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The precise determination of leaf shape is crucial for the quantification of

morphological variations between individual leaf ranks and cultivars and

simulating their impact on light interception in functional-structural plant

models (FSPMs). Standard manual measurements on destructively collected

leaves are time-intensive and prone to errors, particularly in maize (Zea mays

L.), which has large, undulating leaves that are difficult to flatten. To overcome

these limitations, this study presents a new camera method developed as an

image-based computer vision approach method for maize leaf shape analysis. A

field experiment was conducted with seven commonly used silage maize

cultivars at the experimental station Heidfeldhof, University of Hohenheim,

Germany, in 2022. To determine the dimensions of fully developed leaves per

rank and cultivar, three destructive measurements were conducted until

flowering. The new camera method employs a GoPro Hero8 Black camera,

integrated within an LI-3100C Area Meter, to capture high-resolution videos

(1920 × 1080 pixels, 60 fps). A semi-automated software facilitates object

detection, contour extraction, and leaf width determination, including

calibration for accuracy. Validation was performed using pixel-counting and

contrast analysis, comparing results against standard manual measurements to

assess accuracy and reliability. Leaf width functions were fitted to quantify leaf

shape parameters. Statistical analysis comparing cultivars and leaf ranks identified

significant differences in leaf shape parameters (p < 0.01) for term alpha and term

a. Simulations within a FSPM demonstrated that variations in leaf shape can alter

light interception by up to 7%, emphasizing the need for precise parameterization

in crop growth models. The new camera method provides a basis for future

studies investigating rank-dependent leaf shape effects, which can offer an

accurate representation of the canopy in FSPMs and improve agricultural

decision-making.
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1 Introduction

Leaf shape is crucial for light interception and photosynthesis,

directly influencing plant performance and developmental

dynamics. It is characterized by variations in width along the

blade. A precise assessment of leaf dimensions enables the

quantification of morphological variability across different growth

stages, leaf ranks, and cultivar-specific traits, fundamentally

determining leaf area (Bos et al., 2000; Sanderson et al., 1981;

Schrader et al., 2021).

Functional-structural plant models (FSPMs) integrate aspects of

plant architecture, considering interactions between morphology

and physiological processes such as photosynthesis. In FSPMs,

plant organs, including leaves, are represented as individual

entities extending sequentially in 3D from their point of origin.

Although FSPMs are increasingly used, the simulations are still

subject to significant uncertainties due to inaccurate input data,

numerous model parameters and complex structures. With regard

to the simulation of leaf shape and light interception, the

development of robust data acquisition methods and precise

mathematical descriptors is therefore crucial (Chapagain et al.,

2022; Pasley et al., 2022).

Methodologies for assessing leaf shape typically involve

destructive sampling and a manual procedure in which the leaf

width is measured at multiple points along the leaf blade (Shi et al.,

2019). However, this procedure is very time-consuming.

Alternatively, the leaves can be pressed between 2 sheets of acrylic

glass and photographed in order to digitally evaluate their length

and width. For species such as maize (Zea mays L.) with large,

undulating leaves, this method is particularly challenging and often

leads to unreliable and inconsistent results (Supplementary

Figure 1). In other studies, leaf shape was determined using

image recognition software (Schrader et al., 2021) or integrating

mathematical equations (Bos et al., 2000; Sanderson et al., 1981).

Dornbusch et al. (2011) introduced an empirical ‘leaf shape

function’ using digital image analysis of destructively collected,

flattened leaves from Triticum aestivum, Hordeum vulgare, and

Zea mays. For maize leaves specifically, Sanderson et al. (1981)

proposed a model to desribe the shape of fully developed leaves at

any distance from the leaf tip. Based on a sine function, the model

includes the term alpha (alpha > 0) to account for differences in leaf

shape and term a (0.5 ≤ a ≤ 1) for the position of maximum leaf

width. The model assumes an axis of symmetry for every leaf

through the point where maximum leaf width occurs. Still, values

are limited due to the fact that maximum width does not occur at

the leaf base for maize leaves. Building on this equation (Bos et al.,

2000), refined the model accounting for maximum width from the

leaf base to the tip. While the model closely resembles the one

proposed by Sanderson et al. (1981), it adds term beta (0 < beta <
ln 0:5 
ln beta) as a second leaf shape factor. For lower values of term beta,

leaves tend to become wider towards the leaf tip relative to their

maximum width. When beta = 1, the model simplifies to the

mathematical model by Sanderson et al. (1981).

Although mathematical models provide useful approximations,

in FSPMs predominantly a fixed function is used to describe leaves
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without considering rank- or cultivar-specific differences. Only a

few studies have systematically examined maize leaf shape

variability across ranks (Bos et al., 2000; Sanderson et al., 1981)

or cultivars in relation to 3D modeling (Vos et al., 2010).

