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1 Introduction

Flax (Linum usitatissimum L.) is valued and cultivated worldwide for its dual-purpose

use as both a seed and fiber crop. It is one of the oldest domesticated and most widely used

crops (Kvavadze et al., 2009). Flax genome has a diploid chromosome set 2x=2n=30 and a

size ~450 Mb (Dvorianinova et al., 2022; You et al., 2023). Flax seeds are rich in omega-3

fatty acids, digestible proteins, dietary fiber, and lignans (Goyal et al., 2014). Consumption

of linseed oil has beneficial effects on human health, reducing the risks of many disorders

and promoting immunity (Mali et al., 2019; Saini et al., 2021; Al-Madhagy et al., 2023). In

addition, flax seed oil is used for technical purposes and also serves as a highly nutritious

feed for livestock (Xu et al., 2022; Yadav et al., 2024). Flax fiber goes into the production of

eco-friendly textiles with high absorption capacity and composite materials (Asyraf et al.,

2022; More, 2022).

Different flax varieties are grown for different purposes and vary considerably in their

characteristics. Today, traditional breeding is being aided by biotechnology and molecular

genetics to select individuals with the desired traits more quickly and efficiently due to high-

quality genome assemblies and their annotations. Since it is the study of transcriptomes in

various tissues and organs that allows us to establish the associations between a valuable

characteristic and its causative region in the genome (Dmitriev et al., 2020; Guo et al., 2020).

To date, there is a great deal of disparate data on gene expression in different flax organs

and tissues, under different growth conditions and at different stages of ontogeny. Much

work was devoted to the study of the involvement of specific genes in important agronomic

traits, resistance to biotic and abiotic stressors, the regulation of organogenesis in flax plants

and other characteristics.

Agriculturally valuable traits include those related to yield and to the quality of oil and

fiber. The yield and the quality of oil were the subject of great interest of many studies (Xie
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et al., 2019; Miart et al., 2021; Gao et al., 2022; Jiang et al., 2022;

Wang et al., 2022b; Dvorianinova et al., 2023b; Pushkova et al.,

2024). Since the valuable product obtained from flax is fiber, the

characteristics of phloem fibers were actively studied (Roach and

Deyholos, 2007; Zhang and Deyholos, 2016; Gorshkov et al., 2017;

Gorshkova et al., 2018; Gorshkov et al., 2019; Galinousky et al.,

2020; Mokshina et al., 2020; Petrova et al., 2021; Guo et al., 2022;

Mokshina et al., 2022; Yu et al., 2022; Bao et al., 2023; Gorshkova

et al., 2023; Liu et al., 2023; Ibragimova and Mokshina, 2024). In

addition, transcriptome analysis largely allowed the identification of

genes associated with flax plant height (Guo et al., 2021), the length

of the growing season, the time of flowering, and the duration of

ripening (Gao et al., 2022; House et al., 2022).

Data on flax gene expression and co-expression under

suboptimal environmental conditions allowed researches to assess

the association of genes with resistance to pathogen infection

(Galindo-González and Deyholos, 2016; Dmitriev et al., 2017; Wu

et al., 2019b; Boba et al., 2021; He et al., 2022) and abiotic stressors

(Yu et al., 2014; Dmitriev et al., 2016; Dash et al., 2017; Wu et al.,

2018; Krasnov et al., 2019; Wu et al., 2019a; Huang et al., 2021;

Wang et al., 2021; Soto-Cerda et al., 2022; Wang et al., 2022a;

Danaeipour et al., 2023; Kostyn et al., 2023; Qiu et al., 2023; Wang

et al., 2023; Zhang et al., 2024).

The regulation of organogenesis in flax plays an important role

in understanding the development of valuable flax traits (Saha et al.,

2021; Yuan et al., 2021; Qi et al., 2023; Zhao et al., 2023). The

comparative study of expression profiles of linseed and fiber flax

varieties identified genes associated with flax plant type, flax oil

odor, and paleohistorical data (Sveinsson et al., 2014; Povkhova

et al., 2021; Yang et al., 2022).

