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Introduction: Accurate and automated fruit classification plays a vital role in

modern agriculture but remains challenging due to the wide variability in

fruit appearances.

Methods: In this study, we propose a novel approach to image classification by

integrating a DenseNet121 model pre-trained on ImageNet with a Squeeze-and-

Excitation (SE) Attention block to enhance feature representation. The model

leverages data augmentation to improve generalization and avoid overfitting. The

enhancement includes attention mechanisms and Nadam optimization,

specifically tailored for the classification of date fruit images. Unlike traditional

DenseNet variants, proposed model incorporates SE attention layers to focus on

critical image features, significantly improving performance. Multiple deep

learning models, including DenseNet121+SE and YOLOv8n, were evaluated for

date fruit classification under varying conditions.

Results: The proposed approach demonstrated outstanding performance,

achieving 98.25% accuracy, 98.02% precision, 97.02% recall, and a 97.49% F1-

score with DenseNet121+SE. In comparison, YOLOv8n achieved 96.04%

accuracy, 99.76% precision, 99.7% recall, and a 99.73% F1- score.

Discussion: These results underscore the effectiveness of the proposed method

compared to widely used architecture, providing a robust and practical solution

for automating fruit classification and quality control in the food industry.
KEYWORDS

fruit classification, DenseNet121, Squeeze-and-Excitation, YOLOv8n, augmentation,

segmentation
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1 Introduction

Agricultural automation has become a cornerstone in

addressing the growing demand for efficient and sustainable

farming practices (Vinod et al., 2024). Accurate and automated

fruit classification is critical for enhancing productivity, ensuring

quality control, and optimizing processes such as yield prediction,

disease detection, and crop management (Sharma and Shivandu,

2024). Among various crops, date fruits hold significant economic

and cultural value, particularly in arid regions (Al-Mssallem et al.,

2024). However, the variability in fruit appearance, including

differences in size, shape, color, and maturity stage, presents

considerable challenges for accurate classification (Hameed et al.,

2018; Hassan, 2024). These challenges are further compounded by

the complexities of capturing images in real-world farm

environments, where dynamic conditions such as varying

lighting, diverse backgrounds, and occlusions can hinder the

reliability and robustness of classification models (Tang et al., 2023).

Despite advancements in computer vision and deep learning

(DL), existing solutions often struggle to achieve high accuracy and

generalizability under such unconstrained conditions (Ojo and

Zahid, 2022). While models like VGG, GoogleNet, MobileNet,

and EfficientNet have shown promise, their performance is often

limited when applied to multi-class classification of fruit varieties

(Yu et al., 2023). Furthermore, the classification of multiple date

fruit cultivars, each exhibiting subtle yet distinct visual

characteristics, underscores the need for a specialized model

capable of handling these intricate differences (Khalil et al., 2017).
1.1 Research motivation and gaps

This paper is motivated by the pressing need for an effective and

practical solution to automate the classification of date fruits across

diverse varieties and conditions (Hassan et al., 2021; Abouelmagd

et al., 2024; Elmessery et al., 2024). Current approaches face

significant gaps, including:
Fron
• The lack of robust models that can effectively handle the

inherent variability in fruit appearance under real-world

farm environments (Zhang and Yang, 2024).

• Insufficient utilization of attention mechanisms to focus on

critical image features, which limits the ability to distinguish

between similar cultivars (Niu et al., 2021).

• The absence of models optimized for multi-class

classification of date fruit varieties while maintaining

generalization across varying conditions (Sultana

et al., 2024).
1.2 Research question

How can a deep learning-based framework be designed to

accurately and reliably classify multiple date fruit varieties under
tiers in Plant Science 02
unconstrained real-world conditions, overcoming challenges such

as variability in appearance, lighting, and occlusions?
1.3 Proposed approach and contributions

To address these challenges, we propose a novel approach to

image classification by integrating a DenseNet121 model pre-

trained on ImageNet with a Squeeze-and-Excitation (SE)

Attention block. This integration enhances feature representation

by enabling the model to focus on the most critical aspects of the

input images. The use of data augmentation ensures improved

generalization and reduces overfitting, making the model suitable

for real-world applications. Additionally, the utilization of

YOLOv8n algorithm is employed to further refine the model’s

learning process, achieving exceptional performance in classifying

date fruit images. The key contributions of this paper are as follows:
• Integration of SE Attention Mechanism – This study

enhances DenseNet121 with a Squeeze-and-Excitation

(SE) attention block, improving feature representation

and enabling the model to focus on critical image features.

• Optimization for Fruit Classification – The model is

specifically tailored for date fruit classification, leveraging

Nadam optimization to improve training efficiency

and convergence.

• Enhanced Generalization through Data Augmentation –

Various data augmentation techniques were employed to

improve model generalization and reduce overfitting,

ensuring robustness under diverse conditions.

• Comprehensive Performance Evaluation – Multiple deep

learning models, including DenseNet121+SE and

YOLOv8n, were compared, demonstrating superior

classification accuracy with DenseNet121+SE (98.25%)

and YOLOv8n (96.04%).

• High-Accuracy Automated Classification – The proposed

approach achieved state-of-the-art performance in

precision, recall, and F1-score, making it highly suitable

for automated fruit classification and quality control

applications in the food industry.

• Potential for Real-Time Implementation – The efficiency of

YOLOv8n highlights its applicability for real-time

classification, paving the way for future deployment in

smart agriculture and food processing systems.
The rest of this paper is organized as follows: Section 2 reviews

related works, while Section 3 covers the preliminaries. Section 4

presents the proposed approach, followed by experimental results

and analysis in Section 5. The Finally, Section 6 concludes the study.
2 Related works

Deep learning techniques, particularly YOLO variants and

lightweight CNNs, are widely used in fruit detection (Zhong
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et al., 2024; Li et al., 2024). While they offer high accuracy and

interpretability, they face limitations like limited datasets and

specific fruit types (Gulzar et al., 2024). Table 1 provides a

comprehensive overview of the advancements, methodologies,

and challenges in fruit image recognition, offering valuable

insights for researchers and practitioners in precision agriculture.

