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Plant disease classification in the
wild using vision transformers
and mixture of experts
Zafar Salman, Abdullah Muhammad and Dongil Han*

Department of Computer Science and Engineering, Sejong University, Seoul, Republic of Korea
Plant disease classification using deep learning techniques has shown promising

results, especially when models are trained on high-quality images. However,

thesemodels often suffer from a significant drop in their accuracies when tested in

real-world agricultural settings. In the wild, models encounter images that are

significantly different from the training data in aspects like lighting conditions,

capturing conditions, image resolution, and the severity of disease. This

discrepancy between the training images and images in-the-wild conditions

poses a major challenge for deploying these models in agricultural settings. In

this paper, we present a novel approach to address this issue by combining a Vision

Transformer backbonewith aMixture of Experts, wheremultiple expert models are

trained to specialize in different aspects of the input data, and a gating mechanism

is implemented to select the most relevant experts for each input. The use of

Mixture of Experts allows the model to dynamically allocate specialized experts to

different types of input data, improving model performance across diverse image

conditions. The approach significantly improves performance on diverse datasets

that contain a range of image capturing conditions and disease severities.

Furthermore, the model incorporates entropy regularization and orthogonal

regularization, aiming to enhance the robustness and generalization capabilities.

Experimental results demonstrate that the proposed model achieved a 20%

improvement in accuracy compared to Vision Transformer (ViT). Furthermore, it

demonstrated a 68% accuracy on cross-domain datasets like PlantVillage to

PlantDoc, surpassing baseline models such as InceptionV3 and EfficientNet. This

highlights the potential of our model for effective deployment in dynamic

agricultural environments.
KEYWORDS

deep learning, disease classification, computer vision, plant disease, mixture of experts
(MoE), vision transformers
1 Introduction

In recent years, deep learning models like Convolutional Neural Networks (CNNs)

have shown promising results for object detection and image classification. A number of

models based on deep learning have been proposed, which cover a wide range of plant

disease identification and classification (Salman et al., 2023). CNN-based methodologies
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have showcased remarkable accuracy in classifying various diseases

across different crops (Mohanty et al., 2016). Renowned for their

adeptness in capturing intricate visual features (Sladojevic et al.,

2016), CNNs form the foundation of numerous object detection

frameworks, featuring popular variants such as two-stage and one-

stage detectors (Redmon et al., 2016). By employing multilayered

convolutions, CNN architectures effectively extract object features

and adjust parameters, which helps mitigate issues such as

overfitting (Krizhevsky et al., 2012). Numerous deep learning

models have been proposed for plant disease augmentation,

identification, and classification, demonstrating remarkable

accuracy across various crops (Muhammad et al., 2023). While

two-stage detectors like Region-Based CNN (R-CNN) (Girshick

et al., 2014) prioritize localization accuracy, they often compromise

on speed, unlike one-stage detectors, which prioritize inference

speed over precise localization.

Although significant progress has been made in computer

vision and Artificial Intelligence (AI) for crop monitoring and

disease detection, several critical challenges still persist. One key

challenge is the accuracy gap between training datasets and real-

world applications, as models trained on homogeneous data often

struggle to generalize effectively in diverse, uncontrolled

environments. Moreover, variations in leaf morphology, object

size, and disease manifestations significantly impact model

performance, while factors such as diverse lighting conditions,

backgrounds, and object instances further intensify these

challenges. These shortcomings highlight the need for robust

models that are capable of adapting to dynamic environmental

conditions for accurate disease detection.

The focus of this study is to address the challenge of bridging

the performance gap between plant disease classification models

trained on lab-controlled datasets and their deployment in such

agricultural settings where image conditions vary from the training

dataset. The proposed model in this study employs Vision

Transformers (ViTs) for feature extraction and incorporates a

Mixture of Experts (MoE) (Shazeer et al., 2017) architecture for

decision-making, which enhances its adaptability and

generalization capabilities. The addition of novel regularization

techniques further enhances robustness while ensuring the

balanced use of expert classifiers. Experimental results presented

in this study show significant improvements in accuracy,

demonstrating the potential of this approach for practical

applications in plant disease detection.
2 Related work

2.1 Architectures

Recently, Transformer-based (Vaswani et al., 2017) methods

have emerged in computer vision research and gained popularity

due to their remarkable performance. Originally developed for

Natural Language Processing (NLP) tasks, transformers

revolutionized the field by introducing self attention mechanisms,

enabling models to assign dynamic importance to different input
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elements. ViTs adapt this mechanism by treating image patches as

input tokens, allowing global context modeling across the image.

Transformers compute all pairwise interactions simultaneously,

making them well-suited for modeling complex dependencies.

ViTs implement this by splitting images into patches similar to

word tokens. Although ViTs lack the inductive biases of CNNs—

requiring more data for robust generalization—they excel at

capturing global dependencies and have outperformed traditional

CNNs like ResNet (He et al., 2016) in image classification tasks.

This has led to the development of improved ViT architectures for

computer vision.

The MoE model (Shazeer et al., 2017) is an advanced machine

learning framework that divides complex problems into simpler

sub-tasks, each handled by specialized sub-networks called experts.

MoE has demonstrated superior performance compared to models

like LLaMA and GPT-3.5 (Jiang et al., 2023). A MoE model has two

key components: expert networks and a gating mechanism. The

experts consist of multiple lightweight Multilayer Perceptron

(MLP) Layers. Each expert is trained to focus on specific aspects

of a task (Huang et al., 2023). These experts are computationally

efficient and scalable, allowing the model to grow in capacity with

little increases in computational cost. A gating network, illustrated

in Figure 1, dynamically selects the most relevant experts for each

input. The final output is a weighted combination of these experts.

