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Accurate detection of pest insects is critical for agricultural pest management

and crop yield protection, yet traditional detection methods struggle due to the

vast diversity of pest species, significant individual differences, and limited labeled

data. These challenges are compounded by the typically small size of pest targets

and complex environmental conditions. To address these limitations, this study

proposes a novel few-shot object detection (FSOD) method leveraging feature

aggregation and supervised contrastive learning (SCL) within the Faster R-CNN

framework. Our methodology involves multi-scale feature extraction using a

Feature Pyramid Network (FPN), enabling the capture of rich semantic

information across various scales. A Feature Aggregation Module (FAM) with an

attention mechanism is designed to effectively fuse contextual features from

support and query images, enhancing representation capabilities for multi-scale

and few-sample pest targets. Additionally, supervised contrastive learning is

employed to strengthen intra-class similarity and inter-class dissimilarity,

thereby improving discriminative power. To manage class imbalance and

enhance the focus on challenging samples, focal loss and class weights are

integrated into themodel’s comprehensive loss function. Experimental validation

on the PestDet20 dataset, consisting of diverse tropical pest insects,

demonstrates that the proposed method significantly outperforms existing

approaches, including YOLO, TFA, VFA, and FSCE. Specifically, our model

achieves superior mean Average Precision (mAP) results across different few-

shot scenarios (3-shot, 5-shot, and 10-shot), demonstrating robustness and

stability. Ablation studies confirm that each component of our method

substantially contributes to performance improvement. This research provides

a practical and efficient solution for pest detection under challenging conditions,
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reducing dependency on large annotated datasets and improving detection

accuracy for minority pest classes. While computational complexity remains

higher than real-time frameworks like YOLO, the significant gains in detection

accuracy justify the trade-off for critical pest management applications.
KEYWORDS

feature aggregation, contrastive learning, few-shot learning, object detection,
pest control
1 Introduction

Accurate detection of pest insects is crucial for effective pest

management and agricultural productivity. Pest infestations can

cause significant crop losses, threatening food security and

economic stability worldwide. Traditional detection methods

typically rely on manual inspection, which is time-consuming,

labor-intensive, and prone to human error. With advancements

in computer vision and deep learning, automated pest detection

systems have gained attention for their potential to offer rapid and

accurate identification of pest species in real-world agricultural

environments (Rai and Sun, 2024). Developing robust pest

detection models, however, remains challenging for several

reasons. First, pest insects exhibit high intra-class variability (e.g.,

different developmental stages such as eggs, larvae, pupae, and

adults) and low inter-class variability (similar appearances across

species). This contrast often complicates accurate feature extraction

and classification (Butera et al., 2021; Popescu et al., 2023). Second,

constructing large-scale annotated datasets is difficult because

gathering and labeling images for numerous pest species is

resource-intensive and requires domain expertise. (Li, Y et al.,

2021; Yang et al., 2022). In pest object detection, there are a huge

number of pest types, and it is extremely costly or even impossible

to directly detect all species. Collecting large-scale pest datasets is

also highly challenging. In practice, pest management

predominantly targets crops, with timely response to primary

pests being essential (Ali et al., 2024). Rapidly collecting a small

number of samples for these major pests can be more practical and

cost-effective. Therefore, few-shot object detection (FSOD) has

significant research value in pest management, as it enables

effective detection of critical pests with minimal annotated data.

Few-shot learning (FSL) has emerged as a promising solution to

address the problem of limited annotated data (Li, Y et al., 2021; Li

X. et al., 2023). FSL aims to recognize new classes using only a few

labeled examples by leveraging prior knowledge learned from other

tasks or classes. In the context of pest detection, FSL can enable

models to identify novel pest species with minimal labeled samples,

which is highly valuable for practical agricultural applications.

Despite the progress in FSL for image classification tasks,

applying FSL to object detection, especially for small and densely

packed pest insects, remains a significant challenge (Huang et al.,
02
2023; Pöhler et al., 2023). Traditional object detection models like

Faster R-CNN (Ren et al., 2016) struggle with small objects due to

insufficient feature representation and the dominance of

background information (Teng et al., 2022). Moreover, the high

similarity between different pest species further complicates

accurate detection and classification.

To overcome these challenges, we propose a novel FSOD

framework specifically designed for pest insects, integrating feature

aggregation and contrastive learning techniques. Our approach builds

upon the Faster R-CNN architecture and introduces a Feature

Aggregation Module (FAM) that leverages multi-scale features

from both support and query images. By employing an attention

mechanism, the model effectively fuses rich contextual information

from the support set to enhance the representation of multi pest

objects in the query images. Additionally, we incorporate SCL to

improve the discriminative ability of the model. Contrastive learning

has shown effectiveness in enhancing feature representations by

pulling together samples of the same class and pushing apart

samples of different classes (Sun et al., 2021). By integrating

contrastive learning into the detection framework, we aim to

increase intra-class compactness and inter-class variance, which is

crucial for distinguishing between visually similar pest species.

Furthermore, we address the issue of class imbalance inherent in

pest detection datasets by introducing a balancing mechanism in the

loss function. We adopt the focal loss to focus the training on hard

examples and underrepresented classes, thereby improving the

model’s robustness and accuracy (Li, Y et al., 2021; Wen et al., 2022).
1.1 Key contributions include

1.1.1 Feature aggregation module
We design a novel Feature Aggregation Module (FAM) that

enhances the representation of multiple pest objects by aggregating

multi-scale features from support and query images using an

attention mechanism.
1.1.2 Supervised contrastive learning
We integrate SCL into the object detection framework to

improve feature discrimination, promoting intra-class similarity

and inter-class dissimilarity among pest species.
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1.1.3 Balancing mechanism
We introduce a balancing mechanism in the loss function using

focal loss to mitigate the impact of class imbalance in pest

detection datasets.

1.1.4 Comprehensive evaluation
We conduct extensive experiments on benchmark pest detection

datasets to validate the effectiveness of our proposed method,

demonstrating significant improvements over baseline models.

The proposed method provides a practical solution for

agricultural pest management by enabling accurate detection of

critical pests with minimal annotated data (Ragu and Teo, 2023). Its

ability to handle few-shot scenarios ensures timely responses to pest

outbreaks, reducing reliance on pesticides and promoting

sustainable practices.

The remainder of this paper is organized as follows: Section 2

reviews related work on pest detection, few-shot learning, and

contrastive learning. Section 3 details our proposed methodology,

including the Feature Aggregation Module (FAM), the SCL

approach, and the multi-task loss function. Section 4 presents

experimental setups and results, and Section 5 concludes with

future directions for research.
2 Related work

2.1 Pest detection in agriculture

The application of deep learning techniques in agriculture,

particularly for pest detection, has gained momentum in recent

years (Popescu et al., 2023; Mahmood et al., 2023). Traditional pest

detection methods often rely on manual scouting, which is

inefficient and prone to human error (Butera et al., 2021). Deep

learning-based approaches offer automated, accurate, and real-time

detection capabilities, vital for integrated pest management systems.

Several studies have focused on object detection models tailored

for pest insects. For instance, Pang et al. (2022) proposed an

improved YOLOv4 algorithm for real-time pest detection in

orchards, reportedly achieving high detection accuracy (mAP

above 80%) with efficient processing speeds. Similarly, Wen et al.

(2022) introduced Pest-YOLO to detect dense, tiny pests, attaining

about 92% detection accuracy on large-scale datasets.

Despite these successes, both methods relied on substantial

annotated data, which is often infeasible given the vast diversity of

pest species and the complexity of field conditions (Liu et al., 2022).

Moreover, many pests are small or densely clustered, challenging

conventional detectors that struggle with small-object detection

(Teng et al., 2022; Yang et al., 2024).
2.2 Few-shot learning in agriculture

Few-shot learning (FSL) has emerged as a solution to data

scarcity. In agriculture, FSL has been applied to tasks like plant

disease recognition (Li, Y et al., 2021; Yang et al., 2022; Argüeso
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et al., 2020; Chen et al., 2021) and pest detection (Li X. et al., 2023;

Rezaei et al., 2024; Li Y. et al., 2023). Li and Chao (Li and Chao,

2021) proposed a semi-supervised few-shot learning approach for

plant disease recognition, leveraging unlabeled data to improve

classification when labeled samples are limited. Yang et al. (2022),

Cao et al. (2023), Liang et al. (2021), Lin et al. (2024) and Lin et al.

(2022a) highlighted the role of FSL in smart agriculture, noting its

effectiveness for rapid adaptation to new conditions or pest species.

In pest detection, few-shot learning enables models to generalize to

new pests with only a handful of labeled samples, a crucial capability

given the difficulty of obtaining comprehensive data for every pest

species. Li X. et al. (2023) introduced a few-shot crop pest detection

method using object pyramids, reporting a notable increase in mAP

under low-data conditions. Rezaei et al. (2024), Egusquiza et al.

