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The rapid and accurate identification of soybean diseases is critical for optimizing

both yield and quality. Traditional image recognition techniques face notable

limitations in terms of generalization and accuracy, particularly when tasked with

identifying small-scale targets or distinguishing diseases with similar

characteristics in large, heterogeneous, and complex environments. To

address these challenges, this study proposes the YOLOv8-DML model for

soybean leaf disease recognition. Building upon YOLOv8n, this model

integrates a DWR module that replaces the high-level C2f module with C2f-

DWR, enhancing feature extraction across varied receptive fields. Additionally,

modifications to the neck structure incorporate a Multi-scale Enhanced Feature

Pyramid (MEFP), which improves detection performance across targets of varying

sizes by enabling effective multi-scale information fusion. A lightweight detection

head (LSCD) is further introduced to facilitate multiscale feature interactions

while reducing the overall model parameter count. Lastly, the WIoUv3 loss

function is employed to place greater emphasis on small targets and

moderate-quality samples, thereby enhancing detection precision.

Experimental results demonstrate that YOLOv8-DML achieves a mAP50 of

96.9%, marking a 1.8% improvement over the original YOLOv8 algorithm, while

also achieving an 18.6% reduction in parameters. Comparative analysis with other

mainstream object detection models indicates that YOLOv8-DML delivers

superior overall performance, highlighting its significant potential for effective

soybean leaf disease identification.
KEYWORDS
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1 Introduction

As one of the world’s most crucial food crops, soybeans are rich

in plant proteins and play a key role in both food and processing

industries (Jianing et al., 2022). In 2023, global soybean production

reached 318 million tons, with China contributing only 20.84 million

tons, or 6% of the global output. China’s production falls far short of

meeting the domestic demand, with an average annual soybean

consumption of 100 million tons. Surveys indicate that soybean

yield losses due to diseases account for 10%-30% of the total

annual production annually (Chang et al., 2017; Guo et al., 2021).

Soybean leaf diseases are major limiting factors for both yield and

quality (Peng et al., 2021). Effective disease control requires targeted

intervention in the early stages (Huang et al., 2014). Traditional

disease identification methods primarily rely on the subjective

judgment of experienced farmers or plant protection experts. This

approach not only has low efficiency but also struggles to ensure

accuracy (Dhakal and Shakya, 2018).When identification relies solely

on manual experience, diseases often miss optimal prevention and

control periods, as early-stage symptoms are typically subtle. Thus,

the early and accurate identification of soybean leaf diseases is critical

for effective management and high-quality production. Advances in

machine learning and neural networks have enabled the application

of numerous algorithms to plant leaf disease identification. Currently,

plant disease identification primarily utilizes two approaches:

traditional machine learning and deep learning-based methods.

Currently, few studies have explored soybean leaf disease

recognition using deep learning. Most studies have focused on

soybean leaf disease images captured in controlled environments.

These models often lack generalization in complex natural settings

and perform suboptimally when recognizing leaf diseases with

similar features. Additionally, the variety of soybean leaf diseases,

combined with environmental and growth-stage variations, results

in substantial differences in color, morphology, distribution, and

lesion size. Lesions of varying sizes appear on the same leaf, with

some being small and densely clustered, which increases the

complexity of disease recognition and hinders the learning of

small lesion features. This necessitates deep learning models that

possess heightened sensitivity and precision for feature extraction.

To address these challenges, this study proposes YOLOv8-DML, a

soybean leaf disease recognition model based on an improved

version of YOLOv8, designed specifical ly for natural

environments. The main contributions of this study are as follows.
Fron
1. Multi-source heterogeneous data fusion strategy: To

enhance the robustness and generalization of the model,

this study integrates public datasets (iBean and Digipathos)

with a self-collected soybean leaf disease dataset from

Baoshan, Yunnan, containing 1,581 images across four

diseases (soybean angular leaf spot, soybean anthracnose,

soybean rust, and soybean yellow mosaic) and healthy

leaves. Additionally, diverse data augmentation

techniques have been employed to expand the image and

label data, thereby enhancing the adaptability of the model

to various environments and conditions.
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2. Model enhancement for detection performance: This study

proposed the YOLOv8-DMLmodel for soybean leaf disease

recognition, incorporating C2f-DWR and MEFP modules

to improve the detection capability across diseases of

varying scales. Additionally, a lightweight detection head

(LSCD) was designed to optimize the feature extraction and

detection efficiency and reduce the computational cost

while maintaining high-precision detection. Finally,

WIoUv3 was employed as a loss function to further

enhance the model accuracy.

3. Model’s actual recognition performance: The experimental

results indicate that YOLOv8-DML significantly

outperforms the other models in terms of soybean leaf

disease recognition accuracy. It notably enhances the

detection of densely distributed, multi-scale diseases and

enables effective recognition of soybean leaf diseases in

natural environments.
The remainder of this paper is organized as follows: Section II

summarizes the domain survey.Section III details the dataset

construction and preprocessing methods, including multi-source

heterogeneous data fusion and data enhancement techniques.

Section IV covers the design and enhancement of the YOLOv8-

DMLmodel. Section V presents the experimental results, provides a

comprehensive analysis, and validates the model performance

through multiple comparative experiments. Section VI concludes

with a summary and discussion of the research findings.
2 Related works

Feature extraction and classification using traditional machine

learning algorithms represent conventional approaches for plant

leaf disease classification. These methods offer the advantages of

rapid recognition and minimal hardware requirements. Pujari et al.

(2016) extracted color and texture features from plant leaf images,

employing feature selection methods to reduce dimensionality.