Developing an efficient and accurate method for quantifying leaf

shapes could enhance light interception modeling and improve

cultivar selection. To address these challenges, our study aims to

develop a novel, computer vision-based approach for precise leaf

shape quantification. Thus, the objectives of this study were: (i) to

develop a computer vision-based camera method to measure leaf

width along the blade of destructively collected leaves, therewith

providing a faster and more scalable alternative to the standard

manual method measuring leaf width along the leaf blade; (ii) to

compare the generated data by fitting the leaf width function, and

determining leaf shape parameters; (iii) to investigate rank- and

cultivar-specific differences in leaf shape; (iv) to test and quantify

what influence these differences in leaf shape have on light

interception within an FSPM.
2 Materials and methods

2.1 Field experiment

A field experiment with seven commonly used silage maize

cultivars was conducted at the experimental station Heidfeldhof,

University of Hohenheim (48°42’52”N 9°11’30”E, 401 m a.s.l.) in

the growing season 2022. According to the World Reference Base

for Soil Resources, the soil was classified as a loess-derived stagnic

Luvisol with a pH of 7.2 and a humus content of 2% (Lehmkuhl

et al., 2021). At the experimental site, the long-term average annual

precipitation (1961–1990) was 679 mm with an average annual

temperature of 8.7°C. In 2022, during the data collection period

from April to August, the average precipitation amounted to 65.9

mm, and the average temperature was 15.9°C, compared to the

long-term average of 74.7 mm and 14.8°C for the same time period

(Table 1). In the field trial, seven commercially available, early-

maturing silage maize cultivars – commonly cultivated under local

growing conditions – were evaluated for differences in leaf shape:

Amaroc, Benedictio, Figaro, LG30.258, Ricardinio, Ronaldinio, and

Stabil (all from KWS Saat SE & Co. KGaA, Einbeck, Germany).

Six months before the sowing, the field was cultivated using a

Claas Arion 640+ (CLAAS KGaA mbH, Harsewinkl, Germany),

which featured a four-furrow plow (LEMKEN GmbH & Co. KG,

Alpen, Germany). In the following spring, all plots were levelled to a

depth of 0.20 m with a harrow (LEMKEN GmbH & Co. KG, Alpen,

Germany). On 19 April 2022, the pre-emergence herbicide ‘Gardo

Gold’ (Syngenta Crop Protection, Basel, Switzerland) was applied

once at a rate of 4 L ha-1 with 400 L ha-1 water using a Fendt Farmer

275 S/SA (AGCO GmbH, Marktoberdorf, Germany) equipped with

the spraying system Amazone UF 901 (Amazonen-Werke H.

Dreyer SE & Co. KG, Hasbergen, Germany). On 21 April 2022,

the field experiment was sown manually with a row width of 0.75 m

and a density of nine plants m-². For fertilization, 80 kg N/ha AHL

was applied on the 30th of May, 2022. The experimental set-up was
frontiersin.org
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a row-column design with four replicates and a total of 28 plots. The

size of each plot was 2 �2.25 m2.

2.1.1 Destructive leaf sampling
To determine the dimensions of fully developed leaves for each

rank per plant and cultivar, three destructive measurements (M1–

M3) were carried out until flowering at 81 days after sowing (DAS):

BBCH 14 (42 DAS; M1), BBCH 32 (64 DAS; M2), and BBCH 65 (81

DAS; M3). A single plant was sampled per plot and measurement

date, and visible leaf collars were counted in ascending order with

each leaf collar corresponding to a single leaf rank. Only fully

developed leaves with visible collars were used for data collection.

Senescent leaves were excluded, resulting in ranks 1 to 4 (M1), ranks

5 to 7 at (M2), and ranks 8 to maximum 16 or 17 (depending on the

cultivar) (M3).
2.2 Leaf width measurement

2.2.1 Manual method (I)
At each measurement date, maximum leaf length Lmax and

maximum leaf width Wmax of each fully developed leaf per plant

were measured manually with a ruler, similar to Bos et al. (2000).

The measurements were taken from the leaf tip to the base.

Depending on Lmax, each leaf was divided into evenly distributed

segment points on the midrib, resulting in a minimum of six points

and a maximum of eleven (M1 andM2) or twelve points (M3). Each

segment point i,Wi was then measured perpendicular to the midrib

to follow the leaf contour systematically. At the first measurement

point, leaf width was W1 = 0 cm.

2.2.2 Camera method (II) - a computer vision
approach

The camera method (II) was developed as an image-based

computer vision approach for determining the maximum leaf

width of destructively collected leaves in a standard indoor

measurement setting. This method integrates computer vision

with the use of an LI-3100C Area Meter (LI-COR Environmental,

Lincoln, NE, USA), which records the leaf area using a solid-state

scanning camera. A mirror system reflects the objects under a

fluorescent light source onto the camera in the rear housing.
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Therewith, measurements in a controlled shadow-free lighting

environment should be guaranteed. By adding a camera for video

recording to an LI-3100C Area Meter, leaf shape analysis can be

performed ‘on the side’ in combination with other measurements

such as leaf area estimation. The camera method (II) itself involves

multiple steps, including leaf assembly from image frames, slicing

the leaf image into smaller segments, image filtering and extraction

of segment contours and determining leaf width (Figure 1). These

steps will be explained in more detail in the following.

First, videos were recorded using a GoPro Hero8 Black camera

(GoPro, San Mateo, CA, USA). The camera was embedded beneath

the two transparent, motorized conveyor belts of the LI-3100C Area

Meter, that transport leaves across a scanning platform, digitally

accumulating total area of leaves analyzed in a session. Adjustable

pressure rollers were used to flatten the curled maize leaves,

ensuring precise surface quantification based on plant-specific

characteristics. Individual maize leaves were placed on the lower

transparent belt and processed through the system. Camera filter

settings were optimized to enhance the contrast between the leaf

and the background. Videos of each leaf, categorized by rank and

plant, were recorded for 30 seconds at a resolution of 1920 × 1080

pixels, 60 frames per second, and saved in MP4 format. As the leaf

moved across the scanning platform, the camera captured

continuous video frames, which were extracted using the

OpenCV library and assembled into full-sized leaf images. For

scale reference, round greenish markers were placed on the LI-

3100C Area Meter lamella during recording (Supplementary

Figure 2). Image processing, including Gaussian blur and Canny

edge detection, as well as analysis, were conducted using the cross-

platform computer vision library OpenCV (Bradski, 2000). A semi-

automated software solution for object detection and dimension

measurement was developed in Python (van Rossum, 1995)

incorporating a user interface built with QtDesigner (www.qt.io).