(2022) and Zhou et al. (2023) demonstrated that even modest

improvements in few-shot scenarios significantly impacted real-

world applications, reinforcing the practicality of FSL in pest

management (Gao et al., 2024). Nonetheless, effectively

transferring FSL methods from classification to object detection

remains challenging (Wang C. et al., 2023; Wang et al., 2021),

especially under severe data constraints and small-object settings.
2.3 Contrastive learning and feature
representation

Contrastive learning has gained attention for learning

discriminative feature representations by contrasting positive and

negative sample pairs (Sun et al., 2021). In FSOD, contrastive learning

helps models differentiate classes with limited samples by enlarging

inter-class separation within the feature space. Sun et al. (2021).

proposed FSCE, which encodes proposals using contrastive learning

to enhance detection performance in few-shot settings, reportedly

improving mAP on benchmark datasets by up to 3–5 percentage

points. In agricultural applications, contrastive learning has also been

employed to improve classification. Song et al. (2023) and Zhong

et al. (2020) used an attention-based generative adversarial network

with few-shot learning to boost feature representation for maize

disease detection, achieving higher accuracy scores compared to

baseline CNN models. These results suggest that contrastive

learning can likewise benefit the detection of various agricultural

pests, particularly when data are limited or imbalanced.
2.4 Feature aggregation techniques

Feature aggregation combines features from different layers or

sources to improve detection performance. For small-object

detection, multi-scale feature fusion can be critical (Kong et al.,

2024; Lin et al., 2022b). Teng et al. (2022) developed MSR-RCNN,

integrating multi-scale super-resolution enhancements, increasing

detection accuracy for small pest objects by around 4% in mAP.

Han J. et al. (2023) presented a FSOD method using variational

feature aggregation, demonstrating substantial improvements

under limited-data conditions.
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2.5 Addressing class imbalance

Class imbalance is pervasive in pest detection, where certain

dominant pest species overshadow minority ones (Wen et al., 2022;

Liu et al., 2022). Focal loss has proven effective in re-weighting hard

examples and mitigating bias toward majority classes (Li, Y et al.,

2021; Wen et al., 2022). Anwar and Masood (Anwar and Masood,

2023) also emphasized the importance of addressing imbalance,

demonstrating a 5-8% improvement in detection accuracy by

incorporating focal loss and augmenting minority classes.
2.6 Advances in few-shot object detection

Recent surveys by Huang et al. (2023) and Pöhler et al. (2023)

extensively review FSOD methods, including meta-learning,

transfer learning, and metric learning techniques. The Segment

Anything Model (SAM) (Zhang et al., 2023) represents a significant

advancement in vision models, generalizing to new tasks with

minimal data. While SAM primarily targets segmentation, it

could be adapted for object detection under few-shot scenarios.

Further, Han et al. (2023) extended SAM to open-vocabulary

learning, enabling zero-shot generalization to unseen classes.

These advancements suggest promising directions for applying

cutting-edge few-shot methods to pest detection tasks.

Despite these advancements, several challenges persist in pest

detection. First, multi-object detection remains problematic, as many

models fail to handle multiple, densely packed pest insects due to

insufficient feature representation (Teng et al., 2022; Yang et al.,

2024). Second, labeled data scarcity restricts models from

generalizing to novel pests, especially when each species demands

expert-labeled samples (Li, Y et al., 2021; Yang et al., 2022; Liu et al.,

2022). Third, visual similarity among pests complicates accurate

feature discrimination (Butera et al., 2021; Popescu et al., 2023).

Finally, class imbalance skews detection results, disadvantaging

minority species (Wen et al., 2022; Liu et al., 2022; Wang X. et al.,

2023). Our proposed method addresses these issues by incorporating

feature aggregation to improve multi-object representation, SCL to

enhance feature discrimination for visually similar pests, and a

balancing mechanism to correct dataset imbalance.

In doing so, we aim to advance the state of pest detection by

boosting accuracy for small, minority-class targets, reinforcing the

practicality of few-shot techniques in agricultural domains.
2.7 Comparison of existing pest
recognition methods

As shown in Table 1, the comparison table summarizes various

pest recognition methods, highlighting the differences in tasks,

architectures, and small-shot learning capabilities. Previous research

on pest identification and detection largely relied on CNN-based

architectures, including YOLO and Faster R-CNN, which offered

effective solutions for recognizing and localizing pests but struggled

with challenges like detecting tiny pests, distinguishing visually
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similar species, and addressing class imbalance. Although recent

works introduced improvements, such as multi-scale feature fusion,

super-resolution sampling, and focal-loss-based imbalance handling,

they generally addressed these issues separately rather than in a

unified framework. Few-shot methods, while beneficial for scenarios

with limited training data, were often limited to classification tasks

without explicit handling of small pests or class imbalance. In

contrast, the method proposed in this paper innovatively integrates

multi-scale feature aggregation, supervised contrastive learning, and

focal loss within a unified Faster R-CNN framework. Feature

aggregation significantly improves multi-object detection by fusing

multi-scale features, while supervised contrastive learning enhances

discriminative capabilities by effectively differentiating similar pest

species even from minimal examples. Additionally, focal loss

addresses class imbalance by prioritizing minority-class and

challenging samples during training. Consequently, this

comprehensive approach robustly tackles key limitations of existing

methods, achieving superior detection accuracy and better

generalization to novel and rare pest species, demonstrating

significant practical value for real-world agricultural applications

under limited labeled data conditions.
3 Proposed methodology

Our research presents an improved model based on the Faster R-

CNN framework, aiming to enhance the feature representation capability

of small-sample targets and improve object detection performance.

Traditional Faster R-CNN frameworks face performance bottlenecks

when handling small samples and multi object detection, primarily due

to limitations in feature extraction layers and insufficient representation

of small object features. To address these issues, we introduce multi-scale

feature extraction for the support set and query set, expanding the

capacity of feature extraction.

After feature extraction, the model inputs the features of the

support set and query set into the Feature Aggregation Module

(FAM). This module employs an attention mechanism for

relational modeling, calculating the correlation between the

support set and query set to construct aggregated features for

multi-scale and multi objects. This feature aggregation method

effectively utilizes the rich feature information from the support

set, enhancing the feature representation capability of the query set,

especially for detecting small-sample targets.

To further improve the model’s discriminative ability, we

incorporate SCL. By performing contrastive learning mapping

and normalization on features, we enhance intra-class similarity

and inter-class dissimilarity, promoting the clustering of similar

samples and the separation of dissimilar samples in the feature

space, thereby alleviating misclassification issues. However, SCL

may suffer from sample imbalance problems, where insufficient

samples of minority classes may cause the model to bias toward

majority classes. To resolve this, we introduce an imbalance

correction mechanism, adopting Focal Loss to optimize the loss

function, assigning higher weights to hard-to-classify samples, and

balancing the influence of each class.
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Finally, we adopt a multi-task learning approach to jointly

optimize four tasks: localization, classification, feature aggregation,

and SCL. By integrating these components into the model, we achieve

efficient detection of multi-sample targets, enhancing the model’s

feature representation capability and classification accuracy.
3.1 Framework overview

As shown in Figure 1, our proposed model is built on the Faster

R-CNN framework and is enhanced to effectively represent the

features of multi-sample objects. The model architecture comprises

several key components: first, multi-scale feature extraction, which

integrates a Feature Pyramid Network (FPN) into the backbone

network to capture rich information across various scales. Second,

the Feature Aggregation Module (FAM), an attention-based

component, aggregates features from both the support set and

query set, enhancing the representation of multi-scale objects.

Third, the SCL module improves the discriminative ability of the

feature space by maximizing intra-class similarity and inter-class

differences. Fourth, an imbalance correction mechanism

incorporates focal loss into the loss function to address sample
Frontiers in Plant Science 05
imbalance, ensuring the model focuses more on minority classes

and challenging examples. Finally, the multi-task learning

optimization jointly optimizes localization, classification, feature

aggregation, and contrastive learning tasks through a

comprehensive loss function. This integration enables the model

to exploit contextual and class-specific information from the

support set, significantly improving detection performance for

both multi-object and few-shot objects. While Faster R-CNN is

known to struggle with small-object detection due to insufficient

feature representation, it was chosen for its robust two-stage

detection process, which ensures precise localization and

classification. The integration of FAM and SCL addresses its

limitations by enhancing feature representation and improving

discrimination for small objects. Comparative results show that

the proposed enhancements improve mAP for small objects

compared to the unmodified Faster R-CNN.
3.2 Feature aggregation module

The core objective of the Feature Aggregation Module (FAM) is

to utilize the rich feature information from the support set to
TABLE 1 Comparison of existing pest recognition methods.