Subsequently, two classifiers, Support Vector Machine (SVM) and

Artificial Neural Network (ANN), were used to train and test the

features, and their performances were compared. The experimental

results indicated that the SVM classifier achieved higher accuracy in

plant disease recognition, with an average accuracy of 92%. Sharif

et al. (2018)] proposed a machine learning-based approach for

citrus disease detection and classification. Initially, a weighted

segmentation method was applied to extract disease spots,

followed by the fusion of color, texture, and geometric features

into a codebook, which was then input into an SVM for final

classification. Mondal et al. (2017) extracted 43 features from leaf

images and applied the Pearson correlation coefficient method for

key feature selection. An entropy-based discretization method and a

Naive Bayes classifier were then employed to classify Yellow Vein

Mosaic Virus disease. Xie et al. (2017) utilized the K-Nearest

Neighbors (KNN) algorithm to classify healthy and diseased

tomato leaves affected by gray mold, enabling early detection.

Gold et al. (2020) employed reflectance spectroscopy and
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machine learning to investigate physiological differences among

potato varieties in response to late blight infection. Using statistical

methods, including Random Forest (RF), the study revealed that

potato variety significantly affects spectral reflectance, and that

different varieties exhibit varied responses to pathogens at

different infection stages. Although traditional machine learning

algorithms have yielded notable results in crop disease

identification, they often exhibit limitations when applied to

images of complex diseases. First, the feature extraction step is

critical; however, it typically relies on expert knowledge, making it

highly subjective and constrained. Moreover, feature selection and

model training require optimization for each disease, limiting their

adaptability to multiple diseases across diverse environments.

Additionally, traditional machine learning methods have limited

generalization capabilities, particularly when dealing with large and

diverse datasets.

In recent years, deep learning has demonstrated significant

potential in image classification and recognition. Unlike

traditional methods, deep learning automatically extracts features

and achieves more accurate classification via multi-layer neural

networks. This approach reduces reliance on manual feature

extraction and enhances generalization capability through large-

scale data training. This technology has been widely applied to crop

disease identification (Afifi et al., 2020; Anitha and Srinivasan, 2022;

Elaraby et al., 2022). Mao et al. (2022) developed an enhanced

regional convolutional neural network that significantly improved

recognition accuracy for wheat stripe rust and yellow dwarf disease,

enabling early detection. However, yellowing symptoms from other

causes were not categorized, potentially limiting the generalizability

of the model. Zhang et al. (2021) applied the Faster R-CNN model

with multi-feature fusion to distinguish characteristics of soybean

leaves, including healthy, diseased, and variably affected leaves. The

test achieved an average accuracy of 83.34%. Haque et al., (2022a,

b); Haque et al. (2023) conducted experiments on common corn

diseases using GoogLeNet and Inception V3, designing a novel

CNN network to classify and assess disease severity. The proposed

method yielded favorable results in identifying common corn

diseases and made notable progress in model lightweight.

Srilakshmi and Geetha (2023) introduced a DIM-U-Net method

based on SR-AE and LSTM, applying it to leaf classification.

Through metrics such as accuracy, sensitivity, specificity,

precision, F1 score, and AUC, this method provides valuable

guidance for the accurate detection and classification of soybean

leaf diseases. Yu et al., (2022; 2023) applied the OTSU algorithm to

remove background influence from soybean leaf disease images,

isolating single-leaf disease representations. A residual attention

layer (RAL) was constructed within ResNet18 using shortcut

connections, replacing its residual structure and transferring

weights from the pre-trained convolutional layer to ResNet18.

New residual attention networks, RANet and TRNet18, have been

developed to enable the accurate, rapid, and efficient recognition of

soybean leaf diseases. Wu et al. (2023) proposed a soybean leaf

disease classification method integrating ConvNeXt with an

attention module. This method captures attention feature maps at
Frontiers in Plant Science 03
various network depths via the CBAM module, employing the

LeakyReLU activation function to prevent neuron failure during

training, thus enhancing classification accuracy. The experimental

results indicate that the improved ConvNeXt model achieves high

accuracy in soybean leaf disease recognition under complex

backgrounds. Kaler et al. (2023) employed deep learning

architectures, including long short-term memory (LSTM), neural

networks (NN), convolutional LSTM (Conv LSTM), and three-

dimensional CNN (3D CNN), to detect soybean leaf diseases in

complex environments.

Hyperspectral and multispectral imaging technologies are

recognized as effective tools for disease detection due to their

ability to capture rich spectral information that distinguishes

healthy from diseased plant tissues. Hyperspectral imaging

provides a detailed spectral profile for each pixel, enabling precise

identification of disease-related biochemical changes, while

multispectral imaging offers a simplified yet practical approach

for real-time applications in agriculture. Studies have demonstrated

the effectiveness of hyperspectral imaging in identifying soybean

diseases. For example, Zhang et al. (2020) developed a hyperspectral

imaging system for the early detection of soybean rust, achieving

high classification accuracy by analyzing spectral reflectance

features. Similarly, Li et al. (2019) proposed a multispectral

imaging method to distinguish diseased soybean leaves using

selected key wavelengths, which improved detection efficiency

while reducing data redundancy. Furthermore, Mahlein et al.

(2018) reviewed the application of optical sensors, including

hyperspectral and multispectral technologies, in plant disease

detection, emphasizing their potential for accurate and non-

invasive monitoring of plant health. These studies highlight the

importance of spectral wavelength analysis for disease detection,

underscoring the need to incorporate spectral information into

disease identification models Zhang et al. (2021). However,

compared with visible light images, high-frequency spectral

images are more difficult to collect, so the application is limited.
3 Materials and methods

3.1 Dataset construction

To enhance practical applicability, this study adopted a multi-

source heterogeneous data fusion strategy that integrated soybean

leaf disease images from various regions, varieties, and growth

stages to construct a comprehensive soybean disease dataset.

The disease dataset utilized in this study was composed of three

primary sources, providing a diverse and comprehensive collection

of soybean leaf images:
1. Custom Soybean Leaf Disease Dataset: This dataset was

collected in Wuding County, Chuxiong Prefecture, Yunnan

Province, using an iPhone 13. The dataset features high-

resolution images captured under natural lighting

conditions, representing various stages of soybean disease
frontiersin.org
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progression. Efforts were made to include leaves with

diverse morphological characteristics, ensuring that the

dataset reflects a wide range of real-world conditions

encountered in soybean fields.

