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Introduction: Neodymium (Nd), a rare earth element (REEs), is widely utilized in

industry. Although the detailed biological role of Nd in plant biology is unclear,

recent reports have noted its oxidative phytotoxicity at concentrations higher

than 200mg kg-1 soil. At present it is unclear if these detrimental effects could be

offset by the global rise in atmospheric carbon dioxide concentration ([CO2])

which has been shown to enhance photosynthesis and growth in a wide range of

C3 plant species.

Methods: To assess any amelioration effects of [CO2], a phytotoxic dose of Nd (III)

was given to wheat grown under two scenarios of atmospheric CO2, ambient levels

of CO2 (aCO2, 420 ppm) and eCO2 (620 ppm) to assess growth and photosynthesis.

Results and discussion: Our results suggest that at ambient [CO2], Nd treatment

retarded wheat growth, photosynthesis and induced severe oxidative stress. In

contrast, eCO2 reduced the accumulation of Nd in wheat tissues and mitigated

its negative impact on biomass production and photosynthesis related

parameters, i.e., photosynthetic rate, chlorophyll content, Rubisco activity and

photochemical efficiency of PSII (Fv/Fm). Elevated [CO2] also supported the

antioxidant defense system in Nd-treated wheat, enhanced production of

enzymatic antioxidants, and more efficient ascorbate-glutathione recycling

was noted. While additional data are needed, these initial results suggest that

rising [CO2] could reduce Nd-induced oxidative stress in wheat.
KEYWORDS

neodymium, elevated CO2, wheat, photosynthesis, antioxidants
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1521460/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1521460/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1521460/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1521460/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1521460&domain=pdf&date_stamp=2025-04-28
mailto:AFAMohammed@pnu.edu.sa
https://doi.org/10.3389/fpls.2025.1521460
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1521460
https://www.frontiersin.org/journals/plant-science


Saleh et al. 10.3389/fpls.2025.1521460
1 Introduction

Extensive human activities are slowly increasing atmospheric

carbon dioxide concentration [CO2] in the atmosphere (Nunes,

2023). In addition to its role as a greenhouse gas, [CO2] is the

primary source of carbon for plant photosynthesis and its increase

has been associated with improved growth and fecundity for a

number of C3 plant species, including crops (AbdElgawad et al.,

2022b, 2023; Ziska, 2022).

Although plant response to [CO2] per se is acknowledged as

beneficial, interactions with other abiotic parameters, including

heavy metals, is still unclear. Work on arsenic in rice has

suggested that elevated [CO2] may increase arsenic concentration

in the rice grain (Wang et al., 2023); conversely, elevated [CO2]

attenuated the toxicity of NiO-nanoparticles on wheat (Saleh et al.,

2019); arsenic oxide nanoparticles on Zea mays (Selim et al., 2021);

and silicon dioxide nanoparticles on pea (Shabbaj et al., 2021).

Rare earth elements (REEs), which include scandium, yttrium, and

the 15 lanthanides, possess distinctive properties that make them

highly valuable across various industries and products. REEs are

integral to high-tech devices such as rechargeable batteries,

computers, mobile phones, medical imaging equipment, LCD

screens, and radar systems (Hu et al., 2016). Additionally, in

agriculture, these elements are used in small concentrations as

fertilizers; however, elevated levels can negatively impact edible

horticultural crops, leading to environmental and human health

risks. The bioaccumulation of REEs has been shown to adversely

affect aquatic organisms (Revel et al., 2025), as well as terrestrial life,

including plants, animals, and humans (Wang et al., 2024; Petrini et al.,

2025). Therefore, it is important to investigate the potential hazards

associated with REEs accumulation under different environmental

conditions. Understanding these dynamics is critical for promoting

safe and responsible use of these elements in various applications.

The rising levels of atmospheric [CO2] may enhance plant

growth and resilience, potentially counteracting the adverse effects

of rare earth elements (REEs) however, its role to compensate, or

exacerbate, any REE in plant effects has not been evaluated.

Neodymium (Nd) is a lanthanide and falls within the category of

rare earth elements (REEs). Available reports indicate that Nd

concentrations in uncontaminated soils can range from 5.8 to 53

mg kg-1 (Carpenter et al., 2015; Patra et al., 2020; Wang et al., 2020).