By implementing experts for separate tasks or data segments,

MoE models benefit from a variety of perspectives and insights,

boosting their overall performance. This flexibility not only

enhances their ability to generalize but also enables the model to

handle a wider range of challenges while maintaining both accuracy

and efficiency.
2.2 Datasets

Numerous publicly available datasets have been developed for

plant disease classification, reflecting the growing interest and

research in this domain. Among these, the PlantVillage and

PlantDoc datasets have been widely adopted in the literature due

to their accessibility and broad usage across diverse studies. In this

work, these two datasets are selected to evaluate the proposed

model, as they provide a reliable benchmark for both controlled

and real-world conditions in plant disease detection.

2.2.1 PlantVillage
The Plant Village dataset (Hughes and Salathé , 2015) contains

54,306 images illustrating both healthy and infected leaves. The dataset

contains a total of 38 classes, covering 14 different crop species and 26

distinct diseases. Due to its diverse representation of crops and disease

conditions, the dataset has become a valuable resource for researchers

and professionals in the field of plant disease detection (Ferentinos,

2018). It provides a robust foundation for training and evaluating

machine learning models, thereby contributing to advancements in

agricultural disease diagnosis andmanagement. Figure 2a shows sample

images of TomatoHealthy, Tomato LeafMold and Tomato Yellow Leaf

Curl Virus from the PlantVillage dataset.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1522985
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Salman et al. 10.3389/fpls.2025.1522985
2.2.2 PlantDoc
The PlantDoc dataset (Singh et al., 2020), introduced in 2019,

consists of 2,598 images of both healthy and diseased plant leaves.

The images were collected from various sources, including online

platforms such as Google and Ecosia. This dataset encompasses 13

crop types affected by 17 different diseases. Figure 2b shows sample

images of Tomato Healthy and Tomato Yellow Leaf Curl Virus

from the PlantDoc dataset. A notable feature of PlantDoc is that it

captures images under real-field conditions, offering a more realistic

representation of the challenges faced by plant disease detection

models in practical applications.
2.3 Challenges in plant disease
classification

Many studies have employed identical datasets for both training

and testing, resulting in high accuracy rates due to inherent dataset

similarities. For instance, Mohanty et al. (2016) reported a

remarkable 99.35% accuracy when their model, trained on the

PlantVillage dataset (Hughes and Salathé, 2015), was tested

within similar conditions. However, when subjected to in-the-

wild images, their accuracy plummeted to below 40%. This drop

in accuracy highlights the critical need for more comprehensive

datasets and improved techniques to enhance model robustness and

generalization to enable accurate disease detection.

Object size also plays a crucial role in model performance, as it

is closely affected by the distance between the camera and the object
Frontiers in Plant Science 03
during image capture (Arnal Barbedo, 2013). Object sizes in images

captured from greater distances tend to be smaller, which can

hinder disease recognition tasks by obscuring diseased areas.

Consequently, model performance suffers, as the diseased

portions are not visible in those images, leading to diminished

accuracy in disease identification and classification, as shown in

Figure 3. To tackle these challenges effectively, it is crucial to

develop image classification models that exhibit robustness and

adaptability to the variation in the size of the diseased portion of

a plant.

Moreover, the severity of the disease present in the training

dataset plays a crucial role in model performance. The stage of the

disease directly affects the accuracy of the model when applied in

scenarios, as shown in Figure 4. Early-stage symptoms are usually

subtle and harder to detect, whereas advanced stages present more

evident symptoms, affecting the model’s ability to generalize across

different stages of disease progression (Picon et al., 2019).

In addition to the need for larger datasets, it is important to

highlight that datasets with detailed annotations and various stages

of symptoms are particularly scarce. While current datasets are

useful, they often fall short in terms of diversity and accuracy. The

lack of variability hurts the performance of deep learning models in

practical situations, where conditions such as background, lighting,

and object instances are often quite different from one another, as

shown in Figure 2. Furthermore, datasets such as PlantVillage suffer

from issues such as class imbalance. As shown in Figure 5, tomato

samples alone account for 43.4% of the total images, potentially

biasing models toward overrepresented classes. The PlantDoc
FIGURE 1

Diagram showing the integration of a MoE with a specialized gating mechanism that dynamically routes inputs through N expert networks. The
gating weights determine which experts are activated for each input, enabling efficient specialization and adaptive processing. MoE, Mixture
of Experts.
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dataset also presents certain limitations. Due to the absence of

sufficient domain expertise during annotation, some images are

incorrectly labeled, which can degrade model performance.

Moreover, several images in the PlantDoc dataset contain images

that have multiple diseases in a single image, which affects the

overall accuracy of image 6.

Addressing these challenges is crucial for improving the

performance of deep learning models. Models trained on datasets

with these limitations encounter difficulties in adapting to the

complexities of practical applications, highlighting the need for

robust training approaches. In this paper, we present a unique

approach to cater to these challenges by enhancing the model’s

adaptability and improving recognition accuracy.
Frontiers in Plant Science 04
3 Methodology

This section offers a detailed overview of the proposed

architecture and techniques used in this research. It covers the

architecture and mathematical foundations of the methods utilized

for this research.
3.1 Our model

3.1.1 Vision Transformer backbone
Our proposed model, illustrated in Figure 6, employs a ViT

encoder as the primary feature extractor. The motivation for using
FIGURE 3

Comparison of images captured at different distances. The image taken from a greater distance shows a smaller object size and less clear leaf
shapes, which may obscure diseased areas and complicate disease recognition tasks.
FIGURE 2

Challenges to in-the-wild classification (a) containing images of Tomato Healthy, Tomato Leaf Mold, and Tomato Yellow Leaf Curl Virus in
PlantVillage dataset that are used for training. (b) Images of Tomato Healthy, Tomato Leaf Mold, and Tomato Yellow Leaf Curl Virus in PlantDoc
dataset in the wild.
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ViT as the backbone lies in its ability to capture long-range

dependencies within image data. This allows the model to look at

different parts of the image, making it effective for analyzing images

with complex and changing conditions. Let X represent the input

image. The ViT divides X into a sequence of image patches xif gNi=1,
where N denotes the total number of patches. Each patch xi is

processed using a transformer-based architecture to capture long-

range dependencies across the image. The output of the ViT can be

denoted as a high-dimensional feature representation H ∈ RN×D,

where D represents the feature dimension.