2. iBean Dataset: Developed by the Makerere AI Laboratory in

collaboration with the National Crop Resources Institute

(NCRI) of Uganda, this dataset consists of a large collection

of soybean leaf images sourced from multiple regions

across Uganda. The images were captured in natural field

environments, incorporating variations in lighting, disease

progression stages, and plant morphology. This diversity

makes the iBean dataset a valuable resource for evaluating

the robustness of detection models across geographically

and environmentally distinct regions (Ernest, 2020).

3. Digipathos Dataset: Provided by the Brazilian Agricultural

Research Agency (Embrapa), this dataset includes soybean

leaf images captured under field conditions in Brazil. The

dataset emphasizes disease progression in natural

environments, offering insights into how diseases

manifest under different environmental and climatic

conditions. As with the other datasets, images feature

variations in leaf morphology, lighting, and disease

development stages (Barbedo et al., 2018).

4. These datasets collectively encompass images of four

common soybean diseases: angular leaf spot, anthracnose,

rust, and yellow mosaic disease, in addition to healthy

soybean leaves. In total, the dataset comprises 1,581

annotated samples, providing a robust foundation for

training and evaluating the proposed model. Each image

captures the natural progression of diseases, accounting for

factors such as varying illumination, diverse leaf shapes,

and different stages of disease development, ensuring the

dataset’s applicability to real-world scenarios.
Figure 1 illustrates representative samples from the compiled

soybean disease dataset, highlighting the variations in disease

symptoms and leaf morphology across the different datasets. By

integrating datasets from geographically distinct regions with

diverse environmental conditions, this study ensures that the

proposed model is not only accurate but also generalizable across

a wide range of natural scenarios.
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3.2 Image data preprocessing

To mitigate model overfitting or underfitting due to insufficient

or imbalanced sample sizes, this study applied various image

enhancement techniques, including rotation, salt-and-pepper

noise, Gaussian noise, and color adjustment, to augment the

original dataset, thereby improving model generalization and

preventing overfitting. After enhancement, the disease image

dataset comprised 18,875 samples. To facilitate training, the

images were normalized and resized to 640×640 pixels. Labels

were assigned to the soybean image dataset using the values 0, 1,

2, 3, and 4 to denote the respective categories. The dataset was saved

in JPEG format and imported into the system to construct a

soybean leaf disease database. The dataset was divided into

training, validation, and test sets in a 7:2:1 ratio. An example of

image enhancement is shown in Figure 2. The distribution of the

post-enhancement soybean leaf disease images is shown in Table 1.
4 Construction of soybean leaf
disease identification model

4.1 YOLOv8 model

The YOLOv8 model, developed and maintained by startup

Ultralytics, includes five versions: YOLOv8n (Nano), YOLOv8s

(Small), YOLOv8m (Medium), YOLOv8l (Large), and YOLOv8x

(Extra Large). The model architecture is primarily divided into

three modules: backbone, neck, and head networks.

The backbone network of YOLOv8 functions as a feature

extractor and is typically built upon convolutional neural network

(CNN) architectures like Darknet or CSPDarknet. Its primary role

is to extract meaningful features from input images for further

processing. By applying a series of convolutional and pooling

operations, the backbone progressively reduces the spatial

dimensions of feature maps while increasing their depth, enabling

it to effectively capture and represent different levels of complexity

and scale in the input image (Chai et al., 2021).

The neck network employs a hybrid structure of a Feature

Pyramid Network (FPN) and a Path Aggregation Network (PAN).

Its primary purpose is to integrate feature information from
FIGURE 1

Examples of three soybean leaf disease image datasets used in this paper. Some images are sourced from public datasets (Ernest, 2020; Barbedo et
al., 2018).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1523633
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1523633
different levels to enhance object detection performance. The neck

network includes multiple operations, such as convolution,

upsampling, and downsampling, designed to merge feature maps

at different resolutions and enhance the network’s ability to capture

contextual information and target details (Terven et al., 2023).

The architecture of YOLOv8’s head section utilizes a decoupled

structure, effectively separating the classification and detection

components. Two parallel branches are employed to extract

categorical and positional features, which are then processed

using a 1×1 convolutional layer to perform classification and

localization tasks. Additionally, YOLOv8 integrates an adaptive

anchor box mechanism that generates anchor boxes tailored to

the shapes and sizes of the targets, accounting for the variability in

the dataset. This approach improves the bounding box regression

process, leading to better detection accuracy. Regarding the loss

function, YOLOv8 adopts a comprehensive optimization strategy

that combines classification, regression, and target confidence loss,

while incorporating the CIoU loss to refine bounding box fitting

and ensure reliable detection results.

Given the extensive receptive field of the YOLOv8 model, its

accuracy proves inadequate for small target positioning, resulting in

suboptimal detection performance. Furthermore, the center point-

based Anchor-Free detection algorithm employed by the model

exhibits limitations in both center point offset and target size

prediction when addressing lesions of varying shapes and sizes.

The algorithm is susceptible to interference from neighboring

targets, particularly in regions characterized by substantial scale

variations and high target density, which leads to positioning
Frontiers in Plant Science 05
inaccuracies. Soybean leaf diseases exhibit considerable

heterogeneity in their morphological characteristics, including

shape and size, with numerous densely clustered small target

lesions present. Employing the YOLOv8 model for soybean

disease identification may result in unsatisfactory disease

recognition outcomes primarily because of the inherent

limitations of the model in processing small and dense targets.
4.2 YOLOv8-DML model

To achieve a more precise identification of soybean leaf diseases

in natural environments, this study developed a YOLOv8-DML

model derived from YOLOv8n, aimed at enhancing the model’s

feature extraction and fusion capabilities, ultimately improving the

recognition accuracy of soybean leaf diseases. The structure of the

YOLOv8-DML model is illustrated in Figure 3.

Specifically, the YOLOv8-DML model enhanced the following

aspects compared to the original model:
1. Backbone: The DWR module was integrated to augment

the C2f architecture, resulting in the construction of the

C2f-DWR module, which replaces the C2f component

within the P4 and P5 feature layers of the backbone

network. This modification effectively expands the

receptive field of the model through a multi-branch

dilated convolution structure, thereby enhancing the deep

feature extraction capabilities. Furthermore, it significantly
TABLE 1 Distribution of soybean leaf disease dataset.