Although its biological role of Nd is still obscure, phytotoxicity of Nd

has been reported (Zhao et al., 2019). The phytotoxicity of a high Nd

dose (319.00 mg kg-1) on plant growth was stronger compared to

other REEs, i.e., Sm, Tb, Dy and Er (Carpenter et al., 2015). Therefore,

more investigations are needed to address Nd effect on some

important crops in the human nutrition such as wheat (Triticum

aestivum) which has been chosen for the current study.

Wheat is a crucial staple in the human diet, particularly in

developing countries (Rizvi et al., 2020). While there is established

evidence regarding the negative effects of heavy metals such as

bismuth, cadmium, copper, and zinc on various biological processes

in wheat (Mohammed et al., 2023, Athar and Ahmad, 2002;

Hammami et al., 2022), the interaction between rising

atmospheric CO2 levels and heavy metal contamination remains
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inconsistent. For instance, a Free-Air CO2 Enrichment (FACE)

study found that elevated CO2 levels resulted in reduced copper

(Cu) concentrations but increased cadmium (Cd) concentrations in

both the shoots and grains of wheat and rice grown in contaminated

soils (Guo et al., 2011).

While detailed investigations on neodymium (Nd) exposure in

relation to elevated [CO2] per se are currently limited, this study

aims to fill that gap. Therefore, the objectives currently were to

assess the redox status of wheat under Nd stress, both with and

without supplemental CO2, and to examine the impact on key

physiological processes, including photosynthesis. To evaluate the

accumulation of Nd in plant tissues, along with key growth

parameters and photosynthetic efficiency. To monitor changes in

wheat stress markers and analyze the activity of molecular and

enzymatic reactive oxygen species (ROS) scavengers, as well as the

components of the ascorbate-glutathione cycle. Through this

comprehensive assessment, authors aimed to deepen our

understanding of how elevated CO2 can influence wheat’s

response to Nd exposure, providing valuable insights into both

plant physiology and environmental interactions.
2 Methods

2.1 Plant growth and treatments

Wheat (Triticum aestivum L., cv Giza 112) grains were surface

sterilized using sodium hypochlorite (5% v/v) for 20 minutes before

being seeded in pots with an artificial soil that were 15 cm deep and 13

cm in diameter. For 1 g of air-dried soil, the following was the soil

composition: carbon (11.7 mg), ammonium N (1.1 mg), nitrate

nitrogen (14.8 mg), phosphorus (9.4 mg), and humidity (0.33 g

water). Four different set-ups were used to arrange the plants: 1)

ambient CO2 (aCO2, 420 ppm CO2; 2) 200 mg Nd3+kg-1 soil under

aCO2, (Nd); 3) elevated CO2 (eCO2, 620 ppm) and 4) 200mgNd3+kg-1

soil under eCO2, (Nd+eCO2). A preliminary experiment determined

the Nd (III) concentration, and the eCO2 level was determined using

the IPCC-SRES B2-state estimate of eCO2 for the year 2100 (Murray

and Ebi, 2012). Nd was applied in the form of NdCl3.6H2O. Pots were

kept in a growth chamber at a temperature of 21/18°C with a

photoperiod of 16/8h (photosynthetically active radiation of 350

μmol photons m-2 s-1) and 60% humidity. In the growth room, the

pots were placed at random and regularly watered. The experiment was

repeated, but this time the two CO2 levels in the cabinets were switched.

The plants were collected four weeks after the seeds were sown, the

shoots and roots’ fresh and dried weights were measured. The plant

material was transported in liquid N and stored at -80°C. In order to

conduct further research, soil samples were collected and stored at -20°

C in an ice box. Five replicates of each treatment (pot) were performed.
2.2 Photosynthesis related parameters

According to (Abdelgawad et al., 2015), light-saturated

photosynthetic rate (Asat) and stomatal conductance (gs) were

measured from the youngest-fully enlarged leaf using the LI-COR
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LI-6400, a device made by LI-COR Inc. in Lincoln, Nebraska, USA.

Photosynthesis was evaluated at light intensity of 1,500 mmol m−2 s−1.

