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Chinese fir (Cunninghamia lanceolata) is a key native tree species in southern
China. Accurate estimation of above-ground biomass and its distribution is
essential for the sustainable use of Chinese fir forests. UAV-based high-density
point clouds and high-resolution spectral data provide critical remote sensing for
detailed 3D tree structure analysis. This study aimed to explore the aboveground
biomass allocation characteristics across the different growth stages of Chinese
fir and to develop accurate biomass models. Measurements of 20,836 Chinese fir
trees were used for the purpose. Through the comparative analysis of four basic
models, the Power Function model was identified as the optimal one, particularly
excelling in fitting the accuracy for stem and bark biomass. To further enhance
the model's fitting performance, age groups were introduced into the dummy
model, categorizing the Chinese fir forests into the five distinct growth stages.
Results showed age groups used as dummy variables led to an average increase
in R? by 2.6%. The fitting accuracy for bark and branch biomass saw the most
significant improvements, with increases in R? by 4.2% and 3.1%. To address the
inconsistency between the sum of individual biomass components and total
biomass, we employed a seemingly unrelated regression (SUR) model. Even
though fitting accuracy for individual tree components decreased by an average
of 2.5%, from a practical perspective SUR model would be more suitable for
understanding the interrelationships between different components. These
findings offer robust support for accurately estimating the aboveground
biomass in Chinese fir forests across different growth stages.
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1 Introduction

Forest ecosystems are the pillars of terrestrial ecosystems (Field
and Raupach, 2012), occupying a critical role in the Earth’s
ecological system and playing a significant regulatory function
(Subati and Jia, 2021). As fundamental attributes of forest
ecosystems, estimation of forest biomass has become key issues in
forest research and forestry applications (Lieth and Whittaker,
2012). Accurate forest biomass models not only form the basis for
evaluating forest carbon sequestration capacity but also provide
critical scientific support for carbon trading mechanisms and
climate change policy development (Ma et al., 2024; Zhang J. et
al., 2019). However, current biomass estimation methods still face
various technical challenges, such as difficulties in field data
collection, inefficiency of traditional biomass estimation
techniques, significant measurement errors, and limited
generalizability of biomass models across different regions and
tree species (Weiskittel et al., 2015). These challenges can lead to
uncertainties in forest carbon stock estimates, subsequently
affecting the accuracy of ecological management decisions
(Holdaway et al., 2014). Therefore, developing more efficient and
accurate biomass estimation models and improving existing
technologies have become pressing priorities in forest carbon sink
research (Holdaway et al., 2014).Estimating aboveground biomass,
as a crucial component of forest ecosystems, holds immense
importance within forest science and forestry practices. This is
particularly significant for carbon cycle research, ecosystem service
evaluation, and sustainable forest management (He et al., 2013).
However, there is considerable uncertainty in estimating forest
carbon sink, which can be mitigated by precise estimation of
forest biomass (Fu et al., 2022). Therefore, accurately estimating
forest biomass is of paramount importance, which can be done
using direct and indirect methods. The former method is the most
accurate, but time-consuming, labor-intensive, and highly
destructive, whereas later method involves developing biomass
models (Wang et al., 2018a). Constructing biomass models, as the
primary approach for estimating forest biomass, represent an
effective and relatively accurate method of investigation. With the
advancement of mathematical modeling techniques, the methods
for developing tree branch biomass models have evolved from
simple least squares regression to more sophisticated and precise
modeling, including constructing compatible models that account
for measurement errors (Zeng and Tang, 2010b; Zhang et al., 2016).
The advanced modeling encompasses seemingly unrelated
regression models (SUR), linear or nonlinear joint estimation
models (Tang et al., 2000), dummy variable models (Zeng et al.,
2011), and mixed-eftects models (Fu et al., 2012, 2013, 2016). These
models, when applied to tree-scale data, better reflect the biomass
distribution across different parts of the tree, providing scientific
support for carbon storage and growth analysis at the individual
tree level.

When applied to tree-scale data, better reflects the biomass
distribution across different parts of the tree, providing scientific
support for carbon storage and growth analysis at the individual
tree level. Given the critical importance of accurate biomass
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estimation, the evolution from simple regression methods to
more complex and precise models underscore the need for
continual refinement in this area. As forest ecosystems continue
to play a vital role in global carbon cycles and ecosystem services,
the development and application of these sophisticated biomass
models are essential for advancing our understanding and
management of forest resources. However, traditional manual
survey techniques for obtaining individual tree biomass
parameters are time-consuming, labor-intensive, inefficient, and
lack timeliness, making them increasingly inadequate for the
precise monitoring of digitized forest resources under new
conditions (Wan et al., 2021). In contrast to conventional remote
sensing, Unmanned Aerial Vehicle Light Detection and Ranging
(UAV LiDAR) technology can penetrate forest canopies, capturing
three-dimensional structural information of forests by emitting
laser pulses and receiving reflected signals. This technology
provides complete data from the tree top to the base, which is
crucial for estimating tree volume and biomass (Wallace et al., 2012;
Ghanbari Parmehr and Amati, 2021). This high-precision remote
sensing technology captures detailed three-dimensional structures
of both the ground surface and vegetation (Dandois and Ellis, 2010),
acquiring critical details such as tree height, canopy density, and
terrain-key parameters for biomass estimation (Zhang D, et al,
2019). Consequently, UAV LiDAR technology is increasingly used
to accurately measure the biomass of individual trees and their
branches. This study explores the use of UAV LiDAR data to
construct an additive biomass model for Chinese fir forests across
the full growth cycle in Guangdong. The application of this
technology not only enhances the efficiency and accuracy of
forestry resource surveys, but also provides reliable foundational
data for forest carbon storage assessment and biodiversity
conservation, thereby laying a solid foundation for long-term
monitoring and sustainable management of forest ecosystems.
This approach can subsequently be extended to biomass
estimation across entire forest stands (Fang et al., 2015).

