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Developing a spatio-temporal
model for banana bunchy top
disease: leveraging remote
sensing and survey data
Renata Retkute* and Christopher A. Gilligan

Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge,
Cambridge, United Kingdom
Epidemics of Banana Bunchy Top Disease (BBTD) in sub-Saharan Africa are

threatening global food security and endangering the livelihoods of smallholder

farmers. This study introduces methods for developing data-based models to

derive banana production maps and process-based models to assess the

potential spread of BBTV at a landscape scale. We introduce two novel

aspects: a methodology for deriving probabilistic banana production maps

based on high-resolution remote sensing products and parameterization of

the epidemiological model for BBTD from limited survey data. We generated a

countrywide banana production map for Tanzania and a state-wide map for

Ogun State in Nigeria. We used the banana map together with published data

from BBTD surveys to parameterize a model for BBTD spread in Tanzania. Our

results emphasize the importance of surveys, as having data on the presence and

absence of Banana Bunchy Top Virus (BBTV) at different stages of epidemics is

crucial not only for effective control of the disease but also for prediction,

including making reasonable model assumptions, model parameterization, and

model validation that underpin predictions.
KEYWORDS

epidemiological modeling, banana bunchy top virus, remote sensing, crop
management, parameter estimation
1 Introduction

Bananas and plantains rank among the world’s top 10 food crops (Kumar et al., 2015).

In East Africa, bananas serve as a staple food for over seven million people and are a

primary source of income for millions of smallholder farmers (Gold et al., 2002). Over the

past few decades, several significant banana diseases have emerged and spread extensively

across different regions, posing a risk to food security and jeopardizing the livelihoods of

smallholder farmers (Tatineni and Hein, 2023).

Banana bunchy top disease, caused by the banana bunchy top virus (BBTV: genus

Babuvirus, family Nanoviridae), is the most destructive viral disease affecting bananas

globally, posing a significant threat to smallholder banana cultivation. The virus is
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primarily transmitted by the aphid vector Pentalonia nigronervosa

and further disseminated using infected propagation materials

(Magee, 1927, 1940). Banana Bunchy Top Virus infection can

result in yield losses of up to 100% (Okonya et al., 2019).

Over the past decade, BBTV has spread across sub-Saharan

Africa, with confirmed cases in the Democratic Republic of Congo,

Angola, Cameroon, Gabon, Malawi (Kumar et al., 2011), Nigeria

(Adegbola et al., 2013), Benin (Lokossou et al., 2012), Togo

(Kolombia et al., 2021), Uganda (Ocimati et al., 2021, 2024), and

Tanzania (Shimwela et al., 2022). Recent findings confirm that

BBTV has been established in Tanzania, with BBTV being found in

10 regions (Mahuku and Kumar, 2023). Urgent interventions are

needed to halt the spread of the virus throughout the country.

Mathematical models of epidemics offer valuable insights

into the mechanisms driving disease spread and enable

comparison of different management strategies for viral spread.

There are only a few large-scale spatially explicit models of

plant disease spread, including sudden oak death (Cunniffe

et al., 2016), Xylella fastidiosa in olive trees (White et al., 2017),

citrus Huanglongbing disease (Mastin et al., 2020; Nguyen et al.,

2023), cassava brown streak disease (Godding et al., 2023), and

brown rot in peach (Radici et al., 2024). One important limiting

factor is the absence of host maps upon which to model pathogen

spread in the target countries.

We introduced a novel approach for generating banana

cultivation maps using high-resolution remote sensing data. Our

method involves identifying a sample of locations with banana

cultivation through photo interpretation of high-resolution satellite

imagery. We then created binary maps indicating the presence or

absence of banana by utilizing high-resolution data on vegetation

indices, canopy height, and built-up areas. Remote sensing and

production data at the regional level were used to construct a

banana production map of Tanzania. Recently, high-resolution

RGB and multispectral aerial imagery from an unmanned aerial

vehicle (UAV) have been deployed to identify bananas in

smallholder farming systems in Ogun State, Nigeria (Alabi et al.,

2022). We tested our proposed method against predictions based on

UAV imagery. Finally, we used the host map for Tanzania together

with limited published survey data from 2020 and 2023 to

parameterize a model for the spread and transmission of BBTV at

country-wide scales.
2 Material and methods

2.1 Constructing banana production map

We developed a novel method to derive banana production

maps. The high-resolution remote sensing products used to

generate host maps for Tanzania are summarized in Table 1.

