
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Lee Jeong Hwan,
Jeonbuk National University,
Republic of Korea

REVIEWED BY

Islam Frahat Hassan,
National Research Centre, Egypt
Kyounghee Lee,
Seoul National University, Republic of Korea

*CORRESPONDENCE

Chang-en Tian

biocetian@gzhu.edu.cn

RECEIVED 06 November 2024

ACCEPTED 03 February 2025
PUBLISHED 07 March 2025

CITATION

Wang Y, Lv T, Fan T, Zhou Y and Tian C-e
(2025) Research progress on delayed
flowering under short-day condition in
Arabidopsis thaliana.
Front. Plant Sci. 16:1523788.
doi: 10.3389/fpls.2025.1523788

COPYRIGHT

© 2025 Wang, Lv, Fan, Zhou and Tian. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 07 March 2025

DOI 10.3389/fpls.2025.1523788
Research progress on delayed
flowering under short-day
condition in Arabidopsis thaliana
Yunhui Wang, Tianxiao Lv, Tian Fan, Yuping Zhou
and Chang-en Tian*

Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life
Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
Flowering represents a pivotal phase in the reproductive and survival processes

of plants, with the photoperiod serving as a pivotal regulator of plant-flowering

timing. An investigation of the mechanism of flowering inhibition in the model

plant Arabidopsis thaliana under short-day (SD) conditions will facilitate a

comprehensive approach to crop breeding for flowering time, reducing or

removing flowering inhibition, for example, can extend the range of adaptation

of soybean to high-latitude environments. In A. thaliana, CONSTANS (CO) is the

most important component for promoting flowering under long-day (LD)

conditions. However, CO inhibited flowering under the SD conditions.

Furthermore, the current studies revealed that A. thaliana delayed flowering

through multiple pathways that inhibit the transcription and sensitivity of

FLOWERING LOCUS T (FT) and suppresses the response to, or synthesis of,

gibberellins (GA) at different times, for potential crop breeding resources that can

be explored in both aspects. However, the underlyingmechanism remains poorly

understood. In this review, we summarized the current understanding of delayed

flowering under SD conditions and discussed future directions for related topics.
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1 Introduction

Plant flowering is regulated by several environmental and endogenous conditions,

which directly influence crop yield and quality. Most of the current research focuses on

long-day (LD) not short-day (SD) to regulate flowering and it is particularly important to

improve the mechanism of SD flowering network in some important crops. For example,

the discovery and application of the long juvenile period has improved the status quo of

soybean’s extremely low yields at low latitudes, which has led to the expansion of soybean

to low latitudes and large-scale cultivation, and the inhibition of flowering has played a

decisive role. The problem is that when only different latitude regions are planted to grow

crops, especially for photoperiod-sensitive crops, timely flowering germplasm resource is

needed (Lai et al., 2023), so mining flowering factors and realizing the precise flowering of

crops through modern scientific means is a very important task. A. thaliana is a facultative
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long-day (LD) plant that exhibits a photoperiodic response that

promotes flowering in LD (longer than 12 h of light) and delays

flowering in SD (8-h light/16-h dark or 10-h light/14-h dark)

(Takagi et al., 2023). A. thaliana regulates flowering by

integrating information from multiple pathways, including

photoperiodic, temperature, gibberellin (GA), vernalization, age

and autonomous pathways (Fornara et al., 2010). Information

from multiple pathways is integrated to regulate floral integrators

that promote flowering. The photoperiod, or day length, is a stable

external condition that plants can perceive and play a crucial role in

controlling flowering time (Kinmonth-Schultz et al., 2023). As a

florigen in plants, the FLOWERING LOCUS T (FT) protein

functions as a systemic signal that induces flowering in the shoot

apex (Zhu et al., 2021). The study of the key molecular mechanisms

underlying the promotion of flowering in LD compared with the

inhibition of flowering in short days (SD) is more in-depth in A.

thaliana. The promotion of flowering by LD is primarily achieved

through regulation of FT expression. The B-box (BBX)

transcription factor CONSTANS (CO) is regarded as the most

pivotal regulator of gene expression in A. thaliana (Imaizumi,

2010). The CO protein exhibited stabilization in the afternoon

under LD conditions, yet only slight accumulation around ZT8

under SD conditions (Fernandez et al., 2016; Hayama et al., 2017;

Valverde et al., 2004). The discrepancy in CO protein stability can

account for the discrepancy in FT transcript levels between the LD

and SD conditions (Fernandez et al., 2016). Notably, CO, which

functions as a flowering promoter under LD conditions, delays

flowering under SD conditions (Luccioni et al., 2019). Genetic

evidence indicates that the TERMINAL FLOWER 1(TFL1)

mutant tfl1 is epistatic to co and ft is epistatic to tfl1. CO may

increase the response to FT by shifting TFL1 expression out of the

peak of the maximal sensitivity to FT (Luccioni et al., 2019).

The delayed flowering observed under SD conditions necessitates

the collective involvement of multiple repressors that exert pronounced

inhibitory effects on flowering. The transcription factor SHORT

VEGETATIVE PHASE (SVP) plays a pivotal role in the repression

of GA biosynthesis and the expression of flowering integration factor

genes FT, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1

(SOC1), and others (Andrés et al., 2014). A. thaliana plants can flower

under SD conditions. The GA pathway is believed to play a crucial role

in promoting flowering in A. thaliana (Wilson et al., 1992). However,

the molecular mechanism by which SD delays flowering in A. thaliana

is not yet fully understood, particularly when compared to the well-

studied mechanism by which LD promotes flowering. This study

presents a review of the literature on the inhibition of flowering in A.

thaliana under SD to elucidate the underlying molecular mechanisms.

It also serves as a reference for further research and breeding in the field

of plant-flowering regulation.
2 CO-dependent regulations

2.1 co mutants and phenotypes

CO proteins are so important for the function of flowering, but

there is still controversy about the phenotypes in CO mutants in A.
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thaliana in SD, so it is necessary to make a detailed list of the

current CO mutants and phenotypes here, which will help us to

discuss the role of CO under SD condition.

Twelve CO mutants exhibiting diverse backgrounds and

mutagenesis methods were identified (Table 1). Most of them

displayed an early flowering phenotype under SD conditions.

The co-1 mutant was created using X-ray mutagenesis in 1962,

and has been documented to flower prematurely in SD (Redei,

1962). The co-12mutant site was identical to that of co-1, except for

the genetic background of the mutant. co-12 is a Columbia (Col)

background mutant, whereas co-1 is a Landsberg erecta (Ler)

background mutant. Both mutants exhibit early flowering in SD

(Redei, 1962; Balasubramanian et al., 2006; Zhang et al., 2015; Yu

et al., 2024).

While co-2, which has been mutated at the carboxyl-terminus of

the first B-BOX domain, has been observed to convert arginine to

histidine in a Ler background (Robson et al., 2001), co-2 has been

found to flower earlier than the wild-type (WT) plant under an 8-

hour photoperiod and slightly earlier under a 10-hour photoperiod

(An et al., 2004; Balasubramanian et al., 2006; Datta et al., 2006;

Luccioni et al., 2019).

co-9, co-10, and co-11 are T-DNA insertion mutants isolated

from a Col background that flowered early in SD (Balasubramanian

et al., 2006; Luccioni et al., 2019; Ning et al, 2019). However, further

investigation revealed that co-10 exhibited flowering patterns that

differed from those of the wild type at both 21°C and 27°C in SD,

suggesting that temperature may play a role in CO-mediated

flowering (Fernandez et al., 2016).

The co-1, co-2, co-9, co-10, co-11, and co-12 plants displayed

varying degrees of early flowering phenotypes in SD. The flowering

phenotype of the co mutants in SD may also be related to the

ecotype, with the Col background exhibiting a more pronounced

early flowering phenotype and the Ler background displaying a

milder early flowering phenotype. Notably, co-2 (Martin-Trillo

et al., 2006; Zhou and Ni, 2009), co-9 (Johansson and Staiger,

2014), co-10 (Jang et al., 2008; Laubinger et al., 2006), and co-101

(Arongaus et al., 2018) have been shown to lack early flowering

phenotypes in SD, which may be attributed to disparate culture

conditions. The early flowering phenotype of the co mutants under

SD conditions depended on TFL1 and FT. However, the function of

CO under SD conditions is not achieved through a reduction in FT

transcript levels (Luccioni et al., 2019). Further investigations are

required to elucidate the mechanism of CO function under SD

conditions. Further understanding of the role of CO in flowering

regulation under SD conditions may be achieved by investigating

the relevant regulators that alter CO transcript levels and protein

levels/stability.