Sultana et al. (2024) suggest a XAI-FruitNet that is a hybrid deep

learning architecture that enhances feature discrimination and

achieves over 97% accuracy in fruit classification across various

datasets. Its built-in interpretability enhances transparency and

trust, setting a new standard for explainable artificial intelligence
Frontiers in Plant Science 03
in agricultural applications. This robust and trustworthy solution is

essential for modern agricultural needs. Marin et al. (Marin and

Radoi, 2022) present a Convolutional Neural Networks solution for

classifying fruits as healthy or damaged, using YOLOv3, a state-of-

the-art network for object detection in images. The algorithm

achieved over 75% classification accuracy, and the dataset is made

available. Huang et al. (2025) propose a fruit recognition and

evaluation method using multi-model collaboration. The

detection model locates and crops fruit areas, while the cropped

image is input into a classification module. The feature matching

network optimizes classification results. The improved YOLOv8
TABLE 1 The summary of recent works in fruit image recognition.

Authors Method Dataset Pros Cons Performance

Sultana
et al. (2024)

XAI-FruitNet (hybrid
deep

learning architecture)

Various datasets Enhances feature discrimination,
interpretability, and transparency;

robust and trustworthy for
agricultural needs.

N/A Over 97% accuracy in
fruit classification.

Marin et al
(Marin and
Radoi, 2022)

YOLOv3 (Convolutional
Neural Networks)

Dataset made available State-of-the-art object detection;
dataset availability for

further research.

Moderate
classification accuracy.

Over 75%
classification accuracy.

Huang
et al. (2025)

Multi-model
collaboration (YOLOv8 +

Swin Transformer)

N/A Improved detection and classification;
optimized feature matching.

N/A 92.6% accuracy on 27
fruit categories; improved

P, R, mAP50, and
MAP50-95.

Rao
Jerripothula
et al. (2021)

Pre-trained neural
networks and machine
learning algorithms

Novel dataset
named RipeRaw

High accuracy across agricultural,
market, and automation perspectives.

N/A 96%, 94%, and 86%
accuracies on

RipeRaw dataset.

Chiagoziem
et al

(Ukwuoma
et al., 2022)

Various deep
learning methods

Fruit 360 dataset Comprehensive review of methods
and challenges; beginner-friendly.

Focuses on general fruit
classification, not specific

to date fruits.

(review paper).

Zarouit
et al. (2024)

Image and video
collection for detection

and classification

Comprehensive
dataset for date fruit

maturity stages

Enhances automation in pre- and
post-harvesting tasks.

N/A (dataset paper).

Almutairi
et al. (2024)

YOLOv8 (Deep Learning) N/A High precision and recall; enhances
productivity in date fruit classification.

N/A Mean recall: 0.99%;
precision: 0.991%; IoU

range: [0-1].

Koklu
et al. (2021)

Logistic regression,
artificial neural networks,

and stacking model

898 images with 34
extracted features

High performance in date fruit
classification; stacking model

improves accuracy.

Limited to 898 images;
feature extraction may

not generalize to
other datasets.

Logistic regression: 91.0%;
ANN: 92.2%; stacking

model: 92.8%.

Safran
et al. (2024)

DPXception
(lightweight CNN)

2358 images of four
date palm species
(Barhi, Sukkari,
Ikhlas, Saqi)

High accuracy and F1-score; real-time
classification on

Android smartphones.

Limited to four date
palm species.

92.9% accuracy; F1-score:
93%; inference time:
0.0513 seconds.

Chen
et al. (2021)

Single shot multi-box
detection + improved
Laplacian pyramid

image fusion

N/A Feasible and effective for IoT-based
fruit maturity recognition.

N/A (algorithm
feasibility demonstrated).

Xiao
et al. (2023)

Review of deep learning
for fruit detection
and recognition

N/A Addresses challenges and proposes
solutions for future development.

Focuses on general fruit
detection, not specific to

date fruits.

(review paper).

Song
et al. (2020)

YOLO algorithm Captured images of
citrus leaves

Real-time detection and recognition of
citrus diseases.

Limited to citrus diseases;
may not generalize to

other fruits.

(real-time
performance
demonstrated).
From hybrid models like XAI-FruitNet to lightweight CNNs like DPXception, the field employs a wide range of techniques to address fruit recognition challenges. The high accuracy (e.g., 97% for
XAI-FruitNet, 92.9% for DPXception) and real-time capabilities are common highlights.
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model improves P, R, mAP50, and MAP50–95 indicators. The Swin

Transformer model has 92.6% accuracy on 27 fruit categories. The

study by (Wu et al., 2024) presented an enhanced CycleGAN with a

generator using ResNeXtBlocks and optimized upsampling, aimed

at improving nighttime pineapple detection. It reduces the Fréchet

Inception Distance (FID) score by 29.7% and, when combined with

YOLOv7, improves precision by 13.34%, recall by 45.11%, average

precision by 56.52%, and F1 score by 30.52%, enabling more

accurate detection in low-light conditions. Rao Jerripothula et al.