Chinese fir (Cunninghamia lanceolata) is recognized for its
high-quality timber and significant economic value in forest
management, making it one of the most important economic tree
species in subtropical regions. Moreover, Chinese fir plays an
indispensable role in forest ecosystems (Yu et al, 2010). Its
aboveground biomass constitutes a major component of forest
carbon storage, holding significant implications for global carbon
cycle research and climate change mitigation. The biomass of
Chinese fir not only affects the carbon storage capacity of forests
but is also closely linked to biodiversity and soil quality. Therefore,
studying the adaptability and biomass allocation strategies of
Chinese fir across different growth stages has become a focal
point in global forestry science research (Dandois and Ellis,
2010). There are notable differences in the biomass allocation
strategies of Chinese fir at various growth stages (Li et al., 2022).
As the growth stages advance, particularly during the young and
middle-aged phases, the growth rate of Chinese fir accelerates
significantly, with biomass increases primarily concentrated in the
stem and branch components. The biomass growth during this
stage is especially pronounced, laying a crucial foundation for
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subsequent carbon storage. Accurately assessing the aboveground
biomass of Chinese fir at different developmental stages facilitates
more precise calculations of the forest’s carbon sequestration
capacity but also provides scientific evidence for forest
management and ecological restoration. Analyzing the biomass
structure of various branches of Chinese fir at different growth
stages allows for a deeper understanding of the role of aboveground
biomass in revealing the mechanisms by which plants adapt to
environmental changes (Peng et al, 2017; Sun et al, 2022).
Therefore, in-depth research into the biomass allocation and
growth patterns of Chinese fir not only enhances the forest’s
carbon storage capacity but also promotes the development of
sustainable forestry, supporting the achievement of both
ecological and economic benefits.

Forest biomass can be divided into aboveground and
belowground biomass, with the aboveground portion further
subdivided into four components: trunk, bark, branches, and
leaves. Previous studies have often modeled these components
independently to achieve the required precision (Jingyang et al,
2016; Lun et al., 2018). However, in forest biomass estimation, data
are frequently subject to various errors, leading to discrepancies
where the sum of the aboveground biomass components does not
equal the total aboveground biomass. If traditional models fail to
address these errors adequately, the resulting estimates may be biased,
and their statistical power may diminish. In contrast, systems of
simultaneous equations can effectively utilize the information within
the data, optimizing statistical efficiency to address this issue. To
ensure that the predicted sum of biomass components equals the total
aboveground biomass (Wang et al., 2017) and to explore the growth
conditions of Chinese fir forests at different developmental stages, this
study employs nonlinear models, dummy variables, and systems of
simultaneous equations. These models link the total aboveground
biomass of Chinese fir and its components (including bark, stem,
branches, and leaves) with predictive factors derived from LiDAR
point cloud data, such as LiDAR tree height and LiDAR crown
diameter. For each component, an equation is established, and these
equations are combined into a system of simultaneous equations.
This approach ensures the integration and consistency of all biomass
components, providing a method for a more accurate and
comprehensive assessment of forest biomass (Parresol, 1999).

This study focuses on utilizing UAV LiDAR data to obtain high-
precision measured data and ground survey data of Chinese fir forests
in Guangdong and establishes a systematic and robust modeling
system that includes nonlinear models, dummy variable models, and
systems of simultaneous equations. The aim is to accurately estimate
the aboveground biomass of Chinese fir at different growth stages
(including stem wood, bark, branches, and leaves), thereby improving
the accuracy of forest biomass estimation and ensuring the structural
consistency of biomass components. Unlike traditional biomass
estimation methods that rely on destructive sampling and empirical
models, this study leverages cutting-edge UAV LiDAR technology to
enhance efficiency, accuracy, and scalability in biomass assessment.
By integrating advanced modeling techniques with remote sensing
data, our research not only provides a scientific basis for precise forest
carbon estimation but also supports large-scale forest monitoring and
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sustainable forest management. The findings of this study are
expected to contribute to climate change mitigation efforts by
improving the accuracy of carbon stock assessments and providing
essential data for carbon trading policies. The primary objectives of
this study are: 1) to accurately estimate the biomass of individual tree
components in Chinese fir forests in Guangdong using UAV LiDAR
data; 2) to construct biomass models for Chinese fir at different
growth stages and explore the biomass allocation characteristics
across different growth cycles; 3) to ensure the consistency between
the biomass of different components by constructing a compatibility
model, providing a reliable basis for forest carbon assessment and
sustainable management.

2 Materials and methods
2.1 Methodological framework

Figure 1 presents the flowchart of the methodology used in this
study. We developed a compatibility biomass model for the
aboveground branches of Chinese Fir (Cunninghamia lanceolata)
using LIDAR measurement data from 133 plantation sample plots
in Guangdong Province, totaling 20,836 trees. First, we used
LiDAR-derived tree height and crown width as variables to
establish a base model for the aboveground branch biomass and
compared four basic growth functions to identify the optimal base
model. Next, five age groups were introduced as dummy variables.
Finally, to address the incompatibility between the biomass of
individual components and total biomass in independent models,
we applied the SUR method to fit the compatibility biomass model.

2.2 Study area overview and sample plot
distribution

Data for this study were collected from 133 sample plots located
in Lechang City, Yingde City, Heping County, Lianshan County,
Longshan County, Yunan County, and Shixing County in
Guangdong Province, China. To ensure spatial representativeness
and reliability of these sample plots, we considered factors such as
forest distribution, age groups, and accessibility during the plot
selection process. Specifically, we collected data covering five
distinct age groups, with each group sampled in multiple counties
to encompass the entire growth cycle. For example, 29 sample plots
were assigned to the youngest age group (1-10 years) with 7,481
trees, while the oldest age group (>36 years) contained 24 sample
plots and 1,885 trees. Guangdong Province is situated in the
southernmost part of mainland China, with geographical
coordinates ranging from 109°45’ to 117°20” east and from 20°09’
to 25°31° north. As of 2023, the province has a forested area of
approximately 10.85 million hectares, accounting for 57.1% of the
total land area, with forest coverage reaching about 9.6 million
hectares, which corresponds to a forest coverage rate of 53.9%
(Guangdong Provincial People’s Government Portal Website, n.d).

This makes it one of the key ecological protection zones in southern
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The compatibility biomass model developed using UAV LiDAR data can effectively guide
the management and carbon estimation of Chinese Fir forests.

FIGURE 1
Framework.