Function Architecture
Contrastive
learning

Multi-target and
multi-scale

Class
imbalance
handling

Representative
papers

Recognition (Classification)

Deep CNNs No multi-scale No Popescu et al. (2023)

Deep CNNs with ensemble-
based mode

No No No
Anwar and

Masood (2023)

CNN+Transformer No No No An et al. (2023)

Transformer+super resolution
sampling technique

No No No Bai et al. (2023)

Recognition (Classification)
Few-Shot

Transformers No No No
uthalapati and
Tunga (2021)

a multi-layer feature
fusion (FMLF) method

No Yes No Gomes et al. (2023)

Object Detection
(Classification/position)

Deep CNNs No multi-scale No Butera et al. (2021)

YOLO No
Multi-target and

multi-scale
No Pang et al. (2022)

Faster R-CNN No multi-scale No Wang C. et al. (2023)

Pest-YOLO No No Yes Wen et al. (2022)

multi-scale super-
resolution RCNN

No multi-scale No Teng et al. (2022)

SRNet-YOLO No multi-scale No Yang et al. (2024)

Object Detection (Classification/
position)
Few-Shot

Faster R-CNN No multi-scale No Li X. et al. (2023)

Faster R-CNN No multi-scale No Yang et al. (2023)

Faster R-CNN No multi-scale No Wang X. et al. (2023)

Faster R-CNN Yes
Multi-target and

multi-scale
Yes Proposed Method
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enhance the feature representation capability of the query set,

especially for detecting multi and multi-scale objects. Traditional

feature extraction methods have limited ability to represent multi

object features, whereas the support set provides additional context

and class information to compensate for this deficiency.

3.2.1 Multi-scale feature extraction
We integrate a Feature Pyramid Network (FPN) into the

backbone network to extract features from different scales.

Specifically, we obtain feature maps from multiple levels (C2, C3,

C4, C5) of the backbone network (e.g., ResNet) and generate multi-

scale feature maps P2, P3, P4, P5, P6f g through 1×1 and 3×3

convolution operations. This multi-scale feature extraction

ensures the model’s sensitivity to targets of various sizes.

For each Region of Interest (RoI) in the support set and query set, we

performRoI Align operations on thesemulti-scale featuremaps to obtain

fixed-size feature representations (e.g., 7×7). These feature

representations preserve spatial information and contextual

relationships, providing rich features for subsequent feature aggregation.

3.2.2 Structure of the feature aggregation
module

The Feature Aggregation Module (FAM) consists of the

following components: Feature Mapping, maps the features of the

support set and query set into query (Q), key (K), and value (V)

spaces, as shown in Equation 1. Attention Mechanism, calculates

the similarity between queries and keys to obtain the attention

weight matrix. Feature Fusion, uses attention weights to perform

weighted summation of values, achieving feature aggregation.

Implementation Details:
Frontiers in Plant Science 06
3.2.2.1 Mapping features to query, key, and value spaces

First, we map the features of the support set and query set into

low-dimensional spaces through linear transformations as shown in

Equation 1:

Q = FqueryW
Q,  K = FsupportW

K ,  V = FsupportW
V (1)

Where Fquery and Fsupport are the feature representations of the

query set and support set, respectively, and WQ, WK and WV are

learnable parameter matrices.

3.2.2.2 Calculating attention weights

Using the dot product between queries and keys, we calculate

the similarity scores and normalize them through the softmax

function as shown in Equation 2:

A = softmax; 
QK⊤ffiffiffiffiffi
dk

p
� �

(2)

where dk is the dimension of the key vectors, used to scale the

dot product to prevent excessively large values.

3.2.2.3 Feature aggregation

Using the attention weight matrix A to perform weighted

summation of the values V, the aggregated feature representation

is formulated as Equation 3.

Fagg = AV (3)

Then, we fuse the aggregated features with the original query set

features to obtain the enhanced feature representation, defined in

Equation 4.
FIGURE 1

Overall model architecture.
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Fenhanced = Fquery + aFagg (4)

Where a is a learnable scaling factor that controls the influence

of the aggregated features on the original features.

3.2.3 Aggregated features for multi-scale and
multi objects

Through the feature aggregation process described above, the

feature representation of the query set is enhanced in several ways.

Multi-scale information fusion leverages features from the support

set’s multi-scale feature maps, providing rich scale information that

aids in detecting targets of various sizes. Multi object feature

enhancement is achieved by supplementing high-level feature

maps with low-level features from the support set, which

preserves details that are often lost for multi objects. Additionally,

the support set’s features provide valuable contextual information,

helping the model understand the relationship between the target

and its background. The module offers several advantages: it

improves feature representation by effectively utilizing the rich

information from the support set, enhances flexibility and

scalability through an attention-based relational modeling

approach that adaptively adjusts the influence of the support set

on the query set, and allows for easy integration into existing object

detection frameworks with minimal computational overhead.
3.3 Supervised contrastive learning module

In object detection tasks, the model’s discriminative ability is

crucial for detection accuracy. However, due to the dispersion of

intra-class features and the overlap of inter-class features, the model

may experience misclassification issues. To address this problem,

we introduce SCL, aiming to optimize the feature space so that

features of the same class are closer together, while features of

different classes are farther apart.
3.3.1 Contrastive learning feature mapping and
normalization

We apply a projection head Head( · ) to the enhanced features

Fenhanced output from the Feature Aggregation Module (FAM) to

map them into the contrastive learning feature space, as expressed

by Equation 5.

zi = Normalize Head Fenhanced,i
� �� �

(5)

Where Normalize (·) denotes L2 normalization to ensure the

feature vectors lie on a unit hypersphere.

3.3.2 Contrastive learning feature mapping and
normalization

In SCL, label information is used to construct positive and

negative sample pairs. Positive samples consist of a query sample i

and support samples p ∈ P(i) that belong to the same class.

Negative samples consist of the query sample i and support

samples a ∈ A(i) from different classes. Here, P(i) represents the
Frontiers in Plant Science 07
set of samples in the same class as sample i, while A(i) represents the

set of all samples except sample i.

3.3.3 Supervised contrastive loss function
We adopt the supervised contrastive loss function to optimize

the feature representation, which is formulated as Equation 6.

LSCL =oi∈I
1

P(i)j jop∈P(i) − log
exp (zi · zp=t)

oa∈A(i) exp (zi · za=t)

 !
(6)

Where t is the temperature parameter controlling the

smoothness of the distribution.

By minimizing the supervised contrastive loss, the model is

guided to achieve intra-class compactness, where features of the

same class are closer together, enhancing similarity within each

class. It also promotes inter-class separation, pushing features of

different classes farther apart and increasing dissimilarity between

classes. This optimization helps the model classify more accurately

and reduces misclassification.

3.3.4 Correction for sample imbalance
SCL may be affected by sample imbalance, where minority

classes have insufficient samples, causing the model to bias toward

majority classes. To address this, we introduce an imbalance

correction mechanism.

Specifically, we incorporate class weights wyi into the supervised

contrastive loss, adjusting according to the number of samples in

each class, as defined in Equation 7.

wyi =
1
Nyi

(7)

where Nyi is the number of samples in class yi. The loss function

Equation 6 becomes Equation 8.

LSCL =oi∈I

wyi

P(i)j jop∈P(i) − log
exp (zi · zp=t)

oa∈A(i) exp (zi · za=t)

 !
(8)

This adjustment prioritizes minority class samples in the loss

function, prompting the model to focus more on learning

these classes.

The introduction of SCL will enhance the discriminability of the

feature space, reduce misclassification, and thus improve

classification accuracy; at the same time, through the imbalance

correction mechanism, the model can learn the minority classes

more fully and adapt to imbalanced data; finally, better feature

representation helps the model perform better on unknown data

and enhances generalization capabilities.
3.4 Overall loss function design

3.4.1 Construction of the multi-task loss function
To jointly optimize the model’s components, we design a

comprehensive multi-task loss function that includes localization

loss, classification loss, feature aggregation loss, and supervised

contrastive loss, which is defined in Equation 9.
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Ltotal = Lcls + Lreg + l1Lagg + l2LSCL (9)

Among them, Lcls is the classification loss, which measures the

model’s prediction accuracy of the target class, Lreg is the regression

loss, which measures the model’s positioning accuracy of the target

bounding box,   Lagg is the loss of the Feature Aggregation Module

(FAM), which may include the regularization term of the attention

mechanism, LSCL is the supervised contrast loss, which enhances the

discriminability of feature representation, l1 and l2 are trade-off

coefficients that adjust the impact of each loss term.

3.4.2 Design of the classification loss
We employ Focal Loss for the classification loss Lcls   to address

sample imbalance, especially in scenarios with imbalanced positive

and negative samples. The Focal Loss is defined as Equation 10.