(2021) examine fruit image classification from agricultural, market,

and automation perspectives, using pre-trained neural networks

and machine learning algorithms. The study achieves 96%, 94%,

and 86% accuracies on the novel dataset named RipeRaw, based on

bias/variance analysis. Chiagoziem et al. (Ukwuoma et al., 2022)

discuss various deep learning methods used for fruit detection and

classification, including datasets, practical descriptors, model

implementation, and challenges. It also reviews recent studies and

a new model for fruit classification using the popular dataset “Fruit

360” for beginner researchers. Zarouit et al. (2024) provides a

comprehensive collection of images and videos for detecting,

classifying, analyzing, and harvesting dates at various maturity

stages, thereby enhancing agriculture research by automating pre

and post-harvesting tasks. Almutairi et al. (2024) use Deep Learning

to detect and classify date fruits using the You Only Look Once

(YOLO) algorithm. YOLOv8 achieved a mean recall of 99.00% and

precision of 99.10%, with an Intersection over Union (IoU) colored

range of [0-1]. This model enhances productivity by detecting and

classifying date fruits based on surface quality. Koklu et al. (2021)

classified date fruit types using three machine learning methods.

898 images were obtained, and 34 features were extracted. Logistic

regression and artificial neural network methods were used,

achieving 91.0% and 92.2% performance respectively. The

stacking model combined these methods increased performance

to 92.8%, proving successful application of machine learning

methods. Safran et al. (2024) use 2358 images of four date palm

species (Barhi, Sukkari, Ikhlas, and Saqi) and applied data

augmentation techniques to increase the dataset’s diversity. They

developed a lightweight CNN model called DPXception, which

achieved the highest accuracy (92.9%) and F1-score (93%), with the

lowest inference time (0.0513 seconds). The model was also used in

an Android smartphone application to classify date palm species in

real time. This is the first public dataset of date palm images and

demonstrates a robust image-based species classification method.

Chen et al. (2021) improve fruit maturity image recognition in IoT

agriculture using a single shot multi-box detection algorithm and an

image fusion algorithm based on improved Laplacian pyramid.

Experiments show the proposed algorithm is feasible and effective.

Xiao et al. (2023) review fruit detection and recognition using deep

learning for automatic harvesting, addressing challenges like low-

quality datasets, small targets, dense scenarios, multiple scales, and

lightweight models. It proposes solutions and future development

trends, aiming to improve accuracy, speed, robustness, and

generalization while reducing complexity and cost. Song et al.
Frontiers in Plant Science 04
(2020) presents an automatic detection and image recognition

method for citrus diseases using the YOLO algorithm, which can

detect and recognize diseases in real-time from captured images of

citrus leaf diseases like Citrus Canker and Citrus Greening.
3 Preliminaries

In this section, we describe the pre-trained architecture utilized

in the proposed approach. The comparison includes two

architectures designed to tackle classification tasks effectively.

DenseNet121 with Squeeze-and-Excitation (SE) and YOLOv8n.

Each model integrates specific components and methodologies to

improve feature representation, model performance, and

adaptability to custom datasets. DenseNet121 + Squeeze-and-

Excitation is built on the DenseNet121 architecture pre-trained

on the ImageNet dataset (Armağan et al., 2024). DenseNet121

leverages dense connections within its blocks, facilitating efficient

gradient flow and promoting feature reuse. This model is further

enhanced by the integration of a Squeeze-and-Excitation (SE)

Attention block, which focuses on amplifying relevant features

while suppressing irrelevant ones (Fırat and Üzen, 2024). This

enhancement ensures that the model can concentrate on critical

aspects of the data for improved classification performance (Alam

et al., 2025). The architecture includes custom layers tailored for

classification, such as GlobalAveragePooling2D and dense layers,

allowing for effective feature aggregation and decision-making. The

model is optimized using the Nadam optimizer with a learning rate

of 0.0001, a batch size of 64, momentum set at 0.9, and trained over

50 epochs. These hyperparameter choices strike a balance between

training efficiency and performance, making the model robust for

various classification tasks (Hassan et al., 2023). YOLOv8n, on the

other hand, is a lightweight object detection model pre-trained on a

15-class label date fruit dataset (Almutairi et al., 2024). This pre-

trained model serves as a base for transfer learning and is fine-tuned

on custom datasets to enhance its adaptability to domain-specific

tasks. Unlike DenseNet121, YOLOv8n does not use a specific

attention mechanism but relies on its efficient architecture to

identify and classify objects (Ma et al., 2024a). The training

process incorporates data augmentation techniques such as mixup

(with a factor of 0.2), random flipping, and cropping, which

enhance dataset diversity and improve the model’s robustness

(Ma et al., 2024b). The Nadam optimizer is employed, with a

higher learning rate of 0.01 to facilitate faster convergence. The

model is trained for 70 epochs with a batch size of 16, balancing

memory efficiency and processing speed. While the momentum is

set at 0, the model’s architectural efficiency compensates for this by

ensuring effective feature extraction and detection. Both models

demonstrate unique strengths: DenseNet121 + SE excels in feature

representation with its attention mechanism and robust

architecture, while YOLOv8n offers a lightweight, adaptable

solution optimized for domain-specific object detection tasks as

shown in Table 2.
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3.1 DenseNet121 architecture

DenseNet (Densely Connected Convolutional Networks)

(Huang et al., 2017; Bakr et al., 2022) is an architecture that

significantly improves upon traditional convolutional neural

networks (CNNs) by creating dense connections between layers.

In DenseNet, each layer receives input from all previous layers,

which allows for better feature propagation, reuse, and a reduction

in the number of parameters compared to traditional CNNs

(Elbedwehy et al., 2024). In the DenseNet121 architecture, there

are 121 layers, structured into four dense blocks. The key

component of DenseNet is the dense block, where each layer is

connected to every other layer in a feedforward manner. Let xi  

represent the input to the   i  −th layer in the dense block. In

DenseNet, each subsequent layer Li receives not only the original

input xi but also the outputs of all previous layers L1, L2,…, Li−1f g
(Yu et al., 2021). Mathematically, the output of the   i   −th layer is

computed as in Equation 1:

Li = Fi(½xo, x1,…, xi−1�) (1)

where:
Fron
• ½x0, x1,…, xi−1� denotes the concatenation of all previous

layer outputs.

