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The identification of wheat infections has always been a considerable problem in

agricultural forecasting. This paper presents an automated classification framework

for wheat illnesses utilising region feature purification contrastive learning, which

combines unsupervised representation learning with label mutual information

maximisation to improve feature extraction and classification efficacy. The

integration of the W-Paste approach enhances the model’s resilience to input

perturbations, hence augmenting its out-of-distribution detection efficacy.

Additionally, the creation of a feature purification encoder enhances feature

consistency by reducing interference via reverse learning, resulting in a significant

improvement in classification accuracy. Attaining an average classification accuracy

of 98.01% on public datasets illustrates the remarkable performance, efficacy, and

resilience of our system in intricate situations. This study presents a novel and

pragmatic approach for the automated identification of wheat illnesses, laying a

robust groundwork for the progression of intelligent agriculture. The ongoing

enhancement of the suggested framework is anticipated to advance the early

detection and accurate diagnosis of wheat illnesses, hence promoting more

effective crop management and sustainable agricultural development.
KEYWORDS

wheat diseases classification, image classification, contrastive learning, deep learning,
wheat biotic stress detection
1 Introduction

Agriculture is fundamental to society, supporting the livelihoods of billions globally.

With the continuous increase in the world population, guaranteeing a stable and secure

food supply has become increasingly essential. Apart from supplying food, agriculture is

crucial for economic development and creating numerous employment possibilities,

positively impacting millions worldwide. Wheat, as a crucial cereal crop, is

fundamentally connected to human life and advancement. It ranks among the most

widely consumed crops worldwide, with data showing that the yearly per capita

consumption surpasses 50 kilogrammes in 102 nations.
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The increasing population is driving a consistent rise in the

need for wheat production. Wheat plants are particularly vulnerable

to numerous diseases, representing a significant risk to global

production. Annually, substantial crop losses occur owing to viral

and bacterial diseases, with wheat-producing nations experiencing

potential yield declines between 45% and 100%. Common wheat

diseases, including rust (Prasad et al., 2020), powdery mildew

(Wang et al., 2023), smut (Putterill, 1920), and fusarium head

blight (Dweba et al., 2017), represent serious risks to farming,

markedly reducing both quality and production while causing

considerable economic harm. Therefore, to reduce output losses

and preserve crop health, proactive protective strategies, such as

early diagnosis and intervention, are essential.

Conventional disease detection in wheat depends onmanual field

assessments. This strategy has become progressively difficult as it

requires considerable time and effort from farmers and pathologists

to precisely evaluate the degree of infection. Manual detection is

laborious, expensive, resource-demanding, and necessitates

specialised skill, frequently resulting in delayed reactions during

extensive epidemics. In response to these obstacles, researchers and

farmers are diligently investigating accurate, swift, automated, and

economical disease detection techniques.

In recent years, breakthroughs in artificial intelligence have

established deep learning as a transformative instrument for

agricultural disease identification, producing exceptional outcomes.

Deep learning techniques have attained significant accuracy at

comparatively modest expenses, providing innovative solutions for

early disease identification in agriculture. This technique improves

detection efficiency and provides farmers with scientific and

dependable management tools, therefore protecting wheat output

and fostering sustainable agriculture development.

Jiang et al (2022) assessed seven classical convolutional neural

networks (VGG-16, Inception-v3, ResNet-50, DenseNet-121,

EfficientNet-B6, ShuffleNet-v2, and MobileNetV3), analysing the

efficacy of various training strategies in detecting wheat leaf

diseases, including powdery mildew, leaf rust, and stripe rust. The

Inception-v3 model attained a peak recognition accuracy of 92.5%

on the test dataset.

Li et al (2023b) introduced an effective deep learning model,

PMVT, derived fromMobileViT for the real-time diagnosis of plant

diseases. The model was evaluated on various datasets, including

wheat, coffee, and rice, attaining maximum recognition rates of

93.6%, 85.4%, and 93.1%, respectively.

Alharbi et al (2023) proposed a few-shot learning model based

on EfficientNet, including attention techniques to improve feature

selection. Their methodology attained a classification accuracy of

93.19%, successfully recognising 18 different wheat illnesses.

