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The annual global economic losses from pest-induced crop damage are

substantial and difficult to quantify. Real-time monitoring of pest dynamics and

timely control strategies are crucial for food security. Among the primary

monitoring techniques, sex pheromone-baited trapping technology is

instrumental in the detection and management of agricultural pests. To

address existing limitations-such as manual insect collection and counting in

conventional traps, inaccuracies in photoelectric counting devices, and the

requirement for manual replacement of sticky boards in image-based traps—

an advanced agricultural pest monitoring system utilizing sex pheromone bait

was designed and developed in this paper. The system integrates smart electro-

killing pheromone traps, a pest detection model, and a pheromone monitoring

platform. Male pests attracted to pheromones are neutralized by an electric grid

and deposited on an image acquisition platform. A network camera captures

images of the pests, which are processed by a YOLOv9-TrapPest detection

model to identify and quantify them. This model incorporates an AKConvmodule

to enhance feature extraction, reducing false detections from limb separation.

The CBAM-PANet structure improves detection rates of sticky pests, while the

FocalNet module optimizes fine-grained feature capture, excluding non-target

pests. The YOLOv9-TrapPest model outperforms other detection models,

achieving 97.5% average precision and 98.3% mAP50 for detecting seven pest

species. Furthermore, a pest pheromone monitoring platform displays the

images and identification results, supporting pest control decisions. This

system incorporates automated functions for pest trapping, killing, counting,

and clearing, thereby achieving complete automation in the monitoring of pests

attracted by sex pheromones.
KEYWORDS

agricultural pests, machine vision, smart electro-killing pheromone traps, YOLOv9-
TrapPest, pest pheromone monitoring platform
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1 Introduction

The annual global economic losses caused by pests damaging

crops are incalculable (Savary et al., 2019). Real-time monitoring of

pest population dynamics, combined with the timely

implementation of effective control measures, is crucial for

ensuring food security. In the realm of agricultural pest

monitoring, alongside traditional manual field survey methods,

various intelligent devices are frequently employed. These include

ground light traps, sex pheromone-baited traps, searchlight traps,

and insect radar, which are utilized to trap and monitor pests. The

trapped pests are subsequently identified and counted, enabling

accurate detection and reporting of pest populations (Jiang et al.,

2021). Among them, sex pheromone-baited traps, which utilize

synthetic pheromone lures to trap target pest males, are commonly

used for the physical control and monitoring of pests. They have

been widely used in agricultural pest monitoring and control due to

their simplicity, low cost, and environmental friendliness.

At present, sex pheromone-baited traps can be classified into

two main categories based on the methods used for capturing and

counting pests attracted by pheromone lures. These categories have

been widely adopted in the field for pest monitoring and

management. (1) Simple sex pheromone-baited traps are traps

that utilize sticky boards or buckets to capture pests and employ

a manual identification and counting method (Yang et al., 2020). (2)

Bucket traps are traps designed to prevent pests from escaping and

use photoelectric counters to automatically count the pests

(Potamitis et al., 2014; Zhou, 2020). The two types of traps have

the following shortcomings: (1) Simple sex pheromone-baited traps,

though cost-effective, require regular field visits by surveyors to

check the number of trapped insects and manually report the data.

This process is both time-consuming and labor-intensive.

Moreover, the data are not available in real-time and are difficult

to track for historical analysis. Additionally, these traps are easily

damaged and cannot be reused. (2) Traps utilizing sticky boards

necessitate timely manual replacement of the boards when large

numbers of insects are captured, further increasing labor demands.

(3) Since synthetic pheromone lures cannot guarantee a high degree

of specificity, and the proportion of pheromone lures’ components

may vary across regions for a particular pest, these lures often

attract various similar pest species (Shen et al., 2019), or non-target

pests that mistakenly enter the trap. This leads to inflated counts of

target pests by photoelectric counters and thus reduces the

reliability of target pest monitoring (Luo et al., 2016).