• Fi is the operation performed by the   i  −th layer, which

typically includes a batch normalization (BN), ReLU

activation, and convolution operation.
By using dense connections, DenseNet enables feature reuse,

which leads to more efficient learning, especially in deep networks,

and mitigates the vanishing gradient problem by improving

gradient flow (Saber et al., 2025). This architecture is often used

for tasks that require deep feature extraction with fewer parameters.
3.2 Squeeze-and-Excitation Attention
block

The block Squeeze-and-Excitation (SE) Attention is a

mechanism designed to improve the representational power of a
tiers in Plant Science 05
model by adaptively recalibrating channel-wise feature responses. It

enhances the model’s ability to focus on informative features and

suppress less relevant ones, which is particularly useful for fine-

grained classification tasks. The SE block operates in two main

steps: squeeze and excitation (Zeng et al., 2025).

3.2.1 Squeeze: global average pooling
In the squeeze step, the feature map F   with dimensions H  �

W  �C     (height  H, widthW,   and   channels  C) is passed through

a global average pooling (GAP) operation to generate a channel

descriptor (Jin et al., 2022). This operation computes the average

value of each channel across the spatial dimensions (height and

width), resulting in a 1D vector   z     of   length    C as in Equation 2.

zc =
1

H �W o
H

h=1
o
W

w=1
Fh,w,c (2)

where:
• Fh,w,c is the value of the feature map at position ((h,w)) for

channel (   c   ).

• zc is the average pooled value for the c − th channel.

• The output of this step is a channel-wise global descriptor

vector z = ½z1, z2,…, zC�)of   size  C � 1.
3.2.2 Excitation: fully connected layers and
sigmoid activation

The excitation step recalibrates the channel-wise features based

on the global context provided by the vector z. The process begins

by passing z through two fully connected (FC) layers with ReLU

activation in the first layer, followed by a sigmoid activation in the

second layer. The two FC layers aim to learn the importance of each

channel (Zhu et al., 2021). The excitation step can be described by

the following Equation 3.

s = s (W2d (W1z + b1) + b2) (3)

where: z is the input channel descriptor from the squeeze step.
• W1and  W2 are weight matrices for the two fully

connected layers.
TABLE 2 Description of model settings used in this study.

Model Description Optimizer Attention
mechanism

Pre-
trained?

The architecture Hyperparameter
values

DenseNet121
+ Squeeze-

and-
Excitation

A DenseNet121 architecture pre-
trained on ImageNet integrated with

a Squeeze-and-Excitation (SE)
Attention block to enhance
feature representation.

Nadam Squeeze-and-
Excitation (SE)
Attention block

Yes
(ImageNet)

DenseNet121 with
custom layers for

classification, including
GlobalAveragePooling2D

and dense layers.

Learning rate: 0.0001, Batch
Size: 64, Epochs: 50,
Momentum: 0.9

YOLOv8n A YOLOv8n model pre-trained on
the 15 class label date fruit dataset,
used as a base model for transfer

learning with additional training on
custom datasets.

Nadam No Yes YOLO8 Learning rate: 0.01, Batch
Size: 16, Epochs: 70,
Momentum: 0 Data

Augmentation: mixup (factor
0.2), random

flipping, cropping.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1521508
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hassan et al. 10.3389/fpls.2025.1521508

Fron
• b1and   b2 are the corresponding biases.

• d is the ReLU activation function.

• s is the sigmoid activation function.

• s   is the output scalar channel importance vector, which has

the same dimension as (z), i : e :, (C � 1).
3.2.3 Recalibration
Finally, the recalibration step applies the learned importance

values (from the excitation step) to the input feature map (   F   ).

This is done by scaling each channel of (   F   ) by the corresponding

scalar in (   s   ) (Mulindwa and Du, 2023). Mathematically, the

recalibration is performed as in Equation 4.

dFh,w,c = Fh,w,c · sc (4)

where:
• ^Fh,w,c  is the recalibrated feature map.

• sc is the scalar value for channel   c obtained from the

excitation step.
By scaling the feature map, the SE block enables the network to

emphasize the most informative channels and suppress less useful

ones, improving the performance of the network in tasks requiring

fine-grained feature distinctions. The DenseNet121 architecture

and the Squeeze-and-Excitation (SE) attention block provide

complementary advantages in deep learning models. DenseNet

improves feature propagation and reuse through dense

connections, while SE attention blocks recalibrate feature maps at

the channel level, allowing the network to focus on the most

important features. These techniques are powerful when used

together, particularly in tasks like image classification, where fine-

grained attention to feature details is crucial (Deng et al., 2020; Peng

et al., 2023; Stergiou and Poppe, 2023).
3.3 YOLOv8n

YOLOv8n is a lightweight and efficient object detection model

designed for real-time applications, particularly on resource-

constrained devices. It uses a slimmed-down CSP-based backbone

for feature extraction, a Feature Pyramid Network (FPN) and Path

Aggregation Network (PAN) in the neck for multi-scale feature

fusion, and an anchor-free head for simplified and efficient

bounding box prediction (Fan and Liu, 2024). The model

leverages advanced data augmentation techniques like mixup,

mosaic, random flipping, and cropping to enhance robustness

and generalization (Kaur et al., 2021).

Optimized with an Nadam optimizer and a composite loss

function combining bounding box, classification, and objectness

losses, YOLOv8n achieves high accuracy with minimal

computational overhead. Its hyperparameters, including a

learning rate of 0.01, batch size of 16, and 70 training epochs,

ensure efficient convergence. These features make YOLOv8n
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suitable for real-time applications in robotics, autonomous

systems, and edge devices. YOLOv8n uses a composite loss

function to optimize object detection performance. The total loss

L is defined as in Equation 5.