Several synthesis articles with annotations for genome

assemblies of flax varieties were published: linseed CDC Bethune

(Wang et al., 2012) and fiber flax YY5 (Sa et al., 2021). However, the

CDC Bethune genome contains some errors because it was

assembled only from Illumina reads, which did not allow

researchers to resolve its complexity (Sa et al., 2021; Dvorianinova

et al., 2023a). The YY5 genome was annotated with transcriptome

data of a different variety for only five samples of mature flax plants:

leaf, stem, root, flower, and fruit.

In the NCBI database, the reference genome of L. usitatissimum

is currently represented by a high-quality assembly of line 3896

( h t t p s : / / www . n c b i . n lm . n i h . g o v / d a t a s e t s / g e n om e /

GCA_030674075.2/, accessed on 12 October 2024) obtained by us

earlier (Dvorianinova et al., 2023a). Line 3896 belongs to the group

of linseed flax and is characterized by resistance to Fusarium wilt

(Rozhmina and Loshakova, 2016; Dmitriev et al., 2017) and edaphic

stressor (low acidity) (Rozhmina et al., 2020), high seed yield and oil

content (our observations). In the present study, we complement

previous studies of line 3896 with a transcriptome map and genome

annotation, which were necessary to make further progress in the

field of flax genome research. Our annotation was obtained with the

use of RNA-Seq data, whose positive effect on the annotation result

was previously shown (Salzberg, 2019; Gabriel et al., 2024). The

study of flax genome organization and gene expression will allow
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desired traits with high efficiency. The results of the study are of use

for the identification of genes and polymorphisms responsible for

valuable traits and development of modern breeding technologies:

genome editing, marker-assisted and genomic selection.
2 Materials and methods

2.1 Plant material

Seeds of linseed line 3896 were provided by the Institute for Flax

(Torzhok, Russia). To obtain transcriptome data, we collected a set

of organs (Table 1; Figure 1) of line 3896 plants at different stages of

vegetation under optimal growth conditions described in the

next subsection.
2.2 Flax cultivation

Flax seeds were sterilized in 1% sodium hypochlorite and 96%

ethanol, after which the seeds were washed twice with water and

planted in 0.05% fungicide Maxim (Syngenta, Gaillon, France)

solution in Petri dishes for 7 days. Seedlings were planted in the

soil and continued to grow under greenhouse conditions at 20°C

and ~50-70% relative humidity with regular watering.

For transcriptome analysis, a set of different organs/tissues at

different development stages was collected. The plant parts and

ontogenetic stages used in the study are listed in Table 1. Each of the

samples was collected in two biological replicates. Moreover, each

sample was a pool of organs from 2-10 different plants (except

capsules and seeds), which is necessary to level out differences

between samples and be able to capture trends common to the

species (Takele Assefa et al., 2020). The flowers were marked with

the date of the day it opened (day offlowering). Seeds from the same

capsules were pooled. Capsules were not pooled. The age of the

plants at the time of each collection and the collection conditions

are shown in Table 1. Samples were collected in the middle of the

day between 12 and 15 h under similar conditions to smooth the

influence of circadian rhythms on gene expression profiles. Samples

were collected in liquid nitrogen and stored at -70°C.
2.3 RNA isolation

Samples #1-6 and #8-18 were grinded using a TissueLyser II

homogenizer (Qiagen, Hilden, Germany) with the addition of 3

ceramic beads for two minutes. The harder samples (#7 and #19-28)

were homogenized using a disposable pestle inserted in a DeWALT

DCD701D2 cordless drill/driver (DeWALT, Towson, MD, USA) at

1200-1500 rpm in 1.5 ml tubes in liquid nitrogen to a fine powder,

without allowing the sample to thaw. RNA isolation from samples

#1-18 was performed using the Quick-RNA Miniprep Kit (Zymo

Research, Irvine, CA, USA). RNA isolation from capsule and seed
frontiersin.or
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TABLE 1 Examined samples of flax line 3896 organs/tissues at different stages of ontogenesis.

# ID Title Description

1 Lin_SAM_1
Lin_SAM_2

SAM Shoot apical meristems (SAM) from the upper part of the shoot at 30 days after germination (DAG). Their
diameter was about 0.5 mm. Pool from 10 different plants.