Category Name Original images After data enhancement Training set Validation set Test Set

0 angular_leaf_spot 345 4140 2892 824 424

1 anthracnose 218 3186 2211 659 316

2 healthy 340 5100 3616 998 486

3 rust 348 3480 2418 699 363

4 yellow_mosaic 330 2969 2075 595 299

Total number of images 1581 18875 13212 3775 1888
FIGURE 2

Example of image enhancement. (a) Original image; (b) Rotate 90° clockwise: (c) Peppercorn noise; (d) Gaussian noise; (e) Color change.
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optimizes the model for multi-scale feature learning and

improves its generalization performance.

2. Neck: The original PAFPN was further enhanced,

culminating in the design of the Multi-scale Enhanced

Feature Pyramid (MEFP). This modification incorporates

feature maps from the P2 layer, and integrates the

SPDConv, CSP-OmniKernel module, and C2f-DWR

module, thereby substantially improving the model’s

global and local feature representation across varying

scales. This enhancement not only boosts detection

performance but also improves the model’s ability to

recognize multi-scale targets. Additionally, the dynamic

adaptation capacity of the OmniKernel module,

combined with the efficient gradient flow characteristic of

the CSP structure, enables more effective multi-scale feature

extraction and integration, all while maintaining low

computational complexity.

3. Head: A lightweight shared convolution detection head

(LSCD) was developed, incorporating two weight-shared

DEConv modules. This design significantly reduces the

computational complexity of the YOLOv8 decoupled
tiers in Plant Science 06
head while improving the model’s ability to fuse multi-

scale features and enhance its representational power.

Moreover, the integration of group normalization and a

dynamic scale adjustment module improves feature

stability and detection accuracy across targets of varying

scales, thereby achieving high-accuracy performance with a

minimal number of parameters.

4. Loss Function: The WIoUv3 loss function was selected to

replace CIoU in YOLOv8, incorporating a dynamic non-

monotone focusing coefficient. This adjustment enhances

the model’s sensitivity to irregular small lesions, optimizing

its focus on medium-quality anchor frames. As a result, the

loss function significantly enhances the robustness and

overall performance of the disease detection process.
4.3 C2f-DWR dilated residual module

The receptive field size of the convolutional layer within the C2f

module of the YOLOv8 model is static, which complicates the
FIGURE 3

YOLOv8-DML model structure diagram.
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effective acquisition of global information. Although it is possible to

enlarge the receptive field by stacking multiple convolutional layers,

this approach significantly increases both computational cost and

model complexity. Consequently, the DWRmodule was introduced

to develop the expanded residual module C2f-DWR to enhance the

deep feature extraction capabilities. The DWR module is a multi-

branch architecture, as illustrated in Figure 4a. The DWR module

initially employs a 3×3 convolution to extract feature information

and subsequently utilizes three branch structures to expand the

receptive field. Each branch conducted 3×3 depth-wise

convolutions with expansion rates of 1, 3, and 5 to capture

semantic information. Finally, the feature map derives semantic

residuals through a Batch Normalization (BN) layer and employs a

1×1 convolution to extract spatial features.

By integrating multiscale features with residual learning

strategies, the Bottleneck in C2f was replaced by a DWR module,

resulting in the construction of a new module, C2f-DWR. The C2f-

DWRmodule employs deep convolution with varying dilation rates

to expand the receptive field of the model, enabling it to adaptively

capture target features at different scales in the disease images,

thereby enhancing the model’s generalization capability. Figure 4b

illustrates the structure of the C2f-DWR module. The C2f-DWR

module further optimizes the model’s performance in multiscale
Frontiers in Plant Science 07
feature learning while preserving the efficient characteristics

inherent to C2f.Multi-scale Enhanced Feature Pyramid (MEFP).

Soybean horn leaf disease, rust, and similar conditions typically

manifest as small spots. Compared to larger surrounding targets,

such as soybean anthracnose, yellow leaf disease, and healthy leaves,

these spots are often inconspicuous and easily overlooked. The

original architecture of YOLOv8 comprises three detection heads

(P3, P4, and P5). Given that downsampling results in the loss of

small target information, the feature extraction effectiveness for

small targets in the P3, P4, and P5 layers may prove inadequate. The

P2 feature layer incorporates fine-grained features and edge

information, thereby facilitating the extraction of small target

features. A common practice involves adding a P2 detection layer

to the model to enhance the detection capability for small targets;

however, this approach increases both the computational load and

the processing time.

This study develops a Multi-Scale Enhanced Pyramid (MEFP),

the structure of which is illustrated in Figure 5. The original model’s

network output feature maps measured 20×20, 40×40, and 80×80,

whereas the MEFP significantly enhanced the model’s capacity to

extract global features by incorporating a 160×160 feature map

output from the P2 layer. Specifically, the P2 feature layer

undergoes processing via SPDConv to acquire scale features that
FIGURE 4

DWR and C2f-DWR structure diagram. (a) DWR Structural diagram; (b) C2f-DWR Structural diagram.
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are abundant in small target information. The extracted image

features are subsequently fused with the P3 layer and the

upsampling layer, followed by multi-scale feature integration

through the CSP-OmniKernel module. The P4 and P5 layers were

processed using the C2f-DWR module, which extracts global

features through multi-expansion rate convolution kernels. This

approach facilitates deeper feature learning, significantly enlarges

the receptive field of the model, and enhances the detection

capability for targets of various scales. Through these

enhancements, the MEFP effectively learns feature representations

that transition from global to local contexts, bolstering its capacity

to extract global features and fuse multi-scale features, thereby

improving the recognition capability for targets of various scales.