Tanzania is divided into 31 regions (administrative level 1) and

184 districts (administrative level 2). The Global Canopy Height

Map dataset provides data worldwide for the period 2009–2020

(Tolan et al., 2024). We used information on canopy height to

discriminate between objects such as trees, banana plants, shrubs,
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and crops. Sentinel-2 data were preprocessed using the Google

Earth Engine platform (Gorelick et al., 2017). Specifically, we

filtered cloudy pixels with a cloud percentage value larger than

5% and masked poor-quality surface reflectance values using the

cloud mask (QA60) band. We extracted image collections dated

from 1 August 2023 to 1 August 2024. For each available date, we

calculated the Normalized Differential Vegetation Index (NDVI) as

follows:

NDVI = (NIR − Red)=(NIR + Red) : (1)

Here, Red and NIR are the spectral reflectance measurements

acquired in the red (visible) and near-infrared regions,

respectively. The NDVI varied between −1.0 and +1.0. We

aggregated all the processed images into a median composite.

We derived a banana production map at a resolution of 1 km ×

1 km. The map construction workflow involves the following steps:
1. We manually labeled 100 locations with banana

production using photo-interpretation of high-resolution

satellite imagery from Google Earth Pro (Wuthrich, 2006).

2. We extracted canopy height values and annual mean

NDVI values with 5 m radius around the location. This

provided a distribution of canopy heights (FCH) and NDVI

values (FNDVI).

3. For each 1 km × 1 km grid cell, we created a 1 m × 1 m

pixel subgrid.

4. We masked the protected areas and permanent water

bodies for each 1 m × 1 m pixel.

5. We masked a 1 m × 1 m pixel if it intersected a

building polygon.

6. For each unmasked 1 m × 1 m pixel, we extracted the

values of the canopy height and annual mean NDVI.
TABLE 1 Datasets used to derive banana production map.

Data
type

Source (reference)
Format
(resolution)

Size

Vegetation
Copernicus Harmonized Sentinel-2
MultiSpectral Instrument, Level-2A
(Richter et al., 2012)

Raster (10
m resolution)

175.85
GB

Canopy
height

The Meta Global Canopy Height
Map
(Tolan et al., 2024)

Raster (1
m resolution)

95.82
GB

Built-
up areas

Google Open Buildings v3 (Sirko
et al., 2021)

Polygons 6.2 GB

Protected
areas

The World Conservation
Monitoring Center’s (WCMC)
Africa protected areas database
(UNEP-WCMC, 2019)

Polygons
152
KB

Permanent
water
bodies

National Geospatial-Intelligence
Agency Tanzania DCW Water
Bodies (Hijmans, 2019)

Polygons
789
KB

Area
planted
to bananas

The Tanzania National Sample
Census of Agriculture 2019–2020
(National Sample Census of
Agriculture, 2019/2020)

Regional scale 2 KB
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7. We equated the lower and upper bounds with upper and

lower interquartile values of canopy height and NDVI and

used these to create a binary map for banana presence/

absence at 1 m resolution.

8. We counted the number of 1 m × 1 m grid cells with

bananas and divided them by the total number of grid cells

to obtain the fraction of each 1 km × 1 km grid cell

occupied by bananas.

9. We calibrated the map at the regional level using data on

the total area planted with bananas (as monocultures plus

mixed cropping) from the Tanzania National Sample

Census of Agriculture 2019–2020 (National Sample

Census of Agriculture, 2019/2020). We renormalized the

fraction of 1 km × 1 km grid cells planted with bananas so

that total area in the region was equal to the total area from

the National Census as follows:

f adji =
Hk

onk
j=1f

calc
j

f calci , (2)

where f calci is the calculated fraction, Hk of total banana

production in a region k, and f adji is the adjusted

(normalized) fraction.