The software, compiled into a Windows executable using

PyInstaller (https://pyinstaller.org/en/stable/) is based on technical

concepts from PyImageSearch (https://pyimagesearch.com) and is

available as an open-source project on GitHub (https://github.com/

memicemir/video_to_image_and_object_dimension_detection).

The algorithm first detects the coin-like reference object using

contour detection, scanning from bottom to top. Based on the

known width of this reference object (2.47 cm), a calibration metric
TABLE 1 Weather data observation period and long-term average at the experimental site Heidfeldhof, University of Hohenheim, Germany (48°42’52”N 9°
11’30”E, 401 m a. s. l.).

Month Precipitation
2022

Long-term precipitation
(1961-1990)

Temperature
2022

Long-term temperature
(1961-1990)

∑ ∑ Ø Ø

[mm] [mm] [°C] [°C]

April 104.0 56.4 8.5 9.5

May 50.3 82.6 15.5 13.9

June 79.8 92.9 19.4 17.0

July 29.5 67.0 20.3 19.1
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is computed to determine real object dimensions as presented in

(Equation 1):

calibration metric

= detected ‘coin0 width (pixels)=known ‘coin0 width (cm) (1)
Frontiers in Plant Science 04
The Python program identifies the contours of detected objects

in an image, using the first detected object – the coin-like reference

– to establish a diameter calibration metric (Figures 2A, B). This

metric defines the number of image pixels corresponding to a

predefined real dimension (2.47 cm) and is essential for
(A)

(B)

(C)

FIGURE 2

Image-based leaf dimensions (width and length) measurement procedure with reference (‘coin’ like) marker starting from image assembly from
video recording (A), referencing (B) to contour extraction (C).
FIGURE 1

Complete schematic procedure of new camera method measurement approach for measuring leaf width and length.
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calculating the actual width of detected leaf objects (Figure 2C,

red arrows).

To enable frequent leaf width measurements along its entire

length, the software automatically divides a full-size leaf into

multiple segments (Figures 3A-E). The software automatically

segments the leaf into multiple sections to enable frequent width

measurements along its entire length, treating each segment as an

individual object for precise dimension extraction. Image

preprocessing includes Gaussian blur (Figure 3A) and Canny

edge detection (Figure 3B) to produce a smoothed segmented

image. The width of each segment is then calculated using the

calibration metric (Figure 3C). Measurement frequency can be

adjusted based on user preference and leaf morphology: less

frequent measurements for regularly shaped leaves (Figure 3D)

and more frequent leaf witdth sampling for irregularly shaped

leaves to enhance accuracy along the leaf’s length (Figure 3E).

The software detects only the outer edges. It ignores additional

contours caused by fissures from pests or wind damage to ensure

measurement accuracy (red areas in Figure 3F, G).

The final processing step resulted in a dense dataset of observed

leaf width measurements for all designated leaf segments. The width

of each segment was stored in an output file, allowing for the fitting
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of leaf width functions (Figure 3H). Validation was based on pixel-

counting and green-non-green contrast analysis, which were

converted to metric measurements. The image-derived leaf width

data were compared to measurements obtained using the manual

method (I). Data collection of the camera method in the scope of

this study was conducted in 2022 at the Crop Science Institute,

University of Hohenheim.
2.3 Fitting of leaf width function

The datasets from the three destructive measurements (M1, M2,

M3) were merged into a comprehensive dataset. All ranks were

checked graphically to ensure consistency across successive leaf

positions. Leaf length and width values were normalized relative to

their maximummeasurement, allowing for standardized comparisons

across leaves of different sizes. The leaf width (Equation 2) by

Sanderson et al. (1981) was fitted to datasets of first, the manual

method (I) and then, the camera method (II). Therewith, term alpha

and term a were determined separately for each rank and cultivar and

concerning the respective method (I) or (II). Model fitting was

performed using the nlsLM package (R 4.1.0, R Core Team, 2021).
(A) (B)          (C)      (D)                  (E)

(F)

(G)

(H)

FIGURE 3

Leaf analysis (leaf width and length) of multiple segments in images (A) based on contour capture (B) to produce smoothed leaf segmented image
(C) with optional measurement frequency (D, E). Image analysis approach along irregular leaf shape and defects within the leaf (F, G) for producing
(fitting) data points along the leaf (H).
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(Equation 2) by Sanderson et al. (1981):

wi = sin
p
2a

li
� �a

(2)

where wi is the relative leaf width at relative length li from the

leaf tip, term a is the ‘ratio factor’ of li with 0.5< a ≤ 1, at which

maximum width occurs, term alpha is the ‘shape factor’ with a > 0.