With the continuous development of machine vision

technology and its successful application across various domains,

a growing number of researchers are exploring its integration with

sticky boards in pest sex pheromone-baited monitoring systems to

improve the intelligence and precision of pest monitoring. In this

approach, pests are first attracted by pheromone lures, and they are

glued to death when they touch the sticky boards. The machine

vision system then captures images of the sticky boards, which are

subsequently analyzed using pattern recognition or deep learning

techniques to identify and count the trapped pests. Traditional

pattern recognition methods typically follow these steps:

background segmentation, feature extraction of the pests, and the
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identification and counting of target pests using similarity measures

or classifiers (Yalcin, 2015; Li et al., 2019). Due to prolonged

exposure of sticky boards to the environment, the image

backgrounds can become complex. When a large number of pests

are captured, challenges such as pests sticking together and

interference from visually similar species arise. Traditional pattern

recognition methods often struggle to handle these complexities,

leading to poor generalization and a reduced ability to continuously

and accurately identify pests. Consequently, these methods have not

seen widespread adoption in the field. In recent years, the

exceptional performance of deep learning in object recognition

and target detection has led to its application in pheromone-baited

pests images recognition. For instance, Ding and Taylor (2016)

utilized a sliding window approach and convolutional neural

network to identify codling moths on pheromone-baited sticky

board images. Qiu et al. (2021) used the YOLOv5 model to identify

Spodoptera frugiperda on both the collecting boards of the pest

image monitoring device FAAS-Pest Monitor, and the sticky

boards, achieving a precision rate of 96.23% and a recall rate of

91.85%. However, the study was limited to a single pest species,

restricting its broader applicability to other pest types in agricultural

monitoring systems. Tian et al. (2023) designed a pest monitoring

device to capture pest images, and proposed the MD-YOLO model

to detect three major orchard pests Adoxophyes orana, Grapholitha

molesta Busck, and Carposina niponensis Walsingham, on sticky

board images. The model achieved a mAP50 of 86.2%. Zhang et al.

(2022) designed smart sex pheromone-baited traps to capture

images of Cnaphalocrocis medinalis on sticky boards. To address

the reduced recognition rate caused by complex backgrounds, sticky

pests, and false detections of similar pests, a two-layer network

model incorporating an improved YOLOv3 and DBTNet-101 was

developed. This model achieved a recognition precision of 97.6%

and a recall rate of 98.6%. However, the image capture modules of

these sex pheromone-baited traps are not enclosed. The sticky

boards are exposed to the environment and the pests on the

boards can damaged and decayed, which cause missed and false

detections of model. Moreover, the background complexity of the

sticky boards images increases over time, making the pest

identification more difficult.

To address the challenges of frequent replacements of sticky

boards and the increasing complexity of image backgrounds due to

outdoor exposure, an electro-killing intelligent monitoring system

was developed for agricultural pests based on machine vision. In

this system, to eliminate the need of frequent replacements of sticky

boards, we replace sticky boards with an electro-killing mechanism

and utilize a rotating flat bottom tray to clear the pests. And the

electro-killing mechanism is enclosed, which prevents the image

background from becoming more complex, thereby reducing the

missed and false detections of model. Moreover, to address specific

challenges in pest recognition for images captured by electro-killing

mechanisms, such as false detections of pests with fragmented

bodies and similar pest species, missed detections of pests adhere

to one another, we designed the YOLOv9-TrapPest pest

identification model by incorporating the AKConv module,

CBAM-PANet structure, and FocalNet module into the YOLOv9

model. This system realizes the unattended sex pheromone-baited
frontiersin.org
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pest monitoring, including automatic pest attraction, electrocution

of pests, image capture, pest identification, pest counting, and data

traceability. And it provides real-time data support for the

monitoring and control of agricultural pests attracted by

pheromone lures.
2 Materials and methods

2.1 Overall system architecture

The electro-killing pheromone-baited intelligent agricultural

pest monitoring system mainly consists of three modules, smart

electrical pheromone traps, a server for data access and model

deployment, and a platform for pest reporting, as shown in Figure 1.

The smart electrical pheromone trap is responsible for trapping and

electrocuting the pests and capturing the pest images. These images

are then transferred to the server via FTP protocol, where a pest

identification and counting model is deployed. The results are

subsequently displayed on the platform.
2.2 Smart electro-killing pheromone trap

The smart electro-killing pheromone trap is mainly composed

of four parts: solar electric panel, trap cage, electric shock module

and machine vision module. The structure is shown in Figure 2.