Therefore, CO has the function of inhibiting flowering under

SD, although not strongly. Based on the fact that CO has the

function of integrating information from circadian clock and and

light signaling, it is therefore important for us to be able to use CO

as a cue to mine the factors regulating CO under SD that have the

potential to refine the network of SD inhibition of flowering. The

transcriptional level of CO is primarily regulated by the circadian

clock, whereas its protein level and stability are controlled by light

signals (Suarez-Lopez et al., 2001; Valverde et al., 2004). Although
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TABLE 1 Covered in the paper mutant phenotypes and their flowering responses under SD versus LD conditions.

Gene mutant
Flowering phenotype

References
SD LD

CO-dependent Regulations

CO

co-1(Ler) Early Late Redei, 1962

co-2(Ler) Early Late Luccioni et al, 2019

No phenotype Late Zhou and Ni, 2009

co-9(Col) Early Late Luccioni et al, 2019

No phenotype Late Johansson and Staiger, 2014

co-10(Col) Early Late Fernandez et al., 2016

No phenotype Late Jang et al., 2008

co-11(Col) Early Late Ning et al., 2019

co-12(Col) Early Late Yu et al., 2024

co-101(Col) No phenotype Late Arongaus et al., 2018

Circadian Clock Components

LHY lhy-12 Early Early Mizoguchi et al., 2002

lhy-7 Early Early Park et al., 2016

CCA1-1 cca1-1 No phenotype No phenotype Niwa et al., 2007

lhy-12/cca1-1 Early Late Mizoguchi et al., 2002

PRR7 prr7-11 Early Late Nakamichi et al., 2007

PRR5 prr5-11 Late Late Ito et al., 2008

PRR7&5 prr7/prr5 Early Late Nakamichi et al., 2007

PRR9&7 prr9/prr7 Late Late Nakamichi et al., 2007

PRR9&7&5 prr9/prr7/prr5 Late Late Nakamichi et al., 2007

ELF3 elf3 Early Early Zagotta et al., 1996

elf3-8 Early Early Yu et al., 2008

ELF4 elf4 Early Early Lin et al., 2019

TOC1 toc1-2 Early No phenotype Ito et al., 2008

LWD1&LWD2 lwd1/lwd2 Early Early Wu et al., 2008

FKF1 fkf1,fkf1-2 No phenotype Late Song et al., 2012

GI gi-2 Late Late Sawa et al., 2007

CDF1&2&3&5 cdf1/2/3/5 Early Early Fornara et al., 2009

FBH1&2&3&4 fbh1/2/3/4 Late Late Ito et al., 2012

JMJ28 jmj28 Late Late Hung et al., 2021

Light Signaling Related Regulators

phyB phyb Early Early Lazaro et al., 2015

phyB&CO co-2/hy1 Early Late Putterill et al., 1993

HOS1 hos1-2 Early Early Lazaro et al., 2012

ZTL ztl-105 Early No phenotype Takase et al., 2011

CRY2 cry2 Early Late Endo et al., 2007

CRY1 cry1-L407F(gain of function) Early Early Exner et al., 2010

(Continued)
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TABLE 1 Continued

Gene mutant
Flowering phenotype

References
SD LD

Light Signaling Related Regulators

phyA phyA Late Late Johnson et al., 1994

phya-211 No date No phenotype Song et al., 2018

phya-201 No date Late Song et al., 2018

RUP2 rup2 Early (+UVB) No date Arongaus et al., 2018

COP1 cop1 Early No date Jang et al., 2008

SPA1 spa1-7 Early No phenotype Laubinger et al., 2006

CUL4 cul4cs Early No phenotype Chen et al., 2010

TOEs toe1 Early Early Zhang et al., 2015

SK12 sk12 Early Early Chen et al., 2020

FT-Dependent Regulations

FT

ft-1 No phenotype Late Balasubramanian et al., 2006

ft-2 No phenotype Late Balasubramanian et al., 2006

ft-3 No phenotype Late Balasubramanian et al., 2006

ft-10 No phenotype Late Balasubramanian et al., 2006

Epigenetic Modification Related Factors of FT

LHP1 lhp1-3 Early Early Chen et al., 2020

IMPa-1,2,3 impa triple Early Early Chen et al., 2020

LIF2 lif2 Early Early Latrasse et al., 2011

FLC-FT

FLC flc-3 Early No phenotype Zhou and Ni, 2009

Vernalization Pathway

EFS efs Early Early Kim et al., 2005

MSI1 msi1-cs(overexpression) Early No phenotype Schönrock et al., 2006

ELF7 elf7-2 Early Early He et al., 2004

VIP4 vip4-2 Early No phenotype Zhang and Van Nocker, 2002

VIP5 vip5-1 Early No phenotype Oh et al., 2004

VIP6(ELF8) elf8-1 Early Early He et al., 2004

Autonomous Pathways

FCA fca Late Late Koornneef et al., 1991

FLD fld Late Late Chou and Yang, 1998

FPA fpa Late Late Koornneef et al., 1991

FVE fve Late Late Koornneef et al., 1991

FY fy Late Late Koornneef et al., 1991

FLK flk Late Late Boss et al., 2004

LD ld Late Late Lee et al., 1994

(Continued)
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TABLE 1 Continued

Gene mutant
Flowering phenotype

References
SD LD

Other Regulators

COP10 cop10-4 Early No phenotype Kang et al., 2015

DET1 det1-1(weak) Early Early Kang et al., 2015

SHB1 shb1 Late Late Zhou and Ni, 2009

SDR6 sdr6 Late Late Xing et al., 2014

ESD1 esd1 Early Early Martin-Trillo et al., 2006

Temperature Pathway

SVP svp-41 Early Early Andrés et al., 2014

JMJ13 jmj13 Early(28℃) Early Zheng et al., 2019

ELF6 elf6-1 Early No phenotype Noh et al., 2004

REF6 ref6-1,ref6-3 Late Late Noh et al., 2004

JMJ30&32 jmj30/jmj32 Early Early Gan et al., 2014

Red Light With FT

SRR1 srr1-1 Early Early Johansson and Staiger, 2014

HRB1 hrb1 Late Late Kang et al., 2007

PEF1 pef1 Early Early Ahmad and Cashmore, 1996

Other Members Of PEBP Family

TSF tsf Late Late Yamaguchi et al., 2005

TFL tfl Early Early Yamaguchi et al., 2005

The MADS-box Family

MAF1 35S::MAF1 Late No phenotype Ratcliffe et al., 2001

flm-3 Early Early Pose et al., 2013

VIL1 vil1 Late No phenotype Sung et al., 2006

HDA5 hda5-1 Late Late Luo et al., 2015

HDA6 axe1 Late Late Luo et al., 2015

VIL2 vil2 Late No phenotype Kim and Sung, 2010

AtRING1A atring1a Late Late Shen et al., 2014

AGL6 agl6-D(35s) Early Early Yoo et al., 2010

AGL19 agl19 Late No phenotype Schönrock et al., 2006

AGL20(SOC1) agl20-1 Late Late Borner et al., 2008

AGL24 agl24-1 Late Late Liu et al., 2008

BBX Family

BBX4(COL3) col3 Early Early Datta et al., 2006

BBX5(COL4) col4 Early Early Steinbach, 2019

BBX24 sto-1 Late Late Liu et al., 2014

BBX32 BBX32-AMI #3 Late Late Tripathi et al., 2016

BBX32-OX Late Late Tripathi et al., 2016

(Continued)
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the key components of the circadian clock have been demonstrated

to regulate CO proteins during LD (Hayama et al., 2017), there is a

paucity of evidence regarding the detection of CO protein levels in

mutants of the key components of the circadian clock during SD.
2.2 CO transcription regulators: circadian
clock components

The CO transcript remains at a low level under light (ZT0-ZT8),

begins to increase after entering darkness, reaches its peak after 4 h

of darkness (ZT12), and then decreases (Figure 1). The

photoperiodic control of flowering time is inextricably linked to

the circadian clock, which serves as the timing mechanism for

measuring the duration of the day and night. In A. thaliana,

complex transcriptional repression mechanisms interlocked with

core clock components comprise the circadian clock (Shim

et al., 2017).

Circadian clock components exhibit distinct temporal

expression patterns. For instance, the primary morning-time

circadian clock components include two MYB transcription

factors, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and

LATE ELONGATED HYPOCOTYL (LHY) (Nagel et al., 2015;

Kamioka et al., 2016), as well as PSEUDO RESPONSE

REGULATOR 9 (PRR9), PRR7, and PRR5 identified noon-time

components (Nakamichi et al., 2010; Nakamichi et al., 2012; Liu

et al., 2014; Liu et al., 2016), LUX, ELF3, ELF4, and TOC1/PRR1 as

key evening- and night- time components of the circadian clock

(Doyle et al., 2002; Helfer et al., 2011; Nusinow et al., 2011; Herrero

et al., 2012; Huang et al., 2016). Mutants in most genes exhibit

aberrant flowering times under both LD and SD conditions.