Estimates were obtained for the relative leaf width and term alpha

and term a. Observed relative width values were regressed on

estimated width values using manual method (I) and camera

method (II). Adjusted R² and root mean square error (RMSE)

were calculated. Regression analyses were conducted using SAS 9.4

(SAS Institute Inc., 2016). Model visualization was performed in R

4.1.0 (R Core Team, 2021).
2.4 Functional-structural plant model for
simulating light interception

For quantifying the effect of different leaf shapes on light

interception, a functional-structural plant model (FSPM) was

developed on the Growth Grammar-related Interactive Modeling

Platform GroIMP (Kniemeyer, 2008). The primary goal of the

simulations was to isolate the effect of leaf shape on light

interception. The light distribution and interception of individual
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organs were simulated with the GPUFluxModel based on Monte-

Carlo ray tracing (van Antwerpen, 2011). The light model was used

with 200 M light rays and a reflection depth of 30. Simulations were

performed with an increasing number of light rays and reflection depth

until differences between multiple simulations of the same setup

appeared negligible (< 0.001), based on observed mean values and

standard deviations per treatment and simulation run. The hourly

diurnal course of direct sunlight was calculated based on the latitude of

the study site, and for the day of year 180 (Figure 4A). The fraction of

diffuse sunlight was set to 0.2. The diffuse sunlight was simulated by 72

light sources arranged in six arrays across the hemisphere. The light

rays were emitted from these light sources into the scene and reflected,

transmitted, or absorbed by the leaves. Reflectance and transmittance

were set to 0.0923 and 0.0127, respectively (Evers et al., 2010; Zhu et al.,

2015). Internodes were simulated as cylinder objects, while leaves were

composed of 100 individual parallelograms that varied in width along

the leaf according to (Equation 2) with cultivar-specific or fixed

parameter values. Expansion of internodes and leaves was calculated

using the sigmoid function y(t) = ymax/1 + e (-k * (t – thalf)) with k =

0.05 and thalf = 40°Cd. Successive leaf appearance was simulated based

on growing degree days (local daily minimum and maximum

temperature, Tbase = 8°C) and a phyllochron of 30°Cd. The angle

between consecutive leaves was 160°. To ensure that only differences in

leaf shape were assessed in the simulations, (i) themaximum leaf length

and the length-to-width ratio (LWRatio) of each leaf rank were derived
(A)

(B)

FIGURE 4

Visualization of the FSPM with 72 light sources in the scene (direct hourly light sources in yellow, diffuse light sources in white) (A) used to evaluate
the effect of leaf shape on canopy light interception (B).
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from the measured data as an average of the seven cultivars, and (ii) the

width was further normalized to maintain a consistent leaf area across

different shapes (Figure 4B). Therefore, all parameters related to plant

structure – such as expansion dynamics, final internode dimensions

(length and radius, and leaf attributes including length, length-to-width

ratio, angle, and curvature – were kept identical across all cultivars.

Additionally, leaf length and length-to-width ratio were averaged per

rank across cultivars to ensure consistency. Since leaf shape influences

total leaf area even when length and width remain unchanged, it is

impossible to analyze leaf shape in isolation. To account for this, leaf

width was adjusted to achieve uniform leaf area across different shapes,

following the Equations 3, 4:

Leaf width (adj) = leaf length ∗ (1=LWRatio) ∗ (0:75=c) (3)

Leaf Area = Length ∗Width (adj) ∗ c (4)

where c is the leaf area coefficient, obtained by integrating the

leaf shape function in 100 steps from 0.01 to 1.0. This coefficient

defines the percentage of a rectangle of a given width and length

that is occupied by the leaf. The commonly used factor of c = 0.75

(Sanderson et al., 1981) was applied for normalization.

Consequently, leaf width increases for c < 0.75 and decreases for c

> 0.75. Ultimately, regardless of leaf shape, leaf area remained

constant. Simulations were run from the date of sowing until the

last measurement date for a total of 81 days. The plant canopy was

designed equivalent to the field experiment with a row distance of

0.75 m and a plant density of 9 plants m-2, resulting in a plant

distance within the row of 0.15 m. Six rows with 14 plants each were

simulated. The architecture of all plants in a simulation was

uniform, regardless of their position within the canopy and the

amount of light they individually intercepted. Daily light

interception per leaf rank was averaged for the plants in the

centre of the simulated scene to avoid border effects. To evaluate

differences in canopy light interception between cultivars, the sum

of all leaf ranks was taken, and the value per cultivar was divided by

the maximum value of all cultivars. Each simulation was run twice

to estimate the standard errors, which were always small due to the

large number of light rays and the high reflection depth.

To further investigate extreme leaf shape characteristics,

different combinations of term alpha and term a ranging from 0.5

to 1.0 were analyzed. Low values resulted in more elliptical leaves

while high values resulted in more lanceolate leaves. Throughout

these simulations, leaf area was kept constant to ensure that

observed changes resulted solely from differences in leaf shape.

This approach quantified the maximum effect on light interception

outside the range of the leaf shapes found for the cultivars in this

study. The statistical analysis was performed using multiple linear

regression in SAS 9.4 (SAS Institute Inc., 2016). The model included

the term alpha and term a as well as their interactions in order to

evaluate their influence on light interception. The significance of the

main effects and interactions was determined using F-tests from the

regression analysis.
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2.5 Statistical analysis between cultivars
and leaf ranks

To detect significant differences between cultivars and leaf ranks

in the estimated parameters of term alpha and term a, a mixed

model was fitted with SAS 9.4 (SAS Institute Inc., 2016) according

to Equation 5:

yjklmn = m + bl + rm + plmn + tj + jk + (tj)jk +   ejklmn (5)

where yjklmn is the parameter estimate from leaf rank k of plant n

grown in the l-th bock and m-th row of cultivar j, m is the intercept,

bl , rm, and plmn are the random effects of block l, row m and plant n

grown in block l and row m. The terms tj, jk, and (tj)jk are the

fixed treatment effects of cultivar j and leaf rank k and their

interaction effects, and ejklmn is the error of yjklmn. Block and row

were included as random effects to account for spatial variability,

while plants nested within row and block controlled for individual

variability in leaf morphology, showing improved model accuracy.

Error effects of the same plant were assumed to have a common

variance-covariance structure. A first-order autoregressive plus

nugget variance-covariance structure was assumed with leaf rank-

specific variance. The variance of errors of the first-order

autoregressive part was assumed to be proportional to the

variance of the estimates, as a weighted analysis was performed.