Among them, the machine vision module includes a control

mainboard, a 1200w pixel industrial camera, a shooting flat

bottom tray, a flip motor, and an insect collector.

Given the challenges of obtaining a reliable electricity supply in

remote farmland, solar panels are utilized as the power source for

the smart electro-killing pheromone traps, ensuring environmental

sustainability. A dedicated software system has been developed on

the control mainboard to manage various functions. This includes

controlling the timing of the power supply to the electric grid,

activating the camera to capture images, and rotating the flat

bottom tray 360°, facilitating comprehensive pest monitoring and

system efficiency.
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Smart electro-killing pheromone traps attract pests using

pheromone lures placed within the trap cage. When a pest enters the

trap, it collides with the cage wall or cover and falls onto the electric

shock module, where it is electrocuted. Since a large number of pests

may lead to pest adhesion, we will set the number of times the electric

grid operates to ensure that the number of trapped pests does not

become too large. The pest then falls through the gaps in the electric

grid of the shock module onto the flat bottom tray of the machine

vision module. The control mainboard schedules the camera to

automatically capture images of the pests on the flat bottom tray.

The image files are uploaded to the server via FTP protocol for storage,

while additional data—such as device number, device status, GIS

coordinates, fault information, and image paths—are transmitted via

HTTP protocol and stored in the server’s database. The server

processes the uploaded images using an automatic identification and

counting model to perform data analysis and generate statistical

reports. Afterward, the control mainboard activates a flip motor that

rotates the flat bottom tray 360° to reset it, causing the pests to fall into

an insect collector located at the bottom of the trap. This automated

sequence allows the smart electro-killing pheromone trap to fully

automate the entire process of pest attraction, electrocution, image

capture, data transmission, and analysis. As a result, the system enables

completely unattended operation for pheromone-baited

pest monitoring.
2.3 Image dataset

From 2023 to 2024, a total of 7 smart electro-killing pheromone

traps were deployed across farms located in Jinhua City, Zhejiang

Province; Zhuhai City, Guangdong Province; and Ningjiang

District, Songyuan City, Jilin Province. Each device was equipped

with a specific pheromone lure for monitoring pheromone-baited

pests. Over the course of the deployment, 1,796 images were

collected, capturing seven types of agricultural pests. The images,

each with a resolution of 4000×3000 pixels, were stored in JPG

format. The detailed data information is presented in Table 1.

The LabelImg tool was used to annotate the pests in the images,

with category information and location information saved in XML
FIGURE 1

Architecture of the electro-killing pheromone-baited intelligent agricultural pest monitoring system.
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files. After labelling, the pest image data was converted into YOLO

dataset format. However, due to the insufficient solar power supply

caused by consecutive rainy and cloudy days, the voltage provided by

the solar panels was low. This low voltage led to images with

insufficient brightness. To address this issue, the brightness

augmentation technique was applied to enhance image quality,

ensuring that the final detection results were not affected. Further, to

improve the generalization capabilities of the pest detection model,

additional data augmentation techniques were applied. These include

rotation, mirroring, noise addition, and mosaic augmentation, helping

the model become more robust in recognizing pests under various
Frontiers in Plant Science 04
environmental and image conditions. The dataset was then split into

training sets, validation sets and test sets in an 8:1:1 ratio.
2.4 YOLOv9-TrapPest model

YOLOv9 (Wang et al., 2024) is an improved target detection

model built upon the YOLO framework. It utilizes the

Programmable Gradient Information (PGI) technique to generate

more reliable gradients through reversible branches, thereby

improving the convergence and performance of the model.
TABLE 1 Information on seven agricultural pests.