2 Lin_FAM_1
Lin_FAM_2

FAM Floral apical meristems (FAM) from the upper part of the shoot at 30 DAG if the shoot reached the early
bud stage. Pool from 5 different plants.

3 Lin_leaf_blade_top_1
Lin_leaf_blade_top_2

Leaf laminae of
young leaves

Leaf blades of young leaves from the top of the shoot at 30 DAG. Pool from 5 different plants.

4 Lin_leaf_blade_top3_1
Lin_leaf_blade_top3_2

Leaf laminae of
intermediate leaves

Intermediate leaf blades from the shoot at 3 cm from the top at 30 DAG. Pool from 5 different plants.

5 Lin_leaf_blade_top10_1
Lin_leaf_blade_top10_2

Leaf laminae of mature
leaves

Mature leaf blades from the shoot at 10 cm from the top at 30 DAG. Pool from 5 different plants.

6 Lin_shoot_1-3_1
Lin_shoot_1-3_2

Stem fragments 1-3 cm
from the top

Stem fragments 1-3 cm from the top at 30 DAG. Pool from 3 different plants.

7 Lin_shoot_9-10_1
Lin_shoot_9-10_2

Stem fragments 9-10 cm
from the top

Stem fragments 9-10 cm from the top at 30 DAG. Pool from 2 different plants.

8 Lin_s_SAM_1
Lin_s_SAM_2

SAM of seedlings SAM of seedlings from the upper part of the shoot between cotyledons at 5 DAG on Petri dishes. Pool from
6 different plants.

9 Lin_s_cotyledon_1
Lin_s_cotyledon_2

Cotyledons of seedling Cotyledons of seedlings at 5 DAG on Petri dishes. There were no true leaves yet, just the cotyledons. Pool
from 6 different plants.

10 Lin_s_hyp_1
Lin_s_hyp_2

Hypocotyls of seedlings Hypocotyls of seedlings collected as the stem between cotyledons and roots at 5 DAG on Petri dishes. Pool
from 6 different plants.

11 Lin_s_root_1
Lin_s_root_2

Roots of seedlings Roots of seedlings at 5 DAG on Petri dishes. Pool from 6 different plants.

12 Lin_anther_1
Lin_anther_2

Anthers of mature
flowers

Mature flower anthers (before opening) at 56 DAG. Pool from 6 different plants.

13 Lin_pistil_1
Lin_pistil_2

Carpels of mature
flowers

Mature flower carpels (before pollination) at 56 DAG. Pool from 6 different plants.

14 Lin_filament_1
Lin_filament_2

Stamen filaments of
mature flowers

Mature flower stamen filaments (before opening) at 56 DAG. Pool from 6 different plants.

15 Lin_petal_1
Lin_petal_2

Petals of mature flowers Mature flower petals (before opening) at 56 DAG. Pool from 6 different plants.

16 Lin_sepal_1
Lin_sepal_2

Sepals of mature flowers Mature flower sepals (before opening) at 56 DAG. Pool from 6 different plants.

17 Lin_flower_1
Lin_flower_2

Flowers without pedicels Mature flowers without pedicels at 56 DAG. Pool from 4 different plants.

18 Lin_pedicel_1
Lin_pedicel_2

Pedicels of mature
flowers

Pedicels of mature flowers at 56 DAG. Pool from 6 different plants.

19 Lin_capsule_3_1
Lin_capsule_3_2

Capsule at 3 DAF Capsule without seeds at 3 days after flowering (DAF).

20 Lin_capsule_7_1
Lin_capsule_7_2

Capsule at 7 DAF Capsule without seeds at 7 DAF.

21 Lin_capsule_14_1
Lin_capsule_14_2

Capsule at 14 DAF Capsule without seeds at 14 DAF.

22 Lin_capsule_21_1
Lin_capsule_21_2

Capsule at 21 DAF Capsule without seeds at 21 DAF.

23 Lin_capsule_28_1
Lin_capsule_28_2

Capsule at 28 DAF Capsule without seeds at 28 DAF.

24 Lin_seed_3_1
Lin_seed_3_2

Seeds at 3 DAF Seeds without capsule at 3 DAF.