Lcls = −oiat(1 − pt)
g log (pt) (10)

Among them, pt is the model’s predicted probability of the true

class, at is the class weight, which balances the impact of the

number of samples in different classes, and g  is the adjustment

factor, which reduces the loss contribution of easy samples and

focuses on hard samples. Through Focal Loss, we can reduce the

impact of a large number of easy negative samples on the loss, so

that the model can pay more attention to hard positive samples.

3.4.3 Design of the regression loss
For the regression loss Lreg, measuring bounding box

localization accuracy, we use the Smooth L1 Loss as expressed in

Equation 11.

Lreg(t, v) =oi∈ x,y,w,hf gsmoothL1(ti − vi) (11)

Where ti is the predicted bounding box parameter, vi is the

truth bounding box parameter, x, y,w, hf g are location information

of the box and smoothL1 (·) is the Smooth loss function.

3.4.4 Modeling of the feature aggregation loss
To ensure effective utilization of support set information and

prevent overfitting or redundancy due to the attention mechanism,

we introduce the feature aggregation loss Lagg, consisting of

attention regularization and sparsity constraint.
3.4.4.1 Attention regularization

We use Attention Entropy as a regularization term to prevent

attention weights from over-concentrating on a few support

samples, encouraging comprehensive utilization of support

set information.

Attention Weight Matrix, for query set sample i and support set

sample j, the attention weight aij is computed as Equation 12:

aij =
exp (sij)

oNs
k=1 exp (sik)

(12)

where the similarity score sij is: sij =
qi ·kjffiffiffiffi

dk
p , where qi is the query

vector of i query sample, kj   is the key vector supporting sample j,

and dk is the dimension of the key vector.
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3.4.4.1.1 Attention entropy regularization term

The attention entropy regularization term is formulated as

Equation 13.

Lattn_reg =
1
Nq
oNq

i=1 −oNs
j=1aij log aij

� �
(13)

whereNq andNs are the numbers of query and support samples.

By maximizing the attention entropy (i.e., minimizing the

negative attention entropy), the attention weights are encouraged

to be more evenly distributed over the support set, preventing over-

reliance on a small number of support samples.

3.4.4.2 Sparsity constraint

To encourage sparsity in attention weights, focusing on the

most relevant support samples and enhancing discriminative

power, we impose a sparsity constraint on the unnormalized

similarity scores sij, Sparsity Regularization Term is defined in

Equation 14.

Lsparse =
1
Nq
oNq

i=1oNs
j=1 sij
		 		 (14)

By summing the absolute values of the similarity scores, the

model is encouraged to generate a sparser similarity matrix, making

the attention weights more inclined to a small number of important

support samples.
3.4.4.2.1 Complete feature aggregation loss function

Combining the attention regularization Equation 13 and

sparsity constraint Equation 14, the feature aggregation loss is

computed by Equation 15.

Lagg =
1
Nq
oNq

i=1oNs
j=1aij log aij

 !
+

1
Nq
oNq

i=1oNs
j=1 sij
		 		 !

(15)

These regularization terms help the model better utilize the

information of the support set and prevent the attention weights

from being over-concentrated or over-dispersed, thereby improving

the effect of feature aggregation and improving the detection

performance of the model.
3.4.4.2.2 The choice of the balance coefficients

l1 and l2 has an important impact on the performance of the

model. Usually, we can adjust the values of these coefficients

through experimental verification to achieve the best

performance. In general, the values of l1 and l2   can be set to 1

or scaled according to the relative size of the loss terms.

By jointly optimizing the above loss functions, our model can

simultaneously achieve the optimization goals of classification

accuracy, positioning accuracy, feature representation, and

imbalance during training. That is, through Focal Loss and SCL,

the model more accurately predicts the target class to improve

classification accuracy. By optimizing regression loss, the model can

more accurately locate the target boundary to improve positioning

accuracy. Through feature aggregation and SCL, the model’s feature

expression ability is improved, thereby enhancing feature
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representation. The weight mechanism introduced in the loss

function enables the model to pay more attention to minority

classes and hard samples to adapt to unbalanced data.
3.5 Training strategies

3.5.1 Multi-task joint training
We employed a multi-task learning approach to facilitate

collaborative optimization among various model components. In

each training iteration, localization loss, classification loss, feature

aggregation loss, and supervised contrastive loss were computed.

These losses were then combined into a single cumulative loss Ltotal.

Backpropagation and parameter updates were performed based on

this total loss, ensuring joint optimization of all components. This

approach promotes better feature representation, faster convergence,

and improved generalization by encouraging mutual information

sharing among tasks.

3.5.2 Learning rate and optimizer
To stabilize training and prevent initial oscillations, we adopted

a piecewise or cosine annealing learning rate decay schedule. This

strategy lowers the learning rate in a controlled manner, allowing

the model to converge steadily. For the optimizer, we used

Stochastic Gradient Descent (SGD) with momentum to accelerate

convergence and smooth out gradients. The momentum factor was

tuned on the validation set to achieve the best balance between

convergence speed and stability.

3.5.3 Weight initialization
To expedite convergence and leverage prior knowledge, we

initialized model parameters using ImageNet-pretrained backbone

weights. Newly added modules, such as the Feature Aggregation

Module (FAM) and the projection head for contrastive learning,

were initialized using Kaiming initialization. This approach ensures

that important structural components inherit robust feature

representations while newly introduced parameters adapt rapidly.

3.5.4 Regularization and overfitting prevention
To mitigate overfitting, we applied L2 regularization (weight

decay) in the optimizer. Additionally, dropout was introduced in

fully connected layers and within the FAM to stochastically

deactivate a fraction of neurons during training. This not only

prevents the model from over-relying on specific neurons but also

improves its capacity to generalize to unseen data.

3.5.5 Data augmentation
We employed a variety of image augmentation techniques,

including random cropping, rotation, flipping, and color jittering,

to increase data diversity and reduce overfitting. For class imbalance

issues—especially in few-shot scenarios—we performed sample

balancing by oversampling minority classes or undersampling

majority classes, aiming to achieve a more balanced and

representative training set. This augmentation and balancing
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strategy is particularly critical in 3-shot, 5-shot, and 10-shot

experiments, where the training samples are limited.

3.5.6 Training process monitoring
We continuously tracked training progress by observing the loss

curves (localization, classification, feature aggregation, and

supervised contrastive) to ensure stable convergence. Model

performance was periodically evaluated on a validation set using

metrics such as mean average precision (mAP) or recall. If the

performance began to plateau or degrade, we adjusted

hyperparameters—including learning rate, momentum, and

regularization factors—accordingly.

3.5.7 Hyperparameter adjustment
In our loss function, the coefficients l1 and l2 determine the

relative importance of each sub-loss. We fine-tuned these values

based on validation performance, ensuring that no single loss term

dominated the training.

Of particular importance is the temperature parameter t in the

supervised contrastive loss, which controls the smoothness of the

probability distribution when computing similarities among

samples. Proper tuning of \(\tau\) helps stabilize contrastive

learning by balancing the separation between positive and

negative pairs. After addressing reviewer concerns, we corrected

the temperature parameter usage by referencing the optimal

settings reported in the official FSCE(Sun, B et al., 2021)

experiment. Few-Shot Settings: For 3-shot, 5-shot, and 10-shot

training, the positive sample IoU thresholds were set to 0.6, 0.7,

and 0.8, respectively. Temperature Coefficients t: Consistently set to
0.2 for 3-shot, 5-shot, and 10-shot. Aggregate Loss Weights l1  and
Comparison Loss Weights l2: Set to 0.2, 0.5, and 0.5, respectively, in
the 3-shot, 5-shot, and 10-shot scenarios.
3.5.8 Model saving and selection
To safeguard against unexpected interruptions, we regularly saved

model checkpoints during training. Each checkpoint contained the

model weights, optimizer state, and current learning rate. After

completing training, we selected the best-performing checkpoint

based on validation metrics for final testing and deployment. This

ensures that the model used in downstream tasks represents the most

robust and accurate version learned during training.

By implementing the above multi-task joint training strategy

with detailed hyperparameter tuning, our model demonstrated

stable and efficient training, fully harnessing the benefits of

collaborative optimization. The experimental results (presented in

Section 4) indicate marked improvements in both convergence

speed and overall performance, corroborating the effectiveness of

these methodologies. Additionally, fine-tuning in the two-stage

Faster R-CNN architecture proved essential for adapting the

model to specific datasets and tasks, yielding enhanced robustness

and accuracy. This tailored approach ensures alignment with the

unique characteristics of real-world applications, thereby solidifying

the model’s practical relevance.
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4 Experiments

4.1 Dataset, experimental configuration
and parameter settings

This research introduces the PestDet dataset to support a few-

shot pest detection method based on feature aggregation and SCL.