The CSP-OmniKernel module integrates the structural

concepts of the CSP with those of the OmniKernel module. Its

structure is illustrated in Figure 6. The CSP structure effectively

enhances the feature expression capabilities and improves the

gradient fluidity by integrating certain features across stages. The

OmniKernel module transcends the constraints of traditional fixed-

size convolution kernels by enabling dynamic adaptation of the

receptive field, thereby efficiently capturing multi-scale features

with minimal computational overhead. The structure comprises

three branches: a global branch, a large branch, and a local branch.

The three branches collaboratively enhance multi-scale feature

representation, ultimately achieving additional fusion, followed by

further integration via the 1×1 convolution layer. In the processing

flow of the input image features, the features undergo preliminary

processing via 1×1 convolution, after which the channels are

divided into two parts: 25% of the channels are processed by the

OmniKernel module, while 75% remain unchanged. Subsequently,

the two feature components are fused and passed through a

convolution layer to produce the final enhanced feature map.

This design fully utilizes the multiscale feature extraction

capabilities of the OmniKernel module to capture target

information across different scales, thereby enhancing the

capacity of the model to detect targets of various sizes.

Additionally, when combined with the characteristics inherent to

the CSP concept, it effectively reduces the computational demands
Frontiers in Plant Science 08
and model complexity, thereby further enhancing the recognition

efficiency of the model.
4.4 LSCD detection head

YOLOv8 utilizes a decoupled head architecture that distinctly

separates the classification and detection tasks. While this design

enhances detection accuracy, it simultaneously imposes a

substantial computational burden. To address this challenge, the

present study introduces the Lightweight Shared Convolutional

Detection Head (LSCD). By leveraging the weight-sharing

DEConv module, the fusion of three feature maps at different

scales is effectively achieved, thereby reducing the computational

overhead. This method not only decreases the number of

parameters but also alleviates the overall computational

complexity. Moreover, the DEConv module incorporates prior

knowledge into conventional convolutional layers, thereby

significantly improving the model’s representational capacity and

generalization performance. Simultaneously, by employing re-

parameterization technology, DEConv is equivalently transformed

into a conventional convolution layer without incurring additional

computational costs, thereby ensuring that the model retains the

same computational efficiency and compatibility as conventional

convolution layers during the inference stage (Chen et al,. 2024).

Additionally, Group Normalization (GN) is introduced to augment

the positioning and classification accuracy of the detection head.

This design enhances the extraction of detailed information from

feature maps and facilitates information sharing across different

detection layers, thereby reducing the number of parameters while

preserving accuracy. Finally, a Scale layer was incorporated

following each regression branch to dynamically adjust the target

scale, addressing the challenge of inconsistent target sizes detected

by each detection head. Its structure is illustrated in Figure 7.

The Lightweight Shared Convolutional Detection Head (LSCD)

receives feature maps from the P3, P4, and P5 levels of the feature

pyramid network as input, comprising three distinct layers. Each

input feature map is initially processed through a 1×1 convolutional
FIGURE 5

MEFP structure diagram.
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layer to standardize feature sizes across the layers. This convolutional

operation is accompanied by Group Normalization, which not only

standardizes the feature distribution but also mitigates the limitations

of Batch Normalization in scenarios involving small batch sizes. As a

result, stable feature representations are maintained across varying

levels of the feature maps. Following this channel adjustment, two

3×3 DEConv layers are applied to extract multi-scale contextual

information, facilitating the aggregation of richer spatial details. The

shared weight design significantly reduces the number of parameters

while ensuring contextual consistency across the feature maps. These

feature maps are subsequently passed to the classification and

regression branches for task decoupling. The classification branch

is dedicated to target category identification, while the regression

branch is responsible for spatial localization and scale adjustment. To

further enhance the model’s performance, a dynamic scale

adjustment module (Scale layer) is integrated into the regression

branch. This module adaptively adjusts the scale of the target during

the prediction phase, addressing scale discrepancies among targets

processed by different detection heads. Such a design greatly

improves the adaptability of the regression branch to targets of

varying scales, thereby contributing to enhanced detection accuracy.

WIoUV1 modifies the penalty for bounding boxes by

incorporating an attention mechanism, thereby augmenting the
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focus of the model on bounding boxes of ordinary quality (Tong

et al., 2023). The calculation formula is presented in Equation 1.

RWIoU can markedly enhance the LWIoU of ordinary quality anchor

boxes, whereas LWIoU∈[0,1] significantly diminishes the RWIoU of

high-quality anchor boxes.

LWIOU   v1   = RWIOU  LIOU   (1)

RWIoU = exp(
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )
∗ (2)

Where LWIoU represents the similarity or error between the

detection box and the true box, and RWIoU is the penalty term. The

calculation formula of RWIoU is prsented in Equation 2. x and y

represent the coordinates of the center point of the predicted box,

xgt and ygt represent the coordinates of the center point of the true

box, and. Wg .and Hg represent the width and height of the

minimum bounding box, respectively.

WIoUV2 incorporates a monotonic clustering coefficient that

effectively mitigates the adverse impact of low-quality samples on

loss value (Tong et al., 2023). However, the incorporation of the

focusing coefficient influences the reverse gradient behavior.

Consequently, the exponential sliding average of LIoU is utilized
FIGURE 7

LSCD structure diagram.
FIGURE 6

CSP-OmniKernel structure diagram.
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as the normalization factor to address the issue of diminished

gradient gain resulting from the decrease in LIoU The revised

calculation formula for WIoUV2 is presented in Equation 3.

LWIoUv2 =
L∗IoU
LIoU

� �g
LWIoUv1 (3)

Where. L∗IoU
LIoU

. represents the gradient gain r, and LIoU is the

exponential running average with momentum m.

WIoUv3 constructs a dynamic, non-monotonic focusing

coefficient through the introduction of the outlier b, which

diminishes the gradient gain of high-quality anchor boxes while

concurrently suppressing the detrimental gradients produced by

low-quality samples (Tong et al., 2023). This mechanism allows the

model to focus more on medium-quality anchor boxes, thereby

preventing the over-optimization of both high-quality and low-

quality samples, which effectively enhances the overall performance

of the model. The calculation formula for this mechanism is

presented in Equation 4:

b = L∗IoU
LIoU

∈ ½0, +∞).