Normal distribution and homogeneous variance of residuals were

checked graphically for both parameters via residual plots. Least-

squares (LS) means were calculated and a Tukey-Test (a = 0.05)

was performed. Multiple mean comparisons were then presented

via letter display.
3 Results

3.1 Evaluation of model fit for estimated
relative width

The evaluation of data obtained using the manual method (I)

was based on 4654 data points, whereas the camera method (II)

provided a much higher data density of 68586 data points. Linear

regression analysis evaluating the relationship between estimated

relative width and observed relative width resulted in adj. R² =

0.9733 and RMSE = 0.0502 for the manual method (I) (Figure 5A)

and adj. R² = 0.9093 with RMSE = 0.0850 for the camera method

(II) (Figure 5B).

Function fits were applied to data from both methods (I) and (II),

allowing leaf shapes to be determined for all measured specimens. In

some cases, the contour detection of the camera method (II)

produced outliers, reflecting the relationship between high data

density and software resolution. Notably, all recorded individual

images were used for data generation and processing using a single

evaluation algorithm. Detailed individual fit results for each

measurement and method are provided (Supplementary Figures 3-8).
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3.1.1 Regression and correlation analysis of LS
means for term alpha and term a

Both methods were compared with regard to the term alpha and

term a in order to check the reproducibility and accuracy. For term

alpha, regression analysis on the observed relative leaf width yielded

an adj. R² = 0.7513 and RMSE = 0.1414. For term a, regression

analysis resulted in adj. R² = 0.4591 and RMSE = 0.0377.
3.2 Comparative statistical analysis of
cultivars and leaf ranks

Statistical analysis comparing cultivars and leaf ranks revealed

significant differences (p < 0.01) for term alpha and term a

according to (Equation 2). These differences were observed for

the fixed effects of cultivar, rank, and their interactions. The results

obtained from the manual method (I) are provided (Supplementary

Figures 9, 10). As the primary focus of this study is the newly

developed camera-based method (II), its results will be presented in

the following.
3.3 Camera method (II): term alpha

3.3.1 Rank-by-cultivar differences
Overall, term alpha, representing the ‘leaf shape’ factor, showed

a wavy curve profile for all rank-by-cultivar differences, with peak

values around rank 4 and rank 14 (Figure 6). At first rank, term

alpha became the lowest (alpha ≤ 0.56), which was observed

independent of the cultivar. Therewith, the term alpha always

became significantly lower compared to the other plant ranks. For

the cultivars Benedictio and Stabil, rank 2 was also below this limit.

An exception was found for the cultivar Figaro, with its minimum at

rank 17 for the term alpha (alpha = 0.51). In contrast, maximum
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values for alpha varied depending on the cultivar representing

shape differences. For cultivar Amaroc, a maximum across all

ranks was found at rank 3 (alpha = 1.01), and for cultivar

LG30.258 (alpha = 1.02) and Ronaldinio (alpha = 1.02). At rank

4, however, the term alpha showed a maximum value for

cuextreltivar Ricardinio (alpha = 0.97) as well as for cultivar

Stabil (alpha = 1.15). For cultivar Benedictio, the maximum was

found at rank 13 (alpha = 1.20), and for Figaro, it was found at rank

15 (alpha = 1.19).

3.3.2 Cultivar-by-rank differences
Cultivar-by-rank differences became significant at rank 4, 14

and 15 (Table 2). At rank 4, the term alpha of cultivar LG30.258

(alpha = 0.80) and Ronaldinio (alpha = 0.81) was significantly lower

compared to cultivar Stabil (alpha = 1.15). At rank 14, cultivar

Amaroc (alpha = 0.86), LG30.258 (alpha = 0.80), and Ronaldinho

(alpha = 0.99) were significantly different from cultivar Benedictio

(alpha = 1.16), Figaro (alpha = 1.16), and Stabil (alpha = 1.13). At

rank 15, cultivar Amaroc (alpha = 0.67) was significantly lower

compared to cultivar Benedictio (alpha = 1.13) and Figaro (alpha

= 1.19).
3.4 Camera method (II): term a

3.4.1 Rank-by-cultivar differences
For all cultivars, term a increased with rank (Figure 7). Within

each cultivar, term a was minimal at rank 1 with a ≤ 0.52.

Exceptions were found at rank 2 of cultivar Benedictio and

LG30.258, and at rank 17, cultivar Figaro, where term a was

below this limit, too. Maximum values ranged from 0.63 to 0.77

at upper ranks (rank >15) across all cultivars. For cultivar Figaro,

the maximum for term a was found at rank 15 (a = 0.69), for

cultivar Benedictio at rank 16 (a = 0.71) as well as for LG30.258 (a =
(A) (B)

FIGURE 5

Linear regression analysis between estimated relative width and observed relative width data in (Equation 2) of manual method (I) (A) and camera
method (II) B).
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0.77) and Stabil (a = 0.71). For cultivar Amaroc (a = 0.73),

Ricardinio (a = 0.70), and Ronaldinio (a = 0.68), the maximum

was at rank 17.

3.4.2 Cultivar-by-rank differences
Cultivar-by-rank interactions for term a showed significant

differences at ranks 14 and 17 (Table 3). At rank 14, cultivar

Stabil was significantly higher (a = 0.67) than the cultivars

LG30.258, Ricardinio, and Ronaldinio with a ≤ 0.62. At rank 17,

cultivar Figaro was significantly smaller with a = 0.50 compared to

the other cultivars.
3.5 Effect of leaf shape on light
interception

Within the FSPM, the light interception of the entire canopy

was simulated, with leaf length and leaf area set as constants to

isolate the effects of leaf shape: This ensures that the observed

differences stem solely from shape variations rather than other

factors such as leaf size or biomass distribution. Using the

previously described FSPM, maximum light interception occurred

at the ranks 10 to 12, depending on the cultivar. Throughout the

vegetation period, no significant differences were observed across

cultivars. The increase in light interception between 30 and 60 days

after sowing followed a similar trajectory for all cultivars.