The LHY mutant lhy-12 and CCA1 mutant cca1-1 flowered

prematurely in SD, and the double mutant lhy-12/cca1-1 flowered

especially early. This indicates that these two genes can function

redundantly to inhibit flowering in SD (Mizoguchi et al., 2002)

Subsequently, the expression peaks of the FLAVIN-BINDING,

KELCH REPEAT, F-BOX PROTEIN 1 (FKF1), and GIGANTEA

(GI) clock output, which are related to photoperiodic flowering,

were advanced by approximately four hours in the lhy-7 mutant.
Frontiers in Plant Science 06
Conversely, when the endogenous circadian cycle of the lhy-7

mutant aligns with the external light/dark cycle, the upregulation

of FT is no longer observed (Park et al., 2016). This finding suggests

that the early flowering observed in SD in the lhy-7mutant is due to

aberrant expression of photoperiodic flowering genes (Park et al.,

2016). The flowering phenotype of lhy-7/co-101 under SD

conditions has yet to be documented.

The midday circadian clock components are PPR9, PPR7, and

PPR5. Among these, the PPR7 mutant D7 flowered prematurely

under SD conditions (Nakamichi et al., 2007), the PPR5 mutant

prr5-11 flowered slightly later (Ito et al., 2008), and the prr7/prr5

double mutant D7 flowered at the same time as D7 and earlier than

the PPR9/PPR/PPR5 triple mutant D7 (Nakamichi et al., 2007).

This indicates that PPR7 may play a dominant role in inhibiting

flowering in SD. Nevertheless, no observable phenotypes have been

documented for these PPR9 single mutants under SD conditions.

The evening circadian clock component ELF3 mutants, elf3 and

elf3-8, flowered early during SD (Yu et al., 2008; Zagotta et al.,

1996). The evening circadian clock component ELF4 mutant, elf4,

also flowered early in SD (Lin et al., 2019). Subsequent studies

demonstrated that ELF4 negatively regulates CO expression by

forming an ELF4-GI complex with GI, which segregates GI from

the CO promoter to specific nucleosomes (Kim et al., 2013).

Furthermore, the early flowering phenotype of elf4 under SD

conditions can be fully compensated by the overexpression of

EFL1, partially compensated by the overexpression of EFL3, and

not compensated by the overexpression of EFL2 (Lin et al., 2019),

indicating that EFL1 is the primary flowering regulator through the

circadian clock pathway under SD conditions.

The evening circadian clock component TIMING OF CAB2

EXPRESSION 1 (TOC1)/PRR1 mutants, toc1 and toc1-2, flowered

at an early stage under SD conditions (Niwa et al., 2007). LIGHT-

REGULATED WD1 (LWD1) and LWD2 affect flowering onset by

regulating the circadian clock. lwd1/lwd2 double mutants exhibit an

early flowering response in SD (Wu et al., 2008).

In SD, CO expression commences in the dark due to the

accumulation of GI protein during the light period, reaching a

peak at the end of the light phase. In contrast, the FKF1 protein does

not reach a peak until ZT12 in the dark, resulting in the level of the
TABLE 1 Continued

Gene mutant
Flowering phenotype

References
SD LD

Gibberellin-dependent Regulation

GA1 ga1-3 No flower No flower Reeves and Coupland, 2001

SPY spy-1 Early Early Jacobsen and Olszewski, 1993

DELLAs dellaP Early Early Park et al., 2013

BOI boiQ Early Early Park et al., 2013

NFL nfl No flower No phenotype Sharma et al., 2016

HDC1 hdc1 Early Late Ning et al., 2019

HDA19 hda19 Early Late Ning et al., 2019
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GI-FKF complex remaining at a low level. This results in the

accumulation of CYCLING DOF FACTORs (CDFs) proteins in

light, which subsequently inhibits CO transcription. Following the

transition to the dark, CDFs undergo degradation, allowing FBHs to

bind to the E-box element in the CO promoter, activating CO

transcription (Song et al., 2015; Figure 1).

Flowering regulation by these factors under SD conditions

differed from that under LD conditions. The fkf1 and fkf1-2

mutants exhibited an unremarkable flowering phenotype (Song

et al., 2012), indicating that FKF1 does not directly regulate

flowering but that the transcript levels of CO and FT were

moderately reduced in the afternoon (Imaizumi et al., 2003). The

GI mutant gi-2 exhibits a late-flowering phenotype (Sawa et al.,

2007; Sawa and Kay, 2011). However, the precise mechanism by

which GI promotes flowering remains unclear. However, it has been

demonstrated that GI does not regulate CO (Sawa and Kay, 2011).

In addition, FKF1-GI complexes have been observed to form in SD

(Sawa et al., 2007). The overexpression line 35S∷HA-FKF1#18

35S∷GI-TAP/fkf1 exhibited an extremely early flowering

phenotype (Sawa et al., 2007), This indicates that the SD of

35S∷HA-FKF1#18 35S∷GI-TAP/fkf1 could promote CO

transcripts by enhancing the level of the FKF1-GI complex,

thereby accelerating flowering (Sawa et al., 2007). Nevertheless,

the fkf1/gimutant does not exhibit a flowering phenotype under SD

conditions (Sawa et al., 2007).

The CDF family comprised five members. The quadruple

mutant cdf1/2/3/5 exhibited an extremely early flowering

phenotype in SD (Fornara et al., 2009). The FBH family

comprises four members. The single mutants did not exhibit a

flowering phenotype. However, fbh quadruple mutants displayed a

slight delay in flowering compared to the wild type (Ito et al., 2012).

In contrast, both 35S:FBH1 and 35S:FBH2 plants exhibit an

extremely early flowering phenotype (Ito et al., 2012).
Frontiers in Plant Science 07
Demethylase JMJ28 interacts with FBH transcription factors to

activate the CO promoter by removing the repressor marker

H3K9me2. The JMJ28 mutant jmj28 exhibited a slight delay in

flowering under SD conditions (Hung et al., 2021).

In summary, under SD conditions, except for prr5-11 and gi-2,

mutants of the circadian clock component and related regulators

exhibited early flowering phenotypes, particularly toc1-2, elf3, and

lhy-12/cca1-1. This suggests that most circadian clock components

are repressed in SD, Some studies have indicated that the key

components of the circadian clock during LD regulate CO

transcription and directly regulate CO protein stability (Hayama

et al., 2017), The mechanism by which these genes regulate

flowering under SD needs to be deepened, and the components

related to the circadian clock pathway are a very good candidate for

breeding targets.Furthermore, these mutants exhibited elevated

levels of FT transcripts, suggesting that repression was achieved

by the suppression of FT transcription.
2.3 CO protein regulators

CO primarily functions as a transcription factor at the protein

level. The exact mechanism of how CO proteins function in SD in

contrast to LD,which inhibits not promotes flowering, is not yet

clear. The main regulating CO proteins are light signaling factors, so

through the phenotype of the mutant and the level of CO protein in

the mutant, explore the possible mechanisms by which CO proteins

regulate flowering in SD.

The level of CO protein increases with prolonged illumination

time, reaches its peak at the end of 8 h (ZT8), and then decreases

rapidly after entering darkness (Fernandez et al., 2016; Yu et al.,

2024) (Figure 1). In contrast the level of CO transcript, these

findings suggest that the regulation of CO protein levels may
FIGURE 1

Photoperiodic regulation of CO-FT in A. thaliana. The CO transcript levels are mainly repressed by CDF1, which is mainly repressed by the FKF1-GI
complex. The FKF1-GI complex accumulated more in ZT12-16 in LD and less in ZT12-16 in SD, resulting in high levels of CO at ZT12-ZT16 in LD and
low levels at ZT12-ZT16 in SD. CO proteins were subjected to complex regulation in LD, stabilized by PHYA at ZT0-ZT4, degraded by GI, PHYB,
HOS1, ZTL at ZT4-ZT8, PHYA, CRY1, FKF1, CRY2, and GI at ZT8-ZT16, stabilized, degraded by COP1-SPAs in dark ZT16-ZT24, and FT transcription
was induced by CO mainly at ZT12-ZT16. In contrast, the regulation of CO proteins is less well studied in SD and is likely degraded by PHYB and
DNF at ZT0-ZT4, degraded by COP1-SPAs-CUL4-DDB1 in the dark at ZT8-ZT24, and FT transcription is not induced by small amounts of
accumulated CO proteins at ZT4-ZT12. (→, promote; , inhabit).
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primarily depend on degradation rather than synthesis, and is not

significantly correlated with alterations in CO transcript levels

under SD conditions.