LWIoUv3 = rLWIoUv1, r =
b

dab−d (4)

Where b denotes the degree of outlier presence, L∗IoU  

representing the separation of LIoU from the computation graph,

with a exponential running average of momentum denoted by m,

while a and d serve as two hyperparameters.
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5 Experimental results and discussion

5.1 Experimental platform and
parameter settings

The experimental platform and parameters utilized in this study

are presented in Table 2.

The experimental input image size is set to 640 × 640 pixels,

with a batch size of 32, a total of 150 epochs, an initial learning rate

of 0.01, and the use of the SGD optimizer.
5.2 Evaluation metrics

To objectively evaluate the recognition performance of the

model, this study employed various evaluation metrics including

accuracy, precision, recall rate, PR curve, average precision (AP),

and mean average precision (mAP). The calculations for each

metric are presented in Equations 5-7:

 Accuracy  =
TP + TN

TP + TN + FP + FN
(5)

recision  =
TP

TP + FP
(6)

Recall  =
TP

TP + FN
(7)

where TP: True Positive; TN: True Negative; FP: False Positive;

FN: False Negative.
5.3 Experimental results

5.3.1 Kernel size experiment
An extensive receptive field enhances the capacity of a model to

capture more structured information. The most prevalent method

involves augmenting the network depth by stacking multiple small

convolutions (e.g., 3 × 3 convolutions) to expand the receptive field.

However, this method has limitations in enhancing the Effective

Receptive Field (ERF) (Luo et al., 2016). In recent years, numerous

studies have highlighted the effectiveness of large convolution

kernels, including OKNet (Cui et al., 2024), RepLKNet (Ding

et al., 2022), LKDNet (Luo et al., 2023), and LaKDNet (Ruan

et al., 2023), which utilize large convolution sizes of 63 × 63, 31 ×

31, 21 × 21, and 9 × 9, respectively, to enhance the Effective
TABLE 2 Experimental environment for research on soybean leaf
disease identification.

Configuration
Configuration

Name
More Information

Hardware
Configuration

CPU
Intel(R) Xeon(R) CPU E5-2680

v4 @ 2.40GHz

Running Memory 30GB

GPU NVIDIA GeForce RTX 3080

Video Memory 20GB

Software
Configuration

operating system Ubuntu 20.04

Python Version Python3.8.16

Deep
Learning

Frameworks
PyTorch1.13.1

CUDA Version 11.6
TABLE 3 Results of the kernel size experiment.

Kernel_size Precision(%) Recall (%) mAP@0.5(%) Parameters/Mb GFLOPS

9 91.1 89.2 95.4 3.18 10.2

21 90.7 90.4 95.7 3.21 10.5

31 91.4 89.9 95.6 3.31 11.8

63 91.5 90.3 95.8 3.44 13.5
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Receptive Field and improve the capacity of a model to capture

global information. In this study, we conduct a performance

comparison experiment on large convolution kernels to

determine the optimal kernel size. The results are presented

in Table 3.

In conclusion, this study selected a kernel size of 21, as it

demonstrated near-optimal performance across key metrics,

including precision, recall, and mAP50, while simultaneously

maintaining a relatively low parameter count (3.21 MB) and

computational overhead (10.5 GFLOPS). This selection strikes an

ideal balance between performance and resource efficiency. In

contrast, larger kernel sizes (e.g., 31 and 63) resulted in

performance improvements but also led to a significant increase

in computational complexity. Thus, the kernel size of 21 emerges as

the optimal trade-off between computational efficiency and

model performance.

5.3.2 Loss function parameter
adjustment experiment

To investigate the impact of a and d in the WIoU loss function

on model performance, parameter adjustment experiments were

conducted on the modified network structure. The results are

presented in Table 4. Utilizing WIoUv3 with a=1.4 and d=5
yields optimal model performance, with an mAP of 96.9%, which

represents improvements of 0.9%, 0.8%, and 0.7% over CIoU,

WIoUv1, and WIoUv2, respectively, along with enhancements in

both Precision and Recall.
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5.3.3 Ablation experiment
To assess the specific contributions of the C2f-DWR module,

MEFP, LSCD, and WIoUv3 loss functions to the model

performance in YOLOv8-DML, an ablation experiment was

devised. The experimental results are presented in Table 5.

As presented in Table 5, the incorporation of the C2f-DWR

module notably enhanced the model’s feature extraction capability,

resulting in a 0.5% increase in mean Average Precision (mAP),

while concurrently achieving a slight reduction in the number of

parameters. The Multi-scale Enhanced Feature Pyramid (MEFP)

module contributed to a 0.6% increase in mAP, underscoring its

efficacy in fusing multi-scale feature information. However, this

improvement was accompanied by a 6.64% increase in the number

of parameters. The introduction of the Lightweight Shared

Convolutional Detection (LSCD) head led to a 21.6% reduction in

parameter count, while maintaining stability in precision, recall,

and mAP values. Upon the substitution of the WIoUv3 loss

function, all performance metrics showed marked improvement,

with mAP increasing by 1.0%, indicating that WIoUv3 more

effectively optimizes the regression loss. The combined

integration of the MEFP and LSCD modules into the baseline

model yielded notable improvements in Precision, Recall, and

mAP values. Importantly, the lightweight LSCD detection head

effectively mitigated the parameter overhead introduced by the

MEFP, optimizing both model performance and parameter

efficiency. When all four strategies were simultaneously applied,

the model achieved optimal performance across all indicators.
TABLE 4 Effects of a and d on model performance.

Model IoU Precision(%) Recall (%) mAP@0.5(%)

YOLOv8-DML

CIou 91.8 90.9 96

WIouv1 91.7 90.7 96.1

WIouv2 92.4 90.9 96.2

WIoUv3(a=1.4,d=5) 92.7 92.7 96.9

WIoUv3(a=1.6,d=4) 92.4 91.4 96.5

WIoUv3(a=1.9,d=3) 92.2 90.9 96
TABLE 5 Ablation experiment results.