The CO2 concentration in the leaf chamber was maintained at 420

μmol mol–1 for the aCO2 group and 620 μmol mol–1 for the eCO2

group, with the temperature controlled at 25 ± 0.5°C. photosynthetic

pigment concentration was extracted in acetone and quantified

according to Porra et al. (1989). Using a fluorimeter (PAM2000,

Walz, Effeltrich, Germany) over a 30-minute period, chlorophyll

fluorescence was calculated from the dark-adapted leaves.
2.3 Determination of neodymium
accumulation

The dried plant samples were treated in 13 M nitric acid at 185°

C for 25 minutes for Nd extraction (Agusa et al., 2005). Inductively

coupled plasma mass spectrometry (ICP-MS; model 820-MS) with

a glass nebulizer operating at 0.4 mL/minute was being used to

determine the element concentration. For calibration curves,

external standards with concentrations ranging from 1 to 600 g/L

were created. Yttrium was also introduced to regulate nebulizer

efficacy as an internal standard during extraction. In 0.23 M nitric

acid, standard minerals were created.
2.4 Oxidative stress markers

Malondialdehyde (MDA) was identified in plant samples using

the thiobarbituric acid method as a marker for lipid peroxidation

(Hodges et al., 1999). Xylenol orange method was used for

determining H2O2 in plant samples after extraction in 0.1%

trichloroacetic acid (Jiang et al., 1990).
2.5 Total antioxidant capacity and
antioxidant metabolites

Plant materials that were extracted in 2 mL of 80% ice-cold

ethanol by a MagNALyser were ground using liquid-N2. The ferric

reducing/antioxidant power (FRAP) assay was used to calculate the

total antioxidant capacity (TAC) of the extracts and was performed

at 600 nm on a microplate reader, using Trolox as a standard

(Benzie and Strain, 1999). HPLC analysis was used to evaluate the

levels of reduced ascorbate (ASC) and reduced glutathione (GSH)

(Potters et al., 2004). The total ascorbate (ASC+DHA) and

glutathione (GSH+GSSG) concentration was assessed after

reduction by DTT. Phenolic compounds were extracted from plant

samples with 80% ethanol. After that, measurements of polyphenols

(Zhang et al., 2006) and flavonoids (Chang et al., 2002) were

performed using a spectrophotometer (Shimadzu UV-Vis 1601 PC,

Japan). After hexane extraction, extracts were collected (CentriVap

concentrator, Labconco, Kansas, USA; normal phase conditions,

Particil Pac 5 m column material, length 250 mm, i.d. 4.6 mm) for

tocopherols quantification by HPLC (Shimadzu, Hertogenbosch, the

Netherlands; normal phase conditions). Dimethyl tocol was used as

an internal standard at 5 ppm.
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2.6 Antioxidant enzymes and glutathione-
S-transferase

For the extraction of antioxidant enzymes, MagNALyser

(Roche, Vilvoorde, Belgium) was used along with Triton X-100

(0.25%, v/v), polyvinyl pyrrolidone (10%, w/v), ASC (1 mM) and

phenylmethylsulfonyl fluoride (1 mM) in a potassium phosphate

buffer (50 mM, pH 7.0). After centrifugation (10 minutes, 13000

rpm, 4°C) the supernatant was obtained and the activities of catalase

(CAT, EC 1.11.1.6), peroxidase (POX, EC 1.11.1), superoxide

dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC

1.11.1.11), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione

reductase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC

1.8.5.1) and monodehydroascorbate reductase (MDHAR, EC

1.6.5.4) were measured. The inhibition of nitroblue tetrazolium

reduction at 560 nm was used to measure the activity of SOD

(Dhindsa et al., 1982). The method recommended by Kumar and

Khan (1982) was employed to evaluate the pyrogallol oxidation in

order to determine POX activity. According to Aebi (1984), the

dissociation of H2O2 at 240 nm was used to test the activity of CAT.