(Continued)
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samples (#19-28) was performed by CTAB with modifications

described previously (Pushkova et al., 2024). After that, total

RNA was additionally cleaned using the CleanRNA Standard kit

(Evrogen, Moscow, Russia) according to the manufacturer’s

protocol with a DNAase I treatment step from the RNase-Free

DNase Set (Qiagen). The quality of isolated RNA was checked by

horizontal electrophoresis in 2% agarose gel and using a 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and

concentrations were measured using a Qubit 4 fluorometer

(Thermo Fisher Scientific, Waltham, MA, USA).
2.4 cDNA library preparation and
sequencing on the Illumina platform

The cDNA libraries were prepared using the QIAseq Stranded

mRNA Select Kit (Qiagen) according to the manufacturer’s protocol.

The quality of the obtained cDNA libraries (agreement of the length

of the obtained libraries with the expected one and the absence of

adapter dimers) was assessed on a Qsep1-Plus capillary

electrophoresis system (BiOptic, New Taipei City, Taiwan), and the

concentration was evaluated on a Qubit 4 fluorometer (Thermo

Fisher Scientific). The cDNA libraries (all samples from Table 1) were

mixed equimolarly and sequenced on a NextSeq 2000 instrument

(Illumina, San Diego, CA, USA) using the NextSeq 2000 P3 Reagents

(100 Cycles) kit (Illumina) in 51 + 51 nucleotide format.
2.5 Genome assembly annotation

RNA-Seq reads were trimmed with fastp 0.23.4 using default

parameters (Chen et al., 2018). Structural annotation for the flax

line 3896 genome assembly (https://www.ncbi.nlm.nih.gov/

datasets/genome/GCA_030674075.2/, accessed on 12 October

2024) (Dvorianinova et al., 2023a) was performed using

BRAKER3 3.0.8 (Gabriel et al., 2024). This process utilized our

RNA-Seq transcriptome data in combination with known

Viridiplantae sequences from OrthoDB protein database for gene

prediction (Kuznetsov et al., 2023). Functional annotation of the

predicted genes was carried out using a local version of

InterProScan 5.69-101.0 to assign functional domains and predict

gene functions (Jones et al., 2014). The completeness of the
Frontiers in Plant Science 04
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eudicots_odb10 dataset). Default parameters of program settings

were used in the data analysis.
2.6 Analysis of transcriptome data

Gene expression analysis was performed with PPline (Krasnov

et al., 2015) with default parameters of program settings and

included the following steps:
• Alignment of the trimmed RNA-Seq reads to the annotated

in the present study reference genome of flax line 3896

using STAR 2.7.2b (Dobin et al., 2013).

• Quantification of gene expression: read overlaps with

annotated genomic features were counted using

featureCounts 1.6.0 (Liao et al., 2014).

• Calculation of the normalized gene expression values, in

counts per million (CPM), using edgeR.

• Sample normalization using TMM to account for

differences in library sizes and composition between

samples.
2.7 Gene enrichment analysis

Custom Gene Ontology (GO) annotation for line 3896 was

constructed using EggNOG-mapper (–tax_scope 33090) (emapper

2.1.12, eggNOG DB version: 5.0.2) for the longest proteins in the

constructed gene annotation (Huerta-Cepas et al., 2019;

Cantalapiedra et al., 2021). Differential gene expression analysis

was conducted for a balanced subset of flax samples: mature leaf

blades from the shoot at 10 cm from the top at 30 days after

germination (DAG), stem fragments 1-3 cm from the top at

30 DAG, roots of seedlings at 5 DAG, hypocotyls of seedlings at

5 DAG, mature flower carpels before pollination at 56 DAG, capsule

without seeds at 14 days after flowering (DAF), seeds without

capsule at 14 DAF, shoot apical meristems (SAM) of seedlings at

5 DAG. Gene expression in each tissue was compared to that in the

other tissues from the subset offlax samples. Genes with FDR (QLF)

< 0.05 and logFC > 1.5 were selected for gene enrichment analysis.
TABLE 1 Continued

# ID Title Description

25 Lin_seed_7_1
Lin_seed_7_2

Seeds at 7 DAF Seeds without capsule at 7 DAF.

