241 0.0238 0.0241 0.0329 0.0314 0.0169 0.0048
front
a1, a2, a3, a4, a5, b ,c the model parameters; R2, Coeffcient Of Determination; RMSE, Root Mean Square Error; TRE, Total Relative Error; SE, Standard Error.
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the compatibility between radar tree height (LH) and radar crown

width (LCD) with the biomass of individual tree components, while

also maintaining the additivity of the biomass components (Chen

et al., 2023).
4.2 Model accuracy and performance

4.2.1 Applicability and limitations of base models
Establishing universal or regional relative growth equations for

forest biomass has long been a goal in forestry and ecology (Brown

and Lugo, 1984; Fang et al., 2001; Jenkins et al., 2003; Lehtonen

et al., 2004; Guo et al., 2010). The combination of multiple models

and the application of statistical models can better predict forest
Frontiers in Plant Science 13
biomass; however, due to factors such as habitat, climate, and

geography, even the same tree species may exhibit significant

biomass differences in different regions (Zeng et al., 2011;

Forrester et al., 2017). Moreover, the characteristics of biomass

accumulation and distribution of Chinese fir vary significantly

across different developmental stages, indicating that simple base

models may not accurately reflect the dynamic changes in Chinese

fir biomass, potentially leading to errors and uncertainties in model

equations (Deng D, et al., 2023). Previous studies (Chen et al., 2016;

Zhang D. et al., 2019) mainly relied on traditional ground

measurement methods, which were often time-consuming, labor-

intensive, and limited in data volume. In contrast, this study

innovatively adopted UAV LiDAR technology, greatly improving

the efficiency and quality of data collection.
TABLE 6 SUR model form and fitting accuracy.

Forms of sub-modeling
Model fitting accuracy

R2 RMSE

Msg = (0:2124AG1 + 0:1964AG2 + 0:1904AG3 + 0:2517AG4 + 0:2438AG5)� (LH1:8021)� (LCD0:2035) 0.7042 13.6057

Msp = (0:1098AG1 + 0:1016AG2 + 0:0991AG3 + 0:1289AG4 + 0:1242AG5)� (LH1:4594)� (LCD0:2122) 0.6927 2.2191

Msz = (0:2901AG1 + 0:2662AG2 + 0:2634AG3 + 0:3614AG4 + 0:3392AG5)� (LH1:1792)� (LCD0:2989) 0.6345 3.4749

Msy = (0:3401AG1 + 0:3522AG2 + 0:3464AG3 + 0:4599AG4 + 0:4372AG5)� (LH0:9358)� (LCD0:2524) 0.5316 1.7175

Mds = Msg +Msp +Msz +Msy 0.6835 20.9835
R2, Coeffcient Of Determination; RMSE, Root Mean Square Error.
FIGURE 7

Goodness-of-fit plots of the SUR model. (The x-axis represents the actual values, and the y-axis represents the predicted values. The R² is the
coefficient of determination, RMSE is Root Mean Squared Error).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1520666
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1520666
4.2.2 Importance of differentiating growth stages
During the development of biomass models for Chinese fir

plantations, previous studies found that incorporating age groups as

dummy variables significantly improved model accuracy compared

to traditional methods (e.g., Guo et al., 2016; Shen et al., 2016),

consistent with our findings. However, these studies often relied on

limited ground measurements, restricting coverage of the full

growth cycle and spatial applicability.

This study identified significant stage-specific differences in the

biomass allocation of Chinese fir across five growth stages. During the

young and middle-aged stages, trees prioritize the development of

photosynthetic organs to enhance competitiveness and rapidly

accumulate carbon. At this stage, the biomass proportion of leaves

and branches is higher, facilitating rapid canopy expansion and

improving photosynthetic efficiency, which strengthens

competitiveness under resource limitations (Canham et al., 1996).

The higher biomass of leaves and branches also increases canopy

coverage and enhances species diversity (Eriksson et al., 2006). As trees

enter the mature and over-mature stages, biomass shifts toward the

stem and bark (Gerrish, 1990), particularly in the mature stage, where

stem biomass increases significantly, indicating that resources are

primarily used to enhance structural stability and long-term carbon

storage (Molina-Valero et al., 2021). Increased bark biomass improves

resistance to pests and environmental stress, enhancing survival rates

(Cernusak and Cheesman, 2015). Moreover, the substantial biomass in

the stem strengthens mechanical support and boosts the forest’s carbon

sequestration capacity (Castaño-Santamarıá et al., 2013). Therefore,

forest management should focus on promoting leaf and branch growth

during the early stages to enhance growth vigor and ecological

adaptability, while in the later stages, efforts should shift toward

supporting stem and bark development to improve resilience and

long-term carbon storage (Wernick and Kauppi, 2022).

4.2.3 Advantages of the dummy variable model
with age groups

In contrast, our study innovatively utilized remote sensing data,

enabling comprehensive coverage of all growth stages and substantially

enhancing the model’s applicability and generalization across broader

spatial scales. Therefore, we introduced age groups as categorical

dummy variables based on the optimal base model to simulate and

model Chinese fir at different developmental stages. The study

demonstrated that the dummy variable model, when incorporating

age group indicators, outperformed the basemodel in statistical metrics

such as R², TRE, and RMSE, highlighting the limitations of base models

in establishing large-scale biomass models for Chinese fir (Jianfeng and

Jian, 2021). By introducing age groups as dummy variables into the

model, it more comprehensively reflects the biomass differences across

different developmental stages of Chinese fir, thereby enhancing the

model’s fit. Compared to the optimal base model, the dummy variable

model, after incorporating different developmental stages, showed an

average R² increase of 3.2%, indicating that developmental stages have a

significant impact on the accumulation and distribution of Chinese fir

biomass. Therefore, adding age groups as dummy variables can

improve the predictive accuracy of the biomass components, a

finding that is consistent with Shen et al. (2019) (Lv and Duan,
Frontiers in Plant Science 14
2024). Their research also showed that incorporating age groups as

dummy variables into the model significantly improved the model’s

fit, with the best predictive performance observed for stem biomass,

followed by branches and bark, while the predictive accuracy for leaf

biomass was the lowest (Chen et al., 2023). The conclusions drawn

from this study align with these findings, suggesting that the poor

predictive performance for leaf biomass may be due to the relatively

small proportion of leaves in the total aboveground biomass.