PestDet, consisting of approximately 82,000 images, integrates data

from the IP102 dataset (Wu et al., 2019), the IDADP dataset (Chen

and Yuan, 2019), and additional images from the internet and

production environments. It includes targets at individual, medium,

collective, and mixed levels, covering various pest stages. The IP102

dataset, comprising over 75,000 images of 102 pests, served as the

primary source, with 19,000 images containing detailed detection

annotations. The IDADP dataset added 4,700 images of typical

agricultural pests. Additional samples from tropical regions further

enhanced dataset diversity.Dataset preprocessing included cleaning

duplicate images using a pre-trained vision transformer (ViT), re-

annotating different pest stages, and resolution equalization to

balance image resolutions. Annotations were optimized by

removing zero-area bounding boxes, duplicate boxes, and

correcting incorrect labels. These steps improved dataset quality,

ensuring effective training and better detection performance.

To construct the object detection dataset for this study, we

leveraged the PestDet dataset, which was originally designed for

classification and object detection tasks and includes 102 pest

classes labeled from 0 to 101. Table 2 provides detailed statistics

of the PestDet dataset, including the total number of images, the

number of bounding boxes, and the number of single-bounding-

box images for each pest class. However, the bounding box

distribution in PestDet is highly imbalanced, with some classes

having significantly more annotations than others, leading to a

model bias toward classes with more bounding boxes during

training. To address this issue and to focus on FSOD while

considering computational constraints, we constructed a balanced

subset, PestDet20, by selecting 20 pest classes from PestDet. These

classes were chosen to represent pests commonly found in tropical

and subtropical economic crops, characterized by individual

diversity and complex backgrounds. The selection process,

detailed in Table 1, involved sorting all classes by bounding box

count in descending order, excluding redundant or subset classes

(e.g., those with large overlaps between larvae and adult forms of the

same pest), and finally selecting the top 20 classes based on

bounding box count. The selected classes are numbered {0, 3, 14,

15, 16, 21, 24, 25, 26, 37, 39, 48, 50, 66, 67, 70, 76, 95, 99, 101},

following the original PestDet numbering. Inspired by the 20-class

structure of the PASCAL VOC dataset as outlined in the TFA

standard, the PestDet20 dataset was constructed to provide a

balanced and representative foundation for addressing the unique

challenges of FSOD in pest management.

To facilitate analysis and experimentation, a few-shot pest

dataset, PestDet20, was created according to selected standards.

Class statistics are summarized in Table 3. The training set includes

5,076 images with 5,590 bounding boxes, while the testing set has

1,177 images and 1,292 bounding boxes, split by the typical 8:2
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ratio. Figure 2 presents examples of the 20 pest classes studied. In

the fine-tuning-based few-shot object detection task, the model

training and testing process is divided into two stages: the base stage

and the fine-tuning stage. The base stage consists of training and

testing, where the training phase uses all samples of the base classes

from the training set, and the testing phase uses all samples of the

base classes from the testing set. Similarly, the fine-tuning stage also

consists of training and testing. During the training phase of the

fine-tuning stage, 3, 5, or 10 samples from both the base classes and

the novel classes in the training set are used. For testing in the fine-

tuning stage, all samples from both the base classes and the novel

classes in the testing set are used.

Using the feature aggregation-based fine-tuning method from

VFA (Han et al., 2023), the FSOD dataset was divided with a

random shuffling strategy. The 20 selected pest classes {0, 3, 14, 15,

16, 21, 24, 25, 26, 37, 39, 48, 50, 66, 67, 70, 76, 95, 99, 101} were

shuffled three times, creating distinct class arrays. In each shuffle, 15

classes served as base classes, while the remaining 5 were designated

as novel classes, as shown in Table 4.

The training set, used as the support set, and the testing set, used

as the query set, evaluated the model’s stability and robustness.

Strong performance across subsets indicates model stability, while

poor performance on certain subsets suggests sensitivity to specific

classes or features. After dividing the base classes and novel classes,

we trained and tested the model using 30 random seeds and

obtained the average results to compare with methods that use

random seeds. For the fine-tuning phase, we sampled images from

each class to construct the training set, with the number of sampled

images set to 3, 5, and 10, respectively. This approach ensures that

the sample sizes of base classes and novel classes during the fine-

tuning phase are balanced, thereby reducing the model’s bias

toward the base classes.
4.1.1 Experimental configuration and parameter
settings

Compared to few-shot classification and regular object

detection tasks, FSOD faces more challenges. Its training dataset

is mainly divided into two classes: base classes, with abundant

annotated data, and novel classes, with limited annotated data. The
TABLE 2 Overall class image information of training set and test set.

Metrics
Number
of images

Number of
total

annotated
boxes

Number of
images with

unique annotated
boxes

mean 187 217 174

std 343 362 334

min 3 5 2

25% 44 53 31

50% 92.50 120 83

75% 183 243 175

max 2859 2896 2826
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main goal of FSOD is to significantly improve detection

performance for novel classes while maintaining high detection

accuracy for base class. FSOD effectively reduces the dependence of

object detection models on large amounts of training data, solves

the problem of imbalanced annotations in training data, and has

significant practical value and a wide range of applications.

This study compared three classic FSOD algorithms: YOLO

(Khanam and Hussain, 2024), TFA (Wang et al., 2020) VFAr43

(Han et al., 2023) and FSCE (Sun et al., 2021). Experiments were

conducted on the Ubuntu operating system, using Python as the

main development language, based on the PyTorch deep learning

framework, with mmfewshot used for FSOD model training and

testing. The hardware environment included two NVIDIA GeForce

RTX 4090 GPUs with 24G VRAM each, an Intel(R) Xeon(R) CPU

E5–2680 v3, and 64G of memory.

In experimental hyperparameter settings, SGD was selected as

the optimizer, with an initial learning rate of 0.02, a batch size of 4,

and 18,000 training iterations, with model evaluation intervals of

3,000 iterations. During the fine-tuning stage, the learning rate was

adjusted to 0.001, and iteration numbers and evaluation intervals
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were adjusted according to different novel classes. During 3-shot, 5-

shot, and 10-shot training, the IoU threshold for positive samples

was set to 0.6, 0.7, and 0.8, respectively, the temperature coefficient

was set to 0.2, and contrastive loss weights were set to 0.2, 0.5, and

0.5 respectively.
4.2 Evaluation indicators

4.2.1 Evaluation criteria
precision =

TP
TP + FP

(16)

recall =
TP

TP + FN
(17)

TP, FP, and FN represent true positive, false positive, and false

negative, respectively. Precision and recall are defined as Equations

16, 17, respectively.

When the sum of IoU between the predicted box and the target

box exceeds 0.5, the predicted box is positive, otherwise it is negative.
TABLE 3 Image information of 20 selected pests.

Class
number

Name
Number of

training set images
Number of test

set images

Number of
training set

annotation boxes

Number of test set
annotation boxes

0 Rice leaf roller 131 34 141 38

3 Rice stem borer 126 33 138 34

14 Grub 331 80 532 108

15 Mole cricket 400 80 400 80

16 Wireworm 325 80 405 104

21 Red spider 125 31 128 36

24 Aphid 400 80 400 80

25 White-spotted flower beetle 145 40 173 46

26 Peach borer 188 45 199 47

37 Flea beetle 253 65 285 70

39 Beet armyworm 317 81 322 81

48 Acridoidea 400 80 400 80

50 Blister beetle 338 85 366 94

66 Grape hawkmoth 197 53 197 53

67 Cicada 253 63 253 63

70 Lycophoridae 400 80 400 80

76 Cotton scale 121 28 216 55

95 Brown-margined moth 134 33 142 36

99
Spine-chested
longhorn beetle

92 26 93 27

101 Cicadidae 400 80 400 80

Total 5076 1177 5590 1292
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AP =
Z 1

0
p(r)dr (18)

AP represents the area below the precision-recall curve,

calculated as shown in Equation 18, with accuracy as the ordinate

and recall as the abscissa.

In FSOD, base class performance is typically measured using bAP,

while nAP is used to assess the performance of novel classes. Suppose

class i(i = 1, 2,…,NB) belongs to base classes, and class j(j = NB +

1,NB + 2,…,N) belongs to novel classes (N denotes the number of the

training classes), bAP and nAP can be expressed by Equations 19, 20.
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bAP =
1
NB
oNB

i=1APi (19)

nAP =
1

N − NB
oN

j=NB+1
APj (20)

In the subsequent analysis, we also utilize mAP, expressed by

Equation 21.

mAP = o
n
c=1APc
n

(21)
FIGURE 2

Examples of all classes of pests in the dataset.
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where c represents the class, n represents the number of classes,

and mAP represents the average AP of multiple classes. The overall

effect of multi-class target detection can be represented by mAP.
4.3 Comparative analysis of experiments

Our method will be compared with several classic FSOD

methods, including the classic fine-tuning method TFA (Wang

et al., 2020), the feature aggregation method based on the meta-

learning framework VFA (Han et al., 2023), and the two-stage

learning method (Sun et al., 2021) based on contrastive learning.