2.3.1 Light signaling related regulators
CO protein regulators have been studied more systematically

under LD conditions and are mainly regulated by light signalling

pathway factors, so how these factors regulate CO proteins under

short day conditions and whether changes in CO proteins

contribute to flowering will be discussed here.

Under LD conditions, the influence of different light signals on the

photoperiodic flowering response varied. In the morning, CO

degradation relies mainly on the red-light photoreceptor

Phytochrome B (PhyB), PHYA and ZEITLUPE (ZTL) (Putterill

et al., 1995; Reed et al., 1994; Hwang et al., 2019). In the afternoon,

FKF1,Cryptochrome 1 (Cry2),Cry1,all are blue light photoreceptor,

stabilize CO (Takase et al., 2011; Endo et al., 2007; Valverde et al.,

2004). In the absence of light signaling at night or in the dark, CO is

primarily degraded by CONSTITUTIVE PHOTOMORPHOGENIC 1

(COP1), SUPPRESSOR OF PHYA-105s (SPAs), CULLIN4 (CUL4)

and Damaged DNA Binding Protein1 (DDB1) (Jang et al., 2008;

Hwang et al., 2019); When the time comes to dawn, PHYA also

stabilize CO transiently (Song et al., 2018; Figure 1).

PhyB, which receives red light, plays an important role in

reducing the abundance of CO proteins and their activity in LD.

phyb mutants exhibited early flowering in response to SD (Reed

et al., 1994). The CO and PhyB double mutant co-2/hy1 exhibited a

flowering time that was earlier than co-2 and later than hy1,

indicating that CO is necessary for the early flowering phenotype

of hy1 under SD conditions (Putterill et al., 1995). In SD, CO

proteins are degraded via a pathway that requires PhyB (Andrés and

Coupland, 2012; Figure 1); however, there is a paucity of relevant

biochemical experiments. HOS1 and PhyB have been shown to play
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redundant roles in the regulation of flowering during SD (Lazaro

et al., 2012; Lazaro et al., 2015). Under SD conditions, the hos1-2

mutant flowered early, whereas the hos1-2/co-2 double mutant

flowered even earlier. This suggests that the early flowering of

hos1 under SD conditions was not achieved through the CO

pathway (Lazaro et al., 2012).

PhyA, which receives far-red light, contributes to CO

stabilization in the dawn and afternoon under LD conditions.

phyA flowered late in SD, which promotes flowering in SD

(Johnson et al., 1994).

ztl-105 and ztl-4 mutants of the blue light-responsive ZTL

flowered early under SD conditions (Takase et al., 2011; Hwang

et al., 2019). A comparable CO protein abundance was observed in

35S:3HA-CO and 35S:3HA-CO/ztl-4 plants (Hwang et al., 2019)

This mechanism appears to be distinct from that of ZTL-degrading

CO activity in the morning of an LD (Song et al., 2014).

The early flowering observed in ztl mutants under SD

conditions depends on FKF1 (Takase et al., 2011). In addition,

the flowering phenotypes of the FKF1 mutants, fkf1 and fkf1-2, are

not evident (Song et al., 2012), indicating that FKF1 does not

independently regulate flowering under SD conditions.

Nevertheless, 35S:3HA-CO showed a early flower phenotypes, but

no notable discrepancy was observed in CO protein abundance

between 35S:3HA-CO and 35S:3HA-CO/fkf1-2 (Song et al., 2012),

indicating that early flowering of 35S:3HA-CO is independent

of FKF1.

CRY2, which receives blue light in the afternoon on LD,

degrades the COP1-SPAs complex and stabilizes CO (Endo et al.,

2007). cry2 mutants have been observed to flowered early in SD

(Endo et al., 2007)

cry1-L407F,a gain of function allele of CRY1, showed a very

early flowering. It can increase the sensitivity of phytochrome

signaling cascades (Exner et al., 2010).
A B

FIGURE 2

Key pathways for the photoperiodic regulation of flowering at 22°C (A) In LD, CO is mainly stabilized by light signals (PHYA, CRY1, etc.; see Figure 1
for details) and circadian clock signals to promote FT transcription and thus flowering under LD; the gibberellin pathway promotes flowering either
through FT or directly through LFY; the vernalization and autonomous pathways mainly inhibit flowering by inhibiting FT transcription through FLC
and other MADS-box transcriptional regulators; and the temperature pathway inhibits FT transcription/sensitivity at 22°C by SVP and others. (B) In
SD, CO is mainly degraded by light signals (PHYB, see Figure 1 for details). The circadian clock does not promote CO transcription but represses FT
transcription; the gibberellin pathway also does not promote FT transcription but directly promotes LFY transcription; the temperature pathway,
vernalization pathway, and the autonomous pathway maintain a similar repression of FT transcription as LD under these conditions (→, promote;

⟞, inhabit; ‐‐‐, unclear; , inactive).
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As darkness decreases, plants cease to receive light signals,

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) degradation

CO protein (Jang et al., 2008). The cop1 mutant flowers prematurely

under SD conditions, and substantial accumulation of CO proteins

was observed in the dark (Jang et al., 2008). The cop1 co mutant

exhibited a flowering time that was later than cop1 and earlier than co,

indicating that CO is necessary for the early flowering of cop1

(Mcnellis et al., 1994; Jang et al., 2008). The SPA family comprises

four members. The SPA family comprises four members: SPA1, SPA2,

SPA3, and SPA4. Of these, SPA1 plays a dominant role in flowering,

and SPA1 is sufficient for normal photoperiodic flowering.

Furthermore, SPA1 is essential for maintaining flowering in wild-

type plants under SD conditions (Laubinger et al., 2006). The spa1

mutant exhibited early flowering under SD conditions, which may be

attributed to the presence of a substantial number of FT transcripts

(Laubinger et al., 2006). Subsequently, considerable accumulation of

CO proteins was observed in spa1-7 mutants under dark conditions

(Jang et al., 2008). Consequently, in the absence of light signaling,

plants require the COP1-SPAs complex to inhibit flowering by

suppressing CO (Yu et al., 2008). CULLIN4 (CUL4)-Damaged

DNA Binding Protein1(DDB1) may function with COP1-SPAs

complexes to regulate CO protein degradation. Mutant cul4cs (for

CUL4 co-suppression) exhibit an early flowering phenotype in SD

(Chen et al., 2010). DDB1 has two isoforms: DDB1a,DDB1b.ddb1b

mutant is embryo-lethal, whereas the knockout line ddb1a exhibits no

obvious phenotype (Schroeder et al., 2002), indicating that DDB1

inhibits flowering via CUL4.

Ultraviolet B (UV-B) radiation is an essential component of

light. The Repressor of UV-B Photomorphogenesis 2 (RUP2) has

been identified as a flowering repressor under SD conditions

containing UV-B. This repressor depends on the UV-B

photoreceptor UVR8 (UV RESISTANCE LOCUS 8), and

represses FT expression by inhibiting the binding of CO to the

FT promoter (Arongaus et al., 2018). The rup2mutant exhibited an

early flowering phenotype under SD conditions (+UV-B)

(Arongaus et al., 2018).

2.3.2 Other regulators
Besides the previously discussed CO protein regulators, other

mutants of regulators that regulate flowering through CO under LD

conditions have been observed to exhibit flowering phenotypes

under SD conditions. The observations are presented in the

following section. The TARGET OF EAT (TOE) proteins are

members of the APETALA2 (AP2)-LIKE family of proteins,

which includes TOE1, TOE2, TOE3, SCHLAFMÜTZE (SMZ),

and SCHNARCHZAPFEN (SNZ) (Aukerman and Sakai, 2003;

Chen, 2004). During the morning of an LD cycle (ZT0-ZT4),

holidays inhibit CO activity by directly interacting with it (Zhang

et al., 2015). In SD, TOE1 was expressed exclusively during the light

period (ZT0-ZT8), with the highest level of expression occurring at

ZT4. The toe1 mutant flowered earlier than the wild type, whereas

toe1/co flowered later than the wild type and toe1 mutant (Zhang

et al., 2015). This suggests that CO plays a role in the early flowering

of toe1. Flowering was likely facilitated in the background of toe1 in

SD; TOE2 was also involved in flower formation in SD, with toe1/

toe2 flowering earlier than toe1 and later than toe1/toe2/co flowering
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(Zhang et al., 2015). It has been postulated that TOE1 and TOE2

may compete redundantly with CO for the FT promoter,

functioning as inhibitors of CO binding to FT under SD

conditions. Further experiments are required to substantiate this

hypothesis. SHAGGY-like kinase 12 (SK12) is a member of the

glycogen synthase kinase-3 family. Under SD conditions, sk12 also

flowered early because of the inability of most of its CO proteins to

be phosphorylated and their subsequent degradation through

ubiquitination. This results in the accumulation of CO proteins

and the promotion of flowering through the FT pathway (Chen

et al., 2020). DAY NEUTRAL FLOWERING (DNF) encodes a

functional membrane-bound E3 ligase, suggesting that DNF targets

a repressor of CO for degradation by the proteasome pathway, dnf

mutants flowered early (Morris et al., 2010). The GI protein is

indirectly involved in the regulation of CO protein stability by

forming a complex with the FKF1 and ZTL proteins under

conditions of LD, and the gi-2 allele flowered late under SD (Song

et al., 2014). The flowering time of 35S:3HA-CO was earlier than

35S:3HA-CO/gi-2 #1 and later than 35S:3HA-CO/fkf1-2 gi-2 #20 in

SD (Song et al., 2014), indicating that early flowering of 35S:3HA-

CO depends on GI. However, whether GI promotes flowering in

nature remains to be determined using CO.