Pest species Images Number of images Number of targets Number of targets after data enhancement

Chilo suppressalis 379 2341 18727

Cnaphalocrocis
medinalis

298 2415 19320

Spodoptera frugiperda 201 1357 10856

Sesamia inferens 235 1221 9768

Leucania loreyi 214 1643 13144

Pyrausta nubilalis 223 2013 16104

Spodoptera litura 246 1545 12360
FIGURE 2

The smart electrical pheromone trap.
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Additionally, the model introduces the Generalized Efficient Layer

Aggregation Network (GELAN) to optimize parameter utilization

and computational efficiency. Experimental results showed that

YOLOv9 achieved performance comparable to YOLOv7AF (Wang

et al., 2023) on the MS COCO dataset (Lin et al., 2014) with an AP

of 53%, while using 42% fewer parameters and 21% less

computational power. This makes it particularly suitable for

resource-constrained environments. To meet the requirements for

high-precision pest identification and counting in real-time

monitoring systems while maintaining a lightweight and efficient

model, the YOLOv9-TrapPest model was developed in this paper,

based on YOLOv9, to detect and count seven types of agricultural

pests in the images captured by smart electrical pheromone traps.

The difficulty of model identification is increased by the fact that

pests struggle when they touch the electric grid after being lured

over by the pheromone lures, which tends to cause separation or

fragmentation of the pest limbs. In this paper, Alterable Kernel

Convolution (AKConv) (Zhang et al., 2023) was introduced into the

backbone network to improve the feature extraction and fusion

module, RepNCSPELAN4, to reduce the interference of pests’

limbs. During peak pest periods, heavy adhesion of pests leads to

a reduction in the model’s recall rate. To address this issue, we

proposed the CBAM-PANet structure based on the attention

mechanism, which improved the Path Aggregation Network

(PANet) structure (Liu et al., 2018) in the Neck network of

YOLOv9. By incorporating both channel attention and spatial

attention mechanisms, the model’s ability to focus on important

features and critical regions was significantly enhanced (Woo et al.,

2018), allowing for more accurate identification and localization of

targets in images with complex backgrounds and adhered pests.

Although pheromone lures are specific, some closely related species

have similar chemical components in their pheromone lures, which

can easily attract similar pests. To reduce the false detections of

similar pests, the Focal Modulation Network (FocalNet) (Yang

et al., 2022) was employed in this paper to replace the SPPELAN

module in the Head network. By introducing the focal modulation

mechanism, the feature extraction network’s capacity to focus on

high-confidence regions was enhanced, allowing the model to
Frontiers in Plant Science 05
capture fine-grained features more effectively. This improvement

enables the model to better distinguish between similar pest species

by concentrating on the most relevant areas within an image. The

structure of the YOLOv9-TrapPest model is illustrated in Figure 3.

2.4.1 AKRepNCE
RepNCSPELAN4 is the feature extraction-fusion module in

YOLOv9, which combines two architectures with gradient path

planning: CSPNet and ELAN. It is designed as a generalized efficient

layer aggregation network, considering factors such as lightweight

design, inference speed, and accuracy.

In convolutional neural networks, standard convolution

operations are limited to a local window of fixed shape, with the

kernel size fixed at k × k, resulting in a quadratic growth in the

number of parameters. In pest recognition, the fixed sampling

windows and convolutional kernels make it difficult for the model

to accurately identify pests with partial or damaged bodies caused

by the electric shock module, which in turn reduces the model’s

recognition accuracy, as shown in Figure 4. Therefore, in this paper,

the AKConv was introduced to enhance the feature extraction and

fusion capabilities of the RepNCSPELAN4 module. The improved

module, named AKRepNCE, and its model structure is shown

in Figure 5.

AKConv enables the convolution kernel to adaptively adjust its

shape and parameters according to the features of the input image

by integrating Deformable Convolution and Dynamic Convolution

techniques. This flexibility enables the kernel to better

accommodate pests with different morphologies. Even when the

body parts of pests are disarticulated or fragmented, the

convolutional kernel can adaptively identify the primary

characteristics of the pest, without being influenced by the

disjointed fragments.