The measurements of APX, DHAR, MDHAR, and GR activity

followed the guidelines provided by Murshed et al. (2008). The

NADPH oxidation decrement at 340 nm as published by (Drotar

et al., 1985) was used to estimate the activity of GPX. Glutathione-S-

transferase (GST, EC 2.5.1.18) was evaluated using potassium

phosphate buffer (50 mM, pH 7.0) (Diopan et al., 2008). The

method described by Lowry et al. (1951) was employed to

determine the amounts of soluble proteins in the extracts.
2.7 Statistical analyses

Experiments were carried out using a completely randomized

block design. The Statistical Analysis System (SPSS Inc., Chicago, IL,

USA) was used to analyze the data. The Kolmogorov-Smirnov and

Levene’s tests were used to determine data normality and variance

homogeneity. The data were all subjected to Two-way analysis of

variance (ANOVA). Tukey’s Test (p = 0.05) was used as a post hoc test

for mean separation. Each experiment was replicated five times (n = 5).
3 Results

3.1 Growth and photosynthesis

Neodymium treatment significantly decreased the FW and DW

of wheat plants by 57 and 60%, respectively, relative to the control

(Table 1). In contrast, eCO2 alone showed a fertilization effect on

wheat plants, significantly improving biomass production, by 43

and 40% for FW and DW, respectively (Table 1). The combined

treatment (Nd+eCO2) showed a moderate increase in FW and DW

relative to Nd alone, but significantly less than that of the elevated

[CO2] treatment (Table 1). In parallel with FW and DW, the rate of

photosynthesis in wheat plants treated with Nd alone declined

sharply (- 44%) relative to the control (Table 1). Such reduction was
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concomitant with a significant decrease in chlorophyll content,

chlorophyll fluorescence, stomatal conductance and Rubisco

activity. On the other hand, eCO2 alone resulted in a significant

improvement in photosynthetic rate, chlorophyll content and

chlorophyll fluorescence at 24, 29 and 7.5% respectively, but had

no significant effect on stomatal conductance or Rubisco activity

compared to control (Table 1). The co-application of eCO2 on Nd-

stressed plants significantly enhanced the rate of photosynthesis,

chlorophyll content, Rubisco activity and photochemical efficiency

of PSII (Fv/Fm) relative to Nd alone. A twoWay ANOVA indicated

significant interaction of Nd and eCO2 in the FW, DW,

Photosynthes i s , GS and the pigments except CHLa

(Supplementary Data Sheet S1).
3.2 Accumulation of Nd and stress markers

As expected, application of Nd sharply increased the

accumulation of Nd in plant shoots (Figure 1A); however, Nd

accumulation was significantly reduced (~50%) at elevated [CO2].

Nd treatment induced about 3-fold accumulation of H2O2 and a

two-fold increase in the level of MDA (Figures 1B, C). Elevated

[CO2] per se had no significant impact on H2O2 and MDA levels

compared to the control. Interestingly, the synchronous application

of eCO2 with Nd significantly reduced the production of H2O2 and

MDA by about 50 and 22%, respectively, compared to Nd treatment

alone. A significant interaction effect was noted for H2O2 and MDA

(Supplementary Data Sheet S1).
3.3 Molecular antioxidants and total
antioxidant capacity

Wheat plants treated with Nd only significantly accumulated

polyphenols but not flavonoids, when compared to the control.

However, plants subjected to eCO2 under Nd-free conditions

contained significantly higher levels of flavonoids and total

polyphenols (Figures 2A, B). Both Nd and elevate [CO2]
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significantly increased the content of carotenoids and total

antioxidant capacity (FRAP) in wheat plants (Figures 2C, D)