3.1.2 Input normalization and noise injection
After feature extraction, the output H from the ViT is subjected

to layer normalization, yielding Hnorm. This process stabilizes

training by mitigating internal covariate shift, ensuring consistent

gradient flow, and preventing exploding or vanishing gradients. It

centers and scales feature distributions, enhancing convergence.

To improve generalization and prevent overfitting, Gaussian

noise is added to Hnorm during training. This regularization

technique introduces variability, encouraging the model to learn

robust features. The noise level, governed by the dataset
Frontiers in Plant Science 05
characteristics, is kept low when critical features are subtle to

avoid masking them, and higher when features are more prominent.

Formally, the perturbed features are as follows:

Hperturbed = Hnorm + ϵ,   ° ϵ ∼ N (0,s2)

where s is a tunable hyperparameter controlling noise

magnitude. Injecting zero-mean Gaussian noise ϵ into the

normalized features enhances the model’s ability to generalize to

unseen data.

3.1.3 MoE layer
The core classification process is facilitated by a MoE Layer,

comprising expert classifiers. The output of the MoE is a weighted

sum of the selected individual expert predictions, with the weights

determined by the gating mechanism. This process is illustrated

in Figure 7.

3.1.3.1 Expert classifiers

Each expert classifier within the MoE architecture consists of

two fully connected layers, denoted as W1 andW2, interleaved with

a dropout layer to mitigate overfitting. Let zk be the output of the
FIGURE 4

A Comparison of training (left) and testing image (right) samples. The training image displays early-stage disease severity, while the testing image,
illustrating real-field encounters, depicts more advanced disease manifestations.
FIGURE 5

Image distribution in the PlantVillage (top) and PlantDoc (bottom) datasets. A significant class imbalance is observed in PlantVillage dataset, with
tomato-related classes constituting 43.4% of the total images. This skewed distribution can lead to biased model performance, favoring
overrepresented classes.
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kth expert after processing the input features. The final output of

each expert is a softmax distribution pk = softmax(zk), representing

the expert’s prediction probabilities across the target classes.
3.1.3.2 Gating mechanism

The gating mechanism is modeled as a neural network g(·) that

takes the normalized features Hnorm as input and outputs a set of

weights w = g(Hnorm) ∈ RK, where K is the number of selected

experts for the input. The weights w determine the contribution of

each expert’s output pk to the final decision. The gating network is

trained concurrently with the experts and includes an entropy-

based regularization term to promote a balanced distribution of

weights, thereby preventing any single expert from dominating the

final prediction.
3.2 Training and loss functions

The model’s training process is guided by a combination of loss

functions designed to ensure accurate predictions and robust

generalization. The classification loss, denoted as Lclass, is

computed using CrossEntropy Loss, which measures the

difference between the predicted class probabilities and the true

class labels. This loss drives the model to make accurate

classifications.

Lclass = −
1
No

N

i=1
yi log (ŷ i)

where
Fron
• yi is the true label for the ith instance.

• ŷ i is the predicted probability for the true class.

• N is the number of instances.
The gating loss Lgating is applied to the output of the gating

network. It is also a Cross-Entropy Loss that ensures the gating
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network assigns appropriate weights to each expert based on their

specialization.

Lgating = −
1
No

N

i=1
gi log (ĝ i)

where
• gi is the true gate target for the ith instance.

• ĝ i is the predicted gating probability for each expert.
A typical implementation of MoE can cause the over-reliance

on a subset of experts, where the gating mechanism favors certain

experts repeatedly due to their over-confidence, potentially

disregarding inputs from other experts. This overconfidence

could result in suboptimal performance, as the model

underutilizes the full range of distinct features learned across all

experts, potentially resulting in biased outputs. Hence, an Entropy

Regularization Loss Lentropy (Grandvalet and Bengio, 2004) is

applied to the gating mechanism to address overconfidence.

This loss penalizes low-entropy distributions in the gating

outputs, encouraging a balanced contribution from all experts

and preventing any single expert from dominating the predictions.

It is given by the following:

Lentropy = −
1
No

N

i=1
o
K

j=1
gij log (gij)

where
• gij is the gating weight for the jth expert on the ith instance.

• K is the total number of selected experts.
Employing multiple experts introduces the risk of redundancy,

where several experts may end up learning similar features. This

overlap can reduce the diversity of representations, ultimately

leading to biased final decisions. To mitigate this, we incorporate

orthogonal regularization (Bansal et al., 2018), which encourages
FIGURE 6

End-to-end architecture of the proposed ViT+MoE model for plant disease classification. Input images are split into patches and processed by a
Vision Transformer encoder to extract global features. These features are normalized and routed through a Mixture of Experts (MoE) module, where
a gating network assigns weights to multiple expert classifiers. Each expert contributes to the final prediction based on its assigned weight. Entropy,
orthogonal, and usage regularizations are applied to ensure diverse, decorrelated, and balanced expert utilization. The final output is an aggregated
classification score aimed at improving robustness. ViT, Vision Transformer.
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each expert to learn distinct, non-overlapping features. This

promotes specialization among experts and enhances overall

model performance by ensuring more diverse and complementary

representations. The Orthogonal Loss Lorthogonal penalizes the

similarity between the weight matrices of different experts by

minimizing the Frobenius norm of their product. In doing so, it

enforces diversity among the experts, thereby reducing redundancy

and improving the performance of the ensemble. This is calculated

as follows:

Lorthogonal =o
K

i=1
o
K

j=i+1
∥WiW

⊤
j ∥F

where
Fron
• Wi and Wj are the weight matrices of the ith and jth

experts, respectively.