C2f-DWR MEFP LSCD WIoUv3 Precision(%) Recall (%) mAP@0.5(%) Parameters/Mb

– – – – 90.5 89.4 95.1 3.01

✓ – – – 90.6 90.8 95.6 2.89

– ✓ – – 90.7 90.4 95.7 3.21

– – ✓ – 90.3 89.4 95.2 2.36

– – – ✓ 91.7 91.7 96.1 3.01

– ✓ ✓ – 90.6 90.7 95.6 2.56

✓ ✓ ✓ – 91.8 90.9 96 2.45

✓ ✓ ✓ ✓ 92.7 92.7 96.9 2.45
– means that this module was not used in this round of experiment, ✓ means that this module was used in this round of experiment.
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Specifically, Precision, Recall, and mAP improved by 2.2%, 3.3%,

and 1.8%, respectively, while the total parameter count was reduced

by 18.6%. These results validate the efficacy of the proposed

YOLOv8-DML model for soybean leaf disease identification in

natural environments, demonstrating a significant reduction in

model complexity while enhancing accuracy.

5.3.4 YOLOv8-DML disease detection results
To rigorously evaluate the performance of the YOLOv8-DML

model in detecting soybean leaf diseases, a simulation experiment

was performed, with the resulting Precision-Recall (P-R) curve

illustrated in Figure 8. The area under the curve represents the

Average Precision (AP) across different disease categories.

As illustrated in Figure 8, the areas bounded by the P-R curves

and coordinate axes for various soybean leaf disease categories show

slight differences, suggesting that the YOLOv8-DML model

demonstrates considerable robustness across multiple soybean

disease types. The model achieved an average recognition
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accuracy of 96.9%, with soybean anthracnose displaying the

highest accuracy at 99.5%, followed by yellow flower disease at

98.2% and rust at 92.4%. This discrepancy in rust recognition

accuracy may stem from its initial lesions, which are smaller and

subtler than those of other diseases, resulting in reduced feature

representation during training, thereby affecting the precision of the

model in detecting rust.

Using GradCAM++ heat map technology, the disease features

generated by the YOLOv8-DML model were visualized and

analyzed, as shown in Figure 9.

The GradCAM++ heat map technique is effective in identifying

and capturing salient features associated with various diseases,

providing a clear depiction of the model’s differential focus on

disease characteristics across regions. As shown in Figure 9, regions

with prominent features exhibit higher heat levels, visually

representing the model’s attention to disease-relevant features.
5.3.5 Performance comparison of
different models

To comprehensively evaluate the disease recognition

capabilities of the YOLOv8-DML model, this study conducted a

comparative analysis of various mainstream object detection

models on a soybean leaf disease recognition task. The

comparative results are presented in Table 6.

Table 6 shows that although YOLOv8-DML’s parameter count

and computational complexity marginally exceeded those of

YOLOv10n, it achieved high precision and recall rates of 92.7%

and exhibited exceptional performance in mAP@0.5 and mAP@

0.5:0.95, scoring 96.9% and 78.3%, respectively, outperforming all

comparative models. In comparison to the widely adopted

YOLOv7-Tiny network in agricultural applications, YOLOv8-

DML demonstrates superior performance across key metrics,

including Precision, Recall, mAP@0.5, and mAP@0.5:0.95, with

improvements of 1.7%, 3.9%, 2%, and 7.7%, respectively. Moreover,
FIGURE 8

P-R curve of YOLOv8-DML model.
FIGURE 9

YOLv8-DML soybean leaf disease recognition heat map.
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it achieves significant reductions in both parameter count and

computational complexity, with decreases of 59.3% and 32.8%,

respectively. Despite maintaining high detection accuracy,

YOLOv8-DML operates with a parameter count of 2.45 MB and

a computational complexity of 8.8 GFLOPS—both of which are

considerably lower than those of more complex models such as

EfficientNet and TOOD. Comparative experiments highlight that

YOLOv8-DML effectively reduces computational load through its

lightweight design and multi-scale feature fusion, thereby sustaining

high recognition efficiency. This makes the model particularly

suitable for deployment in resource-constrained environments.

Furthermore, while TOOD exhibits slightly higher precision, its

substantial computational cost and increased parameter count limit

its scalability for real-world applications. In summary, YOLOv8-

DML shows significant potential for practical use in soybean leaf

disease recognition, offering a promising balance of high

performance and computational efficiency.

5.3.6 Comparison of recognition effects of
different models

To further validate the recognition performance of the

YOLOv8-DML model for soybean leaf diseases in natural

environments, this study compared and analyzed the model’s

recognition outcomes against four other lightweight models:

YOLOv7-Tiny, YOLOv8n, YOLOv9t, and YOLOv10n, using

soybean leaf images captured under natural conditions. The

experimental results are shown in Figure 10.

As illustrated in Figure 10, the five models effectively achieved

accurate localization and identification of soybean leaf diseases with

distinct characteristics such as anthracnose, healthy leaves, and

yellow mosaic. Conversely, in the case of angular leaf spots and rust,

which are diseases characterized by small lesions, diverse shapes,

and subtle features, YOLOv7-Tiny, YOLOv8n, YOLOv9t, and

YOLOv10n exhibited a higher incidence of false detections and a

limited number of missed detections. In contrast, the YOLOv8-

DML model demonstrated significantly superior performance

compared to the other four models. The majority of diseases can

be accurately detected, with the exception of a few instances
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involving leaf edges and extremely small or occluded lesions,

which may be misidentified or overlooked. These findings

indicate that the YOLOv8-DML model possesses a robust

capability to effectively locate and identify small target lesions,

suggesting its efficacy in detecting soybean leaf diseases in

natural environments.

Additionally, we have incorporated a table-based comparison to

clearly illustrate the differences between our proposed YOLOv8-

DML model and other deep learning-based approaches in this field.