China. The province’s topography is mainly composed of
mountains, hills, plains, and water bodies, with a general trend of
higher elevations in the north and lower in the south. Guangdong is
characterized by a subtropical monsoon climate, with distinct
seasonal variations: warm and humid in spring, hot and rainy in
summer, mild and less rainy in autumn, and cool and dry in winter.
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There is also significant regional climatic diversity within the
province. Precipitation in the region exhibits marked monsoonal
characteristics, with abundant rainfall in the summer due to the
influence of the southeast monsoon, and dry, low-rainfall
conditions in winter under the control of cold, dry northwesterly
winds (Figure 2).
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FIGURE 2
Sample point distribution map. (The locations of the sample plots are marked with red dots).

2.3 Data collection and pre-processing

2.3.1 UAV LiDAR data

The UAV LiDAR data were collected in March 2024 using a
HuaCe BB4 UAV equipped with an AS-1300HL LiDAR system
(Figure 3). The scanning operation utilized a Rigel VUX-1LR
scanner, which operates at a wavelength of 1500 nm, with a laser
pulse duration of 3.5 ns and a divergence angle of 0.5 m rad. The
LiDAR’s pulse repetition frequency was set to 50 kHz, with a
maximum scanning angle of 30° and a scanning frequency of
49 Hz. A crisscross flight path was employed to ensure a lateral
overlap of 50% in the point cloud data. The flight altitude was

FIGURE 3
UAV Lidar system.
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maintained at 200 m, with an average flight speed of 10 m per
second, resulting in an average point cloud density of 110 points per
square meter over the sample plots.

The raw UAV LiDAR data were first visualized and interpreted
using Corepore 2.0 software, followed by further interpretation
using Lidar360 software. The interpreted LIDAR point clouds were
then processed using the distance-based clustering algorithm to
extract the radar structural features of the trees (Li et al., 2012). The
spacing threshold is a parameter used in the automatic detection of
individual trees to define the minimum acceptable distance between
two trees. When tree canopies are very close or partially overlap,
setting an appropriate spacing threshold helps to distinguish
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neighboring trees, preventing them from being mistakenly
identified as a single tree. The minimum spacing rule is applied
during individual tree segmentation in areas with high tree density,
ensuring that each tree is independently identified. This is typically
achieved by establishing a “buffer zone” around the detection point
of each tree, within which no new trees are recognized (as illustrated
in Figure 4). This method enabled the segmentation of individual
trees within the sample plots and the calculation of key parameters
such as tree height, crown width, and diameter at breast height
(DBH), which are critical for estimating the biomass of individual
tree components.

2.3.2 Ground survey data

The field survey data for Chinese fir trees were collected
simultaneously with the UAV LiDAR data in March 2024
(Table 1). We conducted ground data surveys across 133 sample
plots, each measuring 30 m x 30 m. The data were cleaned by
removing deadfall, dead branches, undergrowth, litter, missing or
incorrect measurements, and duplicate entries, resulting in a total of
20,836 Chinese fir (Cunninghamia lanceolata) trees. The survey
information included species identification, DBH, tree height,
height to the first branch, crown width, and growth condition.
The data collection and processing strictly followed standardized
field protocols to ensure accuracy as much as possible. However,
given the complexity of field measurements and inherent limitations
of the methods used, some natural measurement uncertainties may
exist, which might be slightly amplified when handling
large datasets.

2.3.3 Tree branch biomass data

To analyze the differences in aboveground biomass across
different developmental stages of Chinese fir, the sampled trees
were first classified into five stages: young forest, middle-aged forest,
near-mature forest, mature forest, and over-mature forest, based on
ground survey data. Tree height, diameter at breast height (DBH),
and other fundamental data were collected and recorded using
consistent measurement methods. After classification, the biomass

FIGURE 4
Radar-based individual tree segmentation processing.
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of stems, bark, branches, and leaves was calculated using the
biomass equations specified in the Chinese National Standard
“Biomass Models and Carbon Content Parameters for Major Tree
Species” (GB/T 43648-2024). The total-tree biomass was then
obtained by summing the biomass of each component, as shown
in Table 2. Consequently, data for stem, bark, branches, leaves, and
total aboveground biomass were obtained for 20,836 Chinese fir
trees within the study area. These biomass data were subsequently
used to model the relationship between the radar parameters
derived from processed LiDAR data and the ground survey

-

biomass measurements. Figure 5 shows the variation trends of
biomass components across different age groups, facilitating a direct
comparison of growth characteristics at various developmental

stages (Equations 1, 2).

M, = a,D" H* (1)
M = Tgrgs X Ma
M2=H&§ﬁxMA o
M, :H&‘E% X My
M, =1+gﬁ% X My

Where M, represents the estimated value of aboveground
biomass; ag, a;, a, are the model parameters; is the diameter at
breast height (DBH); H is the tree height; M;, M,, M3, M, represent
the estimated biomass values for stem wood, bark, branches, and
leaves, respectively; g5, g2 g3 represent the ratios of the biomass of

bark, branches, and leaves to the biomass of stem wood, respectively.

2.4 Parametric regression model

In terms of the structure of the individual tree biomass model,
the model’s structure forms the basis for model construction (Zeng
and Tang, 2010a; Fu et al., 2018). Using the complete growth cycle
data of individual Chinese fir trees in Guangdong, this study
considered four biologically meaningful theoretical tree growth

Tree 2

Tree 1
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TABLE 1 Field-measured biomass statistics of Chinese-fir sample trees.