In summary, two insights can be drawn. One is that in the

mutants with a large accumulation level of CO proteins, it still led to

its early flowering phenotype, so a large number of CO proteins may

still have promoting flowering function in SD, such as cop1, spa1,

35S:3HA-CO, sk12. And the regulation of flowering by CO proteins

may be a dosage effect, which may also be why A. thaliana needs to

maintain low levels of CO proteins in SD, and this mechanism is

important for the function of CO proteins in SD. The others is the

most of photoreceptor mutants showed an early flowering

phenotypes, such as phyb,ztl-105,cry2 etc. suggesting that the

photoreceptors mainly inhibit flowering in SD, and this inhibition

is firstly due to unable to stabilize a large number of CO proteins.

However, how the photoreceptors regulate to these low levels of CO

proteins in SD may be the direction of the future research.
3 FT-dependent regulations

A. thaliana exhibits delayed flowering and a notable reduction in

FT transcription under SD conditions. Besides the CO-FT pathway, A.

thaliana represses FT transcription through epigenetic modifications

of FT, FLC-FT pathway, and various related FT-regulated genes.
3.1 FT mutants and phenotypes

FT is a mobile protein synthesized in the companion cells of

leaves and transported to the SAM through the phloem, where it

promotes flowering (Maple et al., 2024). Under SD conditions,

flowering is delayed in the wild type, which does not express or

express low levels of FT transcripts (Luccioni et al., 2019).

Furthermore, the FT mutants ft-1, ft-2, ft-3, and ft-10 do not

exhibit obvious flowering phenotypes (Balasubramanian et al.,

2006). In addition, natural variation in FT-creating promoter
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length does not alter flowering time in SD (Liu et al., 2014),

suggesting that FT and FT under natural conditions in SD are not

directly involved in regulating flowering.
3.2 Epigenetic modification related factors
of FT

Photoperiods can directly regulate FT through cis-regulatory

changes at its gene locus. Furthermore, under SD conditions, a

minimal distance between the regulatory regions is required to fully

suppress FT expression (Liu et al., 2014).

LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) is a

transcriptional repressor of flowering-related genes. It represses

FT expression by directly associating with FT chromatin. The

lhp1-3 mutant flowered under SD conditions have been shown to

have elevated FT transcripts (Chen et al., 2020). Under SD

conditions, LHP1 interacts with IMPa-1, 2, 3 to regulate

flowering by modulating epigenetic modifications of FT. Impa-1,
2, 3 triple mutants flowered early, exhibited severely impaired

nuclear targeting of LHP1, and displayed a substantial elevation

of FT transcripts under SD conditions (Chen et al., 2020).

Moreover, LHP1 interacts with LHP1-Interacting Factor 2 (LIF2)

in the nucleus. LIF2 belongs to the hnRNP family of proteins and is

involved in RNA processing, and lif2 flowered early under SD

conditions (Latrasse et al., 2011).
3.3 FLC-FT dependent pathways

FLC plays a pivotal role in regulating flowering under LD

conditions by engaging numerous genetic regulatory pathways

associated with flowering (Michaels et al., 2003; Whittaker and

Dean, 2017). In addition, FLC inhibits flowering under SD

conditions and flc-3 exhibits early flowering (Zhou and Ni, 2009).

Notably, the transcript levels of FLC in the wild type are comparable

under LD and SD conditions (Zhou and Ni, 2009).

3.3.1 Vernalization pathway
Vernalization is the process by which plants undergo prolonged

low-temperature treatments to promote flowering. Vernalization

primarily disengages FLC inhibition of flowering by repressing FLC

expression, optimizing the timing of flowering to align with the

cessation of winter and onset of spring, which allows for maximal

reproductive acclimation (Whittaker and Dean, 2017). The

expression levels of FLC in the vernalization pathway are

primarily regulated by upstream FRIGIDA (FRI) (Shindo et al.,

2005; Zhang and Jiménez-Gómez, 2020). Allelic variation at the FRI

locus in A. thaliana is a significant factor influencing the natural

variation in flowering time (Johanson et al., 2000; Kim and

Michaels, 2006). FRI can methylate FLC chromatin in complex

with the histone methyltransferase EARLY FLOWERING IN SDS

(EFS), which promotes FLC expression and efs mutant flowered

early in SD (Kim et al., 2005).

In the vernalization pathway, the Polycomb Repressive

Complex (PRC2) can cause FLC silencing through its specific
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component, PLANT HOMEODOMAIN (PHD) (Whittaker and

Dean, 2017). PRC2 is a polycomb group (PcG) protein complex that

is a cellular memory module that maintains the repression of gene

transcription (Brock and Fisher, 2005). In the PcG protein MSI1

overexpression line msi1-cs, there was a marked reduction in MSI1

levels. These plants also exhibit early flowering in SD (Schönrock

et al., 2006).

The RNA polymerase II-associated factor 1 (PAF1) complex

also exerts a negative regulatory effect on FLC and FLC-like proteins

via the vernalization pathway. The PAF1 complex comprises four

subunits, ELF7, ERNALIZATION INDEPENDENCE 4 (VIP4),

VIP5, and VIP6/ELF8. The elf7-3, vip4-2, vip5-1, and elf8-1

mutants exhibit an early flowering phenotype (He et al., 2004;

Zhang and Van Nocker, 2002). Of these, elf7-3 and elf8-1 exhibited

an early flowering phenotype (He et al., 2004). SKIP interacts with

ELF7 to regulate flowering by activating FLC transcription and skip

flowered early in SD (Cao et al., 2015). Therefore, the vernalization

pathway also inhibited flowering in SD.
3.3.2 Autonomous pathways
The effect of FRI on FLC expression is antagonized by a group

of proteins that have been termed the autonomous pathway,

because their activity appears to be largely independent of the

environment (Koornneef et al., 1998). The main components of the

autonomous pathways involved in FLC are FCA, FLOWERING

LOCUS D (FLD), FPA, FVE, FY, FLOWERING LOCUS K (FLK),

and LD (LUMINI DEPENDENS). Loss-of-function of these genes

delays flowering under any photoperiod (Chou and Yang, 2002;

Koornneef et al., 1991; Lee et al., 1994).
3.3.3 Other regulators
COP10 epigenetically induces FLC expression by interacting

with MULTICOPY SUPPRESSOR OF IRA14 (MSI4)/FVE (MSI4/

FVE) (Kang et al., 2015). cop10-4 flowered early under SD

conditions (Kang et al., 2015). COP10, DE-ETIOLATED1

(DET1), and Damaged DNA Binding Protein1 (DDB1) interacts

to form the CDD complex and inhibit photomorphogenesis in the

dark (Kang et al., 2015); det1-1 weak mutants flowered early in SD

(Kang et al., 2015), suggesting that the CDD complex inhibits SD

flowering. There are also genes that regulate flowering by

modulating autonomous pathways. SHORT HYPOCOTYL

UNDER BLUE1 (SHB1) encodes a yeast SYG1-like protein that

represses the FLC pathway under SD conditions, resulting in FT

transcription activation (Zhou and Ni, 2009). The shb1 mutant

flowered late, whereas the functionally acquired mutant shb1-D

flowered early (Zhou and Ni, 2009). SDR6 encodes a short-chain

dehydrogenase/reductase containing an NAD(P) domain that

regulates flowering through autonomous pathways. The SDR6

mutant, sdr6, flowered late (Xing et al., 2014).HIGH PLOIDY2

(HPY2) as an E3 SUMO ligase for FLC, regulates FLC function and

stability at both the transcriptional and post-translational levels

through its E3 SUMO ligase activity (Kwak et al., 2016). hpy2-2

mutants flowered early than wild-type plants (Kwak et al., 2016).