• ∥ · ∥F denotes the Frobenius norm.
While orthogonal and entropy regularization help balance

expert selection and promote feature diversity, another challenge

arises when certain experts are consistently assigned fewer inputs,

limiting their contribution to the overall model capacity. To address

this, we incorporate usage regularization (Steiner et al., 2021), which

penalizes the under-utilization of experts and encourages the gating

mechanism to distribute inputs more evenly. This ensures that all

experts remain actively engaged and contribute meaningfully to the

learning process. The corresponding usage regularization loss Lusage
complements the orthogonal and entropy losses, enabling the

model to achieve a balance between accurate predictions, diverse
tiers in Plant Science 07
expert contributions, and robust generalization. This loss is

calculated as follows:

Lusage =o
K

j=1

1
No

N

i=1
gij −

1
K

 !2

The total loss Ltotal is a weighted sum of the above losses:

Ltotal = Lclass + Lgating + lentropyLentropy + lorthogonalLorthogonal

+ lusageLusage

where

• lentropy , lorthogonal , and lusage are the weights for the entropy

regularization, orthogonal, and expert usage losses, respectively.
3.2.1 Aggregation and prediction
The final prediction is produced by averaging the weighted

outputs of the experts. This approach allows the model to make use

of diverse perspectives provided by each expert while ensuring that the

most relevant experts have a more significant influence on the final

decision. Formally, the final prediction pfinal is computed by

aggregating the outputs from all selected experts pkf gKk=1 using the

gating weightsw. The aggregation process can be expressed as follows:

pfinal = o
K

k=1

wkpk

This weighted sum pfinal serves as the final prediction, combining

the collective knowledge of the experts while emphasizing those most

relevant according to the gating mechanism.
FIGURE 7

Figure illustrating gating mechanism of our proposed model. A gating network assigns weights to each expert based on the input, and the final
prediction is obtained through a weighted sum of expert outputs. Entropy-based regularization ensures balanced expert contributions.
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4 Experimental setup

4.1 Dataset analysis

In our analysis of the PlantVillage dataset, we identified key

issues related to class imbalance and image redundancy. Certain

classes were heavily overrepresented, while others contained very

few samples, increasing the risk of biased predictions favoring

dominant classes. Moreover, many images within a class showed

minimal variation, limiting the model’s ability to generalize and

effectively distinguish between disease symptoms.

To better understand the disparities between the PlantVillage

and PlantDoc datasets, we performed a detailed comparison using

multiple distributional and visual metrics. First, we computed the

Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951)

using features from a pretrained ResNet50 (He et al., 2016)

model. Class-wise KL divergence quantified feature distribution

shifts between corresponding classes, while overall divergence

provided a broader view of dataset disparity (see Table 1).

We further analyzed pixel-level distributions, comparing the

mean and standard deviation of RGB channels across both datasets.

As shown in Figure 8, the PlantDoc images exhibited higher mean

intensity in the green and blue channels, as well as increased

standard deviation, suggesting greater brightness and variability

in lighting and color conditions.

These differences go beyond visual appearance, reflecting the

diversity of real-world scenarios that the model may encounter.

Training on PlantVillage and testing on PlantDoc provides a robust

evaluation of the model’s ability to generalize to new environments

beyond the training distribution.
4.2 Dataset preparation

We addressed challenges like images showing multiple disease

symptoms or irrelevant content (see Figure 9) in the PlantDoc

Dataset. We split such composite images by symptom and removed

unrelated images (e.g., fruits) to ensure that only relevant images

were used as test input for the resulting classification.

To mitigate class imbalance in the PlantVillage dataset, we

employed a downsampling strategy using t-distributed Stochastic

Neighbour Embedding (T-SNE) clustering (Van der Maaten and

Hinton, 2008) with VGG16 (Simonyan and Zisserman, 2014)

for feature extraction. We created two balanced subsets,

PlantVillage_100 and PlantVillage_200, by generating 100 and

200 clusters per class and selecting one representative image from

each (see Figure 10). This method preserved class diversity while

reducing redundancy and dataset size, enabling us to evaluate

model robustness and generalization with limited data.

Feature vectors were extracted from the second-to-last fully

connected layer of a pretrained VGG16 model, which was modified

by removing the last three layers. Images were resized to 224 × 224

and normalized using standard ImageNet statistics. T-SNE was

applied with two components, Euclidean distance, perplexity of 30,

and learning rate of 500 to project features into a 2D space.
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While clustering reduced repetition, it could risk excluding rare

variations. To counter this, we prioritized representative images

with clear disease symptoms regardless of severity. We selected

these images manually. The goal was to balance dataset

compactness with informative diversity, minimizing overfitting

while retaining critical features for effective learning.

To assess the impact of the T-SNE-based downsampling strategy

onmodel performance, a performance drop analysis was conducted by

training two VGG16 models—Model A on the full dataset and Model

B on the downsampled subset. Both models were evaluated using a

shared test set, and it was ensured that the images in the test set were

not part of either model’s training set to prevent data leakage and
TABLE 1 Class-wise and overall KL divergence for PlantVillage and
PlantDoc datasets using ResNet50 pretrained model.