Differences became evident only at the end of the simulation
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(Table 4). To assess rank-dependent effects, rank 14 was analyzed

separately after term alpha and term a were identified as significant

for the interaction between cultivar and rank. Canopy-level light

interception ranged from 0.98 (cultivars Amaroc and Ronaldinio)

to 1.00 (cultivar Benedictio). At rank 14, greater variability was

observed between cultivars, ranging from 0.93 (cultivar Ricardinio)

to 1.00 (cultivar Stabil). Since no statistically significant differences

in canopy-level light interception were detected among the seven

maize cultivars, further simulations were conducted to examine

how extreme leaf shapes would influence light interception

(Figure 8). As a result of these more extreme leaf shapes, light

interception declined by up to 7%, depending on the term alpha and

term a (Table 5). Statistical analysis showed a significant effect of

term alpha on light interception (p = 0.0098) and a significant

interaction effect (p = 0.0016). However, term a was not found to be

significant (p = 0.1670).
4 Discussion

The camera method (II) was developed as an computer vision-

based approach for determining the maximum leaf width of

destructively sampled leaves along the leaf blade using computer

vision within a controlled standard indoor measurement

environment. Validation of the camera method (II) was based on

pixel counting and green-non-green contrast analysis, which were

converted into metric measurements and compared with manual
(A), (B)

(C), (D)

(E), (F)

(G)

FIGURE 6

Camera method (II) data for term alpha. Rank-by-cultivar differences were analyzed for (A) Amaroc; (B) Benedictio; (C) Figaro; (D) LG30.258; (E)
Ricardinio; (F) Ronaldinio; (G) Stabil. Results are presented as least square mean ± standard error (LSmean ± SE). Means with at least one identical
letter are not significantly different from each other as indicated by the Tukey-Test (a = 0.05).
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method (I) data. With the automatic evaluation algorithm,

thousands of images could be analyzed which offered a time-

efficient and high throughput rate. However, it should be noted

that leaf overlaps or curvatures can affect contour detection,

resulting in slight distortions in shape detection. Therefore, a

controlled lighting environment with minimal dust exposure is

recommended to maximize measurement accuracy. This study

analyzed images from video recordings of maize leaves using a

single software configuration. However, the software is fully

customizable, allowing precise adjustments based on user-defined

image processing parameters. Refining these parameters could

further improve the accuracy of contour detection. Such

adjustments would be especially beneficial for smaller datasets,

where individual image evaluations can be manually refined.

Finally, the measured width for each segmented leaf was stored in

an output file. Compiling these output files generated a

comprehensive dataset of observed relative leaf width data along

the blade for the camera method (II). Fitting (Equation 2) to the

data allowed for estimated leaf width values and leaf shape
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parameters by rank and cultivar, demonstrating both feasibility

and reproducibility.

To preselect the appropriate leaf shape function and to validate

the camera method, the regression analysis was first performed on

the data collected using the manual method (I). The regression fit

demonstrated that the equation according to Bos et al. (2000)

provided the best overall model fit, yielding adj. R² = 0.9871 and

RMSE = 0.0349, compared to (Equation 2), which resulted in adj. R²

= 0.9733 and RMSE = 0.0502. Moreover, with a sample size of 450

leaves, the term beta significantly deviated from 1 (p = 0.0273; beta

= 0.89; 95% confidence interval: 0.788 to 0.985). However, the

difference from (Equation 2) was considered negligible for the final

estimation. In this regard, note that adj. R² was consistently used to

account for the number of estimated parameters. The correlation

between the estimated relative width values using (Equation 2) and

the equation according to Bos et al. (2000) yielded a Pearson

correlation coefficient of 0.9924, indicating that both models

resulted in highly correlated estimates of relative width It is

important to note that this study focused on treatment

differences; therefore, possible scale-level variation in (Equation 2)

and the alternative equation of Bos et al. (2000) were irrelevant.

(Equation 2), according to Sanderson et al. (1981), was developed

specifically for estimating leaf width in plant growth models.

A fundamental challenge in plant modeling is to achieve an

optimal balance between complexity and variability. Models must

be sufficiently detailed to simulate biological mechanisms

accurately. However, increasing complexity can compromise

stability and increase the risk of errors and uncertainties.

Consequently, overparameterization of FSPMs should be

minimized to improve computational efficiency through model

simplification and optimization of functional performance

(Chapagain et al., 2022; Pasley et al., 2022). Regression analysis

confirmed the high accuracy of function fitting, validating both the

feasibility and reliability of the new camera method (II). Occasional

outliers likely resulted from minor distortions due to the uniform

image evaluation algorithm. Statistical analysis of LS means by rank

and cultivar revealed significantly lower values for term alpha at

rank 1 across all cultivars, reinforcing the correlation between leaf

shape and rank position (Bos et al., 2000). Compared to the manual

method (I), the camera method (II) produced a smoother rank

profile, likely due to its tenfold increase in measurement points and

contour detection algorithm.