relative to Nd per se.
3.4 Antioxidants enzymes and glutathione-
S-transferase

Neodymium treatment upregulated the activities of SOD, POX

and GPX by about 69, 38 and 29%, respectively, relative to the

control (Figures 3A–C). On the other hand, eCO2 alone treatment

decreased the activity of SOD and had no impact on GPX. No

significant variation was detected in the catalase activity in response

to either treatment (Figure 3D). GST activity was significantly

enhanced (23%) in response to Nd treatment, but not eCO2

(Figure 3E). The activities of POX, GPX and GST showed further

improvements in response to the synchronous application of eCO2

and Nd (120, 27 and 31%, respectively), compared to the Nd

alone treatment.
3.5 Metabolites and enzymes of ascorbate-
glutathione cycle

Nd treatment per se increased the accumulation of all

metabolites of the ASC-GSH cycle relative to the control

(Figure 4). However, the impact of Nd was much more evident

on the oxidized forms where it increased DHA and GSSG levels 4x

and 2.5x, respectively (Figures 4B, E). Accordingly, Nd stress

resulted in sharp reduction in the ASC/DHA and GSH/GSSG

redox balances (Figures 4C, F). Such Nd-induced negative impact

was associated with inhibition in the activities of ASC-GSH cycling

enzymes (APX, DHR, MDHAR and GR; Figures 5A–D). On the

other hand, eCO2 alone had no significant impact on the ASC/DHA

ratio but improved that of GSH/GSSG (59%). If additional CO2 is

provided, the levels of ASC and GSH increased (13 and 15%,

respectively) and the activities of DHAR, MDHAR and GR

increased (22, 20 and 25%, respectively) when compared to their
TABLE 1 Effect of neodymium (Nd), elevated CO2 (eCO2) and their synchronous application (Nd + eCO2) on the fresh (FW) and dry (DW) biomasses
and the photosynthesis related parameters in wheat plants.

Control Nd eCO2 Nd+eCO2

FW (g plant-1) 1.05 ± 0.06 c 0.45 ± 0.06 a 1.5 ± 0.09 d 0.63 ± 0.09 b

DW (g plant-1) 0.15 ± 0.01c 0.06 ± 0.00 a 0.21 ± 0.03 d 0.12 ± 0.01 b

Rate of photosynthesis (μmol CO2 m
-2 s-1) 15.63 ± 0.75 c 8.65 ± 1.59a 19.46 ± 1.1 d 10.67 ± 0.86 b

Total chlorophylls (mg g-1 FW) 0.34 ± 0.03 c 0.09 ± 0.02 a 0.44 ± 0.09 d 0.18 ± 0.04 b

Chlorophyll fluorescence (Fv/Fm) 0.79 ± 0.08 c 0.57 ± 0.02 a 0.85 ± 0.05 d 0.65 ± 0.02 b

Stomatal conductance (mmol m-2 s-1) 257.04 ± 12.13 c 175.18 ± 10.51 b 219.06 ± 19.7 c 151.49 ± 6.57 a

Rubisco activity (nmol 3-PGA mg protein-1 min-1) 69.89 ± 1.7 c 49.09 ± 1.06 a 75.67 ± 2.78 c 55.12 ± 2.2 b
Values are presented as the mean of five independent replicates ± standard error. Means followed by similar lower-case letters in the same row are not significantly different at the 0.05 probability
level as indicated by Tukey’s multiple range tests.
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respective values in Nd alone treated plants. In addition, eCO2

resulted in a significant elevation in the GSH/GSSG redox balance

(65%) in Nd-stressed plants.
4 Discussion

4.1 Elevated CO2 can mitigate the negative
impact of Nd on wheat growth and
photosynthesis

The current results highlight that Nd soil contamination can

notably hinder the early growth of wheat seedlings. Although the

phytotoxic effects of Nd are not fully understood, they are believed
Frontiers in Plant Science 05
to be concentration-dependent. At low to moderate concentrations,

Nd has been shown to promote plant growth, including that of

wheat and rice (Luo et al., 2008; Rezaee et al., 2018). However, at

higher concentrations (10 and 25 mg l⁻¹ Nd₂O₃), Nd exhibits

inhibitory effects on plant growth (Basu and Dhal, 2016).

Similar behavior was reported inHelianthus annuus and Brassica

chinensis subjected to different levels of Nd (Rezaee et al., 2018;

Rezaee, 2016). The phytotoxic effects of Nd were reported at various

concentrations depending on plant species and environmental

conditions. Currently 200 mg Nd3+kg-1 soil indicated adverse effect

on wheat where Carpenter et al. (2015) reported that Nd at 319 mg/

kg were significantly toxic and adversely affected plant growth and

overall biomass when studied some native and crop species. Zhao

et al. (2019) also assessed the effects of different concentrations of Nd
FIGURE 1

Effect of neodymium (Nd), elevated CO2 (eCO2) and their combination (Nd+eCO2) on the accumulation of Nd and oxidative stress markers in shoots
of 4-weeks old wheat (Triticum aestivum) plants. (A) Nd concentration, mg g-1 DW; (B) H2O2, nmol g-1 FW; (C) malondialdehyde, MDA nmol g-1 FW.
Each value is the mean of 5 independent replicates and the vertical bars demonstrates the standard error. Similar lower-case letters on the bars,
within the same graph, indicate non-significant difference at the 0.05 probability level as indicated by Tukey’s multiple range tests.
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on the growth of various crop species. It was found that

concentrations as low as 100 mg/kg of Nd resulted in notable

reductions in root development of wheat.