Training sample

10.3389/fpls.2025.1520666

Test sample

. Standard . Standard
Max Min Average o Max Min Average o
deviation deviation
Bark 13.1381 0.1096 3.3632 2.1627 13.6484 0.1078 3.3480 2.1404
Trunk 82.1074 0.4052 17.8427 12.5648 82.2535 0.3908 17.7663 12.3915
AGL Branch 24.0875 0.1859 5.4190 3.5186 20.7011 0.1999 5.3753 3.5153
Leaves 12.6573 0.2178 3.6598 1.8578 11.6341 0.3181 3.6286 1.8696
Above
. 121.232 1.032 30.285 19.8221 126.284 1.0660 30.118 19.63353
ground biomass
Bark 27.7597 0.1905 4.2946 2.6693 18.4729 0.1616 4.2767 2.7001
Trunk 114.5734 0.2389 23.7724 16.2536 117.290 0.664 23.706 16.5119
AG2 Branch 27.7597 0.1905 6.3721 4.0636 26.7768 0.1962 6.3189 4.0678
Leaves 13.1418 0.3621 3.9614 1.9822 12.3967 0.2959 3.9307 1.9809
Above
X 167.7102 0.9027 38.4005 24.5177 172.002 1.3180 38.2320 24.7832
ground biomass
Bark 18.203 0.2100 5.6330 3.1345 17.3344 0.2384 5.6755 3.2327
Trunk 119.9051 0.8125 5.6330 19.4172 119.5493 32.4140 32.4140 20.2089
AG3 Branch 30.9941 0.3836 8.1419 4.7029 28.8945 0.3809 8.1836 4.7461
Leaves 13.8340 0.5250 4.6920 2.1299 13.3614 0.5477 4.7083 2.1188
Above
. 172.8820 1.9910 50.5760 28.9169 170.803 2.126 50.9810 29.8144
ground biomass
Bark 30.2370 0.3516 9.6597 5.0867 29.1160 0.5170 9.6740 5.1307
Trunk 202.511 1.415 58.025 33.8275 202.1930 2.2330 9.6740 342114
AG4 Branch 43.9100 0.6700 13.9670 7.3899 41.6285 0.5713 13.9616 7.4742
Leaves 20.7530 0.8990 6.9680 2.8834 17.8720 0.6087 6.9545 2.9362
Above
X 288.847 3.3350 88.6200 48.1882 276.6640 4.1920 88.7440 48.6847
ground biomass
Bark 28.2904 0.3132 8.9868 5.1823 32.9320 0.2010 8.9860 5.1799
Trunk 196.453 1.1780 54.831 34.1049 219.7082 0.7777 53.8313 34.1237
AGS Branch 41.3550 0.5135 6.4952 7.3607 47.2662 0.3596 12.9217 7.4495
Leaves 16.7751 0.7119 6.4952 2.8506 17.1669 0.4503 6.5330 2.9408
Above
X 279.8830 2.6970 82.1660 48.7637 316.848 1.891 82.272 48.8275
ground biomass

AG]1, young forests, with stand ages ranging from 1 to 10 years; AG2, middle-aged forests, aged 11 to 20 years; AG3, near-mature forests, aged 21 to 25 years; AG4, mature forests, aged 26 to 35

years; AG5, over-mature forests, aged 36 years and above.

models as the base models: Logistic model, Linear model,
Exponential model, and Power model (Table 3), to fit the data.
The dataset was divided into training and validation sets in a 7:3
ratio, with 70% of the data used for modeling and 30% for
validation. Stepwise regression was employed to select LIDAR
parameter variables, and VIF collinearity tests were conducted,
excluding LIDAR feature variables with VIF > 5. LIDAR tree height
(LH) and LIDAR crown width (LCD) were selected as independent
variables in the model to fit the biomass components.

Frontiers in Plant Science 07

2.5 Constructing dummy variable model

Dummy Variables are important for handling categorical
variables. Dummy variables convert categorical variables into
binary variables, allowing them to be incorporated into regression
models for analysis. By introducing the above-mentioned optimal
base parameter model into dummy variables, we can better
understand the impact of different developmental stages of
Chinese fir on biomass, thereby analyzing the effect of different
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TABLE 2 Summary of UAV-LiDAR-derived tree metrics.

Training sample

LiDAR data

Max Min

Average

Standard
deviation

10.3389/fpls.2025.1520666

Test sample

LiDAR tree height 31.6296 2.9455 13.1114

LiDAR crown diameter 16.474 0.13624 2.3081

age groups on total biomass. When processing the data, we
converted the categorical variable “Age Group (AG)” into dummy
variables. we introduced five age groups (AG) as categorical dummy
variables: young stand (1-10 years), middle-aged stand (11-20
years), near-mature stand (21-25 years), mature stand (26-35
years), and over-mature stand (>36 years). The categorical
variable “Age Group 1-5 (AG;.s)” represents five categories:
young forest, middle-aged forest, near-mature forest, mature
forest, and over-mature forest.

When using the age group as a dummy variable, it is necessary
to convert the age group variable into a quantitative variable,
usually taking the value of 0 or 1 in regression analysis. When
there are n categorical attributes for the independent variable, one
category is typically set as a reference, so the number of dummy
variables is n-1. The formula is as follows (Equations 3, 4):

1 When for age group i 3
i= 3
0 Ifnot
Y = (Sby; x S) x (LH) x (LCD") (4)

where S; represents the dummy variables reflecting different age
groups (i= 1, 2,..., 5); b,; represents the parameters for different
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FIGURE 5

Aboveground biomass distribution across five growth stages of Chinese fir.
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4.0801

1.4899

near-mature

. Standard
Min Average o

deviation
28.771 2.7577 13.1416 4.0674
12.046 0.1612 2.3401 1.5169

forest types; LH represents the Lidar tree height; LCD represents the
LiDAR crown width.

2.6 Compatibility models

In forestry research, accurately estimating the biomass of
individual tree components is crucial, especially when assessing
biomass distribution and ecological functions within forest
ecosystems. When both independent and dependent variables
contain errors, traditional modeling methods are no longer
suitable for model fitting (Wang et al., 2018b). To ensure that the
predicted value of individual tree biomass equals the sum of the
predicted values of its components, we must consider the additivity
or compatibility among the component biomass models (Affleck
and Dieguez-Aranda, 2016). Ensuring that the sum of the
components is compatible with the total is of great importance
for constructing biomass model systems. Additionally, additive
models can account for the intrinsic relationships between
components and the total, making it necessary to establish a
system of simultaneous equations to achieve model compatibility.

In this study, we employed the seemingly unrelated regression
(SUR) model to independently model the biomass components of

mature over-mature
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TABLE 3 Basic model formulae.