Specie Class/disease KL divergence

Apple Scab 0.1868

Apple Rust 0.2503

Apple Healthy 0.2059

Blueberry Healthy 0.0750

Cherry Healthy 0.3250

Corn Cercospora Leaf Spot/Gray
Leaf Spot

0.0280

Corn Common Rust 0.1214

Corn Northern Leaf Blight 0.3126

Grape Black Rot 0.2008

Grape Healthy 0.0916

Peach Healthy 0.1618

Pepper bell Healthy 0.2572

Potato Early Blight 0.1556

Potato Late Blight 0.1077

Raspberry Healthy 0.2786

Soybean Healthy 0.1165

Squash Powdery Mildew 0.1227

Strawberry Healthy 0.5049

Tomato Bacterial Spot 0.1647

Tomato Early_blight 0.1820

Tomato Healthy 0.2526

Tomato Late Blight 0.2903

Tomato Leaf Mold 0.3465

Tomato Septoria Leaf Spot 0.2072

Tomato Spider Mites 1.3214

Tomato Mosaic Virus 0.3889

Tomato Yellow Leaf Curl Virus 0.0672

Overall 0.1883
KL, Kullback–Leibler.
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ensure fair evaluation. The analysis revealed only a minor and

negligible decrease in overall accuracy and F1-scores for the model

trained on the downsampled data (Figure 11). As shown in Table 2,

Model A achieved an accuracy and F1-score of 0.9872, while Model B,

trained on a significantly smaller dataset (200 images), still reached a

strong accuracy of 0.9660 and an F1-score of 0.9660. The minimal

performance drop (2%) indicates that the T-SNE-based downsampling

preserved essential data characteristics despite the drastic reduction in

dataset size. Further analysis using the confusion matrices (Figure 12)

supports these findings. While Model A demonstrates near-perfect
Frontiers in Plant Science 09
classification across almost all classes, Model B exhibits only slight

degradations. These results suggest that our downsampling strategy

maintains the representativeness of the original dataset while

significantly reducing data size.
4.3 Results and comparison

In this section, we present the results of experiments conducted

to evaluate the performance of the proposed model. We compare
FIGURE 8

Analysis of pixel-level distributions reveals significant differences between the PlantVillage and PlantDoc datasets, highlighting the distinct
characteristics and variability inherent in each dataset.
FIGURE 9

Examples from the PlantDoc dataset illustrating annotation and structural challenges. (a) An image exhibiting examples of both bacterial spot and
pseudomonas, yet labeled as a single disease, which introduces ambiguity during training and evaluation. (b) A composite image containing five
distinct subimages, each depicting different diseases, but collectively treated as a single data point. Such cases can mislead the model during
learning by conflating multiple disease features, thereby reducing classification accuracy and reliability.
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FIGURE 10

Downsampling using T-SNE clustering and VGG16 to extract 200 images per class in the PlantVillage dataset. One representative image is selected
from each cluster to reduce redundancy.
FIGURE 11

Training and validation accuracy curves for the VGG16 model trained on two datasets. The left plot shows performance on the full PlantVillage
dataset (Model A), while the right plot corresponds to training on the downsampled PlantVillage 200 dataset (Model B). Both models exhibit smooth
convergence with minimal overfitting, and Model B demonstrates stable learning behavior despite significantly reduced training data.
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these results against state-of-the-art architectures, including Vision

Transformer (ViT-Base), InceptionV3 (Szegedy et al., 2015),

EfficientNet (Tan and Le, 2019), and fine-grained classifiers such

as Api-Net (Zhuang et al., 2020), CAL (Rao et al., 2021), and

TransFG (He et al., 2022).

For architectural comparison, an ensemble CNN comprising

DenseNet161 (Huang et al., 2017), ResNet152, and VGG19 was also

implemented. Each base model was trained independently, and

predictions were aggregated using majority voting to improve

generalization and reduce variance. All models were evaluated

across multiple datasets and data splits using metrics such as

accuracy, F1-score, precision, and recall.

While recent research implementing deep learning models for

plant identification and disease classification has predominantly

relied on CNNs (Kamilaris and Prenafeta-Boldú, 2018), which are

well-suited for visual analysis tasks, our study deliberately selected

the most prominent CNN architectures to ensure a non-

redundant comparison.

Our first set of experiments was conducted using an 80:10:10

data split, representing training, validation, and testing sets, on the

PlantVillage dataset. These experiments included lab-controlled

datasets for evaluating the baseline performance of our model and

comparing it with other models. As shown in Table 3, our proposed

model achieves an accuracy of 0.9996, slightly superior to Ensemble,

ViT-Base, and other models. On PlantVillage, the performance
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differences between the models were marginal, demonstrating the

proposed model’s reliability in well-controlled scenarios.

However, a significant divergence in performance was observed

when these models were tested on the PlantDoc sub-dataset, which

consists of more challenging in-the-wild images. In these

experiments, the proposed model exhibited remarkable robustness,

achieving an accuracy of 0.74, outperforming all other models.

This superior performance highlights the generalization

capabilities of the proposed model in handling diverse

environmental conditions, such as varying lighting, backgrounds,

and object scales. Compared to fine-grained classification models

like CAL, API-Net, and TransFG, our model achieved higher

accuracy, highlighting its effectiveness in complex scenarios.

To evaluate cross-domain generalization capabilities, the

proposed model was trained on the PV_200 dataset, a balanced

subset of PlantVillage, and tested on the PlantDoc sub-dataset. The

results, presented in Table 4, show that the proposed model

achieved an accuracy of 68%, which is significantly higher than

the accuracies achieved by ViT-Base (48%), InceptionV3 (41%),

and EfficientNet (43%). This demonstrates the model’s ability to

bridge the gap between lab-controlled datasets and complex image

conditions, thereby addressing one of the primary challenges in

plant disease classification.

Further experiments were conducted to assess the model’s

performance under limited data scenarios by training it on the
TABLE 2 Comparison of validation metrics for two VGG16 models: Model A trained on the full dataset, and Model B trained on a T-SNE-based
downsampled subset.