Cheng et al (2023) created a location-aware detection model

that incorporates a positional attention module to extract spatial

information from feature maps and produce attention maps, thus

enhancing the identification of diseased areas. This module was

integrated into architectures including AlexNet, VGG, MobileNet,

ResNet, and GoogLeNet, with ResNet achieving the highest

performance, attaining an accuracy of 96.4% in testing.
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Fang et al (2023) combined residual modules with Inception

modules to create a lightweight multi-scale architecture called

Inception-ResNet-CE (IRCE). The model integrated CBAM and

ECA attention modules into the residual blocks to improve the

extraction of disease-related characteristics and reduce interference

from intricate backgrounds. It attained accuracy ratings of 99.74%,

96.7%, and 96.7% on the Plant-Village, CGIAR, and Wheat Leaf

datasets, respectively.

Nigus et al (2024 introduced SRNet for the diagnosis of wheat

stem rust. The research workflow included picture preprocessing,

segmentation, feature extraction, and softmax classification. In the

segmentation phase, an adaptive threshold method was utilised to

identify sick areas, while Gabor filters were implemented to

augment textural characteristics. SRNet attained a test accuracy of

92.01% on a proprietary dataset.

Li et al (2023) created the GhostNetV2 model to address wheat

stripe rust. The model improved inter-channel communication in

Ghost modules by rearranging channels and substituted five G-

bneck layers with Fused-MBConv blocks to expedite training.

Furthermore, the SE attention mechanism was replaced with ECA

to enhance recognition performance. GhostNetV2 attained an

accuracy of 95.44% on the Yellow-Rust-19 dataset. Jiang et al

(2021) enhanced the VGG16 model by multitask learning,

utilising transfer learning and alternating learning procedures

with pretrained ImageNet models. Experimental findings

indicated that the multi-task methodology surpassed single-task

models, reusable models, ResNet50, and DenseNet121, attaining

recognition accuracies of 97.22% for rice leaf illnesses and 98.75%

for wheat leaf diseases.

Bao et al (2021b) introduced a metric learning approach

utilising the Elliptical Maximum Margin Criterion (E-MMC) to

ascertain the type and severity of stripe rust and powdery mildew

infections. This method utilised the Otsu algorithm for lesion

segmentation and applied gradient ascent to enhance the metric

matrix, hence minimising feature redundancy. The approach

attained a maximum recognition accuracy of 94.16%.

Genaev et al (2021) proposed a technique for mitigating data

deterioration utilising image hashing algorithms and employed the

EfficientNet network for illness identification. The network attained

an accuracy of 94.2% in identifying several fungal wheat illnesses, such

as leaf rust, stem rust, and powdery mildew, through the application

of data augmentation and picture style transfer techniques.

Bao et al (2021a) created a lightweight model, SimpleNet, for

the automatic detection of wheat ear disorders from natural field

photos. SimpleNet incorporated the CBAM module, which

amalgamates spatial and channel attention methods, to augment

feature representation for disease diagnosis. The model attained an

accuracy of 94.1% on the test dataset.

Pandey (Pandey and Jain, 2022) proposed an Attention-Dense

Learning (ADL) mechanism that combines hybrid S-shaped

attention learning with the dense learning process of

convolutional neural networks (CNNs). Experimental findings on

the PlantVillage dataset indicated that this framework attained an

accuracy of 96.57%.
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Pan et al (2022) introduced a rust detection model, WREL,

utilising ensemble learning that integrates networks like ResNet152,

VGG, ResNet101, and DenseNet201. The experiments

demonstrated that the model accurately forecasts rust infections

and reduces agricultural losses.

Hayit et al (2021) created the Yellow-Rust-Xception model for

the detection of stripe rust in wheat leaves and the assessment of its

severity. The model attained 91% accuracy on the test dataset.

Despite the considerable promise of current methodologies,

numerous constraints persist in tackling the intricacies and

variability of wheat leaf disease and pest imagery. The efficacy of

numerous contemporary methods is significantly contingent upon

the quality, diversity, and representativeness of the training datasets,

which undermines their ability to forecast unfamiliar illness

patterns. Moreover, the implementation of ensemble models

considerably elevates system complexity and computing duration.

Numerous techniques depend on the extraction of image-level

semantic characteristics, considering background information as

contextual, which may occasionally capture distinguishing cues.