10. Steps 7–9 were repeated a hundred times to obtain a

probabilistic map of banana production.
We also generated a banana production map for Ogun State in

Nigeria. The study area referenced by Alabi et al. (2022) spans

approximately 325 km2. For this, we used the same data sources for

vegetation, canopy height, and built-up areas as outlined in Table 1

but focused on the region encompassing Ogun State, with

longitudes between 2.69 and 3.018 and latitudes between 6.56 and

6.97. Unlike the approach used to create a country-level banana

production map for Tanzania, we applied a mask based on high-

resolution oil palm production maps developed for West Africa

(Descals et al., 2021).
2.2 Model formulation

The model uses a spatially explicit susceptible-infection

framework that continuously monitors the infection status of

each grid cell. The model allows for varying banana densities and

pathogen entry routes while also considering localized increases in

pathogen density at specific sites and virus spread between

grid cells.

Each 1 km × 1 km grid cell i is described by banana density hi.

The grid cells were divided into two sets: infected (I) and susceptible

(S). A grid cell is susceptible if all banana plants in it are healthy. A

susceptible grid cell becomes infected when the first banana plant in

the grid cell becomes infected. Exposure can occur via either primary

transmission (from the outside) or secondary transmission (between

the grid cells).

Following the first infection, the pathogen spread within the

grid cell is driven by a local, deterministic spread. To model the

local infection within a grid cell, we employed a logistic equation to
tiers in Plant Science 03
represent the progression of the fraction of infected hosts over time.

Specifically, for an infected grid cell i, first infected at time ti, the

density of infected hosts at any later time is given by:

ri(t) =
1

1 + 1
p0
− 1

� �
e−r(t−ti)

, (3)

where p0 is prevalence at the first infection, and r is the logistic rate.

The BBTV exposure rate at which susceptible grid cell i

becomes infected is:

li(t) = hi(ϵ + b o
j∈It ,j≠i

hjrj(t)K(a , di,j)), (4)

where ϵ is the primary transmission rate, b is the secondary

transmission rate; It, is an index set of infectious grid cells at time

t; di,j is the Euclidean distance between the centers of grid cells i and

j; and K(di,j) is a dispersal kernel. We define the dispersal kernel as:

K(a , d) =
1

2pa2 exp ( − d=a) : (5)

Here a represents the dispersal scale. We simulated the process of

infection according to the Gillespie algorithm (Gillespie, 1976,

1977), which accounts for time-inhomogeneous rates.
2.3 Parameter estimation

The parameter estimation was performed in two steps. First, we

parameterized the logistic equation, which represents the progression

of the fraction of infected hosts over time within a grid. For this task,

we used the data published by Omondi et al. (2020). The data were

obtained from an experiment on natural infection by BBTV, where

monthly surveys were conducted by trained personnel. The data were

derived from monoculture systems, which represent the upper limit

of BBTD dynamics within a field. The logistic equation was fitted

using maximum likelihood.

We used publicly available data for two time points to

parameterize BBTV spread between grid cells. The first case of

BBTV was reported in the Kigoma Region of Tanzania in December

2020 (Shimwela et al., 2022). Banana plants with typical BBTV

symptoms (severe stunting, leaves with shortened petioles, chlorotic

streaks, and yellow leaf margins) have been found in several banana

fields in Muhinda and Mwayaya villages (Shimwela et al., 2022).

Between May and July 2023, surveys were conducted across 85

districts in 15 regions (Mahuku and Kumar, 2023). Evidence of

BBTV infection was observed in 22 districts. The introduction of

BBTV into eastern Tanzania was attributed to the planting material

purchased from a nursery, where the survey team detected BBTV

symptomatic suckers (Mahuku and Kumar, 2023).

We developed a novel parameter estimation method by

introducing a score metric that evaluates the similarity between the

simulated outbreaks and survey data at the district level. This was

dictated by the granularity of the survey data used for parameterization.

To estimate the parameters for BBTV spread between grid cells, we

used an Approximate Bayesian Computation (ABC) rejection

technique (Minter and Retkute, 2019). The algorithm accepts the
frontiersin.org
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proposed parameter values based on the closeness of the simulated data

to the observed data. Non-informative uniform priors are used for the

parameters, e, b, and a. For each sampled parameter set, we ran 100

individual simulations and calculated the fraction of simulations that

resulted in grid cell i being infected, fi. We devised the following score

metric to assess the similarity between observed and simulated

outbreaks:

Mt =
1
NDð o

k∈DP tð Þ

1
nk

o
nk

i=1
fi

 !
+ o

k∈DA(t)