EARLY IN SDS 1 (ESD1) is required for the expression of FLC

repressors at levels that inhibit flowering. The ESD1 mutant esd1
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flowered early (Martin-Trillo et al., 2006), REF6 encodes an H3K27

demethylation transferase that represses FLC expression by

demethylating FLC, and the REF6 mutants ref6-1 and ref6-2

flowered late (Noh et al., 2004).
3.4 Temperature pathway

A. thaliana can overcome delayed flowering by increasing

suitable temperature under SD conditions. The 28°C FT

transcript level in WT plants under SD conditions was over 10-

fold higher than that at 23°C, and diurnal oscillations were not

affected (Balasubramanian et al., 2006).

The SVP mutant svp-41 flowered early in SD (Fernandez et al.,

2016) and requires only a small amount of FT to flower at 27°C.

This increased sensitivity to FT during flowering may be due to a

reduction in SVP activity at the apex at 27°C. In addition, svp-41 ft-

10 tsf -1 plants flowered simultaneously under 21°C-SD and 27°C-

SD (Fernandez et al., 2016), indicating that the flowering response

to temperature was not affected by the ft-10/tsf -1 mutation. These

findings indicate that SVP, FT, and TSF are indispensable for the

thermosensory induction of flowering under SD conditions.

Furthermore, SVP selectively binds to FLOWERING LOCUS M

(FLM)- and MADS AFFECTING FLOWERING2(MAF2)-specific

transcripts and regulates flowering through temperature (Airoldi

et al., 2015; Pose et al., 2013). The SVP plays a pivotal role in

delaying flowering during SD. The JUMONJI (JMJ) family

members JMJ13, JMJ30, and JMJ32 regulate A. thaliana flowers at

different temperatures through epistatic regulation of FLC in

SD.JMJ13 is an H3K27me3 demethylase that may negatively

regulate temperature-driven flowering by suppressing

temperature-photoperiod compensation, jmj13 mutant flowered

early at 29°C rather than at 22°C (Zheng et al., 2019). JMJ13,

along with ELF6 and REF6, influences the genome-wide

distribution of H3K27me3, regulates the activation of tissue-

specific genes (Pajoro et al., 2017), and plays a role in the

regulation of a flowering pathway that also affects flowering in

SD. elf6-1 showed an early flowering, whereas ref6-1 showed a late

flowering (Noh et al., 2004). The jmj30/jmj32 double mutant

exhibited an early flowering phenotype when cultivated under SD

conditions at 29°C. JMJ30 has been demonstrated to directly binds

to FLC, removing the inhibitory histone modification H3 lysine 27

trimethylation (H3K27me3) (Gan et al., 2014).

A. thaliana can release the inhibition of FT through the SVP-

FLM and JMJ-FLC pathways, flowering earlier under the high-

temperature conditions of SD.
3.5 Red light with FT

SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) is a

protein with reduced sensitivity to red light, which was previously

involved in the regulation of the circadian clock and PhyB signaling

pathway in A. thaliana (Staiger et al., 2003). Mutant srr1-1 flowered

early in SD (Johansson and Staiger, 2014). SRR1 suppresses FT

expression and thus inhibits flowering under SD conditions by
Frontiers in Plant Science 11
activating the expression of FT-binding repressors CDF1, TEM1,

TEM2, and FLC (Johansson and Staiger, 2014).

Hypersensitivity to Red and Blue 1 (HRB1) mutant hrb1

flowered late, whereas HRB1 overexpressing line flowered early in

SD (Kang et al., 2007), indicating that HRB1 promotes flowering in

SD. The SD flowering phenotype of hrb1/phyB-9 was the same as

that of phyB-9, and hrb1/cry2 showed a phenotype similar to that of

hrb1 (Kang et al., 2007), suggesting that HRB1 mediates the

regulation of flowering via red, but not blue, light signaling. hrb1/

ft-2 flowered later than ft-2 (Kang et al., 2007), indicating that HRB1

promotes flowering in SD. The Phytochrome-signaling Early

Flowering 1 (PEF1) mutant pef1, screened earlier in the SD early

flowering mutant, showed an early flowering phenotype (Ahmad

and Cashmore, 1996).
3.6 Other FT-dependent regulations

3.6.1 Other members of the
phosphatidylethanolamine-binding protein family

FT is a member of the Phosphatidylethanolamine-binding

Protein (PEBP) family, which comprises six members that can be

categorized into three branches: FT-like, and TERMINAL

FLOWER1 (TFL1)-like, MOTHER OF FT (MFT)-like (Chardon

and Damerval, 2005). Another floral integrator, the TWIN SISTER

OF FT (TSF) mutant tsf and its overexpression, was found in late

and early flowering under SD conditions (Yamaguchi et al., 2005),

although it is thought to function redundantly with FT in LD to

promote flowering, and its specific mechanism under SD conditions

is not clear. Mutant tfl flowered early under SD conditions and TFL

negatively regulates the transcription of FD-dependent target genes,

participating in the transcriptional repression of FT-activated genes

(Hanano and Goto, 2011). To our knowledge, no study has reported

the involvement of MFT in the regulation of flowering by SD.

3.6.2 The MADS-box family
Besides the MADS-box family members above mentioned,

MADS AFFECTING FLOWERING1 (MAF1)/FLM/AGL27,

MAF4, MAF5, AGL6, AGL19, AGL20, and AGL24family

members play a pivotal role in the regulation of SD flowering.

The MAF1/FLM/AGL27 is responsible for the natural variation

in the SD flowering time observed in certain ecotypes (Werner et al.,

2005). The 35S::MAF1 construct was shown to flower approximately

one month later (Ratcliffe et al., 2001). The VERNALIZATION

INSENSITIVE 3-LIKE 1 (VIL1) mutant, vil1, flowered only late in

SD, and VIL reduces the transcript levels ofMAF1/FLM in SD (Sung

et al., 2006). Furthermore, transcriptome changes induced by warm

ambient temperatures in A.thaliana require VIL1, and its loss-of-

function resulted in insensitivity to ambient temperatures (Sung et al.,

2006; Kim et al., 2023).Histone deacetylation/acetylation plays a

crucial role in maintaining genomic stability, regulating

transcription, and influencing plant development. Histone

acetylation is controlled by histone histone acetyltransferases and

histone deacetylases (HDACs or HDAs) (Liu et al., 2014b).The

HDACs family member, HDA5 mutant hda5-1, exhibited elevated

FLC and MAF1 transcript levels under SD conditions, resulting in a
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late-flowering phenotype (Luo et al., 2015). Conversely, the HDA6

mutant axe1 displays late flowering under SD conditions and elevated

MAF4 transcript levels (Luo et al., 2015).MAF5 repressed the VIN3-

LIKE 2 (VIL2) gene to accelerate flowering under SD conditions, the

vil2mutant exclusively exhibits a late-flowering phenotype under SD

conditions, but themaf5mutant showed no obvious phenotype (Kim

and Sung, 2010). Furthermore, the PRC1 RING-finger protein

AtRING1A promotes flowering by suppressing MAF4 and MAF5

expression, which downregulates two floral integrators, FT and

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1

(SOC1). The atring1a mutant exhibited late flowering in SD (Shen

et al., 2014). AGL6 has been demonstrated to negatively regulate FLC,

MAF4, andMAF5 expression and positively regulate FT expression at

the transcriptional level, promoting flowering in A.thaliana agl6-D

(in which AGL6 is activated by the 35S enhancer). This results in

early flowering in SD (Yoo et al., 2010). AGL19 has been identified as

a negative regulator of msi1-cs. The AGL19 mutant agl19 flowered

late in SD (Schönrock et al., 2006). SIN3-like proteins (SNLs) and

their homologous protein MSI delay the flowering time of SNLs by

repressing AGL19-regulated HDA9, snl2/3/4, and hda9 during early

flowering in SD plants (Ning et al., 2019; Kim et al., 2013).

Subsequent studies have demonstrated that HDA9 inhibits

premature flowering under SD conditions by modifying the local

chromatin environment and suppressing hyperactivation of the FT

upstream activator AGL19 (Kang et al., 2015).The AGL20/SOC1

mutant exhibited delayed flowering time, whereas the SOC1

overexpression line 35S::AGL20-13 displayed an exceptionally early

flowering time. SOC1 is a major floral integrator that integrates both

developmental and environmental cues into floral genetic networks,

but under SD conditions, SOC1 is only a minor target of GA signaling

at the shoot meristem (Borner et al., 2008; Galvão et al., 2012).