Nonetheless, actual wheat leaf photos frequently suffer from

intricate backdrops, unfavourable weather conditions, focus blur,

occlusions, and extraneous objects (Li et al., 2023a). These factors

can significantly diminish image quality, resulting in minimal inter-

class variances and substantial intra-class changes among disorders.

Furthermore, samples within the same class may have significantly

divergent environmental contexts, whilst samples from distinct

subclasses may possess remarkably like environments, so

rendering background information inaccurate and a possible

source of confounding in disease categorisation.

Attention mechanisms, when employed to activate

discriminative features, frequently misidentify ambiguous

peripheral information, resulting in inaccurate localisation of

regions pertinent to wheat leaf disease classification. To tackle

these challenges, it is essential to develop a model that

comprehensively investigates the intrinsic features of different

wheat leaf diseases, emphasising local regions that significantly

aid in classification. Ensuring strong feature consistency while

minimising reliance on background information is essential for

improving the model’s robustness in complex heterogeneous

images. This necessitates the implementation of more

sophisticated feature selection methods to accurately identify the

most pertinent features for each class, thereby reducing the impact

of noise on detailed disease classification. Our research aims to

establish robust feature consistency from sparsely distributed data

to facilitate the automated recognition of various wheat leaf

diseases. This method enhances classification accuracy and offers

more dependable disease management strateg ies for

wheat production.

Self-supervised contrastive learning creates strong feature

uniformity in the embedding space by grouping positive samples

with anchors and separating negative samples. This method has

shown significant effectiveness in natural image domains. However,

the structural and distributional similarities among wheat leaf

disease samples often result in high similarity among anchors

from different categories, which can impede the effectiveness of
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self-supervised contrastive learning. Supervised contrastive learning

addresses this limitation by incorporating label information,

thereby mitigating the challenge of anchor similarity. This

approach proves to be particularly effective in scenarios with

limited labelled data.

The primary benefit of supervised contrastive learning is its

ability to diminish reliance on extensive labelled datasets by utilising

the similarities among various but related samples to develop robust

representations. This strategy promotes accelerated learning and

enhanced accuracy in inference. This study introduces the

integration of enhanced supervised contrastive learning with a

feature purification encoder for the automatic detection of wheat

leaf diseases. We maximise mutual information among various data

through unsupervised representation learning for feature

extraction, while also incorporating label-based mutual

information maximisation for image classification. This method

introduces supplementary regional constraints to self-supervised

contrastive learning by deriving positive instances from samples

belonging to the same class as the anchor, instead of depending

exclusively on data augmentation of the anchor, which is the

conventional practice in self-supervised learning. This strategy

seeks to optimise inter-class separation and minimise intra-class

distances among wheat leaf disease samples, thus decreasing the

likelihood of misclassification in difficult cases and improving

classification accuracy.

To augment the semantic diversity of wheat leaf disease

representations, we refine supervised contrastive learning to

provide robust feature consistency, hence enhancing the model’s

efficacy in out-of-distribution detection. To achieve this objective,

we devised the W-Paste approach to produce positive cases. W-

Paste emulates authentic scenarios related to several kinds of wheat

leaf diseases, hence augmenting the model’s resilience to input

deterioration and strengthening its capacity to detect out-of-

distribution instances. To investigate appropriate semantic

representations of wheat leaf diseases, we developed a feature

purification encoder. These unique techniques enhance

classification performance and offer strong support for accurate

diagnosis of wheat leaf diseases.
2 Method

This section presents a detailed elucidation of the suggested

two-stage architecture for automated wheat disease diagnosis. We

initially employ the W-Paste technique twice on the input data to

generate two unique views from the same batch, thus creating

positive samples. This approach emulates real-world samples and

introduces little semantic variations, improving the network’s

generalisation ability across new data distributions. We

subsequently produce 2048-dimensional normalised embeddings

via a feature purification encoder and transmit them through a

projection network, which is eliminated throughout the testing step.

The supervised contrastive loss is calculated using the outputs of the

projection network. To do post-training classification, we
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immobilise the encoder and train a linear classifier atop it. Figure 1

presents a visual representation of this process.
2.1 W-Paste

In practical situations, environmental variables make field

photographs of wheat exceedingly intricate. Furthermore, the

diminutive size of many disease symptoms and the resemblance

across various disease appearances further hinder recognition

accuracy. Moreover, photos of diseases frequently have low

contrast and cluttered backgrounds, complicating feature

extraction. While supervised contrastive learning can group

samples of the same class with analogous characteristics in the

feature space, significant intra-class variances and inter-class

similarities impede the formation of feature consistency.