Kinds of models Forms of models

a

Logistic Function BM=———~
8 1+ bexp(— cLH — dLCD)

Linear Function BM =aLH + bLCD - ¢

Exponential Function BM = aexp( - bLH — cLCD)

1 b
Power Function BM = glH'LCD

aboveground biomass for Chinese fir and to jointly estimate the
model parameters. This approach ensures that the stem, bark,
branches, and leaves of individual trees in Chinese fir forests
adhere to the principle of compatibility, thereby resolving issues
of model incompatibility (Giri et al., 2019). This method not only
ensures compatibility among the biomass components but also
yields more optimized parameter estimates, enhancing the stability
of the model (Fu et al., 2014) (Equations 5).

Mds = Msg + Msp + Msz + Msy

Msg = (a, X AG, +ay X AG, + a3 X AGs +a, x AG, + a5 x AGs) x (LH®) x (LCD")
Msp = (by X AG, + by X AG, + by X AG; + by x AG, + bs x AGs) x (LH®) x (LCD")
Msz = (¢; X AGy +¢; X AG, +¢3 X AG; + ¢4 X AGy +¢s X AGs) x (LH®) x (LCD)
Msy = (dy x AG, +dy x AG, +d; x AG; +dy X AGy +ds x AGs) x (LH*) x (LCD")

@)

where AGj_s represents the different age group categories; a, b,
¢ d, e, and fare the model parameters; LH represents the Lidar tree
height; LCD represents LIDAR crown width. Msg represents the
Measured trunk biomass; Msp represents the Measured bark
biomass; Msz represents the Measured branch biomass; Msy
represents the Measured leaf biomass; Mds represents the
Measured total aboveground biomass.

2.7 Model evaluation metrics

The fitting results were evaluated using four metrics: the
coefficient of determination (R?), Root Mean Squared Error
(RMSE), Total Relative Error (TRE), and Akaike Information
Criterion (AIC). A larger R’ indicates a higher fitting accuracy of
the model, a smaller RMSE suggests higher precision in the model’s
predictions, a smaller TRE indicates better predictive performance,
and a smaller AIC represents a better model fit. The expressions are
as follows (Equations 6-9):

R =1- S0 =302/ S 01— 57 (6)
i=1 i=1
RMSE = é(}’i -} /(n-1) (7)
i=1
TRE = M (8)

i
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AIC =2k -21In(L) 9)

where y; is the observed value of the dependent variable; y; is the
predicted value of the dependent variable by the model; y; is the
mean of the observed values; n is the number of observations; k is
the number of parameters in the model. L is the maximum
likelihood of the model.

3 Results and analysis
3.1 Optimal model selection

Based on the goodness-of-fit plot results of the 4 basic models
(Figure 6), the Power model was determined to be the optimal
model through comprehensive consideration of AIC, R? RMSE, and
TRE. Since the Logistic model and the Power Function model had
similar validation parameters, we chose the Power Function model
as the optimal model due to its fewer parameters.

The Power Function Model exhibited the highest R values,
particularly for stem and bark biomass, effectively capturing
allometric growth relationships but lacking adaptability to
different growth stages. In terms of the fitting performance of the
aboveground biomass component models, the R* values for all
components except leaves and branches were above 0.7, with the
fitting accuracy order being stem > bark > branches >
leaves (Table 4).

Table 4 includes standard errors (SE) for key parameters. Lower
SE values typically indicate more stable parameter estimates,
whereas higher SE values suggest potential variability or
limitations in data coverage for those biomass components. These
SE values help illustrate how reliably each model parameter can be
estimated from the available data, thereby offering insight into the
overall robustness of each model’s predictions (Equations 10-14).

Msg = 0.1312H" 7 1C0" (10)
Msp = 0063671 (1)
Msz = 0.1302LH" 7LD’ (12)
Msy = 0.3362MH"1CD"™ (13)
Mds = 0355111 "1 (14)

where Msg represents the stem biomass; Msz represents the
branch biomass; Msy represents the leaf biomass; LH stands for
radar tree height; and LCD stands for radar crown width.

3.2 Dummy variables model

In this study, the qualitative factors of the five age groups—
young forest, middle-aged forest, near-mature forest, mature forest,
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Goodness-of-fit plots of the base models.(The x-axis represents the actual values, and the y-axis represents the predicted values. The R? is the
coefficient of determination, RMSE is Root Mean Squared Error, and TRE is Total Relative Error).

TABLE 4 Detailed parameters and fitting accuracy of the 4 types of base models.

uonouny onsido]

uonouny Ieaur]

uonodunyg 19Mod  uonouny fenusuodxy

Model parameter Training sample Test sample
Model form Type > >
c d AIC BIC R RMSE TRE R RMSE TRE
Bark | 1524712 740495 = 01849 01210 118516 | 118554.  0.6968  14.0616 | 147311 07017 | 13.8441 = 14.0853
SE 3.0908 1.6807 | 0.0025 | 0.0036
Trunk | 23.0897 | 514099 = 0.1729 | 0.1297 = 64684 = 64721 | 06938 = 22213 | 122229 06981 = 2.1869 = 122229
SE 0.4412 10812 | 00024 | 0.0037
Branch | 31.6152 | 37.0484  0.477 | 0911 = 78855 78893 | 06172  3.6106 & 159090  0.6209 = 3.5423 150717
Logistic Function SE 0.6479 | 08338 | 0.0024 | 0.0048
Leaves = 120925 | 13.1769 = 0.1164 = 02228 57095 | 57133 | 05346 17125 | 121670 05355 16915 = 11.7104
SE 0.2203 02831 | 0.0025 | 0.0062
Above
ground
biomass | 222.2174 = 54.6878 = 0.1699 | 0.1358 @ 130137 130175  0.6862 = 209428 & 13.6838  0.6911 = 20.5834  13.0369
SE 4.5191 11468 | 0.0023 | 0.0037
Bark 44580 | 34427 | -36.5957 119805 = 119835 = 0.6687 = 14.6976 = 163161  0.6751 | 14.4483  15.5760
Linear Function
SE 00326 = 00891  0.4069
(Continued)
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TABLE 4 Continued