2.4.2 CBAM-PANet
The neck network of YOLOv9 adopts PANet, which introduces

a bottom-up path augmentation structure based on the Feature

Pyramid Network (Lin et al., 2017). PANet improves the locational

expressiveness of the feature pyramid by introducing the bottom-up
FIGURE 3

The structure of the YOLOv9-TrapPest model.
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path aggregation mechanism, enabling the upward transfer and

fusion of low-level feature information. This enhancement notably

strengthens the model’s ability to accurately detect objects across

varying scales and in complex backgrounds. However, during peak

periods of agricultural pest infestations, pests may adhere to one

another, leading to issues of missed detection. To address this, the

CBAM attention mechanism was integrated into the PANet

architecture, resulting in the development of the CBAM-PANet

module. The CBAM attention mechanism combines channel

attention and spatial attention, enhancing the model’s focus on

key features. As shown in Figure 6, regarding the input feature map,

the CBAM attention mechanism infers attention maps sequentially

across two independent dimensions—channel and spatial. These

maps are then multiplied with the input feature map to adaptively

refine features, resulting in enhanced feature details. By

emphasizing critical features in both the channel and spatial

dimensions, the model can more accurately identify and localize

target pests that are adhered together.

2.4.3 FocalNet
YOLOv9 employs the SPPELAN module for spatial pyramid

pooling, which integrates spatial pyramid pooling with an enhanced

local attention network. However, in the context of this paper, it

demonstrates some limitations in effectively handling feature

diversity and multi-scale features. To more accurately identify

similar agricultural pests (for example, as show in Figure 4,
Frontiers in Plant Science 06
Spodoptera frugiperda and Spodoptera litura in this paper, which

are difficult to recognize because many of the insects are positioned

belly-up), the SPPELAN module was replaced with FocalNet.

In computer vision, different regions of an image contribute

variably to a given task. Some regions contain critical information

necessary for classification or detection, while others consist of

background or irrelevant elements. The core concept of FocalNet is

to replace the self-attention module with a focal modulation

mechanism, which captures long-range dependencies and

contextual information within the image. This mechanism allows

the model to concentrate more precisely on essential features while

reducing focus on irrelevant areas, enabling a more refined and

targeted modulation of features. This approach not only improves

the model’s sensitivity to key features but also reduces the

computational complexity typically associated with traditional

self-attention mechanisms. The network architecture of FocalNet

is depicted in Figure 7.

FocalNet obtains contextual and global information by

projecting input feature vectors into a new feature space and then

using deep convolution and global average pooling. These features

are then compressed into modulators and a dot product operation is

performed using gated weights G to obtain the intermediate output

Zout as shown in (Equation 1).

Zout=o
L+1

l=1

Gl⊙Zl (1)
FIGURE 5

The structure of the AKRepNCE.
FIGURE 4

Selected images of agricultural pests.
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Zl represents the feature representation of layer l and Gl is the

corresponding gating weight. Finally, the final output yi is obtained by

combining the linear layer h and the query q to achieve the

communication between different channels, as shown in (Equation 2).

yi=q(xi)⊙h(o
L+1

l=1

ɡli·zli) (2)

With the integration of FocalNet, the model can effectively

minimize background noise interference and more accurately

capture small yet important feature differences within an image.

This capability is especially beneficial for agricultural pest detection

tasks, where it allows for the differentiation between pest species
Frontiers in Plant Science 07
with visually similar characteristics, thereby reducing the likelihood

of false detections.
2.5 Experimental configuration

The computer processor used in this study is an Intel Core i7

9700, with a base clock frequency of 3.0 GHz. The system is

equipped with an 8TB hard drive and 16GB of memory. The

graphics card is an RTX 1080 Ti. The development environment

includes Ubuntu 20.04, Python 3.6, Anaconda 9.12, and CUDA

version 11.6. During model training, the following hyperparameters
FIGURE 7

The structure of the Focal Modulation Network module.
FIGURE 6

The structure of the CBAM-PANet.
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were configured: the number of epochs was set to 200, the

momentum was set to 0.937, the weight decay was set to 0.0005,

and the batch size was set to 4.
2.6 Performance evaluation

To objectively evaluate the detection effect of the proposed

agricultural pest detection model, Precision (P), Recall (R), Average

Precision (AP), and mean Average Precision (mAP) were selected

as the evaluation metrics, and the formulas were computed as

shown in (Equations 3–6), respectively.