To tackle these problems, we utilise the W-Paste technique to

replicate intricate wheat leaf diseases in real-world scenarios for

generating positive samples, thus incorporating out-of-distribution

data points and augmenting the network’s ability to recognise out-

of-distribution instances. We randomly eliminate two tiny

rectangular portions from the samples, utilising 15×15 patches,

and subsequently fill these areas with segments from other samples

to provide varied semantic perturbations. Figure 2 demonstrates

that our methodology significantly enhances sample complexity.

The produced samples closely mimic genuine wheat leaf diseases,
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hence improving the model’s generalisation capability. In this

technique, two random augmentations are added to each input

sample to create positive pairs, representing varied viewpoints of the

same sample. Concurrently, random samples bearing identical

labels in the queue exhibit comparable feature consistency,

whereas the existence of disparate labels further restricts the

model’s learning process. This varied distribution greatly

enhances the practical effectiveness of contrastive learning.
2.2 Feature cleansing encoder

Neural network layers are known to have significant differences

in feature learning abilities: lower-level features frequently contain

considerable noise, whereas higher-level semantic features exhibit

enhanced discriminative strength. Despite the impressive capability

of CNNs in feature representation, its accuracy in localizing

uncertain areas is still inadequate. The feature purification

encoder’s architecture includes a structure consisting of five

residual blocks to resolve this issue. The initial two residual

blocks are allocated for low-level feature extraction; hence, we

implement interference feature filtering modules at these phases

to refine the features.

The Interference feature filtering module includes an attention

module and a feature subtraction module. For the input feature X,

the interference feature is first enhanced through attention module.
FIGURE 1

An overview of our proposed regional feature purification contrastive learning.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1523214
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1523214
2.2.1 Attention module
The attention module’s architecture, seen in Figure 3, initiates by

dividing the input feature X along the channel dimension into four

subspaces. Convolutional kernels of dimensions 1 × 1, 3 × 3, 5 × 5, and 7

× 7 are utilized to extract features from each subspace. This

segmentation technique facilitates the concurrent processing of input

tensors at many scales, producing feature maps tailored to each kernel
Frontiers in Plant Science 05
type. Each segment individually captures multi-scale spatial information,

thereby establishing local cross-channel interactions. Subsequently,

global average pooling and global max pooling procedures are

executed on each set of feature maps, which are then concatenated

along the channel dimension (As shown in Equations 1–4).

F(xi) = F3�3(F
0) (1)
FIGURE 3

An overview of attention module.
FIGURE 2

Visualization of W-paste.
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w = s (F(xi)) (2)

Fi = F � w (3)

F(Xi) = con(F1, F2, F3, F4) (4)
2.2.2 Feature subtraction module
The captured interference features are subtracted from the

intermediate features (the third residual block and the fourth

residual block) to remove irrelevant or confusing local

information (As shown in Equations 5, 6).

G(X1) = F(X3) − F(X1) (5)

G(X2) = F(X4) − F(X2) (6)
2.3 Projection network

We configured a multi-layer perceptron with 2,048 neurons in

its hidden layer and an output vector dimension of 256. Following

the self-supervised contrastive learning approach proposed by Tian

et al (Tian et al., 2020), we adopted a similar technique in our study.

Specifically, the network outputs are normalized onto a unit

hypersphere, allowing the use of inner products to measure

distances within the projection space. As with typical self-

supervised contrastive training, the projection network is

discarded after the contrastive training phase. Thus, the total

parameter count in our test model remains unaffected.
2.4 Classification network

After finalising the initial phase of contrastive learning, we

advance to the subsequent step by immobilising the encoder and

developing a linear classifier to serve as the urinary sediment

classification layer. We subsequently refine the wheat leaf disease

classification model by training it for a mere 20 epochs.
2.5 Supervised contrastive losses

One may reconcile fully supervised learning (SL) with self-

supervised learning (SSL) by employing SupCon to formulate the

supervised contrastive learning loss function (Khosla et al., 2020).