L = Lbox + Lcls + Lobj (5)

where:
• Lbox : Bounding box regression loss (e.g., CIoU or

DIoU loss),

• Lcls: Classification loss (e.g., binary cross-entropy for

each class),

• Lobj: Objectness score loss.
The loss function is designed to balance the accuracy of

bounding box localization, object detection, and class prediction

(Khow et al., 2024).
4 The proposed method

This paper presents two deep learning models designed for image

classification and object detection, leveraging state-of-the-art

architectures to achieve high accuracy and robustness. The first model

integrates a DenseNet121 architecture pre-trained on ImageNet with a

Squeeze-and-Excitation (SE) Attention block to enhance feature

representation and improve model focus on critical details. By

employing data augmentation techniques, such as rotation, shifting,

shearing, zooming, and flipping, the model improves generalization and

reduces overfitting. The architecture is further refined with custom

layers, including GlobalAveragePooling2D and dense layers, for optimal

classification performance. The model is trained using the Nadam

optimizer with a learning rate of 0.0001 and evaluated using various

metrics such as accuracy, precision, recall, F1 score, and ROC-AUC.

The second model employs a YOLOv8n architecture, pre-

trained on the fruit dataset, and fine-tuned for object detection on

a custom dataset. The model processes images resized to 640 pixels

and applies advanced data augmentation techniques, including

mixup, random flipping, and cropping, to enhance generalization.

It is trained for 50 epochs with a batch size of 16 and an initial

learning rate of 0.01. The training pipeline includes a composite loss

function optimizing bounding box regression, classification, and

objectness scores. After training, the model is evaluated on a

validation set and deployed for real-time inference on images and

videos, making it suitable for real-world applications in automated

detection and classification tasks.
4.1 The first proposed model

This paper proposes a novel image classification approach by

integrating a DenseNet121 model pre-trained on ImageNet with a

Squeeze-and-Excitation (SE) Attention block. The integration of the

SE Attention block enhances feature representation by allowing the

model to focus on the most relevant features, improving
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classification performance. To ensure robust generalization and

mitigate overfitting, various data augmentation techniques are

applied, diversifying the training data and making the model

more adaptable to unseen samples.

4.1.1 Data preparation and augmentation
To effectively train the model, the dataset is first organized into

a structured folder format, categorizing images based on their

respective classes. Data augmentation is performed using the

ImageDataGenerator function, incorporating transformations

such as rotation, width and height shifts, shearing, zooming, and

flipping. These transformations enhance dataset diversity and

improve model robustness. The dataset is then divided into

training and validation subsets, with 80% allocated for training

and 20% for validation, ensuring an effective balance for model

learning and performance assessment.

4.1.2 Model definition
The DenseNet121 architecture, pre-trained on the ImageNet

dataset, is used as the backbone of the classification model (Chutia

et al., 2024). To enhance feature extraction capabilities, a Squeeze-

and-Excitation (SE) Attention block is incorporated. This

mechanism adaptively recalibrates feature maps by modeling

interdependencies between channels, allowing the model to focus

more on essential features. Custom layers are added for

classification, including a GlobalAveragePooling2D layer to

reduce spatial dimensions and dense layers to refine feature

representation and optimize classification accuracy.

4.1.3 Model compilation and training
The model is compiled using the Nadam optimizer, known for

its adaptive learning rate capabilities, with an initial learning rate of

0.0001. The training process is conducted for 20 epochs, where

model performance is continuously monitored on the validation

dataset. This ensures that the model achieves optimal convergence

while avoiding overfitting. The adaptive learning mechanism of

Nadam facilitates efficient parameter updates, leading to

better generalization.

4.1.4 Performance evaluation
Once trained, the model is evaluated using multiple

performance metrics to assess its effectiveness in image

classification. These metrics include accuracy, precision, recall,

F1-score, and ROC-AUC, providing a comprehensive evaluation

of classification performance. These measures ensure that the model

not only performs well on the training data but also generalizes

effectively to unseen data, making it a reliable approach for date

fruit image classification.

4.1.5 Model architecture design
The DenseNet architecture is distinguished by its dense

connectivity pattern, where each layer receives direct input from

all preceding layers, facilitating efficient feature reuse. To further

enhance the model’s ability to focus on informative features,
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integrating attention blocks within the DenseNet framework (Liu

and Zeng, 2018). Mathematically, the output (Xk) of the (   k   )-th

dense block in DenseNet is computed as shown in Equation 6.

Xk = Xk−1 ⊕ Gk(Xk−1) (6)

where (Gk) represents the composite function of convolutional,

batch normalization, and Rectified Linear Unit (ReLU) operations

within the (   k   )-th dense block, and (  ⊕) denotes concatenation.

To incorporate attention mechanisms, introducing attention blocks

(Bk) after each dense block, generating attended features (Bk) as

described in Equation 7.

Bk = Bk(Xk) (7)

The attention block (Bk) typically consists of a combination of

operat ions , inc luding global average pool ing , l inear

transformations, and activation functions. The attended features

are then combined with the output of the dense block to form the

input for the next layer, as expressed in Equation 8.

Xk+1 = Bk ⊕ Gk+1(Bk) (8)

This modification enhances the model’s ability to emphasize

relevant features, adapting to the specific characteristics of the input

data. The attention mechanisms contribute to improved

discriminative power, making the DenseNet architecture more

effective at capturing nuanced patterns within the input sensor

data (Zhou et al., 2022; Mujahid et al., 2023).