Additionally, we incorporate YOLO (Khanam and Hussain, 2024),

a widely adopted one-stage object detection framework that is

particularly known for its real-time performance in various

detection tasks. YOLO (You Only Look Once) significantly differs

from two-stage models like Faster R-CNN by integrating region

proposal and classification into a single, unified network, making it

highly efficient and fast for both training and inference. All

comparative experiments are trained and tested on the

MMFewShot framework produced by Open MMLab. Our model’s

indicators are significantly better than most of the most advanced

SOTA methods.

4.3.1 Analysis of basic stage results
Figure 3 shows the overall loss curves of the three class split sets

(split 1, 2, 3) during basic stage training. As can be seen from the

figure, the loss curves of TFA, FSCE and the proposed method

(OURS) are almost completely overlapped, indicating that the

learning process of the three methods in the basic training stage

is very similar. Since the variational autoencoder introduces

additional loss terms during training, the loss of VFA is higher.
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Overall, the loss of the four methods is gradually decreasing with the

increase in the number of training iterations, indicating that the

model is constantly learning and improving.

Figure 4 shows the changes in mAP50 (average accuracy under

IoU 0.5) of four different class splits during basic stage, and the test

set is evaluated every 3000 iterations. In split1, VFA, FSCE, and the

proposed method reach maximum mAP50 values of 86.6, 88.9, and

89.7 at 18,000 iterations, respectively; while TFA reaches a

maximum mAP50 value of 89.1 at 15,000 iterations, but drops at

18,000 iterations, indicating possible overfitting. In split2, TFA and

VFA reach maximum mAP50 values of 88.6 and 85.6 at 18,000

iterations, respectively, while FSCE and the proposed method reach

89.0 and 89.8 at 15,000 iterations, and also show overfitting at

18,000 iterations. In split3, TFA and FSCE reached 85.8 and 85.3

respectively at 18,000 iterations, while VFA and the proposed

method reached the maximum value of 84.5 and 85.9 at 15,000

iterations, but overfitting also occurred at 18,000 iterations. These

results reflect the differences in the sensitivity of different methods

to the number of training iterations and the stability in the later

stages of training.

Based on these results, we will adopt the following strategy for

subsequent fine-tuning: selecting the models saved at the point

where mAP50 achieves the highest value in splits 1 to 3 as the

starting point for fine-tuning. the proposed method is to leverage

the model state that achieves optimal performance during the base

stage to further enhance its performance in the few-shot object

detection task.

4.3.2 Fine-tuning experimental results analysis
Figures 5–7 show the visualization results of the relevant data

after two rounds of random sampling and fine-tuning, and the

results on the test set with different sample numbers (3, 5, and 10),
TABLE 4 Classification.

Split All classes Basic classes New classes

1 {15, 76, 24, 39, 14, 67, 16, 95, 25, 3, 66, 0, 101, 99, 37, 70, 26, 50, 48, 21} {15, 76, 24, 39, 14, 67, 16, 95, 25, 3, 66, 0, 101, 99, 37} {70, 26, 50, 48, 21}

2 {101, 14, 48, 15, 3, 67, 39, 66, 76, 50, 95, 26, 37, 24, 0, 16, 21, 99, 70, 25} {101, 14, 48, 15, 3, 67, 39, 66, 76, 50, 95, 26, 37, 24, 0} {16, 21, 99, 70, 25}

3 {0, 48, 14, 99, 3, 21, 39, 66, 16, 37, 50, 26, 25, 70, 24, 67, 101, 76, 15, 95} {0, 48, 14, 99, 3, 21, 39, 66, 16, 37, 50, 26, 25, 70, 24} {67, 101, 76, 15, 95}
FIGURE 3

Line chart of overall loss of basic stage training.
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covering splits 1, 2, and 3. The performance of each method (TFA,

VFA, FSCE, and the proposed method) is measured by the average

precision of the base class (bAP50), the average precision of the new

class (nAP50), and the overall average precision (mAP50).As can be

seen from Figures 5–7, TFA and VFA show an inverse relationship

in performance: TFA performs well on the base class (bAP50), but is

relatively weak on the new class (nAP50), which indicates that TFA

may not be able to effectively transfer knowledge to the new class. In

contrast, VFA performs well in the new class but poorly in the base

class, which indicates that the model may sacrifice the performance

of the base class to adapt to the new class. In contrast, FSCE

performs evenly in the two classes and shows better robustness. the

proposed method performs better on the basis of FSCE. Under

certain split and shot configurations, the proposed method even

slightly outperforms VFA in terms of new classes and overall

accuracy, indicating its excellent ability in balancing the

performance difference between base and new classes.

In the nAP50 graph of new classes for split3, VFA outperforms

other methods under 3-shot conditions; but its performance

improves only slightly with the increase in sample size, increasing

by only 11.04% from 3-shot to 10-shot. In contrast, the performance

of the proposed method improves significantly, increasing by
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23.95% from 3-shot to 10-shot. To further study this

phenomenon, a third random sampling fine-tuning training

experiment was conducted based on the split3 dataset.

Figure 7 shows the changing trends of bAP50 and nAP50

during split3 fine-tuning training under different shot conditions.

The performance of FSCE and the proposed method in bAP50 is

always between TFA and VFA, but its maximum nAP50 exceeds

that of other methods, which highlights the advantage of the

proposed method in balancing the performance of base and

new classes.

To comprehensively compare the performance of detection

methods across 20 tropical pest classes, we included the YOLO

model (specifically the YOLO11x version) as a benchmark for

FSOD tasks. Table 5 and relevant results incorporate the YOLO

method alongside TFA, VFA, FSCE, and the proposed method

(OURS). While YOLO is known for its efficiency in real-time

detection tasks due to lower computational complexity, the results

indicate that this advantage does not translate into better

performance in FSOD scenarios. The results show that YOLO,

TFA, VFA, FSCE and the proposed method all show high AP values

under 3-shot, 5-shot and 10-shot conditions, proving the stability of

the methods. With the increase of sample size, the performance of
FIGURE 5

Trends of bAP50, nAP50, and mAP50 for split1.
FIGURE 4

Basic stage testing mAP50 indicator line chart.
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the three methods in new classes gradually improves, especially

when the sample size is small, the detection performance is

significantly improved with a slight increase in sample size.

In terms of detection performance in each class, the proposed

method shows an upward or stable trend in mAP value with the

increase of sample size, while YOLO, TFA, VFA and FSCE have

certain fluctuations. Especially in the new class, the proposed

method achieved the maximum mAP value of 82% in the 10-shot

experiment, which is significantly better than YOLO, TFA, VFA

and FSCE. In addition, the proposed method shows particularly

excellent performance in specific classes such as 15 and 95, and

significantly improves AP in the challenging 101 class

(Cicadellidae). Compared with other methods, its mAP value is

nearly 3 times higher, reflecting the powerful feature aggregation

and migration capabilities of the proposed method.

Although the mAP values of most classes are above 70,

indicating that the proposed method can effectively detect these

pests, the mAP values of other methods are relatively low for classes

such as 48, 101, 76, and 95. As can be seen from the relevant images

in Figure 8, the visual features of these pests are highly similar to the

background, or have features that are difficult to distinguish from

other classes, making it difficult for YOLO, TFA, VFA, and FSCE

methods to accurately identify them. Overall, the mAP value of the

proposed method in the new class is nearly 10 percentage points

higher than that of YOLO, TFA, VFA, and FSCE on average,

showing its significant advantage in the tropical pest detection task.
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In terms of detection performance under 3-shot, 5-shot, and 10-

shot conditions, YOLO demonstrates relatively lower AP values

compared to the other methods. For example, in the 10-shot

experiment, YOLO achieves an mAP of 77.5%, whereas the

proposed method achieves a significantly higher mAP of 82.6%.

Notably, in challenging classes such as 48 and 101, YOLO struggles

to distinguish pests with features similar to the background,

resulting in mAP values below 60%, significantly lower than the

corresponding performance of the proposed method. Overall, while

YOLO provides a computationally efficient solution, the trade-off

between speed and accuracy limits its applicability in FSOD tasks

that prioritize precise detection over real-time processing. The

proposed method strikes a better balance by achieving state-of-

the-art detection performance, justifying the slightly higher

computational cost for critical applications like pest management

in tropical agricultural settings.

As shown in Figure 9, from the 10-shot confusion matrix

analysis of TFA, VFA, FSCE and the proposed method in split3,

the proposed method has obvious advantages in terms of accuracy,

missed detection rate and recall rate. First, in terms of accuracy, the

proposed method presents higher values on the diagonal, indicating

that the model has higher classification accuracy on multiple classes.