26 Lin_seed_14_1
Lin_seed_14_2

Seeds at 14 DAF Seeds without capsule at 14 DAF.

27 Lin_seed_21_1
Lin_seed_21_2

Seeds at 21 DAF Seeds without capsule at 21 DAF.

28 Lin_seed_28_1
Lin_seed_28_2

Seeds at 28 DAF Seeds without capsule at 28 DAF.
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FIGURE 1

Flax organs/tissues studied by transcriptome analysis: (a-d) Apical parts of stem; (e) Seedling; (f) Mature plant with a flower and capsules; (g) Whole flower
and its parts; (h) Capsules and seeds. 1 – SAM (shoot apical meristem); 2 – FAM (floral apical meristem); 3 – Leaf lamina of young leaf; 4 – Leaf lamina of
intermediate leaf; 5 – Leaf lamina of mature leaf; 6 – Stem fragment 1-3 cm from the top; 7 – Stem fragment 9-10 cm from the top; 8 – SAM of seedling;
9 – Cotyledons of seedling; 10 – Hypocotyl of seedling; 11 – Root of seedling; 12 – Anthers of mature flower; 13 – Carpel of mature flower; 14 – Stamen
filaments of mature flower; 15 – Petals of mature flower; 16 – Sepals of mature flower; 17 – Flower without pedicel; 18 – Pedicel; 19-23 – Capsule;
24-28 – Seeds. Numbers in Figure 1 corresponds to those in Table 1.
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Gene enrichment was performed using the constructed annotation,

the selected gene lists, and the topGO 2.54.0 package (Alexa and

Rahnenfuhrer, 2023).
3 Preliminary data analysis

3.1 RNA-seq data characteristics

This article presents data of transcriptome analysis of 28 organs/

tissues of flax line 3896: 7 samples of vegetative organs of actively

growing individuals, 4 samples of seedlings, 7 samples of various

parts of generative organs at flowering stage, and 10 samples of fruits

and seeds at different stages of maturation (Table 1; Figure 1). We set

out to cover all growth stages of flax and all key events in the

development of valuable flax traits. From 5.4 to 20.5million raw reads

(51 + 51 bp) were obtained for each sample on the Illumina platform

(two biological replicates were sequenced for each sample). The raw

data were deposited in the NCBI Sequence Read Archive (SRA)

under the BioProject accession number PRJNA1172129.

After trimming, the reads were mapped to the genome assembly

of line 3896, and on average ~95% of the reads for each sample were

mapped (on average ~90% were uniquely mapped), confirming the

high quality of the transcriptome data.
3.2 Genome annotation

We collected extensive data on gene expression in 28 organs/

tissues of flax line 3896 at different development stages. Using the

obtained transcriptome data and the Viridiplantae protein sequence

database, we annotated the line 3896 genome assembly with

BRAKER3: 39,055 genes and 45,154 transcripts were predicted,

and 37,787 of these genes were annotated using InterProScan

(Supplementary Data Sheet S1). The high completeness of

annotation was achieved according to BUSCO (Benchmarking

Universal Single-Copy Orthologs) – 95.6% (eudicots). Notably,

22.2% of all BUSCO were complete and single-copy and 73.4%

were complete and duplicated. Such a high percentage of duplicated

BUSCO was expected for an ancient tetraploid (Bolsheva

et al., 2017).
3.3 Transcriptome map

Utilizing the obtained annotation of line 3896, we performed an

analysis of our transcriptome data, which resulted in the

identification of genes exhibiting tissue-specific and development

stage-specific expression patterns within flax organs/tissues. This

analysis led to the generation of a comprehensive transcriptome

map for line 3896. To present the data in a convenient format for

further analysis, we used PPline and RTrans (https://github.com/

gskrasnov/RTrans, accessed on 17 October 2024). It was applied to

evaluate the expression levels of the identified genes as read counts
Frontiers in Plant Science 06
per million reads (CPM). Our transcriptome map is summarized in