4.1.6 Hyperparameter tuning and evaluation
In this section, focusing on optimizing key parameters to

enhance the performance of the proposed DenseNet model with

attention mechanisms. The Nadam optimizer, which combines

Nesterov accelerated gradient (NAG) and Nadam optimization

techniques, is employed to efficiently update model parameters

during training (Abdulkadirov et al., 2023; Reyad et al., 2023). The

update rule for the model parameters (   f) using Nadam is

expressed in Equations 9–13.

ut = g1 · ut−1 + (1 − g1) ·mL(ft) (9)

wt = g2 · wt−1 + (1 − g2) · (m L(ft))
2 (10)

but = ut
1 − g t

1
(11)

bwt =
wt

1 − g t
2

(12)

ft+1 = ft −
affiffiffiffiffibwt

p
+ d

· g1 · but + (1 − g1) ·∇L(ft)
1 − g t

1

� �
(13)

where a is the learning rate, m L(ft) is the gradient of the loss
with respect to the parameters, g1 and g2 are exponential decay rates
for the moment estimates, and d is a small constant to prevent

division by zero. The batch size S is another critical hyperparameter

that influences the number of samples used in each iteration (Bhat
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and Birajdar, 2023). A smaller batch size may introduce more noise

but can lead to faster convergence, while a larger batch size provides

a smoother gradient but requires more computational resources.

For the attention mechanisms, the attention weights (a) can be

fine-tuned to balance the contribution of attended features in the

model output (Bi et al., 2023). The attention block’s mathematical

representation is given in Equation 14:

Bk = s(Wa · GAP(Gk(Xk))) (14)

where (s) is the activation function, (Wa ) represents the

attention weights, and (GAP) denotes the global average pooling

operation (Asif et al., 2023). By employing the Nadam optimization
Frontiers in Plant Science 08
algorithm, which combines the Nesterov accelerated gradient and

Nadam optimization techniques, the model benefits from efficient

parameter updates during training. This ensures that the attention

weights are optimized to effectively emphasize the most relevant

features, enhancing the model’s performance. The proposed

DensNet121+SE model steps are shown in detail in Figure 1.

The figure outlines a structured process for building and compiling

a deep learning model based on the DenseNet121 architecture,

incorporating a Squeeze-and-Excitation (SE) Block to enhance feature

representation. The process begins with preparing input datasets for

classification and segmentation, ensuring they are properly loaded and

preprocessed. Data preparation involves normalization, augmentation,

and splitting the dataset into training, validation, and test sets to
FIGURE 1

The structure of the proposed DensNet121-SE model.
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enhance generalization. The SE Block is then introduced to improve the

network’s representational power by modeling interdependencies

between channels through global average pooling and a self-gating

mechanism. The model is constructed by applying the SE Block to the

output of DenseNet121, followed by a global average pooling layer to

reduce spatial dimensions, a fully connected layer with 1024 units and

ReLU activation, and a output layer for predictions. Compilation

involves defining the optimizer, loss function, and evaluation metrics,

setting up the learning process. To fine-tune the model, the base layers

of DenseNet121 are frozen, preserving pre-trained features while

allowing the newly added layers to learn task-specific representations.
4.2 The second proposed model

The second model utilizes the YOLOv8n architecture, a state-of-

the-art object detection framework, to classify date fruit images. The

first step in this approach involves data preprocessing, where images

are resized to a standard dimension of 640×640 pixels to ensure

consistency across the dataset. Various data augmentation

techniques, including mixup, random flipping, and cropping, are

applied to improve model generalization, reduce overfitting, and

enhance robustness against variations in lighting, orientation, and

background noise. Once the data is prepared, the model initialization

phase begins by loading a pre-trained YOLOv8n model (yolov8n.pt).

This model, originally trained on the COCO dataset, serves as a

strong foundation for transfer learning, enabling the network to adapt

to the specific characteristics of the date fruit dataset with minimal

training from scratch. The training pipeline is then set up with key

hyperparameters, including a batch size of 16, which balances

computational efficiency and model convergence, and a learning

rate of 0.01, which governs the step size during weight updates.

The model is trained for 50 epochs, allowing sufficient time for

convergence while preventing overfitting. Additionally, advanced

data augmentation techniques such as mixup (with a factor of 0.2)

are employed to increase dataset diversity and enhance the model’s

ability to generalize to unseen data. During validation and evaluation,

the trained model is tested against a reserved validation set to

measure its performance. Various performance metrics, including

accuracy, precision, recall, and mean Average Precision (mAP), are

used to assess the effectiveness of the model. After training and

evaluation, the model is saved for future deployment. The trained

model can then be used for real-time inference, where it can classify

new images or videos by loading the saved weights and running the

detection pipeline. This ensures that the model is not only effective in

an experimental setting but also practical for real-world applications,

such as automated fruit sorting or quality assessment. To mitigate

overfitting given the small dataset size, several strategies were

employed. Data augmentation techniques, including random

flipping, rotation, and scaling for DenseNet121+SE, and mixup

(factor 0.2), random cropping, and flipping for YOLOv8n, were

applied to enhance generalization. Regularization techniques such

as dropout layers and L2 regularization (weight decay) were used to

control model complexity. Transfer learning played a crucial role,

with DenseNet121 pre-trained on ImageNet and YOLOv8n pre-

trained on a 15-class date fruit dataset, leveraging prior knowledge to
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improve performance. Early stopping was implemented to halt

training when validation loss ceased to improve, preventing

unnecessary overfitting. Additionally, hyperparameter tuning was

carefully performed, with a learning rate of 0.0001 for DenseNet

and 0.01 for YOLOv8n, while batch normalization stabilized training.