Cultivar-specific differences in maximum values of term alpha

indicated significant rank-by-cultivar interactions. These findings

support the validity of the camera method (II) in capturing leaf

shape variations with high consistency. Among the seven maize

cultivars tested, distinct cultivar-by-rank variations were observed

for term alpha at rank 4, 14, and 15 (Bos et al., 2000; Sanderson

et al., 1981). Likewise, for the ‘ratio factor’ term a, a rank-dependent

increase was observed toward the final ranks across all cultivars

except for cultivar Figaro, with significant differences at ranks 14

and 17. These results align with Dornbusch et al. (2011), who

reported rank-related leaf shape variations across different cultivars,

independent of sowing date and growth conditions, while

emphasizing that cultivar-specific discrepancies remained
TABLE 2 Camera method (II) for term alpha. Significant cultivar-by-rank
differences at rank 4, 14 and 15.

Cultivar-by-rank Cultivar LSmean
HSD
(a = 0.05)

Cultivar rank 4 Amaroc 0.83 ab

0.24

Benedictio 0.95 ab

Figaro 0.98 ab

LG30.258 0.80 b

Ricardinio 0.97 ab

Ronaldinio 0.81 b

Stabil 1.15 a

Cultivar rank 14 Amaroc 0.86 b 0.19

Benedictio 1.16 a

Figaro 1.16 a

LG30.258 0.80 b

Ricardinio 0.87 b

Ronaldinio 0.99 ab

Stabil 1.13 a

Cultivar rank 15 Amaroc 0.67 b

0.31

Benedictio 1.13 a

Figaro 1.19 a

LG30.258 0.72 ab

Ricardinio 0.88 ab

Ronaldinio 0.86 ab

Stabil 0.84 ab
Results are presented as least square mean ± Tukey’s Honestly Significant Difference (HSD) at
a = 0.05 (LSmean ± HSD). Means with at least one identical letter are not significant different
from each other as indicated by Tukey-Test (a = 0.05).
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minimal. For the FSPM, estimated parameters for term alpha and

term a were obtained using the camera method (II). The

simulations revealed minor variations in canopy-level light

interception among the seven maize cultivars evaluated. At 81
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days after sowing, light interception values remained high across

most ranks (0.98 to 1.00); however, rank 14 exhibited significant

differences, ranging from 0.93 to 1.00. These subtle variations may

originate from genetic differences between cultivars, further

confirming the suitability of FSPM for analyzing feedback

mechanisms between physiological processes – both at the level of

individual plant organs and at the canopy level (Vos et al., 2010). To

enhance the applicability of these findings, future studies should

examine maize cultivars of different maturity groups to enable a

more comprehensive characterization of light interception

dynamics. Additionally, incorporating data from multiple
(A), (B)

(C), (D)

(E), (F)

(G)

FIGURE 7

Camera method (II) data for term a. Rank-by-cultivar differences were analyzed for (A) Amaroc; (B) Benedictio; (C) Figaro; (D) LG30.258; (E)
Ricardinio; (F) Ronaldinio; (G) Stabil. Results are presented as least square mean ± standard error (LSmean ± SE). Means with at least one identical
letter are not significantly different from each other as indicated by the Tukey-Test (a = 0.05).
TABLE 3 Camera method (II) for term a. Significant cultivar-by-rank
differences at rank 14 and 17.

Cultivar-by-rank Cultivar LSmean HSD (a = 0.05)

Cultivar rank 14 Amaroc 0.63 ab

0.04

Benedictio 0.65 ab

Figaro 0.63 ab

LG30.258 0.62 b

Ricardinio 0.62 b

Ronaldinio 0.61 b

Stabil 0.67 a

Cultivar rank 17 Amaroc 0.73 a

0.30

Benedictio 0.69 a

Figaro 0.50 b

Ricardinio 0.70 a

Ronaldinio 0.68 a
Results are presented as least square mean ± Tukey’s Honestly Significant Difference (HSD) at
a = 0.05 (LSMean ± HSD). Means with at least one identical letter are not significantly
different from each other as indicated by the Tukey-Test (a = 0.05).
TABLE 4 Simulated canopy light interception relative to the maximum
for the seven cultivars at the end of the simulation at 81 days
after sowing.

Cultivar
Relative light interception

Canopy Rank 14

Amaroc 0.98 0.97

Benedictio 1.00 0.96

Figaro 0.99 0.94

LG30258 0.99 0.99

Ricardinio 0.99 0.93

Ronaldinio 0.98 0.97

Stabil 0.99 1.00
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locations and growing seasons would account for environmental

variability, further improving model accuracy and predictive

capacity (Dias et al., 2019).

Although the estimated leaf shapes of the seven maize cultivars

evaluated in this study did not significantly impact light

interception at the canopy level, simulations of more extreme leaf

shapes revealed variations of up to 7%. These findings underscore

the importance of precise leaf parameterization and highlight that

leaf shape variability can substantially impact light interception.

Furthermore, the most extreme configuration (term alpha = 1; term

a = 1.0) exhibited maximum leaf width at the base, potentially

leading to increased shading effects and altered light distribution

within the canopy. In detail, our results demonstrate that, that the

term alpha as the ‘shape factor’ had a significant effect on light

interception, whereas the term a as the ‘ration factor’ did not show a

statistically significant effect. The strong interactions between these

terms underscores the need to consider interaction effects when

modeling light interception. Our findings align with previous

studies (Bos et al., 2000; Dornbusch et al., 2011; Sanderson et al.,

1981), suggesting that a more detailed leaf parameterization may be

necessary to simulate different cultivars correctly. It is evident that

leaf shape, in combination with leaf orientation, shading dynamics,

and the overall structure of the canopy, plays a fundamental role in

determining the efficiency of light interception. Intra-canopy light

distribution and shading patterns are influenced by variability in

leaf shape and size, thereby modulating photosynthetic
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performance and potentially altering radiation use efficiency.