Model parameter

M L f
odel form - d

10.3389/fpls.2025.1520666

Training sample Test sample

R?® RMSE TRE R? RMSE TRE

Trunk 0.6944 0.5907 -5.2291

SE 0.0051 0.0138 0.0633

Branch 0.8556 1.2093 -6.2027

SE 0.0081 0.0221 0.1011

Leaves 0.3155 0.5897 -0.9447

65453 65483 0.6772 2.2808 13.5626  0.6728 2.2417 12.9435

79155 79185 0.6092 3.6481 16.2959  0.6145 3.5723 15.3925

57008 57038 0.5373 1.7075 12.0880  0.5392 1.6846 11.6163

SE 0.0038 0.0104 0.0476
Above
ground 6.3235 5.8324 -48.9722 131043 131073 0.6660 21.6046 14.6914 0.6723 21.2003 13.9661
biomass
SE 0.0479 0.1311 0.5986
Bark 5.2187 -0.1140 -0.0580 119897 119927 0.6666 14.7439 16.4360 0.6772 14.4000 15.4322
SE 0.0672 0.0007 0.0016

Trunk 1.0704 -0.1033 -0.5915

66102 66133 0.6624 2.3322 14.2688  0.6715 2.2812 13.4594

SE 0.0126 0.0007 0.0016
Branch 1.8708 -0.0884 -0.0819
Exponential Function SE 0.0241 0.0008 0.0017

Leaves 1.8960 -0.1027 -0.0517

80057 80087 0.5843 3.7627 17.5174 = 0.5933 3.6692 16.4382

80235 80266 0.6736 3.7858 129121 0.6814 3.7180 12.2863

SE 0.0178 0.0007 0.0016
Above
ground 9.4116 -0.1045 -0.0634 131449 131479 0.6566 21.9076 15.1694 0.6668 21.3776 14.2346
biomass
SE 0.1147 0.0008 0.0016
Bark 0.1312 2.0123 0.1932 118537 118567 0.6963 14.0724 14.7571 0.7133 13.8063 13.9398
SE 0.0051 0.0136 0.0051

Trunk 0.0636 1.8773 0.1752

83695 83726 0.6994 2.2056 13.0076  0.7052 2.2386 12.3850

SE 0.0015 0.0124 0.0047

Branch 0.1302 1.4902 0.2832
Power Function SE 0.0003 0.0191 0.0066

Leaves 0.3362 0.9419 0.2484

78998 79028 0.6134 3.6286 16.0935 = 0.6175 3.5583 15.2033

57404 57434 0.5246 1.7308 124618  0.5234 1.7133 12.0541

SE 0.0102 0.0112 0.0049
Above
ground 0.3551 1.8102 0.2109 130208 | 130238 | 0.6846 = 20.9950 & 13.7616  0.6909 = 20.5870 = 12.9989
biomass

SE 0.0129 0.0129 0.0049

a,b,c,d, the model parameters; AIC, Akaike Information Criterion; R?, Coeffcient Of Determination; RMSE, Root Mean Square Error; TRE, Total Relative Error; SE, Standard Error.

and over-mature forest—were converted into quantitative factors
using the method of dummy variables. These were then introduced
into the optimal models for the biomass components of Chinese fir,
including stem, bark, branches, and leaves. By analyzing Chinese fir
at different developmental stages, we can better understand the
impact of these stages on biomass.

Frontiers in Plant Science

When comparing the dummy variable model with the
previously determined optimal base models, we found that the
RMSE of the model decreased by an average of 3%. Among the
components, the reduction was most significant for bark, which
decreased by 4.2%, followed by branches with a reduction of 3.1%.
The reductions for stem and leaves were the smallest, both at 2.4%.
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The R’ increased by an average of 2.6%, with the most notable
improvements in the precision of leaves and branches, which
increased by 3% and 2.8%, respectively. The remaining
components showed an average improvement in precision of 2%
(Table 5). This highlights the importance of considering growth
stages in biomass estimation, making the dummy variable model
more adaptable to complex mixed forests with coexisting age
groups. This indicates that incorporating dummy variables into
the base models allows for a better fit of the data and can effectively
model the biomass components of individual trees across different
age groups.

In addition, Table 5 provides the SE of key parameters for each
age group, illustrating potential uncertainties in parameter
estimates. Generally, smaller SE values indicate more stable
parameter estimates, whereas larger SE values may suggest data
limitations or higher variability in certain developmental stages.
Overall, incorporating dummy variables into the base models yields
a better data fit and can effectively capture the biomass components
of individual trees across different age groups.

3.3 Compatible biomass modeling

The compatibility of the aboveground biomass model is
achieved by jointly modeling the biomass components of the tree,
including stem, bark, branches, and leaves, and simultaneously
solving the model parameters. This approach addresses the
inconsistency between the component biomass and total biomass
that can occur with independent models. The SUR (Seemingly
Unrelated Regression) method was used to fit the additive biomass
model, and the results showed that the model had a good
fit (Figure 7).

As shown in Table 6, compared to the dummy variable model,
the accuracy of the R” values decreased by an average of 2.5%. The

TABLE 5 Dummy variable parameters and fitting accuracy.

Model parameter

10.3389/fpls.2025.1520666

Root Mean Squared Error RMSE for the biomass components—
stem, bark, branches, and leaves—and the total aboveground
biomass are 13.6057, 2.2191, 3.4749, 1.7175, and 20.9835,
respectively. Compared to the dummy variable model, the RMSE
increased by 2.6%. This reduction in predictive accuracy may be due
to the constraints imposed by the simultaneous equation system to
maintain consistency among biomass components. Minimizing
residuals for one component might introduce slight errors in
others. Additionally, the joint estimation of multiple equations
may amplify estimation variance due to correlations among error
terms, further affecting model performance.