Even though the fitting results of the model should be kept within a

reasonable expected range to ensure its effectiveness and reliability are

not affected by bias (Zhang et al., 2013), in practice, the biomass of

individual tree components often exhibits significant variation. This

variation may stem from issues encountered during the data fitting

process. In this study, through the modeling analysis of the age groups

of 20,836 Chinese fir trees in Guangdong Province, we found that the

ranking of aboveground biomass was: stem > bark > branches > leaves.

The biomass of bark and leaves in young forests was relatively low,

which suggests that in practical applications, different model types

should be established according to age groups to improve the accuracy

of biomass estimation results. While the dummy variable model

effectively handles specific data and characteristics of different

components, relying solely on the dummy variable model to process

Chinese fir biomass data may still have limitations. This is because the

dummy variable model, when operating independently, may not fully

account for the intrinsic relationships and interactions among the

different components of aboveground biomass within individual trees

(Wang et al., 2008; Fu et al., 2012). Ignoring these interactions can lead

to biased or inconsistent prediction results, particularly when dealing

with larger datasets.

4.2.4 Compatibility and accuracy trade-off in the
SUR model

The Seemingly Unrelated Regression (SUR) model integrates these

independent models, ensuring that the mathematical relationships and

inherent correlations between total aboveground biomass and its

components are maintained, specifically the additive or compatible

relationship among the different components (Fu et al., 2014). In the

past, many reported biomass equations lacked additivity or

compatibility, with independent equations established for each

component. However, when scholars compared the fitting accuracy

of additive biomass models with non-additive biomass models, they

found that using non-additive methods to construct models could lead

to significant discrepancies between the sum of the biomass of

individual tree components and the total biomass of the tree. If these

models are applied in practice, they could result in errors (Parresol,

1999; Fu et al., 2016; Dong et al., 2018). The SUR model ensures

compatibility among biomass components, resolving summation

inconsistencies at the cost of a slight decrease in predictive accuracy

(R² decreased by 2.5%, RMSE increased by 2.6%). This decline may

result from the constraints imposed by the system of simultaneous

equations, which can introduce errors in other components when

minimizing the residuals for one component. Additionally, the joint

estimation of multiple equations in the SUR model may amplify

variance due to correlations between error terms, increasing

computational complexity and affecting model performance (Poudel
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and Temesgen, 2016; Nord-Larsen et al., 2017; Zhao et al., 2019).In

contrast, the dummy variable model may not fully utilize the potential

correlations between the equations (Zellner, 1962).
4.3 Limitations

Although the models developed in this study performed well

for estimating Chinese fir biomass in subtropical regions, their

performance may vary under different environmental conditions

or for other tree species. The models were established under

humid and stable subtropical climate conditions with abundant

rainfall; therefore, in drier regions, trees may grow more slowly

and allocate biomass differently among stems, branches, and

leaves, which could reduce model accuracy. Similarly, at higher

altitudes, factors such as wind exposure and shallow soil may

affect tree growth patterns, requiring adjustments to the model

parameters. Additionally, different tree species have distinct

growth strategies. For example, broadleaf trees typically allocate

more biomass to branches and leaves, while coniferous trees tend

to concentrate biomass in the stem (Zhang et al., 2020). Therefore,

if these models are applied to other tree species or different

regions, parameter adjustments may be necessary to reflect

local growth patterns better. Furthermore, due to limitations in

field survey time, manpower, and resources, the sampling sites

could not cover all target regions, which may affect the

representativeness and applicability of the models. Also, the

data used in this study were mainly collected from specific

geographic and climatic conditions, which may limit the

model’s generalizability to other environments or species. Future

research could enhance model applicability and predictive

accuracy by expanding the sampling coverage and incorporating

data from different environmental conditions and tree species.
5 Conclusions

This study employed both the dummy variable model and the

SUR model to develop aboveground biomass component models

for Chinese fir. Introducing the age-group dummy variable

increased the mean coefficient of determination (R²) from 0.69 to

0.71, an improvement of 2.6%, and reduced the total-biomass

RMSE by 3%. For branch and bark biomass, R² rose by 3.1% and

4.2%, while their RMSE values fell by 3.1% and 4.2%, respectively.

The SUR model ensured consistency between component and total

biomass, achieving an overall R² of 0.684; its RMSE was 2.6% higher

than that of the dummy-variable model but offered greater stability

in managing inter-component relationships. Moreover, the

integration of UAV LiDAR data with ground measurements

provided robust technical support for precise biomass estimation,

laying a solid foundation for long-term monitoring and sustainable

management of Chinese-fir ecosystems. Moreover, the integration

of UAV LiDAR technology with ground-based manual

measurement data provided robust technical support for the

precise estimation of Chinese fir biomass, establishing a solid
Frontiers in Plant Science 15
foundation for the long-term monitoring and sustainable

management of the Chinese fir ecosystem.
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