The reduction in plant fresh and dry biomass is a logical

consequence of the phytotoxicity of metals on the important

physiological processes, e.g., photosynthesis and nutrient utilization

(Malik et al., 2019). Like most REEs, Nd may interfere with the key

plant metabolic processes and components such as rate of

photosynthesis, total chlorophylls, chlorophyll fluorescence,
Frontiers in Plant Science 06
stomatal conductance and rubisco activity since all were

significantly decreased in relation to control. In this regard, Rezaee

(2016) concluded that the inhibition in chlorophyll biosynthesis in B.

chinensis started at Nd concentration of 200 ppm. Nd exposure has

been shown to disrupt chlorophyll fluorescence in Myriophyllum

aquaticum coupled with significant chlorophyll degradation (Gjata

et al., 2024). Furthermore, exposure to Nd also inhibited rubisco

enzyme activity, a critical component in carbon fixation during

photosynthesis which is in accordance with report about Cd and
FIGURE 2

Effect of neodymium (Nd), elevated CO2 (eCO2) and their combination (Nd+eCO2) on the accumulation of molecular antioxidants and total
antioxidant capacity (FRAP) in shoots of 4-weeks old wheat (Triticum aestivum) plants. (A) polyphenols, mg gallic acid g-1 FW; (B) flavonoids, mg
quercetin g-1 FW; (C) carotenoids, mg g-1 FW; (D) FRAP mmol troloxg-1 FW. Each value is the mean of 5 independent replicates and the vertical bars
demonstrates the standard error. Similar lower-case letters on the bars, within the same graph, indicate non-significant difference at the 0.05
probability level as indicated by Tukey’s multiple range tests.
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FIGURE 3

Effect of neodymium (Nd), elevated CO2 (eCO2) and their combination (Nd+eCO2) on the activities of antioxidant and detoxification enzymes (unit
mg-1 protein min-1) in shoots of 4-weeks old wheat (Triticum aestivum) plants. (A) SOD, superoxide dismutase; (B) POX, peroxidase; (C) GPX,
glutathione peroxidase; (D) CAT, catalase; (E) GST, glutathione-S-transferase. Each value is the mean of 5 independent replicates and the vertical
bars demonstrates the standard error. Similar lower-case letters on the bars, within the same graph, indicate non-significant difference at the 0.05
probability level as indicated by Tukey’s multiple range tests.
Frontiers in Plant Science frontiersin.org07

https://doi.org/10.3389/fpls.2025.1521460
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Saleh et al. 10.3389/fpls.2025.1521460
Cu toxicity in tobacco plants (Khairy et al., 2016). As one of REEs,

lanthanum disrupts photosynthesis and affects the over whole plant

health (Jiao et al., 2024). Exposure to Nd has been demonstrated to

disrupt chlorophyll fluorescence inMyriophyllum aquaticum, leading

to significant chlorophyll degradation (Gjata et al., 2024).

Additionally, Nd exposure inhibits the activity of the rubisco

enzyme, which is essential for carbon fixation during

photosynthesis, similar to the effects of cadmium (Cd) and copper

(Cu) toxicity observed in tobacco plants (Khairy et al., 2016). As a

member of the rare earth elements (REEs), lanthanum also interferes

with photosynthesis, impacting overall plant health (Jiao et al., 2024).

Currently elevated [CO2] by itself significantly improved the growth

and photosynthesis in wheat, which is consistent with the report of

Kang et al. (2021) when investigated wheat and rice. Further, the

aerial growth and photosynthetic rates were increased as

consequences to eCO2 in oak seedlings (Sanchez-Luca et al., 2023).