1
nk

o
nk

i=1
(1 − fi)

 !
+ o

k∈DNS(t)

1
nk

o
nk

i=1
(1 − fi)

 !Þ,

(6)

hereDP(t) is a set of districts where BBTV was found at time t,DA(t)

is a set of districts in which BBTV was not found at time t, and

DNS(t) is a set of districts where no surveillance was conducted, nk is

the number of grid cells in a district k, and ND is the number of

districts. The metric score increased as many grid cells and many

simulations produced a status corresponding to the survey results

(i.e. presence or absence of BBTV in a district). For the districts

where no surveillance was conducted, we gave preference for an

absence of BBTV. A score ofM = 1 corresponded with a parameter

set that produced simulations which exactly reproduced survey

results, i.e. fi = 1 for all grid cells in districts where BBTV was

present, and fi = 0 for grid cells in other districts.The aim of the

traditional ABC rejection algorithm is to minimise the distance

between summary statistics of simulated and observed data (Minter

and Retkute, 2019). Here we introduced a novel adaptation of the

ABC rejection algorithm, where the aim is to maximise the score

given by Equation 6.
3 Results

3.1 Banana production map

3.1.1 Tanzania
After running a pilot study, we chose two regions to obtain

typical values of banana canopy height and NDVI, Kagera and

Kilimanjaro. According to the Tanzania National Sample Census of

Agriculture 2019–2020, the Kagera region had the largest planted

area with banana (1,371.8 km2), followed by Kilimanjaro (407.4

km2) (National Sample Census of Agriculture, 2019/2020). These

two regions account for 56% of the bananas planted in mainland

Tanzania. We identified 50 locations in each of the two regions

using photointerpretation of high-resolution satellite imagery from

Google Earth Pro (Wuthrich, 2006). These locations are shown in

Figure 1A. Examples of high-quality images with well-defined

banana canopies are shown in Figure 1B. The example from the

Kagera region shows an area planted exclusively with banana

(Figure 1Bi), whereas the example from the Kilimanjaro region

shows bananas growing in a smallholder plot together with several

different types of trees (Figure 1Bii). Histograms and bivariate

distributions corresponding to canopy height and annual mean

NDVI (Equation 1) within a radius of 5 m from the chosen

locations are shown in Figure 1C. The range for canopy height

was between 2 m and 6 m, and the annual median NDVI was in the
Frontiers in Plant Science 04
range of ∈ [0.55,0.88]. The values for canopy height agreed with

those of other studies (zum Felde et al., 2016).

The algorithm performed well in regions with a high banana

presence, such as Kagera, Kilimanjaro, Dar es Salaam, Geita, and

Mwanza (Supplementary Figure A1). However, it overestimated

banana density in areas where bananas were sparsely grown or

when intercropping was common. For instance, the largest

discrepancy was observed in the Mtwara region, where the

calculated area was 8% compared with the reported area of 0.1%.

Mtwara is Tanzania’s leading cashew nut producer, contributing to

approximately 70% of the national output (Lukurugu et al., 2022).

Other perennial crops cultivated in these regions include mangoes,

oil palm, and oranges. We normalized banana production using

Equation 2 in each region using data on the total area planted with

bananas (monoculture plus mixed) from the Tanzania National

Sample Census of Agriculture 2019–2020 (National Sample Census

of Agriculture, 2019/2020). Census data showed that a small

fraction of land was planted with bananas in Tanzania. Three

regions (Dar es Salaam, Kagera, and Kilimanjaro) had more than

1% of their area planted with bananas (Figure 1D).

For our derived maps at 1 km resolution, the mean percentage

area planted with bananas is between 1.1 × 10−4% and 42%

(Figure 1E), the minimum percentage area planted with bananas

is between 0% and 26% (Figure 1F), and the maximum percentage

area planted with bananas is between 4.8 × 10−4% and 49%

(Figure 1G). We plotted a boxplot of the percentage area planted

with bananas for the 100 grid cells with the largest banana

production in Figure 1H. Only a few grid cells had bananas

occupying more than 20% of the area; these were in the Kagera

and Kilimanjaro regions.