Model Dataset Accuracy Precision Recall F1-score

Model A PlantVillage 0.9872 0.9877 0.9872 0.9872

Model B PlantVillage with 200 images 0.9660 0.9689 0.9660 0.9660
Both models were evaluated on a shared, unseen test set to ensure fair assessment. The minimal drop in accuracy and F1-score observed in Model B indicates that the downsampling strategy
effectively preserved key data characteristics while significantly reducing dataset size.
FIGURE 12

Confusion matrices illustrating classification performance of the VGG16 model on a shared test set. The left matrix represents the model trained on
the complete PlantVillage dataset (Model A), while the right matrix corresponds to the model trained on the downsampled subset with 200 images
(Model B). Despite the data reduction, Model B maintains competitive performance across most classes, indicating that the T-SNE-based
downsampling preserves essential class-discriminative features.
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PV_100 dataset, which contains only 100 images per class. Despite

the reduced data availability, the proposed model maintained

competitive performance, achieving an accuracy of 49% on

PlantDoc, as shown in Table 5. This result demonstrates the

robustness of the model and its adaptability to data-constrained

settings, a critical factor for practical deployment where collecting

large annotated datasets is often impractical.

From the results presented in Tables 3–5, we can conclude that

the ViT-MoE, coupled with entropy, orthogonal, and usage

regularization, significantly enhances the model’s ability to

generalize across domains and datasets. The proposed model not
Frontiers in Plant Science 12
only excelled in controlled settings but also consistently

outperformed other models in challenging scenarios, establishing

itself as a robust and efficient solution for plant disease classification.
5 Discussion and ablation studies

Plant diseases vary significantly in their manifestation, with

differences in shape, color, texture, and spatial spread. For example,

some diseases manifest as distinct spots, such as target spot on tomato

leaves and septoria leaf spot, while others cause widespread
TABLE 3 Performance comparison of models using an 80:10:10 data split for training, validation, and testing.

Model Dataset Accuracy F1-score Precision Recall

Ours PlantVillage 0.9996 0.9996 0.9996 0.9996

Ensemble PlantVillage 0.9996 0.9995 0.9995 0.9995

ViT-Base PlantVillage 0.9995 0.9995 0.9995 0.9995

MoE PlantVillage 0.9984 0.9984 0.9984 0.9984

InceptionV3 PlantVillage 0.9922 0.9888 0.9897 0.9922

EfficientNet PlantVillage 0.9922 0.99 0.9894 0.9934

CAL PlantVillage 0.9993 0.9993 0.9993 0.9993

API-Net PlantVillage 0.9993 0.9993 0.9993 0.9993

TransFG PlantVillage 0.9995 0.9995 0.9995 0.9995

Model Data subset Accuracy F1-score Precision Recall

Ours PlantDoc 0.74 0.74 0.77 0.74

ViT-Base PlantDoc 0.69 0.60 0.61 0.59

API-Net PlantDoc 0.69 0.68 0.69 0.69

Ensemble PlantDoc 0.68 0.68 0.69 0.69

TransFG PlantDoc 0.68 0.67 0.68 0.68

CAL PlantDoc 0.68 0.67 0.67 0.66

InceptionV3 PlantDoc 0.65 0.64 0.67 0.65

EfficientNet PlantDoc 0.59 0.55 0.53 0.59
TABLE 4 Performance comparison of different models trained on PV_200 dataset.

Model Training In the wild Accuracy F1-score Precision Recall

Our model PV_200 PlantDoc 0.68 0.65 0.67 0.64

MoE PV_200 PlantDoc 0.60 0.57 0.56 0.60

Ensemble PV_200 PlantDoc 0.51 0.50 0.50 0.50

ViT-Base PV_200 PlantDoc 0.48 0.47 0.46 0.48

InceptionV3 PV_200 PlantDoc 0.41 0.40 0.40 0.40

EfficientNet PV_200 PlantDoc 0.43 0.42 0.42 0.43

CAL PV_200 PlantDoc 0.44 0.44 0.44 0.44

API-Net PV_200 PlantDoc 0.39 0.38 0.38 0.39

TransFG PV_200 PlantDoc 0.44 0.42 0.42 0.43
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discoloration, like two-spotted spider mites and yellow leaf curl virus.

Some diseases, like powdery mildew on squash, appear as powdery

textures. A single model often struggles to capture all such nuances. The

MoE allows multiple experts to specialize in different features such as

shapes, colors, or textures, enabling the model to handle these diverse

characteristics effectively. Similarly, ensemble methods combine the

predictions of multiple diverse models to improve generalization by

reducing variance and mitigating overfitting. Structurally, both MoE

and ensemble approaches leverage multiple specialized components,

making them particularly effective in handling complex and varied

input data. As observed in our experiments, both methods

demonstrated strong generalization capabilities, with improved

accuracy stemming from their ability to compensate for the

limitations of individual models through collaborative decision-making.

To further evaluate the impact of various components in our

proposed model, we conducted an ablation study. This study

systematically isolates and modifies key elements of our model to

assess their contribution to overall performance. We examine the

effect of the number of experts, entropy regularization, and

orthogonal regularization on classification accuracy.
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5.1 Effect of number of experts

We utilized the MoE technique to improve the model’s

generalization across varying image conditions. To assess its

impact, we experimented by adjusting the number of selected

experts in the model, testing configurations with top-K set

between 2 and 10 for a total number of 10 experts on the dataset.

Our findings indicate that the optimal number of experts in a MoE

model depends on the need to capture fine-grained features for

classification. It is very crucial for the model to have an appropriate

number of experts with appropriate depth to establish a balance for

optimizing the trade-off between overfitting and underfitting. When

subtle variations in the data are critical for classification, increasing

the number of experts can boost performance. However, adding too

many experts does not necessarily improve accuracy, underscoring

the importance of trial and error to find the best setup. This

behavior is also depicted in Figure 13. Since each expert learns

distinct features that collectively influence classification accuracy,

we found that for our dataset, the optimal results were achieved

with top-K set to 3.
TABLE 5 Performance comparison of different models trained on PV_100 sub-dataset.