Another MADS-box gene, agl24, has been demonstrated to delays

flowering under SD conditions by regulating SOC1 (Liu et al., 2008).

Therefore, in SD, the FT repressors MAF1, MAF4, and MAF5

are associated with delayed flowering, the FT activators AGL19 and

ALG20 are associated with the promotion of flowering, and HDAs

proteins are also actively involved in flowering through

epigenetic modifications.

3.6.3 The BBX family
Besides CO, several members mutants of the BBX family also

exhibited flowering phenotypes. Their function in regulating

flowering is related to the FT in SD. BBX4/COL3 and BBX5/COL4

inhibit flowering, and upregulation of FT expression has been

detected in both col3 and col4 (Datta et al., 2006; Steinbach,

2019). In contrast, an overexpression line of COL5 caused early

flowering, and upregulation of FT levels was also detected; however,

low levels of COL5 expression did not affect flowering in SD

(Hassidim et al., 2009). BBX24/STO mutant sto-1 flowered late in

SD, and the STO overexpression line STO-OE reduces the

expression level of FLC, and at the same time, due to competition

with FLC, the regulated downstream genes are not affected (Liu

et al., 2014). Competition is a regulated downstream gene that

activates FT and SOC1 expression (Liu et al., 2014). COL3 targets

FT in the presence of BBX32 to regulate the flowering pathway, but

both BBX32 overexpression lines BBX32-OX #5 and BBX32 artificial
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microRNA lines BX32-AMI #3 resulted in late flowering under SD

conditions (Tripathi et al., 2016). Further studies are required to

elucidate these underlying mechanisms.
4 Gibberellin-dependent regulation

In SD, rapid GA synthesis begins only when plants have been

growing for a reproductive phase, and promotes flowering by

facilitating floral meristem identity LEAFY (LFY) transcription via

an independent FT pathway (Wilson et al., 1992; Eriksson et al.,

2006). At the juvenile stage, plants inhibit flowering by suppressing

the gibberellin response; at the adult phase, plants inhibit flowering

by suppressing the gibberellin content; and at the critical stage of

floral transition, flowering is promoted by rapidly increasing GA

synthesis and response (Eriksson et al., 2006).

The exogenous application of GAs accelerates flowering in wild-

type A. thaliana, particularly in SD (Langridge, 1957). Genetic

analysis has suggested that GA has the most important function in

flowering under SD conditions (Porri et al., 2012).

The GA1 gene encodes the first enzyme involved in GA

biosynthesis and regulates GA biosynthesis at an early stage; ga1-3

did not flower in SD unless given exogenous GA, and weakly flowers

late in LD (Wilson et al., 1992). ga1-3 had a significantly stronger

effect on flowering under SD than under LD, possibly because the

photoperiodic pathway masked the effects of gibberellins in ga1-3

under LD conditions (Reeves and Coupland, 2001). It has been

shown that overexpression of SOC1 or simultaneous inactivation of

two GA-responsive GATA transcription factors, GATA NITRATE-

INDUCIBLE CARBONMETABOLISM INVOLVED (GNC) and

GNC-LIKE/CYTOKININRESPONSIVE GATA FACTOR1 (GNL)

could rescue the flowering phenotype of the ga1-3 plants in SD

conditions (Moon et al., 2003; Richter et al., 2010). In contrast,

SPINDLY (SPY) negatively regulates GA signaling, and spy-1 is

flowered early in SD (Jacobsen and Olszewski, 1993). The enzyme

GIBBERELLIN 2 OXIDASE 7 (GA2ox7) catabolizes active GAs, and

transgenic plants SUCROSE TRANSPORTER 2 (SUC2):GA2ox7 or

KNAT1:GA2ox7 were constructed to specifically express GA2ox7 in

vascular or shoot apical meristems. flowered later than the wild type,

and KNAT1:GA2ox7 flowered later, indicating that the role of GA in

flowering under SD conditions is tissue specific, and that GA from

shoot apical meristem tissues contributes more to flowering (Porri

et al., 2012).

Three key GA signaling pathway components have been

identified in A. thaliana: GA receptor GA INSENSITIVE

DWARF1 (GID1), GA-response inhibitory protein factors

DELLAs, and SLEEPY1 (SLY), of which GID1 and DELLAs have

been reported to be associated with SD flowering; DELLAs inhibit

all GA responses, whereas GID1 activates the GA response by

binding and ubiquitinating DELLAs (Park et al., 2013).

DELLAs proteins play important roles as central regulatory

nodes in the GA signaling pathway and are repressors that block

GA signaling (Fleet and Sun, 2005). DELLAs proteins contain five

members of the GRAS family of transcription factors: REPRESSOR

OF GA1-3 (RGA), GA INSENSITIVE (GAI), RGA-LIKE 1 (RGL1),

RGL2, and RGL3 (Sun and Gubler, 2004). gaiD17, rgaD17, rgl1D17,
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rgl2D17, and rgl3D17 are GA-insensitive lines, collectively referred

to as dellaD17. Different dellaD17 proteins were identified by

constructing pSUC2:dellaD17, pFD:dellaD17, and pCLV3:dellaD17,
each of which has its own specific expression in the phloem,

meristem, and shoot stem cell niches (Galvão et al., 2012). Under

SD conditions, dellaD17 expression in the meristem delayed

flowering or did not flower, whereas dellaD17 expression in the

phloem and shoot stem had little effect on flowering time (Galvão

et al., 2012). This differs from the finding that the expression of

rgl3D17 in the shoot stem does not affect flowering in LD (Galvão

et al., 2012). It is hypothesized that DELLAs proteins regulate

flowering tissues differently in LD and SD, and that they function

mainly at the meristem in SD, which is consistent with the tissues in

which GA2ox7 exerts its function (Porri et al., 2012; Galvão et al.,

2012; Yu et al., 2012).

DELLA prote ins and BOTRYTIS SUSCEPTIBLE1

INTERACTOR (BOI), BOI-RELATED GENE1 (BRG1), BRG2,

and BRG3 (collectively referred to as BOIs) repress the GA

response by interacting with and binding to the promoters of

responsive GA genes (Park et al., 2013). The BOIs quadruple

mutant boiQ and the DELLA pentuple mutant dellaP both

flowered early in SD, consistent with their function in repressing

the GA response (Park et al., 2013). The bHLH transcription factor

MYC3 stabilized by DELLAs in SD inhibits flowering by inhibiting

CO binding to FT andmyc3 early flowering in SD (Bao et al., 2019).

In addition, NO FLOWERING IN SD (NFL) is an obligate

factor for the induction of flowering (Sharma et al., 2016) and

promotes flowering by responding to gibberellins, which are active

upstream of the GA signaling pathway; NFL belongs to the basic

helix-loop-helix transcription factors, and its mutant, nfl, fails to

flower in SD, but can flower by externally applying GA4 or by

transferring nfl into the DELLA quadruple mutant rga/gai/rgl1/rgl2,

and is therefore hypothesized to be a key transcription factor

necessary for A. thaliana evolve into a parthenogenetic LD plant

(Sharma et al., 2016).

HDC1 and HDA19 are directly responsible for HDAC and

transcriptional repression of two flowering repressor genes in the

gibberellin signaling pathway, GASA5 and GA2OX6, which

together form a multi-subunit complex that regulates flowering;

hdc1 and hda19 flowered early under SD conditions (Ning et al.,

2019). The early flowering of svp-41 is associated with an increase in

GA20ox2 mRNA, and it is possible that GAs progressively induce

the expression of SOC1 under SD conditions, which represses SVP

transcription and promotes flowering (Andrés et al., 2014).

Therefore, gibberellin plays an important role in promoting

flowering under SD conditions, and the meristem is the main

tissue in which it exerts its promoting function.
5 Prospects

In this paper, we reviewed the mechanisms underlying delayed

flowering under SD conditions (Figures 2A, B). First, in contrast to

its function in promoting flowering in LD, CO inhibits flowering

dependent on FT in SD, at least through the TFL. Second, A.

thaliana inhibits flowering by repressing FT transcription via
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multiple pathways. Finally, plants inhibit flowering by

suppressing the response to or synthesis of gibberellins at

different times before floral transition. Nevertheless, our

understanding of the molecular mechanisms underlying SD-

mediated delay in flowering in A. thaliana remains incomplete.

Therefore, further in-depth investigation should be conducted.
5.1 Pathways and mechanisms
involving CO

Typically, CO proteins in A. thaliana repress flowering in SD, as

evidenced by the varying degrees of early flowering observed in

several co-mutants (An et al., 2004; Datta et al., 2006; Redei, 1962;

Balasubramanian et al., 2006; Fernandez et al., 2016; Luccioni et al.,

2019; Ning et al., 2019; Yu et al., 2024; Zhang et al., 2015). The

capacity of CO to bind to the FT promoter under SD conditions is

constrained by competing factors (e.g., MYC3 and potentially

others), and the activities of CO proteins that cannot bind to the

FT promoter may be closely associated with the mechanism

through which CO inhibits flowering. Recent studies have

demonstrated that CO inhibits flowering via the TFL-FT pathway.