3.1.2 Ogun State, Nigeria
The algorithm for constructing banana production maps was

further tested using data from Ogun State. We combined data on

vegetation, canopy height, and built-up areas with a mask derived

from the oil palm spatial data (Descals et al., 2021). This approach

addresses the lack of crop statistics on agricultural production at the

administrative unit level. A map of banana production is shown in

Figure 2A. The spatial distribution was highly heterogeneous, with

the percentage of grid cells occupied by bananas ranging from 0% to

52.2%. Satellite images showing high banana production (∼50%),
medium banana production (∼ 20%), and no banana production

are shown in Figure 2B. The latter corresponds to the area planted

with oil palms.

We calculated the area occupied by bananas at the same four

sites as in Alabi et al. (2022): Igbebji, Olokuta, Ipaja Road, and Ipaja

Town. We found good agreement between the estimated areas

occupied by bananas based on our method and estimated banana

areas based on UAV and Sentinel 2 + SAR data (Figure 2C). There

was variability in estimates based on data acquisition and ML

technique in Alabi et al. (2022). Our estimated area was between

the UAV and Sentinel 2 + SAR predictions for the Igbebji and Ipaja

Town sites, lower than the ML-based estimates for Olokuta, and

higher than ML-based estimates for Ipaja Road. The correlation was

0.915 between our estimates and those estimates based on Random
frontiersin.org
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Forest + UAV data (UAV RF), 0.927 between our estimates and

estimates based on Support Vector Machine + UAV data (UAV

SVM), 0.726 between our estimates and estimates based on Random

Forest + Sentinel 2 data + SAR data (S2SAR RF), and 0.704 between

our estimates and those based on Support Vector Machine +

Sentinel 2 data + SAR data (S2SAR SVM).
3.2 Model parameterization and
simulations

The progression of the fraction of infected hosts within the grid

cell over time was assumed to be described by a logistic equation
Frontiers in Plant Science 05
given by Equations 3. The experimental data from Omondi et al.

(2020) and the fitted logistic curve are shown in Figure 3A. The

estimated values are r = 2.86 year−1 and p0 = 0.006.

The BBTV spread between the grid cells given by Equations 4, 5,

was parameterized using data from two surveys conducted in 2020

and 2023. We aggregated the survey results at the district level, i.e., we

classified a district as having BBTV presence if at least one survey

found BBTV-positive samples. The spatial distributions of districts

with and without BBTV presence are shown in Figures 3B, C). We

sampled 106 parameter sets from a uniform prior distribution log10

(ϵ) ∼ U[−6,3], log10(b) ∼ U[−6,3] and a ∼ U[0.1,1,000]. We seeded

BBTV infections in two locations: (i) at a randomly sampled grid

cell in Buhigwe district (corresponding to cross-border introduction
FIGURE 1

Constructing banana production map for Tanzania. (A) Locations used to obtain typical values of banana canopy height and NDVI (50 locations in
Kagera and 50 locations in Kilimanjaro). (B) Two examples of locations: (i) Kagera region and (ii) Kilimanjaro region. (C) Distribution of canopy height
(m) and NDVI values obtained from sampled locations in (A). (D) Percentage of regional area planted with bananas (in monoculture and mixed
cropping) from the Tanzania National Sample Census of Agriculture 2019–2020 (National Sample Census of Agriculture, 2019/2020). (E) Mean
percentage of grid cells planted with bananas. (F) Minimum percentage of grid cells planted with bananas. (G) Maximum percentage of grid cells
planted with bananas. (H) Boxplot of the percentage planted with bananas for 100 grid cells with the highest banana production. Grid cells were
ranked according to the median values. Satellite images in (B) were obtained from the Google Earth Engine (Imagery @2024 Airbus, CNES/Airbus,
Landsat/Copernicus, Maxar Technology).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1521620
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Retkute and Gilligan 10.3389/fpls.2025.1521620
FIGURE 3

Model parameterization and simulations. (A) Progression of the fraction of infected hosts over time within the cell: data from Omondi et al. (2020)
(red dots) and the fitted logistic equation (gray lines). (B) Survey results for 2020 (Shimwela et al., 2022). Districts with a BBTV presence are indicated
in red. (C) Survey results conducted in 2023 (Mahuku and Kumar, 2023). Districts with a BBTV presence are shown in red, and districts with a BBTV
absence are shown in green. (D) Posterior distribution of primary infection rate (e), secondary infection rate (b), and dispersal scale (a). (E) Simulated
pattern of BBTV transmission in 2023. (F) Simulated pattern of BBTV transmission by 2030.
FIGURE 2