Model Training In the wild Accuracy F1-score Precision Recall

Our model PV_100 PlantDoc 0.49 0.51 0.53 0.49

Ensemble PV_100 PlantDoc 0.41 0.40 0.44 0.36

ViT-Base PV_100 PlantDoc 0.30 0.35 0.44 0.30

InceptionV3 PV_100 PlantDoc 0.29 0.29 0.28 0.29

EfficientNet PV_100 PlantDoc 0.28 0.28 0.19 0.23

CAL PV_100 PlantDoc 0.37 0.37 0.37 0.37

API-Net PV_100 PlantDoc 0.32 0.32 0.32 0.32

TransFG PV_100 PlantDoc 0.37 0.36 0.37 0.35
FIGURE 13

Plot illustrating the accuracy achieved with different numbers of experts with respect to epochs. Darker area represents the values closer to the
maximum accuracy. Model achieves maximum accuracy when the total number of experts is three.
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5.2 Effect of entropy regularization

Entropy regularization is incorporated to reduce model

overconfidence. During the initial phases of model development, it

was observed that with the training of the model, some experts started

dominating the output results while ignoring the outputs of a subset

of other experts due to their very high confidence scores. This

behavior is shown in Figure 14. The entropy regularization ensures

that no experts dominate the decision-making process. While this

encourages models to consider balanced decision-making, it may lead

to slower convergence during training, as the model balances between

exploring various outputs and optimizing for accuracy. Hence, we

implemented it as a hyperparameter to ensure that its balanced

contribution leads to a better overall performance. To evaluate its

effectiveness, we trained our model with various settings of entropy

regularization. The results showed that high values of entropy

regularization generally led to better model accuracy, indicating

that modest entropy regularization can effectively mitigate

overconfidence without significantly compromising performance.
Frontiers in Plant Science 14
5.3 Effect of orthogonal regularization

Orthogonal regularization promotes the independence of model

parameters by encouraging them to be orthogonal to one another.

When implemented as a loss function, it adds a penalty on the

measure of deviation of weight vectors from being orthogonal. The

goal of this regulation is to ensure that the features learned by the

experts do not overlap too much. Hence, enforcing the experts to

learn distinct features on the provided dataset during training leads

to an informative aggregate output. This results in robustness

against overfitting and redundancy. However, it comes at the cost

of significant computational overhead while training, as the model

needs to compute and apply the orthogonality constraints.

To assess the effectiveness of orthogonal regularization, we

performed an ablation study using a CNN backbone instead of

ViT-B16. While our primary model utilizes ViT outputs into the

MoE classifier, inspecting and visualizing expert activations directly

from transformer outputs is challenging due to the high-

dimensional nature of the embeddings and the lack of explicit
FIGURE 14

(Left) Contribution of five experts over epochs showing a decline for some experts after some epochs during training without entropy regularization.
Figure shows some experts reaching zero contribution to output, while others dominate the output results. (Right) Contribution of five experts over
epochs showing a balanced performance after the implementation of entropy regularization. The figure illustrates a more stable distribution of
contributions, with all experts actively participating in the predictions.
FIGURE 15

Visualization of experts’ activation maps in CNN–MoE study. The top row shows activation maps before orthogonal regularization, and the bottom
row after. Expert 1 and expert 4 show similar activation maps. The bottom row highlights how orthogonal regularization promotes distinct, non-
overlapping features. Red regions indicate higher activation regions, while blue represents lower activation areas. CNN, Convolutional Neural
Network; MoE, Mixture of Experts.
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spatial features. To overcome this, we employed a CNN-based MoE

structure, which allowed for the visualization and analysis of expert

activation maps for visualization purposes, as the key insights on

the effect of orthogonal regularization are still relevant to both the

CNN and ViT architectures. We trained this CNN-MoE model for

80 epochs on the PlantVillage dataset, which yielded an accuracy of

99%. Figure 15 illustrates the activation maps of each expert before

and after applying orthogonal regularization, showing how each

expert learns to focus on different discriminative input regions.

Prior to orthogonality regularization, expert 1 and expert 4 produce
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similar activation maps, but after implementing regularization, all

experts learn distinct features.
5.4 Effect of usage regularization

Usage regularization aims to ensure that all expert classifiers

contribute to the decision-making process. This technique is

essential for mitigating the risk of overfitting to specific features

learned by only a few experts. When a gate provides a high-

confidence, unreliable prediction, the aggregated output is stabilized

by contributions from other experts. This also comes with a trade-off;

i.e., some of the experts are trained to capture such patterns that other

experts are unable to capture due to the implementation of orthogonal

regularization. Hence, it becomes very crucial to select an optimal

weight for the usage regularization that balances the impact and does

not override the impact of other regularization techniques.
5.5 Combined effect of regularization
techniques

To further understand the interplay between entropy and

orthogonal regularization, we conducted a series of experiments

varying both parameters simultaneously. Figure 16 presents a 3D

visualization of the model’s accuracy as a function of entropy and

orthogonal regularization weights. The plot illustrates the

relationship between these regularization techniques and model

performance. We observe that the highest accuracy is achieved with

a specific combination of moderate entropy and orthogonal

regularization weights, indicated by the peak in the 3D surface.

This visualization highlights the importance of carefully tuning

these hyperparameters together, as their optimal values are

interdependent. The plot also highlights the sensitivity of the
FIGURE 16

3D visualization of model accuracy as a function of orthogonal
regularization weight and entropy regularization weight. The surface
plot illustrates the complex interplay between these two
regularization techniques and their impact on model performance.
The red star indicates the point of maximum accuracy achieved.
FIGURE 17

Optuna hyperparameter importance plot showing the relative impact of entropy, orthogonal, and usage regularization weights on validation
accuracy. Entropy regularization shows the highest influence, followed by orthogonal and usage regularization.
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model’s performance to these regularization techniques, with sharp

drops in accuracy when the weights deviate significantly from their

optimal values.