Supplementary Table S1 and presented as a heatmap

(Supplementary Figure S1).
3.4 Gene pathway enrichment analysis

During the gene pathway enrichment analysis, the following was

found out. For leaves collected at a distance of 10 cm from the apex,

compared to the other organs/tissues, the GO terms were represented

by the processes of photosynthesis, carbohydrate metabolism, plastid

organization, electron transport chain, pigment synthesis, and

transmembrane transport. These processes are characteristic of the

main photosynthetic organ of the plant in the active phase (Müller

andMunné-Bosch, 2021; Leister, 2023). In the stem fragment, located

1-3 cm from the top, the processes of vascular tissue histogenesis,

vascular and phloem transport, stemmorphogenesis, and response to

auxin synthesized in the apical meristem predominated. This is

logical, since we were dealing with an axial organ whose main

function is the transport of metabolites, and the incision was made

close to the site of differentiation (Yoshida et al., 2009; Kułak et al.,

2023). It was determined that the major pathways in the seedling root

included the processes of water and solute transport, root hair

formation and growth, response to chemical and mechanical

stimuli, and metabolism of auxin, other hormones, and secondary

metabolites, which are the main processes occurring in the roots of

vascular plants (Vissenberg et al., 2020; Li et al., 2021; Castillo-

Jiménez et al., 2023). GO analysis of the hypocotyl transcriptome

revealed differential expression of genes related to pathways of amino

acid biosynthesis, as well as active regulation of biosynthetic

processes, brassinosteroid metabolism, and cell growth. These

findings indicate the presence of active development processes in

the axial organs of seedlings (Favero et al., 2021). GO analysis for flax

pistil demonstrated the representation of genes that are associated

with the formation and development of generative structures,

pollination, and pollen tube growth. Furthermore, it demonstrated

representation of genes associated with active ion metabolism, which

is necessary for directed pollen tube growth (Zhou et al., 2022). GO

analysis for a capsule (14 DAF) indicated that the GO terms

associated with the formation of secondary cell wall, synthesis of its

components, and lignification prevailed. These processes enable the

preparation of dry fruits for opening and seed dispersal (Seymour

et al., 2013). Additionally, catabolism of organic compounds used for

cell wall construction and seed maturation is active in ripening

capsules. The differential expression pattern of flax seeds (14 DAF)

was dominated by processes related to seed and fruit development

and maturation, lipid storage and fatty acid synthesis, as well as

abscisic acid (ABA) metabolism and regulation. Oil accumulation

corresponds to the primary function of the seed as a reproductive

organ, and ABA regulates its maturation (Sano and Marion-Poll,

2021; Dvorianinova et al., 2023b). The shoot apical meristem

displayed a hallmark pattern indicative of actively dividing cells.

The process of SAM is characterized by the macromolecule

biosynthesis, ribosome assembly, translation, RNA processing,
frontiersin.org
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DNA reparation, organelle formation, nucleosome assembly, and

chromatin remodeling (Xue et al., 2020; Burian, 2021). Thus, the

results of the gene enrichment analysis of the subset of flax samples in

general looked logical and confirmed the adequacy of the obtained

data. The results are presented in detail in Supplementary Table S2.
4 Conclusions

Flax is of great industrial and nutritional value and is therefore

actively studied at the molecular-genetic level. To date, there are

several flax genome assemblies, some with annotations, and many

scattered gene expression data for different varieties. In this study,

we used Illumina sequencing to obtain comprehensive

transcriptome data for flax line 3896, whose genome is currently

a reference for the species Linum usitatissimum L. in the NCBI

database. Gene expression profiles were analyzed in 28 various flax

organs/tissues at different stages of ontogenesis. With these data we

were able to annotate the genome of line 3896 and generate a high-

quality transcriptome map. The transcriptome map will allow the

identification of genes that have a high expression level in a

particular organ/tissue. Such genes may play a key role in the

biological processes taking place in that organ/tissue. In addition,

data on gene expression profiles during plant development can help

to determine the most important time points at which the processes

of interest occur. The transcriptome map also allows the

determination of gene functions based not only on homology

analysis, but also taking into account gene expression patterns in

different organs/tissues. Thus, the transcriptome map and

annotation presented in this work allow reaching a new level in

the molecular-genetic studies of flax, the search for key genes

responsible for the valuable traits, the development of new

approaches in flax breeding and the creation of improved varieties.
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