Synchronous application of eCO2 and HMs was reported to lessen
Frontiers in Plant Science 08
the toxic effects of HMs on plant growth and yield, especially in C3

plant systems, through inducing the synthesis of chlorophyll and its

fluorescence, stomatal conductance, and net photosynthetic rate

(Habeeb et al., 2020; Saleh et al., 2021). It is of interest to note here

that additional CO2 only partially relieved the negative impact of Nd

on plant crucial processes. Similarly, eCO2 improved the biomass

production and photosynthesis of wheat and antagonized the

negative impact of NiO nanoparticles and Al on these processes

(Saleh et al., 2019; AbdElgawad et al., 2021). To date, there are no

previous studies on the interactive effects of Nd and eCO2 on plants.

However, the ameliorative effect of eCO2 on HM toxicity is not

universal and depends on the specific HM and plant species. Current

data therefore highlights a significant interaction between Nd and

Elevated [CO2], where the beneficial effects of Elevated [CO2] are

partially offset by the presence of Nd, suggesting the need for further

research into the mechanisms of this interaction.Top of FormBottom

of Form
FIGURE 4

Effect of neodymium (Nd), elevated CO2 (eCO2) and their combination (Nd+eCO2) on the levels of the metabolites of ascorbate-glutathione (ASC-
GSH) cycle (µmol g-1 FW) in shoots of 4-weeks old wheat (Triticum aestivum) plants. (A) ASC, reduced ascorbate; (B) DHA, oxidized ascorbate;
(C) ASC/DHA ratio; (D) GSH, reduced glutathione; (E) GSSG, oxidized glutathione; (F) GSH/GSSG ratio. Each value is the mean of 5 independent
replicates and the vertical bars demonstrates the standard error. Similar lower-case letters on the bars, within the same graph, indicate non-
significant difference at the 0.05 probability level as indicated by Tukey’s multiple range tests.
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4.2 Accumulation of Nd in wheat plants
induces less oxidative damage under eCO2
environment

The combined effect of Nd and elevated [CO2] can help mitigate

the oxidative stress typically induced by Nd accumulation in wheat

plants. This interaction is crucial for understanding how these

conditions affect plant health and productivity. Wheat plants

grown in NdCl3 contaminated soil accumulated high levels of Nd

in their shoots and showed the highest levels of H2O2 and MDA.

Similar results were reported in lentil seedlings treated with Nd

(Gjata et al., 2022). Hyperaccumulation of H2O2 andMDA in plants

is an evident sign for severe oxidative cellular damage. Indeed, it has

been reported that REEs could alter the redox activity and plasma

membrane permeability of plant cells, which can lead to membrane

disfunction and increased ROS and MDA levels (Oral et al., 2017;

Peng et al., 2007; Zicari et al., 2018). Consistent with the current

results, elevated levels of H2O2 and MDA were recorded in onion

plants treated with Nd (Gjata et al., 2022). It suggests that the

reactive oxygen species (ROS) production is a common plant

response suffer metal stress conditions.
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Interestingly, elevated [CO2] reduced the accumulation of Nd in

wheat plants and, therefore, the levels of oxidative stress markers,

H2O2 and MDA were also reduced. Lower Nd levels could be

associated with eCO2 induced reductions in stomatal conductance

and lower Nd uptake through transportational flow. In addition,

elevated [CO2] is known to downregulate photorespiration, a major

H2O2-producing process in plants that is enhanced during oxidative

stress (Foyer and Noctor, 2000). The decline in Nd observed here is

consistent with other studies in wheat showing that elevated [CO2]

can reduce the uptake and accumulation of Ni (Saleh et al., 2019)

and Al (AbdElgawad et al., 2021). In addition, the effect of eCO2 on

photorespiration and ROS production in wheat and other crops has

been previously reported (Saleh et al., 2019, 2021; AbdElgawad

et al., 2022b). Indium oxide nanoparticles induced the H2O2, lipid

peroxidation levels which has been mitigated by elevated [CO2] in

maize and barely (Shabbaj et al., 2022).