Precision Pk indicates the proportion of correctly identified

target pests of class k in all samples identified as that target pest of

class k. Recall Rk indicates the proportion of correctly identified

target pests of class k in all samples of that target pest of class k. The

average precision APkintegrates precision and recall, and the model

is evaluated by calculating the area under the precision-recall curves

at different thresholds to assess the model performance. mAP is the

mean value of the average precision of all pest classes, which is a key

indicator for comprehensively evaluating the model performance in

multi-classification tasks. A higher mAP value indicates better

detection performance, as it reflects the model’s ability to

accurately detect and classify multiple pest species.

Pk=
TPk

TPk+FPk
(3)

Rk=
TPk

TPk+FNk
(4)

APk=
Z 1

0
Pk(Rk)dRk (5)

mAP= on
k=1

APk

n
(6)
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2.7 Pest pheromone monitoring platform

The pest pheromone monitoring platform adopts the

architecture of front-end and back-end separation. The front-end

includes the Web end and App end. The interactive interface for the

Web end was developed using Vue, while the App end was built on

Android. The back-end utilizes the SpringBoot framework to

handle data processing and other operations, with MySQL serving

as the database for data storage.

The functions of the pest pheromone monitoring platform are

shown in Figure 8, and include features such as an image list, data

analysis, and device management. After logging in, users can access the

image list interface to view detailed information about pest identification

results. Through the data analysis interface, users can review pest

statistics, while the device management interface allows them to

remotely send control commands. These commands can be used to

configure equipment operating modes, set image capture times, and

manually control the equipment to take pictures. The system ensures

seamless collaboration between the front and back ends, providing users

with accurate, real-time pest monitoring and analysis data.
3 Results

3.1 Ablation experiment

To validate the effectiveness of the three improved strategies in

the proposed YOLOv9-TrapPest model for pest recognition, the

Precision, Recall, and mAP50 of each improved model were

compared using the same test set. The results of the ablation

experiments are summarized in Table 2, where the mark “✓”

indicates the improvement strategy applied.

As shown in the table, original YOLOv9 model achieved a recall

rate of 91.5% and a mAP50 of 93.9%. However, it exhibited several
FIGURE 8

The pest pheromone monitoring platform.
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limitations, including a tendency to falsely detect separated limbs of

pests as individual target pests, to incorrectly recognize multiple

overlapping pests as a single target, and to misclassify visually similar

pest species, leading to false detections. In Exp2, the introduction of

the AKConv module resulted in a 1.9% increase in recall rate and a

1.2% increase in mAP50. AKConv addresses the issue of false

detection of limb separation by adaptively adjusting the shape and

parameters of the convolution kernel, better adapting the model to

the morphological characteristics of various pests, and accurately

capturing the entire target. In Exp3, the further addition of the

CBAM-PANet module resulted in a 2.1% improvement in mAP50.

This module enhances the model’s attention to important features

and key regions by introducing the channel attention and spatial

attention mechanisms, which makes the model perform better in

processing adhesive pest images. In Exp4, the introduction of the

FocalNet module resulted in a recall rate of 96.6% and a mAP50 of

98.3%. The focal modulation mechanism of FocalNet enhances the

model’s ability to focus on high-confidence regions and capture fine-

grained features, significantly reducing background interference and

improving its capacity to distinguish between agricultural pest species

with similar characteristics. As illustrated in Figure 9, the original

YOLOv9model faced challenges such as false detections of pest wings

as target pests, missed detections due to adhered pests, and false

detections when detecting visually similar pests. Yet, after

incorporating the improved strategies proposed in this paper, these

issues were effectively mitigated, leading to more accurate and reliable

pest detection.
3.2 Model performance
comparison experiment

To validate the detection effect of the proposed agricultural pest

detection model, YOLOv6m, YOLOv8m, YOLOv9, Cascade R-

CNN, and DETR were selected for the comparison experiments

in this paper, and the same training set, test set, and training

parameter settings were chosen for all the detection models. The

detection results of different models are shown in Table 3.