To assess the contribution of each regularization term

quantitatively, we conducted a hyperparameter optimization
Frontiers in Plant Science 16
study using Optuna. Optuna’s hyperparameter importance

analysis is based on model-agnostic techniques such as impurity-

based feature importance, which estimate the relative influence of

each hyperparameter on the objective value, which in our case is

validation accuracy. The resulting importance plot, shown in
FIGURE 18

Comparison of confusion matrices before (top) and after (bottom) applying regularizations. The regularized model shows reduced misclassifications
and improved class-wise accuracy, particularly for classes like tomato_septoria_leaf_spot, cherry_healthy, and tomato_early_blight, highlighting the
effectiveness of the proposed regularization strategy in enhancing generalization.
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Figure 17, ranks the regularization weights by their impact. The

entropy regularization weight emerged as the most influential

(importance = 0.38), followed by orthogonal regularization (0.37)

and usage regularization (0.24). This indicates that entropy and

orthogonal regularization play a more critical role in improving

model generalization and gating behavior, consistent with our

qualitative observations. The lower importance of usage

regularization suggests that while it contributes to balanced expert

activation, its role is more complementary.

To further evaluate the impact of introducing regularization

terms, a comparison of confusion matrices before and after

applying entropy, orthogonal, and usage regularization is
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presented in Figure 18. This comparison was conducted on the

same MoE model with two configurations, i.e., without

regularizations and with regularizations. The confusion matrix on

the left (without regularization) displays notable misclassifications

across multiple classes, whereas the confusion matrix on the right

(with regularization) shows significant improvements in class-wise

accuracy and reduced misclassification rates. Most prominently,

the correct predictions for tomato_septoria_leaf_spot

increased from 65 to 112, cherry_healthy from 0 to 45, and

tomato_early_blight from 52 to 103. Figure 19 illustrates the cases

that were correctly classified after the introduction of regularization

terms. This indicates that the inclusion of regularization terms
FIGURE 19

Examples of misclassified samples that were correctly predicted after applying regularization. All samples belong to the tomato_septoria_leaf_spot
class. The top text indicates the true class, while the bottom shows the incorrect prediction before regularization.
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helps the MoE framework better differentiate between visually

similar classes and learn more robust class boundaries, ultimately

improving overall generalization and classification stability in

complex conditions.
6 Limitations and future work

Despite the promising results, several limitations must be

addressed for broader applicability. First, the scalability of the

MoE framework in handling multiple diseases within a single

sample remains unexplored. In actual agricultural settings, plants

often exhibit multiple diseases simultaneously, which could

challenge the model’s gating mechanism, which currently outputs

a single disease per input. Future research should focus on

improving the model’s ability to handle multi-disease images.

The model’s applicability to new plant species is another

limitation. While the approach performs well on the datasets

used, its transferability to different species and diseases has not

yet been tested. Agricultural contexts involve diverse plant species,

each with distinct disease manifestations. To extend the model’s

generalization, further exploration of transfer learning and domain

adaptation techniques is needed to ensure that the model can

perform well on new, unseen plant species.

Another challenge is the computational cost of the gating

mechanism in the MoE framework. The MoE architecture

improves accuracy and generalization by enabling specialized

experts to handle diverse input conditions. However, this comes

at the cost of increased computational overhead due to the

evaluation of multiple experts and the gating mechanism. This

additional computational load can introduce latency during

inference, particularly in large datasets or real-time applications.

As the number of disease types and manifestations increases, the

need for more experts to handle the complexity further increases the

computational demand. In resource-constrained environments,

such as mobile devices or embedded systems, these factors may

limit the model’s applicability. Optimizing the model for faster

inference will be critical to achieving a balance between

computational efficiency and performance.

Finally, while the model shows robustness to various

conditions, its generalization to extreme environmental variations

is uncertain. Although regularization techniques were applied to

improve robustness, further data augmentation strategies or

synthetic data generation could help improve the model’s ability

to handle diverse and previously unseen conditions, ensuring better

performance in real field applications.
7 Conclusions

In this research, we proposed a novel approach to plant disease

classification by leveraging ViT models, enhanced with a MoE for
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classification, alongside entropy and orthogonal regularization. Our

study focused on addressing the critical challenge related to

performance degradation in plant disease detection when images

that differ significantly from the controlled environments are used

during training. This issue is particularly relevant in the agricultural

sector, where the ability to accurately classify plant diseases in

varied and unpredictable conditions is essential.

We demonstrated that our ViT-based model, when trained on a

relatively small yet diverse dataset, outperformed traditional models

in terms of robustness. Our experimental results indicated that the

proposed model maintained high accuracy levels even when tested

on datasets with different image conditions and disease severities,

which are often encountered in actual scenarios.

Key findings of our research include the model’s robustness to

diverse image conditions, achieved through the integration of entropy

and orthogonal regularization, which enabled it to maintain high

accuracy across datasets with varying image qualities, highlighting its

suitability for scenarios where training data differ from testing data.

Overall, this study contributes to ongoing efforts in improving plant

disease detection models in the wild by providing a more adaptable

and generalizable approach, which is crucial for practical deployment

in the agricultural sector. Future work could focus on further

optimizing the model architecture, exploring additional data

augmentation techniques, and testing the model in diverse field

conditions to validate its applicability in complex farming

environments. The implementation details and trained models are

available at https://github.com/salman32140/Vit_MoE/.

By offering a solution that effectively bridges the gap between

lab-controlled datasets and complex image conditions, this

research paves the way for more reliable and scalable plant

disease detection systems that can support sustainable

agricultural practices and enhance the role of technology in

crop management strategies.
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Kamilaris, A., and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A
survey. Comput. Electron. Agric. 147, 70–90. doi: 10.1016/j.compag.2018.02.016

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105.
Available online at: https://papers.nips.cc/paper_fi les/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.
Stat 22, 79–86. doi: 10.1214/aoms/1177729694

Mohanty, S. P., Hughes, D. P., and Salathé, M. (20161419). Using deep learning for
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