The Table 7 includes key factors such as dataset sources,

environmental conditions, model architectures, feature extraction

strategies, and recognition accuracy.
6 Discussion

Our proposed model is designed with efficiency and adaptability

in mind, making it suitable for integration into various agricultural

monitoring platforms, including:

UAV-based monitoring: The lightweight nature of YOLOv8-

DML, along with its improved small-lesion detection capabilities,

makes it ideal for deployment on low-altitude UAVs for large-scale

soybean field surveillance. This would enable real-time disease

detection and precision agriculture applications, reducing the

need for manual inspections.

Mobile applications: The model’s efficient architecture also

allows for smartphone-based deployment, enabling farmers to use

a mobile app to capture leaf images and receive instant disease

diagnosis. This can help in early-stage disease detection and

facilitate prompt decision-making in disease management.

Robotic-assisted disease monitoring: The proposed model can

be embedded into autonomous agricultural robots equipped with

high-resolution cameras, allowing for continuous disease

monitoring and automated treatment recommendations.

The performance of the proposed YOLOv8-DML model when

deployed on various platforms, including UAVs, mobile devices, and

robotic systems, is an important consideration.While the current study

primarily focuses on algorithmic advancements and validation under
TABLE 6 Experimental results of performance comparison of different models.

Models Precision/% Recall /% mAP@0.5/% mAP@0.5:0.95/% Parameters/MB GFLOPS

YOLOv7-Tiny 91 88.8 94.9 70.6 6.02 13.1

YOLOv8n 90.5 89.4 95.1 75.2 3.01 8.1

YOLOv9t 87.8 85.6 92.1 71.3 2.62 10.7

YOLOv10n 88.8 87.1 93.7 72.3 2.27 6.5

Efficient net 71.7 56.6 63.8 39.5 18.53 111.6

TOOD 93.7 92.5 96.8 77.9 32.03 125.9

RTMDet-Tiny 90.8 91.2 95.3 75.5 4.88 8.1

YOLOv8-DML 92.7 92.7 96.9 78.3 2.45 8.8
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controlled experimental conditions, a theoretical analysis of the effects

of camera height and motion speed on recognition accuracy is

provided. At lower altitudes (e.g., 3m-5m), image resolution supports

fine-grained lesion detection; however, at higher altitudes, the

resolution decreases, potentially impacting accuracy. Similarly, slower

camera speeds help maintain image clarity, whereas higher speeds lead
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to motion blur, which negatively affects performance. Practical

deployment considerations include maintaining moderate altitudes

and slow speeds for UAVs, as well as utilizing stabilized cameras for

mobile and robotic platforms. Although specific experiments with

varying camera heights and speeds are not conducted in this study, the

design principles of YOLOv8-DML, such as multi-scale feature
TABLE 7 Differences between the proposed YOLOv8-DML model and other deep learning-based methods.

Study
Dataset
Source

Model Environment
Small
Lesion

Detection

Multi-Scale
Disease Handling

Loss
Function

Accuracy
(%)

Mohanty
et al. (2016)

PlantVillage
AlexNet,

GoogLeNet
Controlled ✗ ✗

Cross-
Entropy

85.2

Liu et al.(2024) Self-collected YOLOv4 Natural ✗ ✓ IoU 88.6

Zhang
et al. (2022)

Public dataset YOLOv5 Mixed ✓ ✗ IoU 90.5

Ours
(YOLOv8-
DML)

Public +
Self-collected

YOLOv8-
DML

Natural ✓ ✓ WIoUv3 92.7
✗ means the model lacks or does not support the specified feature; >✓ means the model has or supports the feature.
FIGURE 10

Dentification effect of soybean leaf diseases by different models.
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extraction and a lightweight architecture, indicate its potential for real-

world applications. Future work will aim to validate these theoretical

considerations through practical experimentation.
7 Conclusion

To address the challenges inherent in identifying soybean leaf

disease spots in natural environments—challenges arising from

significant variations in shape and size, as well as susceptibility to

complex environmental interference—this study proposes the

YOLOv8-DML model for soybean leaf disease identification. The

model is built upon YOLOv8n and incorporates several key

innovations. First, it introduces an expandable residual attention

module and constructs the C2f-DWRmodule, which replaces the C2f

components in the P4 and P5 layers of the network backbone, thereby

significantly enhancing the model’s multi-dimensional receptive field.

Subsequently, a multi-scale enhanced feature pyramid (MEFP) is

implemented to improve object detection performance across

multiple scales. Additionally, a lightweight detection head (LSCD)

is designed to effectively reduce model complexity while maintaining

performance. Finally, the loss function is modified toWIoUv3, which

emphasizes the importance of small targets and low-quality samples,

thereby improving detection accuracy.

Experimental results demonstrate that the mAP of the

YOLOv8-DML model reaches 96.9%, reflecting a 1.8%

improvement over YOLOv8n, while simultaneously achieving an

18.6% reduction in the number of parameters. When compared to

other lightweight detection models within the YOLO series,

YOLOv8-DML outperforms them in detection performance while

offering a more optimized model size. Notably, the model’s

advantages become particularly pronounced in the identification

of dense small-target diseases, offering valuable insights for the

detection of small disease targets in complex environments.

Despite the satisfactory identification performance of the

YOLOv8-DML model for disease recognition, some challenges

remain, including false detections and missed identifications,

particularly at leaf edges, with extremely small lesions, and in

occluded regions. The model primarily focuses on four-phase

soybean leaves, and the diversity of soybean leaf diseases—

resulting from the prevalence of various common diseases and

healthy leaves—adds to the complexity. Therefore, further research

is necessary to expand the disease dataset and enhance the

generalization capabilities of the model. Future work will focus on

the development of a mobile disease identification system.

Specifically, we will continue augmenting the disease dataset and

apply the developed model to identify additional plant diseases,

validating its effectiveness and generalizability across multiple

disease types. The improved YOLOv8-DML algorithm has broad

applicability in real-world scenarios, from UAVs and mobile

devices to robotic systems, which enable real-time disease

detection. To further enhance real-world usability, future work

will also consider the problem of model optimization in edge
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computing devices, including quantization and pruning

techniques to reduce computational costs while maintaining

high accuracy.
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