However, leaf shape must also be part of a broader architectural

framework, interacting with factors such as leaf expansion, leaf area,

leaf angle, plant growth characteristics, plant density, and

competition. These factors collectively regulate canopy light

interception, biomass accumulation, and overall crop productivity

(Collison et al., 2020; Yang et al., 2019). Further investigations are

therefore needed to test to which extend leaf shape variability

translates into physiological changes and affects biomass

accumulation and yield under various conditions.

With regard to leaf area estimation, Sanderson et al. (1981)

demonstrated that by applying (Equation 2) for leaf width

considering fixed parameters (term alpha = 0.85; term a = 0.70),

leaf area of fully developed leaves can be accurately calculated. The

leaf area (LA) of fully developed leaves is typically determined using

the formula LA = c �  LL � LW , where c is a crop-specific leaf

area coefficient, LW is maximum leaf width, and LL is leaf length.

For maize, regardless of rank, growth stage, or cultivar, the leaf area

coefficient c = 0.75 is most commonly used (Montgomery, 1911;

Sanderson et al., 1981). However, to enhance the accuracy of leaf

area estimation, this coefficient should be treated as a dynamic

variable, adapting as leaf expansion and shape modifications occur

during growth (Dornbusch et al., 2011; Schrader et al., 2021). For

Poaceae species, including maize, leaf area coefficients actually

range from 0.70 ≤ c ≤ 0.75. Our simulations indicate that rank-

specific leaf shape variability allows precise leaf area coefficient

estimation, utilizing relative leaf length and the leaf shape to predict

term alpha and term a. The camera method (II) could also be used

to estimate leaf area coefficients for non-destructive evaluation of

leaf developmental rates. When term alpha ranged from 0.5 ≤ alpha

≤ 1.0 in increments of 0.1 while term a remained constant (a = 0.7),

integrated leaf width functions in the FSPM resulted in notable

alterations in the cumulative leaf area, confirming the calculations

of Sanderson et al. (1981). These results suggest that a rank-

dependent leaf area coefficient could significantly improve the

accuracy of leaf area estimation through scaling functions,

considering the estimated leaf size, as proposed by Schrader et al.

(2021). During leaf expansion, the leaf area coefficient can vary, for

example, between 0.68 < c < 0.82 for alpha = 0.7.

The overall results emphasize the importance of dynamic

parameterization of leaf shape to enhance the accuracy of leaf

area estimation in maize. Additionally, they highlight the
TABLE 5 Simulated canopy light interception (relative to maximum), 81
days after sowing for different leaf shapes calculated according to
(Equation 2) with the combinations of term alpha and term a between
0.5 and 1.0 in steps of 0.1.

alpha
a

0.50 0.60 0.70 0.80 0.90 1.00

0.50 0.97 0.97 0.97 0.98 0.96 0.96

0.60 0.99 0.98 0.97 0.97 0.95 0.96

0.70 0.99 0.98 0.96 0.97 0.96 0.95

0.80 1.00 0.98 0.96 0.96 0.96 0.96

0.90 1.00 0.98 0.95 0.95 0.94 0.94

1.00 1.00 0.96 0.95 0.96 0.94 0.93
FIGURE 8

Visualization of leaf shapes calculated according to (Equation 2) with the combinations of term alpha and a between 0.5 and 1.0 in steps of 0.1.
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potential of the proposed camera method (II) for broader

applications in crop modeling and phenotyping. Although the

presented camera method (II) was primarily developed for maize

(Zea mays L.) and tested on seven cultivars of the same maturity

group, we see the potential that the method may be applied to other

maize cultivars and maturity groups and under diverse

environmental conditions. Additionally, the camera method (II)

could be transferred to other crops with large, undulating leaves, for

example sorghum (Sorghum bicolor) or sunflower (Helianthus

annuus). However, adapting the camera method (II) to different

species than maize may require modifications in image processing,

particularly in segmentation and calibration, to accommodate

species-specific morphological traits. Future research should

systematically investigate the possibility to transfer this approach

to additional plant species beyond maize, particularly regarding

rank-dependent leaf shape variations. Expanding the applicability

of the camera-based method (II) could improve canopy structure

representation in FSPMs, leading to a more realistic depiction of

plant architecture, light utilization, and biomass production.
5 Conclusion and outlook

This study introduced a computer vision-based method for fast and

accurate measurement of maize leaf width in a controlled indoor

environment, utilizing a GoPro Hero Black camera and an LI-3100C

Area Meter. The method effectively captured the position of maximum

leaf width, enabling precise characterization of rank-based leaf shape

variations according to the equation by Sanderson et al. (1981). The

Python-based software tool developed for video sequence and image

analysis was applied in this study using a single configuration for all

images, ensuring consistency in the evaluation process, with no

individual images discarded. While the standardized setup proved

effective for large datasets, an individualized configuration could

further improve contour detection accuracy, particularly for smaller

datasets. The software tool is publicly available as part of this

publication. By integrating estimated leaf width values into a

functional-structural plant model (FSPM), simulations demonstrated

that extreme leaf shapes can alter light interception by up to 7%,

highlighting the importance of precise parameterization. The method

provides a scalable, non-destructive approach for estimating leaf area in

developing maize plants and has potential applications in phenotyping.

Future research should explore its adaptability to other crops with large,

undulating leaves while refining segmentation and calibration

techniques for species-specific traits. Additionally, incorporating leaf

shape dynamics – such as expansion rates and specific leaf area – into

FSPMs would enhance yield predictions and deepen our understanding

of plant growth processes.
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