According to the results, the YOLOv9-TrapPest obtained the

highest mAP50, which was 7.7%, 4.1%, 3.4%, 3.9%, and 4.5% higher

compared to YOLOv6m, YOLOv8m, YOLOv9, Cascade R-CNN

and DETR, respectively. The results of the confusion matrix for the

YOLOv9-TrapPest model are shown in Figure 10. Due to the

distinctive characteristics of the pest wings, some wings that were
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separated by the electric shock module were still falsely detected as

target pests.
3.3 Interfaces of pest pheromone
monitoring platform

The interface of the proposed pest pheromone monitoring

platform for agricultural pests is shown in Figure 11. It includes

the image list interface, recognition result interface, data analysis

interface and device management interface. In the image list

interface, the images of pests acquired by smart electro-killing

pheromone traps are displayed. The recognition result interface

shows the results of these images processed by the algorithm,

including detailed information such as the time of taking pictures,

the type of pictures, and the number of various target pests. The

data analysis interface statistically analyses the collected data,

showing the occurrence of each type of target pest in a specific

period, providing a scientific basis for agricultural pest control. The

device management interface contains detailed information about

the smart electro-killing pheromone traps, such as the serial

number of the device, the latitude and longitude information of

the device, and the power information of the device. The interface

also has a remote-control function, through which users can

remotely control the device to take pictures manually, thus

improving the convenience and flexibility of device operation.
4 Discussion

As a critical monitoring tool, sex pheromone-baited technology

plays an essential role in the prevention and control of agricultural

pests. By employing synthetic pheromone lures to attract and trap

adult pests, this technology enables precise monitoring of pest

population dynamics, providing a reliable basis for developing

scientifically sound pest control strategies. This method is not

only efficient, environmentally friendly, and cost-effective, but it

also significantly reduces the reliance on chemical pesticides,

thereby lowering environmental pollution and the risk of

pesticide residues on crops. Ultimately, this approach contributes

to truly sustainable and green pest prevention and control practices.

There are a number of commercially available sex pheromone-

baited traps in the international market, such as Trapview, iSCOUT

and SightTrap (Preti et al., 2021; Suto, 2022). Nonetheless, fully
TABLE 2 Impact of three improved strategies on pest identification based on YOLOv9.

Exp AKConv CBAM-PANet FocalNet Recall (%) Precision (%) mAP50 (%)

1 91.5 92.2 93.9

2 ✓ 93.4 91.6 95.1

3 ✓ ✓ 93.1 95.2 97.2

4 ✓ ✓ ✓ 96.6 97.5 98.3
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automated monitoring of agricultural pests remains unattainable,

primarily due to the necessity of manually replacing sticky boards

once a certain number of pests have adhered to them. Moreover,

Schrader et al. (2022) noted that commercial remote monitoring

traps are adopted hesitantly by growers due to their high costs

(approximately USD 1375/ha). To solve the aforementioned

problems and realize an unattended and cheaper intelligent pest

monitoring system, a smart electrical pheromone trap was designed

in this paper. The trap utilizes an electric shock module in place of

the traditional sticky board for pest elimination, allowing for

continuous dynamic updating of the photographed area. This is

achieved by rotating the flat bottom tray, ensuring that the area for

pest monitoring remains unobstructed and up-to-date.
B

A

FIGURE 9

Comparison of test results. The red dashed box represents a missed detection of the Spodoptera litura, and the blue dashed box represents a false
detection as the Spodoptera frugiperda: (A) YOLOv9 test result, (B) YOLOv9-TrapPest test result.
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TABLE 3 Performance comparison between YOLOv9-TrapPest and
other detection models.

Models Recall (%)
Precision

(%)
mAP50
(%)

YOLOv6m 79.0 89.5 90.6

YOLOv8m 92.9 93.6 94.2

YOLOv9 91.5 92.2 94.9

Cascade R-CNN 90.7 91.7 94.4

DETR 81.1 91.3 93.8

YOLOv9-TrapPest 96.6 97.5 98.3
f
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FIGURE 10