The primary objective of SupCon is to reduce the distance between

positive samples, which are those that belong to the same class. A

contrastive loss function is utilized to achieve this purpose,

meticulously designed to consider both positive and negative

pairings concurrently. The loss function encourages the model to

enhance the distinction between different classes in the normalized

feature space. This method enables the model to recognize shared

traits across instances of the same category while simultaneously

exhibiting remarkable skill in distinguishing differences among
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other categories. The SupCon loss function is articulated by the

subsequent equation:

Lsup  =o
i∈I

−1
P(i)j j op∈P(i)

log 
exp   (zi · zp=t)

oa∈A(i) exp   (zi · za=t)
(7)

Here, P(i)  ≡ p   ∈  A(i)  :  ~yp = ~yi
� �

is the set of indices of all

positives in the multiviewed batch distinct from i, and |P(i)| is its

cardinality. Loss have the following desirable properties: Supervised

losses urge the encoder to give all entries from the same class tightly

aligned representations, improving representation space clustering.

More negatives increase contrast (Grill et al., 2020). Hard positive/

negative mining ability from within. Using normalized

representations, the loss in Equation 7 creates a gradient

structure, resulting in implicit positive/negative mining. Hard

positives/negatives (those against which continuing to contrast

the anchor greatly benefits the encoder) have large gradient

contributions, while easy ones have small ones. Hard positives

have an asymptotically increasing effect as negatives increase.
3 Experiments and results

3.1 Dataset

Public Datasets 1:This research utilises the “Wheat Disease

Detection Dataset” for the classification of wheat illnesses. The

dataset, initially created by Safarijalal et al (Safarijalal et al., 2022),

comprises three categories: Brown Rust, Healthy, and Yellow Rust.

The Wheat Disease Detection Dataset is accessible to the public at

the following URL: https://www.kaggle.com/sinadunk23/behzad-

safari-jalal. Our trials utilised a total of 3,679 photos, with

comprehensive details included in Table 1. The dataset was

divided into training, validation, and test sets in a 7:2:1 ratio.

Public Datasets 2:Furthermore, we employed the “Wheat Plant

Diseases Dataset” supplied from the Kaggle platform, which

comprises 14,154 photos of wheat leaves. Table 1 offers a detailed

account of the dataset. The dataset, available at https://

www.kaggle.com/sinadunk23/behzad-safari-jalal, is divided into

fifteen unique categories: Aphid, Black Rust, Blast, Brown Rust,

Common Root Rot, Fusarium Head Blight, Healthy, Leaf Blight,

Mildew, Mite, Septoria, Smut, Stem Fly, Tan Spot, and Yellow Rust.

The data was divided into training, validation, and test sets in a

7:2:1 ratio.
3.2 Experimental settings

We conduct experiments on RTX3090 GPU. In the first stage of

training, the batch size is set to 8, and we train for 200 epochs. At

the same time, after 15 epochs, we replace the subtraction operation

of the interference feature in the feature subtraction module with

the addition operation. In the second stage of training, the cross

entropy loss function is used to update network.
frontiersin.org
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3.3 Experimental results
To validate the effectiveness of our proposed method in

leveraging label information, we conducted a comparative analysis

of classical convolutional networks, Transformer architectures, and

unsupervised contrastive learning across two public datasets, with

detailed results presented in Table 2. Supervised learning

significantly enhanced model performance relative to

unsupervised methods by employing label-guided learning,

resulting in superior outcomes across several evaluation metrics.

Our supervised contrastive learning approach shown substantial

effectiveness in imposing stringent constraints, enabling a more

precise characterization of wheat disease traits and significantly

improving classification performance.

Experimental results revealed that convolutional networks had

less local inductive capacity on datasets with greater class

diversity, due to the absence of prominent features. Moreover,

pooling processes diminished fine-grained information and

overlooked the linkages between local and global contexts, hence

limiting the networks’ ability to appropriately represent

characteristics. The Swin-Transformer outperformed ResNet50

by more effectively encoding positional information and

managing global dependencies.
TABLE 1 Dataset details.