Constructing banana production map for Ogun State. (A) Fraction of a grid cell occupied by bananas. The four UAV flight sites from Alabi et al.
(2022) (red outlines) were (1) Igbeji, (2) Olokuta, (3) Ipaja Road, and (4) Ipaja Town. (B) Three examples with different banana production levels: (i)
high (ii) medium and no presence of bananas. The corresponding grid cells are shown in (A), with indices i, ii, and iii. (C) Comparison with banana
area estimated by Alabi et al. (2022). The corresponding polygons are shown in (A), with indices 1, 2, 3, and 4. Satellite images in (B) were obtained
from Google Earth Engine (Imagery @2024 Airbus, CNES/Airbus, Landsat/Copernicus, Maxar Technology).
Frontiers in Plant Science frontiersin.org06
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of BBTV), and (ii) at a randomly sampled grid cell in the Tanga

region (correspondings to bringing in infected planting material).

We retained the top 0.1% of parameters with the highest scores, as

determined by Equation 6, yielding Mthreshold= 0.83. The posterior

distributions of the parameters are shown in Figure 3D. The range

for the primary infection rate was 0.013 day−1–0.039 day−1, the

secondary infection rate was 5.7 day−1–20.8 day−1, and the dispersal

scale was 25 km–48 km.

Using the estimated parameters, we simulated the pattern of

BBTV transmission in 2023 and 2030 (Figures 3E, F). The score

metric value for 2020 was 0.985, and that for 2023 was 0.851. A map

for the predicted extent of infection in 2030 confirms that the key

areas requiring focused attention for surveillance and preventive

measures to control BBTV spread are areas with high banana

production, i.e., Kagera, Kilimanjaro, Dar es Salaam, and

Mbeya regions.
4 Discussion

This study presents the first comprehensive stochastic model that

outlines methods for developing data-driven models to generate

banana production maps, and process-based models to evaluate the

potential spread of BBTV on a landscape scale. Few studies have been

conducted to model the spread of BBTV at a plantation or field scale

(Allen and Barnier, 1977; Allen, 1987; Smith et al., 1998; Varghese

et al., 2020). Plantation-scale models provide tools for optimizing

control of commercial farms. Recently, regression-based methods

have been applied to identify areas that have high environmental

suitability for BBTV establishment, such as Uganda (Ocimati et al.,

2024) and the entire African continent (Bouwmeester et al., 2023).

However, maps showing suitability for BBTV cannot be used to

inform smallholder farmers of the best practices for mitigation facing

the threat of the imminent spread of BBTV.

Our methodology for mapping banana cultivation showed good

agreement with the results based on machine learning combined

with high-resolution RGB and multispectral aerial imagery

conducted in Ogun State in Nigeria (Alabi et al., 2022). Besides

banana and plantain, a variety of crops are cultivated in the state,

including cocoa, oil palm, oranges, maize, cassava, cowpea, and

vegetables, with farmers predominantly practicing intercropping

(Alabi et al., 2022). We found a high degree of correlation between

the estimated banana area based on the approach introduced in this

study and the estimates from ML and UAV images (r = 0.915–

0.926). Pixel-based classifications and ML models require the

manual delineation and annotation of thousands of reference

points (Gomez Selvaraj et al., 2020). For example, at the Olokuta

site, 223,578 georeferenced polygons were derived for different

classes (Alabi et al., 2022). Therefore, because of the amount of

effort required to obtain and process UAV-derived imagery, it is not

possible to scale this method to the national level. The proposed

workflow for map construction can be deployed at the country level,

as demonstrated in the current study. We used publicly available

data to derive a high-resolution banana production map. In

contrast, there is no repository of UAV-derived imagery.
Frontiers in Plant Science 07
Our methods require the distribution of canopy height and NDVI

values typical for bananas as input. We used photo-interpretation of

high-resolution satellite imagery from Google Earth Pro to sample

locations and derive these distributions. The range for canopy height

was between 2 m and 6 m, and the annual median NDVI was in the

range of ∈ [0.55,0.88]. Many factors can influence banana plant height,

such as stage of growth (Tixier et al., 2004), cultivar (Daniells and

O’Farrell, 1988), planting density, and irrigation (zum Felde et al.,

2016). Plant photosynthetic activity also has a complex dependence on

seasonality and environmental variables (Brown and de Beurs, 2008).