These combined strategies ensured robust generalization and reliable

model performance beyond the training dataset.
5 Experimental and results

5.1 Dataset characteristics

The dataset comprises 1,658 high-quality JPG images, depicting

Saudi Arabian date fruit types: Ajwa, Galaxy, Medjool, Meneifi, Nabtat

Ali, Rutab, Shaishe, Sokari, and Sugaey. The dataset and improve

generalization, data augmentation techniques such as rotation,

flipping, zooming, and cropping are applied and the resulting

dataset are 1868 images. The dataset is divided into training,

validation, and test sets: Training: 80% of the data (1,494 images),

Validation: 10% of the data (187 images), Test: 10% of the data (187

images). Class Imbalance: Some classes (e.g., Sokari: 264, Meneifi: 232)

have more images than others (e.g., allig: 104, deglet_nour: 106) as

shown in Table 3. Data augmentation is used to mitigate class

imbalance. Date fruit classification using segmented labels

categorizes date fruits into different distinct classes based on

physical and visual characteristics to uses advanced deep learning

techniques like CNNs or transformer-based models to accurately

identify and differentiate between labeled classes.
5.2 Results and analysis

To assess the performance of the proposed framework, conduct

a series of experiments. These experiments were executed on a
TABLE 3 The number of images representing the date fruits types
after augmentation.

Class name Number of images

Ajwa 175

Galaxy 190

Medjool 135

Meneifi 232

Nabtat Ali 177

Rutab 146

Shaishe 171

Sokari 264

Sugaey 168

allig 104

deglet_nour 106

Total 1868
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computer equipped with a 3 GHz Intel Core i7 processor, 8 GB of

RAM, and a 64-bit Windows 10 operating system. The

implementation was carried out using the Python programming

language, ensuring efficient execution and reproducibility of the

experimental setup.
5.3 Pre-trained models

5.3.1 The First model based DenseNet121-SE
Analyzing the performance of the DenseNet121 architecture

integrated with a Squeeze-and-Excitation (SE) block by closely

examining its learning curves and conducting a series of rigorous

experiments. The learning curves provide a comprehensive visual

representation of the model’s progress over epochs, highlighting
Frontiers in Plant Science 10
convergence trends and adaptability. Figure 2 illustrates these

patterns specifically for the Nadam optimizer. Through a carefully

structured set of experiments, adjusting SE block parameters and

assessing their impact on the model’s responsiveness across

different datasets and tasks. By monitoring key metrics such as

accuracy, loss, and convergence rates, aiming to uncover the

intricate relationship between the SE-enhanced DenseNet121

architecture and its ability to extract meaningful features effectively.

Figure 3 illustrates the statistical distribution of predicted

probabilities using three visualization techniques: (a) Box Plot, (b)

Kernel Density Estimation (KDE) Plot, and (c) Violin Plot. The Box

Plot highlights the spread, median, and potential outliers in the

predictions, revealing variations in model confidence. The KDE Plot

provides a smoothed probability density function, showing where

predictions are concentrated and indicating confidence levels. The
FIGURE 3

The statistical analysis (a) Box Plot, (b) KDE plot and (c) Violin plot of predicted probabilities for dataset classification.
FIGURE 2

The learning curves for DensNet121-SE model (a) The training and validation accuracy, (b) The training and validation loss.
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Violin Plot combines both, offering a detailed view of probability

distribution and density across different classes. These analyses help

assess model performance, identify uncertainties, and refine

classification strategies.

Figure 4 displays a collection of tested and trained classified date

fruit images, each labeled with their respective categories using a

bounding box and text annotation. The dataset includes various

date types, such as “Nabtat-Ali,” “Rutab,” “Shaishe,” and “Ajwa,”
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showcasing different textures, shapes, and colors. The images

appear to be part of an object detection or classification task to

automate the identification process. Figure 5 presents a

comprehensive set of performance evaluation plots and a pairplot

visualization, providing insights into the model’s classification

capabilities. The F1-Confidence Curve illustrates the F1 scores

across different confidence thresholds for individual classes and

the model performance. The Precision-Recall Curve highlights the
FIGURE 4

Sample images for date fruit segmentation – (a) testing set, (b) training set.
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trade-off between precision and recall for each class, with the mean

average precision (mAP@0.5) serving as a key performance

indicator. The Precision-Confidence Curve showcases how

precision varies with confidence levels, while the Recall-

Confidence Curve represents the recall as a function of

confidence, providing a comparative analysis across different
Frontiers in Plant Science 12
classes. Additionally, the Pairplot Visualization presents scatter

plots and histograms of spatial features (x, y, width, height),

revealing their distributions and interdependencies. Figure 6

presents key visualizations related to model training and

evaluation, providing insights into performance metrics and

dataset characteristics.
FIGURE 5

Comprehensive performance evaluation and feature distribution analysis. (a) F1-Confidence Curve, (b) Precision-Recall Curve, (c) Precision-
Confidence Curve, (d) Recall-Confidence Curve, and (e) Pairplot Visualization.
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5.3.2 The second model based YOLOv8n
Presenting the classification of date fruit images based on

YOLOv8n. Figure 7 represents the loss curve plot illustrating the

training progression of a YOLOv8n-based classification model over

50 epochs, depicting box loss and classification loss. Initially,

classification loss starts above 2.0 and box loss around 0.4–0.5,
Frontiers in Plant Science 13
indicating significant errors. During the first 10 epochs,

classification loss decreases rapidly, while box loss declines more

gradually. Beyond 20 epochs, both losses stabilize, showing steady

convergence. By epoch 50, both losses reach relatively low values,

suggesting improved model accuracy and robustness. The

narrowing gap between box and classification losses indicates
FIGURE 6

Model training and evaluation visualizations. (a) Training and Validation Loss Metrics, (b) Precision, Recall, and mAP Metrics, (c) Instance Distribution
Bar Chart, (d) Bounding Box Visualization, and (e) Density Plots.
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balanced learning of localization and classification tasks. This

visualization is essential for evaluating model performance,

ensuring proper convergence, and identifying areas for

optimization, such as fine-tuning hyperparameters like learning

rate, batch size, or data augmentation strategies.