However, it is noteworthy that the flowering phenotype of co-9/tfl

was earlier than co-9 but later than tfl, indicating a competitive

inhibition of flowering between CO and TFL. It has been postulated

that additional factors may operate in a co-background to promote

flowering. The early flowering observed in the PHYB mutants hy1

and hy3 depends on CO (Putterill et al., 1995). In addition, PHYB

degrades CO proteins through ubiquitination. However, there is a

lack of biochemical evidence confirming whether early flowering in

PHYB under SD conditions is caused by CO accumulation. It is also

noteworthy that mutants containing elevated levels of CO proteins,

such as 35S:3HA-CO, cop1, and spa1-7, also exhibit early flowering

phenotypes under SD conditions (Song et al., 2015; Laubinger et al.,

2006; Jang et al., 2008). This differs from the function of CO in

suppressing flowering under natural conditions, and further studies

on the related mechanisms are required.
5.2 Mechanisms involving the FT pathway

The study of FT sensitivity is crucial for the inhibition of

flowering by SD and the establishment of a precise quantification

technique for plant sensitivity to FT is of paramount importance,

cause FT levels cannot explain the similarity in flowering between

LD and SD in some accessions (Kinmonth-Schultz et al., 2021).

Studies have demonstrated that alterations in FT transcription

within a specific range under SD conditions have a limited effect

on flowering. Conversely, inducing FT expression during a period

of heightened sensitivity to FT (ZT12-ZT20) is more likely to

promote flowering in A. thaliana (Krzymuski et al., 2015). The

mechanism underlying this period of heightened sensitivity

depends on the circadian clock and remains to be elucidated. The

sensitivity of the FT promoter can be regulated by its distance to its

key elements, but the relevant trans-acting factor(s) and associated

cis-element(s) remain unknown (Bao et al., 2019).
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5.2.1 Role of circadian clock
Several mutants that affect key components of the circadian

clock have been identified, including lhy-7, cca1-1, elf4, toc1-2, lwd1/

lwd2, and cdf1/2/3/5 (Lin et al., 2019; Niwa et al., 2007; Park et al.,

2016). Fornara et al. (2009) observed early flowering phenotypes

and upregulation of FT transcription, indicating that the circadian

clock pathway generally inhibits flowering under SD conditions by

repressing FT transcription (Figure 1). Nevertheless, the precise

mechanisms by which other components inhibit FT transcription

and flowering remain unclear, except for LHY, which has been the

subject of extensive research (Park et al., 2016).

5.2.2 Role of red light
Several mutant studies have indicated that red light plays a role in

the regulation of SD light suppression during flowering. Early flowering

of the red-light receptor PHYBmutant phyB-5 is not associated with FT

transcription and is independent of the GA pathway (Blázquez and

Weigel, 1999). However, the early flowering phenotype of srr1 and hrb1

mutants of the red-light pathway has been observed to suppress

flowering by repressing FT transcription (Johansson and Staiger,

2014; Kang et al., 2007). This suggests that the mechanism by which

red light inhibits flowering is complex and requires further investigation.

5.2.3 Mechanisms of FT inhibition of plant
response to GA

Under SD conditions, GA promotes flowering independently of

the FT pathway by binding to the GA response element in the LFY

promoter and promoting its transcription (Blázquez et al., 1998;

Eriksson et al., 2006). However, when GA4 was externally applied

under SD conditions, ft-1 flowered earlier than Col (Wang et al., 2009)

and the ft/tsf double mutant flowered later than Col (Porri et al., 2012),

suggesting that deletion of FT increased GA sensitivity of the plants,

whereas deletion of both FT and TSF decreased GA sensitivity of the

plants; however, the mechanism remains to be investigated.
5.3 Mechanisms involved in the
GA pathway

5.3.1 Unstudied key components of the GA
pathway with flowering

The GA receptor GID1 has three homologous genes inA. thaliana:

GID1a, GID1b, and GID1c, which are functionally redundant in

regulating the GA signaling pathway (Griffiths et al., 2006). The

gida-1/gidb-1/gidc-1 triple mutant does not exhibit flowering under

LD conditions, continuous light, or gibberellic acid (GA3) (Griffiths

et al., 2006). Although there is a paucity of data regarding the flowering

of this mutant under SD conditions, it probably does not flower.

Further studies are needed to verify this hypothesis. Moreover, the

flowering function of SLY1, a pivotal component of the GA pathway,

under SD conditions, remains to be elucidated.

5.3.2 Mechanism of co-regulation of flowering by
GA and sucrose

Although GA4 plays a significant role in the flowering process,

there was not a simple linear relationship between GA4 and LFY
Frontiers in Plant Science 14
transcripts during the vegetative phase. Until the transition to the

reproductive phase, when GA4 synthesis commences in substantial

quantities and LFY transcripts increase, which may be associated

with the varying levels of sucrose at different times (Eriksson et al.,

2006), the mechanism by which GA and sucrose interact to

stimulate flowering in SD remains uninvestigated.
5.4 Suggestions for crop breeding

Flowering is an important trait for improving crop yields

(Carrera et al., 2024). A. thaliana, as a model plant, still has the

ability to mine potential reference gene resources. In this article, it is

summarized that A. thaliana achieves the suppression of FT under

SD through multiple pathways, and the suppression of GA by the

plant at the juvenile stage. So in the future, we can mine breeding

resources from these two aspects in SD. Firstly, we can explore the

genes that are the main regulators of FT in SD, such as mutants with

extreme early flowering phenotypes, such as elf3, elf8,cry1-L407F

(gain of function), etc, and mutants with flowering phenotypes only

in SD, such as vil1, vip4-2, prr7-11, vip5-1, etc. Secondly, the

research on the juvenile stage regulation of gibberellin in

A. thaliana under SD condition is in-depth,exploring more

primary repressors in this period is the most important task.

Modulating them to access different seed resources through

biotechnology (e.g., CRISPR-Cas) is more efficient.
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Latrasse, D., Germann, S., Houba-Hérin, N., Dubois, E., Bui-Prodhomme, D.,
Hourcade, D., et al. (2011). Control of flowering and cell fate by lif2, an rna binding
partner of the polycomb complex component lhp1. PloS One 6, e16592. doi: 10.1371/
journal.pone.0016592

Laubinger, S., Marchal, V., Gentilhomme, J., Wenkel, S., Adrian, J., Jang, S., et al.
(2006). Arabidopsis spa proteins regulate photoperiodic flowering and interact with the
floral inducer constans to regulate its stability. Development 133, 4608–4608.
doi: 10.1242/dev.02481

Lazaro, A., Mouriz, A., Piñeiro, M., and Jarillo, J. A. (2015). Red light-mediated
degradation of constans by the E3 ubiquitin ligase hos1 regulates photoperiodic
flowering in arabidopsis. Plant Cell 27, 2437–2454. doi: 10.1105/tpc.15.00529

Lazaro, A., Valverde, F., Piñeiro, M., and Jarillo, J. A. (2012). The E3 Ubiquitin Ligase
HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of
Flowering. Plant Cell 24, 982–999. doi: 10.1105/tpc.110.081885

Lee, I., Aukerman, M. J., Gore, S. L., Lohman, K. N., Michaels, S. D., Weaver, L. M.,
et al. (1994). Lsolation of luminidependens: A gene lnvolved in the control of flowering
time in arabidopsis. Plant Cell 6, 75–83. doi: 10.1105/tpc.6.1.75

Lin, K., Zhao, H., Gan, S., and Li, G. (2019). Arabidopsis elf4-like proteins efl1 and
efl3 influence flowering time. Gene 700, 131–138. doi: 10.1016/j.gene.2019.03.047

Liu, L., Adrian, J., Pankin, A., Hu, J., Dong, X., Von Korff, M., et al. (2014). Induced
and natural variation of promoter length modulates the photoperiodic response of
flowering locus T. Nat. Commun. 5, 4558. doi: 10.1038/ncomms5558

Liu, C., Chen, H., Er, H. L., Soo, H. M., Kumar, P. P., Han, J. H., et al. (2008). Direct
interaction of agl24 and soc1 integrates flowering signals in arabidopsis. Development
135, 1481–1491. doi: 10.1242/dev.020255

Liu, T. L., Newton, L., Liu, M. J., Shiu, S. H., and Farré, E. M. (2016). A G-box-like
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