To compensate for Nd-induced ROS production, wheat plants

synthesized more polyphenols, and carotenoids, which are

integrated into TAC, i.e., FRAR. Similarly, wheat plants suffering

HMs-induced oxidative stress were reported to accumulate various

molecular antioxidants (Saleh et al., 2019, 2021). Application of
FIGURE 5

Effect of neodymium (Nd), elevated CO2 (eCO2) and their combination (Nd+eCO2) on the activities of the enzymes of ascorbate-glutathione (ASC-
GSH) cycle (unit mg-1 protein min-1) in shoots of 4-weeks old wheat (Triticum aestivum) plants. (A) APX, ascorbate peroxidase; (B) MDHAR,
monodehydroascorbate reductase; (C) DHAR, dehydroascorbate reductase; (D) GR, glutathione reductase. Each value is the mean of 5 independent
replicates and the vertical bars demonstrates the standard error. Similar lower-case letters on the bars, within the same graph, indicate non-
significant difference at the 0.05 probability level as indicated by Tukey’s multiple range tests.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1521460
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Saleh et al. 10.3389/fpls.2025.1521460
elevated [CO2], either alone or in conjunction with Nd, also induced

more polyphenols and carotenoids. The upregulation of molecular

antioxidants in plants grown in elevated [CO2] environments,

under either HMs free or stressed conditions, have been

previously reported (AbdElgawad et al., 2023; Al Jaouni et al.,

2018; Saleh et al., 2018).

Overproduction of ROS can be compensated, in part, by

stimulating the production of antioxidizing and detoxifying enzymes.

This was observed in the current study with noted increases in SOD,

POX, GPX and GST in Nd-treated plants. This stimulation has also

been observed for SOD and POD enzymes in spinach, wheat and rice

plants treated with Nd (Chao et al., 2009; Shi et al., 2021).

Elevated [CO2] also stimulated the activities of POX, GPX and

GST which could explain the decreased levels of H2O2 and MDA in

Nd + eCO2 treated plants, compared to Nd alone. Similarly, Elevated

[CO2] was reported to upregulate the enzymatic defense pool in

several plant species, including wheat, under HMs stressed conditions

(Saleh et al., 2019, 2021; AbdElgawad et al., 2021, 2022b, 2022a).

Besides the higher concentrations of H2O2 and MDA, declines

in GSH/GSSG and ASC/DHA redox balances were recorded in Nd-

treated plants. Such reductions in GSH/GSSG and ASC/DHA redox

balances could be explained by the negative impact of Nd on ASC-

GSH recycling enzymes, e.g., APX and MDHAR. Similarly, 25 mM
Nd was reported to decrease the ASC/total ASC ratio in roots of

lentil seedlings (Gjata et al., 2022). Elevation of GSH/GSSG ratio in

response to eCO2, as a result for upregulating the activities of

DHAR and GR, indicates its ability to adapt to the oxidative damage

induced by Nd. Several studies have reported the positive impact of

eCO2 on ASC-GSH recycling in plants subjected to HMs (Saleh

et al., 2019, 2021; AbdElgawad et al., 2021, 2022b, 2022a). The

interaction between Nd and eCO2 showed that elevated CO2 have

high effects on plant response under Nd stress. Significant

interactions of Nd and eCO2 were observed for most of the

investigated parameters. Such findings suggested that the

combined Nd and elevated CO2 may trigger antioxidant defences

system that may help to ameliorate some of the negative impacts of

Nd by enhancing the plant’s antioxidant capacity. Further research

into the ecological implications of REE accumulation in agricultural

systems, especially under changing atmospheric conditions such as

increased CO2 is needed.
5 Conclusion

The current study provides the first comprehensive analysis of

oxidative stress in wheat caused by neodymium (Nd) and explores

the potential adaptive benefits of elevated atmospheric CO2 levels.

While increased CO2 concentrations do not completely mitigate the

growth reductions induced by Nd, they do alleviate some oxidative

stress. Potential strategies for mitigating the effects of Nd under

elevated CO2 include: 1) reducing Nd uptake and accumulation in

photosynthetic tissues while lowering stomatal conductance; 2)

mitigating the negative impact of Nd on photosynthetic carbon
Frontiers in Plant Science 10
assimilation by enhancing photochemical efficiency and Rubisco

activity; and 3) minimizing the increase in reactive oxygen species

(ROS) generated by Nd at both production and elimination stages.

Although these findings are promising, they remain preliminary,

and further research is essential to fully understand the metabolic

interactions between elevated CO2 and rare earth elements (REEs).
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