Figure 8 illustrates the model’s performance of over 50 training

epochs using the YOLOv8n framework, represented by two key

metrics: mAP-50 (mean Average Precision at threshold 0.5) and

mAP50-95 (mean Average Precision averaged across thresholds from

0.5 to 0.95). At the initial epochs, both metrics fluctuate, indicating an

unstable learning phase. However, from around epoch 10 onward, both

mAP-50 and mAP50–95 stabilize and converge near 1.0, signifying
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high model accuracy. The mAP-50 measures precision at a single

Intersection over Union (IoU) threshold (0.5), whichmeans it evaluates

how well the model detects objects with at least 50% overlap between

the predicted and ground truth bounding boxes. In contrast, mAP50–

95 is a more stringent metric, averaging precision over multiple IoU

thresholds (0.50, 0.55, 0.95), providing a more comprehensive

assessment of the model’s detection performance across varying

levels of localization accuracy. In this case, the minimal gap between

the two metrics suggests that the model performs consistently well

across different IoU thresholds, indicating strong localization precision

and robustness in detecting date fruit images. Figure 9 investigates the

mAP-50 and mAP50–95 for different class labels utilized in this work.
FIGURE 7

The box loss and cls loss of the proposed model based YOLOv8n.
FIGURE 8

The mAP-50 and mAP-95 performance of the proposed model based YOLOv8n.
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The model exhibits high precision (0.9976) and recall (0.9970),

ensuring exceptional detection accuracy. The mAP50 remains

consistently high (0.995) across most classes, with minor

variations for Aseel (0.98781) and Zahidi (0.9834). The model
Frontiers in Plant Science 15
processes data efficiently, with an inference time of 3.60 seconds

and postprocessing time of 2.14 seconds, making it suitable for real-

time applications. The fitness score of 0.9935 highlights its strong

performance. Additionally, both training and validation losses
FIGURE 9

The mAP-50 and mAP50–95 by Class using YOLOv8n.
FIGURE 10

The comparative analysis between most recent DL approaches and the proposed models.
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decrease significantly over epochs, reflecting effective learning. The

training accuracy improves from 0.3793 to 0.9604, while validation

accuracy increases from 0.6534 to 0.9290. After Epoch 10, the

model stabilizes, with only minor fluctuations in validation

accuracy and loss. The training time per epoch ranges between

452s and 542s, averaging ~480s, demonstrating efficient training

dynamics. The comparison between the proposed methods with the

deep leaning approaches Efficient Net, Google Net, VGG (Nadam),

VGG (Adam) are shown in Figure 10.
6 Discussion

This paper aims to address several key challenges in the

automation of fruit classification and quality control in agriculture.

While the proposed model demonstrates high performance, it is

important to acknowledge that its robustness could be further

enhanced with a larger and more diverse dataset. The current

dataset, although augmented, may not fully capture the variability

present in real-world farm environments, such as changing lighting

conditions, background noise, and image quality variations. These

factors could introduce biases into the model, which might affect its

generalizability. Furthermore, the dataset primarily focuses on date

fruits, and although our model performs well for these, its

application to other fruit types or cultivars may require further

validation with a more varied and expansive dataset. The integration

of the DenseNet121 architecture with the Squeeze-and-Excitation

(SE) attention mechanism is designed to improve the model’s ability

to focus on critical image features, which enhances classification

performance. However, deploying this model in real-world

agricultural settings still presents challenges, particularly when

considering the complexities of varying lighting, occlusions, and

cluttered backgrounds that often arise in farm environments. For

practical applications, real-time processing of large volumes of image

data is essential, and this can be a significant hurdle in areas with

limited computational resources. To address these concerns by

presenting YOLOv8n as an efficient solution for real-time

classification. This model, with its high accuracy and lightweight

design, offers a viable option for deployment in automated

agricultural systems. The use of YOLOv8n also makes the

approach more applicable to real-world settings, particularly when

dealing with a broader range of fruit varieties. Looking forward,

several areas for improvement and future work emerge. Expanding

the dataset to include a wider range of fruit varieties and real-world

conditions is a critical next step. Such an expansion would enhance

the generalizability of the model and its ability to classify a diverse set

of fruits under varying environmental conditions. Testing the model

on fruits with similar visual characteristics could further

demonstrate its versatility. Additionally, exploring semi-supervised

or unsupervised learning techniques could help mitigate the

challenges posed by limited labeled data in agricultural contexts.

While the current model performs well, further optimization may be

needed to reduce its computational demands for use in low-resource
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environments. Future work could focus on model compression or

lightweight architectures that maintain performance while

improving efficiency. Integrating the model into larger agricultural

management systems would enable real-time monitoring, yield

prediction, and quality control, further enhancing the automation

of fruit classification in agriculture. By building on these

considerations to believe that the proposed model, leveraging

DenseNet121 with SE and YOLOv8n, has the potential to make

significant strides in the automation of fruit classification and quality

control, offering a practical and efficient solution for real-world

agricultural applications.
7 Conclusion and future work

This study introduced an advanced approach to date fruit

classification by integrating DenseNet121 with a Squeeze-and-

Excitation (SE) attention block, enhancing feature representation

and classification accuracy. The incorporation of data augmentation

improved generalization and reduced overfitting, while Nadam

optimization further refined model performance. Unlike

traditional DenseNet architectures, the SE attention mechanism

allowed the model to focus on critical image features, leading to

superior classification results. Experimental evaluations

demonstrated that DenseNet121+SE achieved 98.25% accuracy,

98.02% precision, 97.02% recall, and a 97.49% F1-score, while

YOLOv8n achieved 96.04% accuracy, 99.76% precision, 99.7%

recall, and a 99.73% F1-score, confirming the robustness of the

approach compared to existing architectures. For future work to

explore real-time deployment of the model for automated quality

control in the food industry. Additionally, integrating multi-modal

data, such as hyperspectral imaging or thermal sensing, could

further enhance classification accuracy. Expanding the dataset to

include more fruit varieties and different environmental conditions

will also improve model generalizability, making it a more versatile

solution for precision agriculture.
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