Public
datasets 1

Number
Public
datasets 2

Number

Brown Rust 1128 Aphid 6955

Healthy 1395 Black Rust 7540

Yellow Rust 1156 Blast 5063

Brown Rust 5703

Common Root Rot 1183

Fusarium Head Blight 1581

Healthy 1093

Leaf Blight 1076

Mildew 1237

Mite 1208

Septoria 832

Smut 832

Stem fly 832

Tan spot 832

Yellow Rust 832
TABLE 2 Experimental results of different classification models.

Method Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

VGG19 (Simonyan and Zisserman, 2014) Public Dataset 1 87.85 88.02 87.77 87.89

ConvNeXt (Liu et al., 2022) Public Dataset 1 88.01 88.68 89.77 89.22

GoogLeNet (Szegedy et al., 2015) Public Dataset 1 91.07 91.02 91.11 91.06

MobileNet (Howard, 2017) Public Dataset 1 92.08 92.33 92.46 92.39

ResNet50 (He et al., 2016) Public Dataset 1 93.21 92.92 93.16 93.04

DenseNet121 (Huang et al., 2017) Public Dataset 1 93.65 94.74 94.02 94.38

Transformer (Vaswani, 2017) Public Dataset 1 93.68 94.25 94.16 94.20

Swin Transformer (Liu et al., 2021) Public Dataset 1 94.69 95.79 94.56 95.17

SimCLR (Chen et al., 2020) Public Dataset 1 95.41 95.60 95.63 95.61

MoCo v3 (He et al., 2020) Public Dataset 1 95.56 96.12 95.64 95.88

Ours Public Dataset 1 98.19 98.24 98.37 98.22

VGG19 (Simonyan and Zisserman, 2014) Public Dataset 2 86.77 87.43 86.44 86.93

ConvNeXt (Liu et al., 2022) Public Dataset 2 87.80 87.72 87.40 87.56

GoogLeNet (Szegedy et al., 2015) Public Dataset 2 87.83 87.40 88.16 87.78

MobileNet (Howard, 2017) Public Dataset 2 89.08 89.37 89.37 89.36

ResNet50 (He et al., 2016) Public Dataset 2 91.57 90.01 91.04 90.52

DenseNet121 (Huang et al., 2017) Public Dataset 2 92.89 93.05 93.66 93.35

Transformer (Vaswani, 2017) Public Dataset 2 92.66 93.48 93.31 93.39

SimCLR (Chen et al., 2020) Public Dataset 2 93.59 95.22 94.06 94.64

(Continued)
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TABLE 2 Continued

Method Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

Swin Transformer (Liu et al., 2021) Private Dataset 2 94.48 95.87 95.49 95.68

MoCo v3 (He et al., 2020) Public Dataset 2 95.86 94.81 96.09 95.45

Ours Public Dataset 2 98.01 98.01 98.00 98.00
F
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TABLE 3 Data augmentation.

Data augmentation Accuracy (%) Precision (%) Recall (%) F1-score (%)

Rotate 92.54 92.53 91.76 92.14

Cutout (DeVries, 2017) 94.35 94.47 93.69 94.08

Cutmix (Yun et al., 2019) 95.38 94.49 94.59 94.54

W-Paste 98.01 98.01 98.00 98.00
TABLE 4 Performances comparison with state-of-the-art method.

Model Recall (%) Specificity (%) AP (%) F1-score (%)

Pandey and Jain (2022) 89.75 93.56 87.95 91.62

Hayit et al (2021) 91.21 92.96 89.71 92.08

Li et al (2023) 94.41 94.18 93.67 93.92

Ours 98.01 98.01 98.00 98.00
TABLE 5 Public dataset 2–15 classification results.

Class Accuracy (%) Precision (%) Recall (%) F1-score (%)

Aphid 97.07 94.76 97.07 95.90

Black Rust 97.22 100.00 97.22 98.59

Blast 97.61 96.22 97.60 96.91

Brown Rust 98.57 100.00 98.57 99.28

Common Root Rot 97.58 95.73 97.58 96.65

Fusarium Head Blight 98.08 97.14 98.07 97.60

Healthy 99.52 98.09 99.51 98.80

Leaf Blight 99.02 96.19 99.01 97.58

Mildew 97.20 99.52 97.19 98.34

Mite 98.11 98.57 98.11 98.34

Septoria 99.52 98.56 99.51 99.03

Smut 96.77 99.05 96.77 97.90

Stem fly 98.57 99.04 98.57 98.80

Tan spot 98.11 98.57 98.11 98.34

Yellow Rust 97.17 98.56 97.16 97.86
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Our methods retained critical information throughout the

preliminary training phase by removing extraneous aspects that

obstructed clarity. Unsupervised contrastive learning exhibited a

considerable dependence on the quality and quantity of images and

was especially sensitive to the creation of positive sample pairings.