4 Discussion
4.1 Main findings and patterns

Chinese fir (Cunninghamia lanceolata), as one of the main tree
species in Guangdong and the entire southern region of China,
plays a significant role in ecosystem services, enhancing forest
carbon sequestration, climate regulation, and economic benefits
(Zeng et al., 2017). With the increasing pressures of climate change
and ecological environmental stress, the technological methods for
acquiring and analyzing forestry data have become increasingly
important. The timely and effective acquisition of biomass, carbon
storage, and other forest survey data has become a focal point
in forest science research (He et al., 2013; Chen et al., 2023). In this
study, we utilized UAV LiDAR technology to collect data on
20,836 Chinese fir trees across 133 sample plots in Guangdong
Province and calculated the biomass for each tree component.
Following the initial selection of the optimal base model, we
further introduced age groups as dummy variables to model
the different age stages of the Chinese fir. Finally, we applied
the Seemingly Unrelated Regression (SUR) model to ensure

Training sample Test sample

a | az | a; | as R®> RMSE TRE R? RMSE TRE
Bark 02221 02034 01929 02582 02524 18152 01936 07193  13.5287 = 134880 07198 | 134717  13.0373
SE 0.0094 0.0097 = 0.0093 0.0129 00123 | 0.0178 0.0049
Trunk 00682 0.0627 & 00598 0.0781 00763 16104 @ 01939 07147 = 21441 | 117994 07140 = 2.1287  11.4484
SE 0.0027  0.0026 = 0.0027 0.0036 0.0035 | 0.0164 0.0046
Power Branch 02290 02088 & 02024 02756 02635 12731 | 02870  0.6434 = 34849 | 14.6613 06403 = 34507 = 14.1326
function
SE 0.0099 = 0.0098 0.0101 & 0.0141 = 0.0132 0.0181 0.0055
Leaves 04902 04537 | 04476 05695 05447 07961 | 0.2508 05533 16777 | 11.6213 05461 = 1.6720  11.3978
SE 00176  0.0175 = 0.0187 0.0246 0.0231 | 0.0151  0.0048
Above
X 0.5919 05405 @ 0.5156 0.6873 0.6685 16189 | 0.2122 07095 = 20.1484 = 125377 = 07091 = 19.9734 121172
ground biomass
SE 0.0241  0.0238 | 00241 0.0329 00314 | 0.0169 0.0048

aj, ay as ay as b ,c the model parameters; R?, Coeffcient Of Determination; RMSE, Root Mean Square Error; TRE, Total Relative Error; SE, Standard Error.
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Goodness-of-fit plots of the SUR model. (The x-axis represents the actual values, and the y-axis represents the predicted values. The R? is the

coefficient of determination, RMSE is Root Mean Squared Error).

the compatibility between radar tree height (LH) and radar crown
width (LCD) with the biomass of individual tree components, while
also maintaining the additivity of the biomass components (Chen
et al., 2023).

4.2 Model accuracy and performance

4.2.1 Applicability and limitations of base models
Establishing universal or regional relative growth equations for
forest biomass has long been a goal in forestry and ecology (Brown
and Lugo, 1984; Fang et al,, 2001; Jenkins et al., 2003; Lehtonen
et al,, 2004; Guo et al,, 2010). The combination of multiple models
and the application of statistical models can better predict forest

TABLE 6 SUR model form and fitting accuracy.

Forms of sub-modeling

biomass; however, due to factors such as habitat, climate, and
geography, even the same tree species may exhibit significant
biomass differences in different regions (Zeng et al, 2011;
Forrester et al,, 2017). Moreover, the characteristics of biomass
accumulation and distribution of Chinese fir vary significantly
across different developmental stages, indicating that simple base
models may not accurately reflect the dynamic changes in Chinese
fir biomass, potentially leading to errors and uncertainties in model
equations (Deng D, et al,, 2023). Previous studies (Chen et al., 2016;
Zhang D. et al, 2019) mainly relied on traditional ground
measurement methods, which were often time-consuming, labor-
intensive, and limited in data volume. In contrast, this study
innovatively adopted UAV LiDAR technology, greatly improving
the efficiency and quality of data collection.

Model fitting accuracy

R? RMSE

Msg = (0.2124AG, +0.1964AG, + 0.1904AG; + 0.2517AG, + 0.2438AG;s) x (LH"*"') x (LCD****) 0.7042 13.6057
Msp = (0.1098AG, +0.1016AG, + 0.0991AG; + 0.1289AG, + 0.1242AG;s) x (LH"***) x (LCD**'?%) 0.6927 22191
Msz = (0.2901AG, + 0.2662AG, + 0.2634AG; + 0.3614AG, + 0.3392AGs) x (LH"'7*) x (LCD***) 0.6345 3.4749
Msy = (0.3401AG, + 0.3522AG, + 0.3464AG; + 0.4599AG, + 0.4372AG5) x (LH****®) x (LCD"***) 0.5316 1.7175
Mds = Msg + Msp + Msz + Msy 0.6835 20.9835

RZ, Coeffcient Of Determination; RMSE, Root Mean Square Error.
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4.2.2 Importance of differentiating growth stages

During the development of biomass models for Chinese fir
plantations, previous studies found that incorporating age groups as
dummy variables significantly improved model accuracy compared
to traditional methods (e.g., Guo et al, 2016; Shen et al.,, 2016),
consistent with our findings. However, these studies often relied on
limited ground measurements, restricting coverage of the full
growth cycle and spatial applicability.

This study identified significant stage-specific differences in the
biomass allocation of Chinese fir across five growth stages. During the
young and middle-aged stages, trees prioritize the development of
photosynthetic organs to enhance competitiveness and rapidly
accumulate carbon. At this stage, the biomass proportion of leaves
and branches is higher, facilitating rapid canopy expansion and
improving photosynthetic efficiency, which strengthens
competitiveness under resource limitations (Canham et al, 1996).
The higher biomass of leaves and branches also increases canopy
coverage and enhances species diversity (Eriksson et al., 2006). As trees
enter the mature and over-mature stages, biomass shifts toward the
stem and bark (Gerrish, 1990), particularly in the mature stage, where
stem biomass increases significantly, indicating that resources are
primarily used to enhance structural stability and long-term carbon
storage (Molina-Valero et al, 2021). Increased bark biomass improves
resistance to pests and environmental stress, enhancing survival rates
(Cernusak and Cheesman, 2015). Moreover, the substantial biomass in
the stem strengthens mechanical support and boosts the forest’s carbon
sequestration capacity (Castano-Santamaria et al, 2013). Therefore,
forest management should focus on promoting leaf and branch growth
during the early stages to enhance growth vigor and ecological
adaptability, while in the later stages, efforts should shift toward
supporting stem and bark development to improve resilience and
long-term carbon storage (Wernick and Kauppi, 2022).