In contrast, TFA and FSCE methods have lower diagonal accuracy

in some classes, showing that the recognition of some classes is not

accurate enough under few-sample conditions. In particular, the

TFA method has serious misclassification in some classes, while the
FIGURE 7

Trends of bAP50, nAP50 and mAP50 for split3.
FIGURE 6

Trends of bAP50, nAP50, and mAP50 for split2.
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TABLE 5 AP values and mAP values of four methods for detecting 20 types of pests.

YOLO11-FSOD TFA VFA FSCE OURS

5shot 10shot 3shot 5shot 10shot 3shot 5shot 10shot

97.9 90.4 91.7 92.1 92 90.7 89.8 96.2

67 69.2 65.6 68 66.6 67 66.7 63.6

88.7 88.5 95.9 94.5 88 89.2 87.7 88.3

88.2 89.1 75.4 77.5 82.5 78.4 81.7 76.7

77.4 75 66.3 74.3 71.5 69.9 76.1 80.3

72.8 73.7 85.3 80.9 81 87.8 87.3 86.7

88.4 89.3 83.8 85.7 86.6 89.8 89.1 89.3

89.1 89.1 92.9 93.5 89.9 94.9 90.4 90.7

66.5 70.7 78.8 80.2 79.4 81.4 79.3 83.8

88.1 88.4 89 89.6 93.8 88.9 89.1 90.4

87.4 88.1 83 84.1 84.5 83.8 79.1 85.9

71.6 78.6 80.3 77.7 78.8 84.8 80.4 85.7

84.6 88.8 89.2 89.3 88.4 87.9 88.6 90.5

59.3 66.2 68.8 73.2 71.5 73.6 70.6 62.8

84.5 84.5 78.4 76.5 83.8 84.8 84.1 85.7

94 96.5 90.9 90.1 94.4 90.9 95 97.6

55.3 67.7 18.7 36.9 66.7 35.9 65 82.5

28.8 33.7 28.3 33.1 34.6 30.1 36.8 44.9

83.2 88.3 68.9 79.8 89.7 69 77.9 87.7

38.4 57.4 67.5 68.1 72.8 74.1 76.1 83.5

80.7 84.9 81.6 82.4 82.5 83.5 82.6 83.7

59.9 60.1 54.8 61.8 71.6 60 70.1 79.2

75.6 78.7 74.9 77.2 79.8 75.9 79.5 82.6
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Cat. Num.
3shot 5shot 10shot 3shot 5shot 10shot 3shot

Base class
AP

0 82.5 84.4 87 96 96 95.8 90.2

48 59.6 61.2 57.9 68.5 69 69.8 63.4

14 83 89.7 86.2 95.4 92.9 89.5 88.4

99 80.8 75.3 68.9 85.2 85 84.8 86.8

3 85.9 77 79.3 69.6 71.3 71.4 72.6

21 77.6 80.5 83.8 89 88.8 88.8 74.7

39 84.8 76.4 79.6 88 88 93.3 88.2

66 95.1 96.4 97.8 89.7 90 89.9 89.1

16 67.2 72.8 68.9 84.3 84.4 80.9 67.7

37 79.2 77.4 71.8 99.4 99.3 97.8 88

50 82.8 73.8 80.7 85.1 85.5 86.1 86.5

26 80.7 80 81.6 84.6 83.7 83.1 66.6

25 82.8 83.3 86.4 89 89.3 89.2 81.8

70 63.2 54.4 57.9 67.8 67.7 66.1 52.8

24 85.8 75.4 79.5 87.6 86.7 87.7 84.9

New class
AP

67 72.7 98.2 98.5 81.8 82.7 83.3 92.1

101 63.9 81.6 88.8 17 25.7 49 38.5

76 17.3 23.8 36.8 12 27.8 28.8 17.2

15 51.4 85.9 89.4 65 64.8 75.2 66.6

95 60.5 79.3 72.4 51.2 58.6 64.4 42.5

mAP

Base class 79.4 77.2 77.8 85.2 85.1 84.9 78.7

New class 53.2 73.8 77.2 45.3 51.9 60.1 51.3

All class 66.3 75.5 77.5 75.3 76.9 78.7 71.9
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proposed method is relatively balanced in overall accuracy. In

addition, VFA has some misclassification in the background class,

while the proposed method is better at distinguishing between

targets and backgrounds. Secondly, in terms of missed detection

rate performance, the off-diagonal misclassification rate of the

proposed method is lower, which means that it has fewer missed

detections. In contrast, the FSCE and VFA methods have high

missed detection rates in some classes, especially between difficult-

to-distinguish classes, which are prone to prediction deviation.

FSCE has more obvious misclassification in medium-complexity

classes, while VFA shows a tendency to misdetect when the

background interference is strong, resulting in an increase in

missed detection rate. the proposed method significantly reduces

the missed detection rate and improves overall reliability by

improving feature extraction. Finally, in terms of recall rate, the

proposed method has a higher recall rate in most classes. With

fewer misclassifications, the proposed method can effectively

identify more real samples, especially in complex backgrounds or

with few samples, and the recall performance is more stable. In

contrast, the recall rate of the TFA method is low, and it is easy to

make recognition errors when the class boundaries are blurred. The

recall rate of FSCE is also slightly insufficient when dealing with

some subdivided classes.

In summary, the proposed method is superior to other methods

in accuracy, missed detection rate and recall rate. Its advantages lie

in better feature extraction ability, lower misclassification rate and

higher recall rate, making it a more robust model in the case of few
Frontiers in Plant Science 17
samples and complex backgrounds. These improvements enable the

proposed method to perform better classification results in the

split3 10-shot scenario.

4.3.3 Ablation experiment analysis
We have evaluated the effectiveness of the modules used in the

study, such as the feature aggregationmodule(FAM), the SCLmodule

SCL, and the multi-task loss optimization MTLF, in detail through

ablation experiments. In the ablation study show in Figure 10, we

systematically introduced three key modules based on the baseline

method TFA. By incorporating these modules into the baseline

separately, we conducted 3-shot, 5-shot, and 10-shot experiments

in the few-shot scenario, and evaluated them in terms of bAP50,

nAP50, and mAP50. Through this comprehensive evaluation, we can

thoroughly investigate and verify the effectiveness of each component

in the framework, which helps to further fully understand the

proposed method. The ablation results are shown in Figure 10,

showing the effect of the key modules. The performance is

significantly improved by about 1.1% by introducing FAM alone.

Specifically, mAP increases from 0.741 to 0.751 in the case of 3 shots,

from 0.772 to 0.779 in the case of 5 shots, and from 0.794 to 0.805 in

the case of 10 shots. In addition, the inclusion of the SCL module

alone can improve its performance by about 1.5%. In the case of 3

shots, mAP increases from 0.741 to 0.753, in the case of 5 shots, from

0.772 to 0.787, and in the case of 10 shots, from 0.794 to 0.809,

highlighting the effectiveness of the SCL module in addressing the

multi-scale challenges encountered in pest object detection. In
FIGURE 8

Visual comparison of original image RAW, YOLO, TFA, VFA, FSCE and OURS.
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addition, adopting the multi-task loss optimization module as a

standalone ensemble on the baseline improves the results by about

3.5%. This improvement is evident in the case of 3 shots, where mAP

increases from 0.741 to 0.776, in the case of 5 shots, from 0.772 to

0.807, and in the case of 10 shots, from 0.794 to 0.826.

Figure 8 shows an example of the comparison of the new class

detection results of the proposed method with those of TFA, VFA,

and FSCE methods in the dataset. As shown in Figure 8, most of the

new class objects are correctly detected, demonstrating the

efficiency of our model. Other methods have difficulty in

effectively detecting new class multi-target situations. In Figure 5,

we can see that although the insect is similar to the background, our

model correctly identifies the background and does not misidentify

the insect. Similarly, although there are multiple insect targets in the

image, our model can still correctly identify all the targets. Our

model can effectively handle size variations and multiple targets,

and correctly identify single targets and multiple targets of different
Frontiers in Plant Science 18
sizes. Edge cases, such as overlapping pests or those camouflaged

within cluttered backgrounds, posed challenges for all tested

models. While the proposed method outperformed others in

these scenarios, future work could explore adaptive feature

learning techniques or advanced data preprocessing to further

improve performance in such cases”.

4.3.4 Model statistical characteristics analysis
To evaluate the stability and differences of the proposed method

compared to other methods, statistical analysis and significance

tests were conducted. As shown in Table 6, our method

outperforms the comparison methods (TFA, VFA, and FSCE) in

terms of statistical metrics such as mean (Mean), standard deviation

(Std), and confidence interval (CI). The mean value of OURS is

79.13, which is higher than TFA (75.30), VFA (75.07), and FSCE

(77.26), indicating its superior overall performance. Furthermore,

the standard deviation of the proposed method is 1.920, lower than
FIGURE 9

Confusion matrix of split3-10shot for TFA (a), VFA (b), FSCE (c) and OURS (d).
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those of VFA (2.471) and FSCE (2.233), demonstrating greater

stability. Within the 95% confidence interval, the proposed method

exhibits a range of (78.178, 80.088), which is significantly higher

than the intervals of other methods, such as TFA (74.541, 76.059).