Our technique enhanced the creation of intra-class positive pairs,

minimizing the distance between samples of the same class in the

representation space, thereby facilitating accurate extraction and

aggregation of critical characteristics. This enabled us to utilize label

information more efficiently, even with limited data, to create

substantial positive pairs and precisely represent complex image

features in wheat disease classification.

We investigated the impact of several methods for generating

positive sample pairs through image augmentation techniques in the

context of supervised contrastive learning. Table 3 demonstrates that

generating positive couples by random image cropping and feature

occlusion might result in localized anomalies, hence enhancing the

model’s generalization capacity. The findings consistently demonstrate

that our proposed W-Paste methodology outperforms other
Frontiers in Plant Science 09
augmentation techniques. This strategy improves the model’s focus

on specific wheat disease regions, hence increasing its capacity to

identify out-of-distribution cases.

We assessed our proposed method against other state-of-the-art

wheat disease classification techniques, with results presented in

Table 4. Although several algorithms enhance feature extraction

through attention mechanisms, these mechanisms often neglect the

critical attributes of wheat diseases, hence limiting classification

effectiveness. In contrast, our methodology emphasizes the early

collection of interfering features, which is particularly crucial when

dealing with real-world wheat images characterized by low contrast

and complex backgrounds. By identifying and analyzing these

redundant features, we effectively remove superfluous information

in the early stages of feature extraction, ensuring the model focuses

on the most salient low-level features. Moreover, the incorporation

of label information reinforces geographic constraints within the

feature space for each condition. Our solution, combined with the

new W-Paste technique for creating positive sample pairs,
FIGURE 4

Confusion matrix for public datasets 1.
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significantly enhances the generalization capability of automated

wheat disease diagnosis and guarantees robust feature consistency.

Table 5 illustrate the detailed classification results of our

methodology across 15 categories of wheat diseases in publically

available datasets. Figure 4 and Figure 5 illustrate the confusion

matrices for both datasets, providing improved insights into the

classification effectiveness of our proposed technique. Additionally,

we extracted features from the final layer and condensed them into

two-dimensional vectors using t-SNE, as depicted in Figure 6. The

visualization clearly demonstrates significant inter-class distances

and tight intra-class distributions, highlighting the effectiveness of

our approach in enhancing inter-class separation while minimizing

intra-class volatility.

This discovery further demonstrates the model’s ability to

accurately focus on samples at the interface of different classes,

significantly reducing misclassification rates. The results underscore

the superiority of our novel image augmentation method, along

with the reverse learning and elimination of unnecessary features.

Moreover, the additional incorporation of label information
Frontiers in Plant Science 10
guaranteed strong feature consistency, facilitating the most

precise feature responses. This enhances the model’s ability to

accurately identify ambiguous samples at class boundaries and

provides further evidence that reduces risk of misclassification.
4 Discussion

Automated classification of wheat diseases is essential in

agriculture, significantly enhancing detection efficiency and

accuracy, standardizing disease monitoring, and facilitating early

identification of crop health problems. Examination of wheat

diseases provides essential insights about the crop’s growing

conditions. Variations in plant health—particularly the prevalence

and severity of diseases such as rust, powdery mildew, and smut—

serve as immediate indicators of the crop’s pathological condition.

Regular monitoring of disease progression during cultivation

enables precise assessment of crop health and productivity
FIGURE 5

Confusion matrix for public datasets 2.
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impacts, offering farmers critical insights to adjust planting

strategies accordingly.

Moreover, automated wheat disease analysis techniques yield

dependable and precise data, minimizing errors and subjectivity

associated with manual assessment, hence improving the sensitivity

and specificity of early detection. These technologies provide rapid

diagnosis of wheat diseases, ensuring timely intervention before the

condition worsens.

Thus, the creation and execution of a comprehensive automated

wheat disease analysis system hold substantial practical importance

in improving early disease detection rates, optimizing crop

management strategies, and advancing the intelligence and

efficiency of agricultural diagnostics.