The wide ranges of canopy height and annual median NDVI

distributions that we obtained reflect this variability. However, the

methodology allowed us to derive a probabilistic host distribution,

which to the best of our knowledge, has not been performed before.

Our methodology has several limitations. First, it requires a

large amount of data (Table 1). Another aspect is that the algorithm

performed well in areas with high banana presence (i.e., in the

Kagera region), but overestimated banana density in areas where

banana was grown sparsely or where intercropping was common.

The performance of our method depended on the type of

intercropping used. When bananas are grown in association with

annual food crops, such as maize, rice, and cassava, we expect

reasonable efficiency (as seen in Figure 2B) The efficiency will be low

when bananas are combined with perennial trees. For example, oil

palm trees have a morphology similar to that of bananas. In

Tanzania, the Kigoma region has the largest harvested area of oil

palm (4,726 ha), followed by Mbeya (1,614 ha), whereas the least

harvested area of oil palm is in Kagera (2 ha) (National Sample

Census of Agriculture, 2019/2020). There is also a diverse variety of

permanent tree crops cultivated across various regions of Tanzania

(Kilawe, 2024), with fruit trees present on almost every farm

(Delobel et al., 1991). To overcome this limitation, we normalized

the total area planted with bananas in each region using data from

the Tanzania National Sample Census of Agriculture 2019–2020

(National Sample Census of Agriculture, 2019/2020). However, the

use of national data to address overestimation in areas with low

production may face challenges in regions where the data quality is

poor or entirely lacking within a country or production landscape.

Additional information, such as the locations of oil palms, can be

utilized to mask such areas, as in the case of Ogun State.

We introduced a novel parameter estimation method by

proposing a score metric that assesses the similarity of simulated

outbreaks to survey data at the district level. To parameterize the

model for BBTV spread in Tanzania, we used the survey results from

2020 (Shimwela et al., 2022) and 2023 (Mahuku and Kumar, 2023)

aggregated at the district level. To account for the variability in

district areas, we normalized the contribution of each district by the

total number of grid cells within a district. This score also accounts

for stochasticity in the model outputs. The range of permissible values

of the score metric lie between zero and one, where one corresponds

to simulations reproducing survey results exactly at the district level.

For the model simulations using the fitted parameters, we obtained

M2020 = 0.985 and M2023 = 0.851. Another novel aspect of the ABC

rejection algorithm we used is maximizing the score metric instead of

minimizing a summary statistic.
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A key assumption in demonstrating the approach to modeling

BBTD spread in Tanzania was that the disease was confined to the

districts in which it had been reported during the surveys. Another

key aspect of this approach is model validation. Only a few studies

have validated the spatial spread of crop pathogens and pests on a

national scale, which requires high-resolution spatial and temporal

surveillance data (Nguyen et al., 2023; Godding et al., 2023; Retkute

et al., 2024). These two aspects highlight the critical role of surveys, as

data on the presence and absence of the disease at various epidemic

stages are essential not only for disease management, but also for

accurate prediction. Regular proactive surveillance plays a key role in

providing updated data on the current status of the epidemic spread

for use in initiating model predictions of future spread. Second,

updated surveillance provides an invaluable resource from which to

update model parameterizations and validate models by comparing

model predictions with ground-based observations.

Our results have important implications for BBTD management.

In Tanzania, bananas are a vital food and commercial crop and serve

as a major source of raw materials for the beverage and handicraft

industries (Luzi-Kihupi et al., 2015), with almost two million

households involved in banana production activities (National

Sample Census of Agriculture, 2019/2020). Banana is an important

primary staple crop, with annual banana consumption reaching 500

kg–1,500 kg per head in southeastern Kilimanjaro (Yamaguchi and

Araki, 2004). Simulated patterns of BBTV transmission in Tanzania

emphasize the key areas requiring focused attention for combating

BBTV through surveillance and preventive measures to control its

spread, i.e., Kagera, Kilimanjaro, Dar es Salaam, and Mbeya. Future

work will focus on using the BBTV transmission model to evaluate

control options, including roguing, impact of clean seed production

networks, and clean seed deployment.
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