Confusion matrix of YOLOv9 and YOLOv9-TrapPest.
B

C D

A

FIGURE 11

Display of the interface of the pest pheromone monitoring platform: (A) Image list interface in Web, (B) Recognition result interface in Web, (C) Data
analysis interface in App, (D) Device management interface in App.
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Despite advancements in sex pheromone-baited traps, field

placement results in pest images with complex backgrounds. This

necessitates the development of robust and highly generalized pest

recognition models. Miao and Zhou (2019) enhanced the SSD

model to detect six types of grain storage pests, addressing

challenges such as complex backgrounds, small pest sizes, and

varied postures in sticky board images. Their improvements

included refining the object bounding box regression strategy and

loss function, optimizing the feature extraction network, and

incorporating scratch-window sampling alongside multi-scale

feature fusion. These enhancements led to a mAP of 81.36% for

the model. Li et al. (2021) used a modified Faster-RCNN to detect

whitefly and thrips on sticky traps in the greenhouse. To address the

problem of poor results in detecting small targets, the scale of the

anchor frames was adjusted for better coverage of small pests and

RoIAlign was used instead of RoIPooling to improve the

positioning accuracy of the candidate frames, with a mAP of

95.2%. Zhang et al. (2022) established a two-layer network model

based on improved YOLOv3 and DBTNet-101 to detect the

Cnaphalocrocis medinalis. To address the challenges of complex

backgrounds, sticky pests, and reduced recognition rates caused by

false detections of similar pests, the authors introduced several

improvements. They incorporated DropBlock regularization to

mitigate the false detection of non-targets and replaced the

traditional NMS with DIoU-NMS, which effectively minimized

the loss of prediction frames for sticky targets. Further, by

cascading a layer of the deep bilinear transform classification

network, DBTNet-101, they reduced the mutual misdetection

between target and interfering pests. As a result of these

enhancements, the recognition precision and recall rates for

Cnaphalocrocis medinalis reached 97.6% and 98.6%, respectively.

In this paper, to address the issue of reduced model recognition

accuracy caused by localized and broken pests due to the electric

shock module, the AKConv module was introduced to enhance the

backbone network and minimize interference from pest limbs. To

tackle the problem of pests sticking together during peak infestation

periods, which reduced the model’s recall rate, a CBAM-PANet

structure based on the attention mechanism was proposed. This

structure enables the model to more accurately identify and locate

targets within complex backgrounds and images containing sticky

pests. To further address the issue of false detection of similar pest

species, FocalNet was incorporated in place of the SPPELAN

module in the Head network. This modification allows the model

to capture fine-grained features, improving its ability to differentiate

between visually similar pest species.

The electro-killing pheromone-baited intelligent agricultural

pest monitoring system is fully unattended and can be applied in

any location where pheromone-based pest monitoring is required.

This includes diverse agricultural settings such as greenhouses,

orchards, and rice paddies. And its pest recognition model can be

further trained to detect more pest species. Moreover, compared to
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pheromone-based monitoring systems utilizing machine vision, this

system is more cost-effective. By integrating an electric shock

module, it eliminates the need for sticky boards, thereby reducing

material costs and minimizing environmental pollution caused by

the sticky boards. Additionally, it reduces labor costs by eliminating

the need to replace sticky boards, making it a more budget-friendly

choice for growers.
5 Conclusions

In this paper, an electro-killing pheromone-baited intelligent

agricultural pest monitoring system based on machine vision was

designed and implemented. It consists of smart electro-killing

pheromone traps, a server for data access and model deployment

and a pest pheromone monitoring platform. Using an electric shock

module and base plate flipping technology, the smart electro-killing

pheromone traps efficiently electrocute pests and capture images.

To address the issues of false detections caused by pest limbs after

electrocution, as well as the false detection of similar pests and

missed detections due to large quantities of insects sticking together

during peak periods, the AKConv module, CBAM-PANet structure,

and FocalNet module were integrated into the YOLOv9 model.

These enhancements significantly improved the identification of

seven agricultural pests, achieving an average precision rate of

97.5%, an average recall rate of 96.6%, and a mAP50 of 98.3%.

The electro-killing pheromone-baited intelligent agricultural pest

monitoring system eliminates the need for regular replacement of

sticky boards, while providing real-time data on the number of pests

trapped each day, thereby offering crucial support for informed pest

control decisions.
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