This study presents an automated approach for identifying wheat

leaf illnesses by regional feature purification contrastive learning. In the

process of picture feature extraction, we employ unsupervised

representation learning to optimize mutual information across varied

data, while simultaneously applying mutual information maximization

using image classification labels. This method implements improved

localized constraints on self-supervised contrastive learning by

including additional label information.

To enhance the semantic diversity of wheat leaf diseases, we

amplify supervised contrastive learning to establish robust feature
Frontiers in Plant Science 11
consistency and improve the model’s efficacy in out-ofdistribution

detection. We devised the W-Paste methodology to generate

affirmative cases. W-Paste simulates real-world situations

concerning several types of wheat leaf diseases, hence enhancing

the model’s robustness to input variations and its ability for out-of-

distribution detection.

To thoroughly examine the semantic representations of wheat

leaf diseases, we developed a feature purification encoder. In the

early stages of training, we employ reverse learning to remove

superfluous information from low-level features, isolate the most

salient qualities by diminishing noise from intermediate features,

and integrate high-level semantic features. This stratified approach

significantly enhances the model’s effectiveness in identifying out-

of-distribution instances. These distinctive strategies improve

classification effectiveness and provide substantial support for the

precise detection of wheat leaf diseases.
4.1 Limitations of study

Although our technology produces promising results, it

nevertheless possesses certain limitations. While W-Paste

augmentation has improved the model’s generalization to some
FIGURE 6

t-SNE visualization.
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extent, its efficacy may still be constrained when dealing with very

complex illness samples. The current methodology heavily relies on

the accuracy and availability of label information, which may, in

certain cases, undermine the model’s robustness. Ultimately, despite

the outstanding classification results obtained on public datasets,

environmental variations and image quality in real-world

applications may impact the model’s effectiveness. Therefore,

future research should focus on evaluating the model ’s

applicability in real-world scenarios and consider including real-

time data during training to enhance flexibility.
4.2 Future works

To improve the model’s generalization ability, it is recommended

to develop a larger and more diversified dataset comprising wheat

disease images from various geographical locations and climatic

conditions. Furthermore, the application of semi-supervised learning

approaches could leverage unlabelled data, enhancing the model’s

effectiveness in scenarios with few labelled instances. Employing both

labeled and unlabeled data would improve the feature extraction of

wheat illnesses. Future research should focus on improving feature

extraction techniques to more effectively differentiate between similar

illnesses. Moreover, examining the use of self-attention processes in the

feature extraction process could augment the model’s focus on

critical features.

In the last stages of research, it is essential to assess the model’s

effectiveness and robustness in real-world applications. Collaboration

with farmers and agricultural experts to assess the model across many

agricultural settings and get feedback for future improvements will be

crucial. Ensuring the model’s ability to deliver accurate and reliable

diagnoses in real-world situations will signify a significant progression

toward facilitating its practical application. By exploring these paths,

future research can significantly enhance the accuracy and relevance of

automated wheat disease diagnosis, thereby building a solid foundation

for the advancement of smart agriculture.
5 Conclusion

The detection of wheat diseases has consistently been a

considerable problem in agricultural disease forecasting. Automated

wheat disease classification is essential in contemporary agriculture,

significantly enhancing detection efficiency and accuracy while

promoting the standardization of disease monitoring, thereby

enabling early diagnosis of crop health issues. The suggested

method, utilizing regional feature purification contrastive learning,

integrates unsupervised representation learning with label mutual

information maximization to significantly improve feature extraction

and classification efficacy for wheat leaf diseases. The implementation

of the W-Paste approach enhances the model’s ability to manage

input perturbations, hence augmenting its out-of-distribution

detecting proficiency. The simultaneous development of a feature
Frontiers in Plant Science 12
purification encoder enhances feature consistency, markedly

improving classification accuracy.

Experimental results indicate that our method attains

exceptional classification accuracy on public datasets, confirming

its efficacy and resilience in intricate situations. This research

presents a pragmatic approach for the automated identification of

wheat diseases, establishing a basis for the advancement of

intelligent agriculture. Ongoing enhancement of the model and

methodologies is anticipated to yield greater progress in the early

detection and accurate diagnosis of wheat illnesses in the future.
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