4.2.3 Advantages of the dummy variable model
with age groups

In contrast, our study innovatively utilized remote sensing data,
enabling comprehensive coverage of all growth stages and substantially
enhancing the model’s applicability and generalization across broader
spatial scales. Therefore, we introduced age groups as categorical
dummy variables based on the optimal base model to simulate and
model Chinese fir at different developmental stages. The study
demonstrated that the dummy variable model, when incorporating
age group indicators, outperformed the base model in statistical metrics
such as R TRE, and RMSE, highlighting the limitations of base models
in establishing large-scale biomass models for Chinese fir (Jianfeng and
Jian, 2021). By introducing age groups as dummy variables into the
model, it more comprehensively reflects the biomass differences across
different developmental stages of Chinese fir, thereby enhancing the
model’s fit. Compared to the optimal base model, the dummy variable
model, after incorporating different developmental stages, showed an
average R’ increase of 3.2%, indicating that developmental stages have a
significant impact on the accumulation and distribution of Chinese fir
biomass. Therefore, adding age groups as dummy variables can
improve the predictive accuracy of the biomass components, a
finding that is consistent with Shen et al. (2019) (Lv and Duan,
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2024). Their research also showed that incorporating age groups as
dummy variables into the model significantly improved the model’s
fit, with the best predictive performance observed for stem biomass,
followed by branches and bark, while the predictive accuracy for leaf
biomass was the lowest (Chen et al., 2023). The conclusions drawn
from this study align with these findings, suggesting that the poor
predictive performance for leaf biomass may be due to the relatively
small proportion of leaves in the total aboveground biomass.

Even though the fitting results of the model should be kept within a
reasonable expected range to ensure its effectiveness and reliability are
not affected by bias (Zhang et al., 2013), in practice, the biomass of
individual tree components often exhibits significant variation. This
variation may stem from issues encountered during the data fitting
process. In this study, through the modeling analysis of the age groups
of 20,836 Chinese fir trees in Guangdong Province, we found that the
ranking of aboveground biomass was: stem > bark > branches > leaves.
The biomass of bark and leaves in young forests was relatively low,
which suggests that in practical applications, different model types
should be established according to age groups to improve the accuracy
of biomass estimation results. While the dummy variable model
effectively handles specific data and characteristics of different
components, relying solely on the dummy variable model to process
Chinese fir biomass data may still have limitations. This is because the
dummy variable model, when operating independently, may not fully
account for the intrinsic relationships and interactions among the
different components of aboveground biomass within individual trees
(Wang et al,, 2008; Fu et al.,, 2012). Ignoring these interactions can lead
to biased or inconsistent prediction results, particularly when dealing
with larger datasets.

4.2.4 Compatibility and accuracy trade-off in the
SUR model

The Seemingly Unrelated Regression (SUR) model integrates these
independent models, ensuring that the mathematical relationships and
inherent correlations between total aboveground biomass and its
components are maintained, specifically the additive or compatible
relationship among the different components (Fu et al,, 2014). In the
past, many reported biomass equations lacked additivity or
compatibility, with independent equations established for each
component. However, when scholars compared the fitting accuracy
of additive biomass models with non-additive biomass models, they
found that using non-additive methods to construct models could lead
to significant discrepancies between the sum of the biomass of
individual tree components and the total biomass of the tree. If these
models are applied in practice, they could result in errors (Parresol,
1999; Fu et al, 2016; Dong et al, 2018). The SUR model ensures
compatibility among biomass components, resolving summation
inconsistencies at the cost of a slight decrease in predictive accuracy
(R? decreased by 2.5%, RMSE increased by 2.6%). This decline may
result from the constraints imposed by the system of simultaneous
equations, which can introduce errors in other components when
minimizing the residuals for one component. Additionally, the joint
estimation of multiple equations in the SUR model may amplify
variance due to correlations between error terms, increasing
computational complexity and affecting model performance (Poudel
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and Temesgen, 2016; Nord-Larsen et al., 2017; Zhao et al., 2019).In
contrast, the dummy variable model may not fully utilize the potential
correlations between the equations (Zellner, 1962).

4.3 Limitations

Although the models developed in this study performed well
for estimating Chinese fir biomass in subtropical regions, their
performance may vary under different environmental conditions
or for other tree species. The models were established under
humid and stable subtropical climate conditions with abundant
rainfall; therefore, in drier regions, trees may grow more slowly
and allocate biomass differently among stems, branches, and
leaves, which could reduce model accuracy. Similarly, at higher
altitudes, factors such as wind exposure and shallow soil may
affect tree growth patterns, requiring adjustments to the model
parameters. Additionally, different tree species have distinct
growth strategies. For example, broadleaf trees typically allocate
more biomass to branches and leaves, while coniferous trees tend
to concentrate biomass in the stem (Zhang et al., 2020). Therefore,
if these models are applied to other tree species or different
regions, parameter adjustments may be necessary to reflect
local growth patterns better. Furthermore, due to limitations in
field survey time, manpower, and resources, the sampling sites
could not cover all target regions, which may affect the
representativeness and applicability of the models. Also, the
data used in this study were mainly collected from specific
geographic and climatic conditions, which may limit the
model’s generalizability to other environments or species. Future
research could enhance model applicability and predictive
accuracy by expanding the sampling coverage and incorporating
data from different environmental conditions and tree species.

5 Conclusions

This study employed both the dummy variable model and the
SUR model to develop aboveground biomass component models
for Chinese fir. Introducing the age-group dummy variable
increased the mean coefficient of determination (R?) from 0.69 to
0.71, an improvement of 2.6%, and reduced the total-biomass
RMSE by 3%. For branch and bark biomass, R* rose by 3.1% and
4.2%, while their RMSE values fell by 3.1% and 4.2%, respectively.
The SUR model ensured consistency between component and total
biomass, achieving an overall R” of 0.684; its RMSE was 2.6% higher
than that of the dummy-variable model but offered greater stability
in managing inter-component relationships. Moreover, the
integration of UAV LiDAR data with ground measurements
provided robust technical support for precise biomass estimation,
laying a solid foundation for long-term monitoring and sustainable
management of Chinese-fir ecosystems. Moreover, the integration
of UAV LiDAR technology with ground-based manual
measurement data provided robust technical support for the
precise estimation of Chinese fir biomass, establishing a solid
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foundation for the long-term monitoring and sustainable
management of the Chinese fir ecosystem.
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