This indicates that the proposed method holds a clear

statistical advantage.

As presented in Table 7, statistical significance tests based on

multiple independent experimental results further confirm the

advantages of the proposed method compared to TFA, VFA, and

FSCE. Using independent t-tests at a significance level of 0.05, the

results show that the p-value for the proposed method versus TFA is

0.00116, versus FSCE is 0.03284, and versus VFA is 0.00288—all

below 0.05. This demonstrates that the performance of the

proposed method is statistically significantly different from the

other models. Additionally, the mean value of OURS is 79.13,

which is higher than TFA (77.05), FSCE (77.62), and VFA

(76.87). These results indicate that the proposed method not only

outperforms other models in overall performance but also achieves

statistically significant differences across multiple experiments. In

summary, the proposed method demonstrates superior stability and

performance compared to other models, highlighting its

statistical advantages.

4.3.5 Computational cost and performance
trade-off analysis

The analysis of computational complexity and detection

performance highlights the trade-offs made in this study. YOLO,

known for its efficiency in real-time detection tasks, achieves the

lowest computational complexity with 114.5 GFLOPs and relatively

moderate mAP values (66.3, 75.5, 77.5 for 3-shot, 5-shot, and 10-

shot tasks, respectively). In contrast, OURS, a model based on the

Faster R-CNN framework with enhancements such as FAM and
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SCL, achieves the highest mAP values across all settings (75.9, 79.5,

82.6) at a slightly higher computational cost of 130.2 GFLOPs.

These results, summarized in Table 8, clearly demonstrate the

performance and computational trade-offs between YOLO and

OURS. This demonstrates that OURS leverages the computational

resources to achieve significant performance gains, particularly in

few-shot detection tasks, where accuracy and robustness are critical.

While YOLO is more suitable for real-time applications, its lower

performance in few-shot tasks highlights its limitations in capturing

fine-grained and diverse pest characteristics. Models like TFA,

FSCE, and VFA strike a balance between complexity and

performance, but they fall short of the proposed method in

overall accuracy.

By choosing Faster R-CNN as the base framework, this study

prioritizes higher detection accuracy over real-time speed, a trade-off

that is justified for applications requiring precise pest management.

This approach demonstrates that slight increases in computational

complexity are acceptable to achieve substantial performance

improvements, aligning with the study’s goal of advancing few-shot

object detection in complex agricultural environments.
4.3.6 Practical application and field validation
The proposed algorithm has been integrated into a practical

pest management system, whose architectural design (as depicted at

the top of Figure 10) addresses three specific application scenarios:

Under weak network conditions, front-end devices with edge

computing capabilities perform local pest detection in real-time

and autonomously activate laser-based capture mechanisms. Under

stable network conditions, low-cost front-end visual sensors

transmit images to a backend cloud platform for rapid pest

identification, subsequently triggering front-end laser capture
TABLE 6 Mean, standard deviation and confidence interval statistical analysis.

Model Mean Standard deviation (Std) Standard error (SE) Margin of error (MOE) 95% Confidence interval (CI)

TFA 75.30 1.526 0.36 0.759 (74.541, 76.059)

FSCE 77.26 2.233 0.526 1.111 (76.151, 78.372)

VFA 75.07 2.471 0.583 1.229 (73.843, 76.301)

OURS 79.13 1.92 0.453 0.955 (78.178, 80.088)
FIGURE 10

Ablation experiment.
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devices, thus optimizing deployment costs. Agricultural technicians

or unmanned aerial vehicles (UAVs) upload images to the backend

platform, enabling precise identification and geolocation-based

positioning, supporting flexible mobile monitoring. The backend

cloud platform employs parallel computing to achieve millisecond-

level processing and feedback, effectively fulfilling diverse scenario

requirements and establishing a comprehensive intelligent pest

management system encompassing real-time monitoring, rapid

identification, precise localization, and targeted pest control.

As shown in the lower-left section of Figure 11, the pest

induction and laser capture device comprises key modules

including a core computing board, laser emitter, galvanometer

controller, and visual sensing components. Specific attractants or

optical methods accurately lure pests onto designated induction

panel areas. Real-time visual data captured by onboard cameras is

swiftly processed by a lightweight detection algorithm developed in

this research, which can also be deployed in parallel on cloud

platforms to handle large volumes of data from multiple devices

simultaneously. The coordinate conversion module precisely

calculates the physical positions of detected pests, guiding the

laser galvanometer to accurately target and activate the laser for

pest capture. Captured pests are subsequently collected in

designated containers for further identification and analysis. This

approach effectively minimizes environmental interference and

protects beneficial insects, significantly enhancing the precision

and effectiveness of pest monitoring and control.

The backend platform, based on our proposed algorithm,

provides a comprehensive management interface, facilitating

efficient, real-time collection of pest monitoring data from

greenhouses and farms. Data can be flexibly submitted by

agricultural technicians via smartphones or automatically

uploaded by pest induction and laser capture devices. The
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backend management system automatically identifies pests,

clearly visualizes real-time identification results, and assigns data

to corresponding greenhouse or farmland regions according to

geographic locations. The detailed system processing workflow is

presented in the lower-right section of Figure 10.

To further validate the practical efficacy of our proposed few-

shot pest insect detection model, we conducted an extensive field

evaluation over a three-month period in vegetable greenhouses

located in Haikou, Hainan Province. Situated in a tropical region,

Hainan faces significant pest challenges. The evaluation specifically

targeted eight prevalent pest species in this region: flea beetles,

aphids, whiteflies, thrips, diamondback moths, armyworms,

fruit flies, and leaf miners. We deployed a detection platform

utilizing our proposed algorithm, continuously monitoring pest

instances captured through smartphone images provided by

agricultural technicians and integrated intelligent trapping

devices. Throughout the evaluation period, a total of 563 pest

instances were captured across all monitored areas. Among these,

the AI model successfully identified 534 instances, yielding an

overall accuracy of 94.84%. Notably, aphids and whiteflies

demonstrated the highest detection accuracy, each exceeding 96%.

In contrast, flea beetles exhibited slightly lower accuracy at 89.7%

due to their smaller size and higher mobility.

Our methodology comprehensively addresses the dynamic and

complex nature of pest monitoring environments by employing

targeted detection strategies that integrate crop types, regional

characteristics, and seasonal factors, significantly reducing data

collection and labeling costs through few-shot learning techniques.

The lightweight model design ensures effective deployment even in

agricultural scenarios with limited computational resources or poor

network connectivity, exhibiting robust and stable performance in

greenhouse monitoring environments.
TABLE 8 Model size, computational cost, and performance analysis.

Model
Number

of parameters
Calculate

costs (GPLOPs)
3shot all class 5shot all class 10shot all class

YOLO11x-FSOD 53.9M 114.5 66.3 75.5 77.5

TFA 60.4M 119.6 75.3 76.9 78.7

FSCE 61.6M 120.8 71.9 75.6 78.7

VFA 68.5M 128.8 74.9 77.2 79.8

Ours 68.1M 130.2 75.9 79.5 82.6
TABLE 7 Independent t-test method significance verification analysis.

Model
Comparison

model
Significance level P-value Model mean

Comparison
model mean

OURS TFA 0.05 0.00116 79.13 77.05

OURS FSCE 0.05 0.03284 79.13 77.62

OURS VFA 0.05 0.00288 79.13 76.87
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5 Conclusion

This study presents a novel FSOD method for pest insects,

addressing challenges related to limited annotation data and multi

object sizes. Built upon the Faster R-CNN framework, our approach

integrates feature aggregation and SCL to enhance feature

representation and improve detection accuracy. Multi-scale feature
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extraction using a Feature Pyramid Network captures rich semantic

information at different scales, improving sensitivity to multi targets.

A Feature Aggregation Module (FAM) with attention mechanism

fuses features from the support and query sets, enhancing detection

ability for small-sample targets. SCL is introduced to improve feature

discriminability, while class weights and Focal Loss address class

imbalance and hard-to-classify samples. Joint optimization of
FIGURE 11

Pest management system architecture, laser trapping equipment and process demonstration.
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multiple tasks with an integrated loss function enhances robustness

and precision. Experimental results demonstrate significant

performance improvements in small and minority class pest

detection, offering a valuable solution for agricultural pest

management. While the proposed method achieves significant

improvements in detection accuracy, the computational cost

associated with Faster R-CNN remains a limitation for real-time

applications. Future research could focus on optimizing the

framework for faster inference or exploring lightweight

architectures to enhance scalability for edge deployment.
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