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The agricultural sector faces persistent threats from plant diseases and pests, with

Tuta absoluta posing a severe risk to tomato farming by causing up to 100% crop

loss. Timely pest detection is essential for effective intervention, yet traditional

methods remain labor-intensive and inefficient. Recent advancements in deep

learning offer promising solutions, with YOLOv8 emerging as a leading real-time

detection model due to its speed and accuracy, outperforming previous models in

on-field deployment. This study focuses on the early detection of Tuta absoluta-

induced tomato leaf diseases in Sub-Saharan Africa. The first major contribution is

the annotation of a dataset (TomatoEbola), which consists of 326 images and 784

annotations collected from three different farms and is now publicly available. The

second key contribution is the proposal of a transfer learning-based approach to

evaluate YOLOv8’s performance in detecting Tuta absoluta. Experimental results

highlight the model’s effectiveness, with a mean average precision of up to 0.737,

outperforming other state-of-the-art methods that achieve less than 0.69,

demonstrating its capability for real-world deployment. These findings suggest

that AI-driven solutions like YOLOv8 could play a pivotal role in reducing

agricultural losses and enhancing food security.
KEYWORDS

artificial intelligence in agriculture, dataset, detection, Tuta absoluta, tomato leaf
diseases, YOLOv8
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GRAPHICAL ABSTRACT
Highlights
Fron
• Annotated the TomatoEbola dataset for precise

identification of healthy and diseased tomato leaf regions.

• We developed a YOLOv8-based approach for effective

detection of Tuta absoluta-induced diseases in tomato leaves.

• Experimental results highlighted the model’s superior

performance and effectiveness.

• The findings demonstrated the model’s real-world

applicability in agricultural settings.
1 Introduction

In recent years, the agricultural sector has faced significant

challenges in ensuring food security due to various factors,

including weather and climate conditions, soil degradation,

diseases, pests, and environmental pollution (Uygun and

Ozguven, 2024). The rise in plant diseases and pest species,

exacerbated by climate change, has resulted in increasingly severe

crop losses, making it essential to manage these threats to safeguard

agricultural productivity (Chakraborty and Newton, 2011).

hlClimate change influences pest proliferation by altering

temperature and precipitation patterns, thereby extending pest

lifecycles and expanding their geographical range, further

threatening food security.

Globally, the effects of climate change are being felt across many

aspects of life, from heatwaves in Europe and bushfires in Australia

to floods caused by Cyclone Gabrielle in New Zealand (Lam and

Roy, 2020; Xu et al., 2023). One growing concern is the impact of

shifting weather patterns on food security, along with the

heightened risk of flooding due to rising sea levels (Lee et al., 2024).

Besides climate change, the complexity of addressing food

security has intensified due to factors such as rapid population

growth and significant food losses caused by pests. These challenges

have made food security one of the most urgent issues facing
tiers in Plant Science 02
nations today (Subedi et al., 2023). Pests alone cause billions of

dollars in damage annually by destroying fruits and crops, and

climate change accelerates their spread by creating more favorable

conditions for their survival and reproduction (Agboka et al., 2022;

Niassy et al., 2022).

Tomatoes are a major vegetable crop globally, ranking as the

world’s top vegetable by output, with annual production exceeding

190 million tons and an average per capita consumption of about 20

kg per year. However, they are highly susceptible to a range of

diseases, including the South American tomato pinworm, Tuta

absoluta (Meyrick) (Lepidoptera: Gelechiidae), which leads to

significant economic losses for growers (Bergougnoux, 2014;

Biondi et al., 2018).

A study has found that Tuta absoluta poses a significant threat to

tomato crops and can lead to up to 100% crop losses (Desneux et al.,

2010) in various regions, including Europe (Campos et al., 2017), Asia

(Han et al., 2019), and Africa (Tonnang et al., 2015). Thus, real-time

and early detection of Tuta absoluta is crucial for improving pest

management decisions and safeguarding tomato yield. Traditional

detection of tomato diseases by agricultural personnel is subjective,

cumbersome, and time-consuming, leading to a growing demand for

innovative, automated, and environmentally friendly pest detection

methods (Georgantopoulos et al., 2023).

To bridge this gap, image processing techniques combined with

machine learning methods, particularly deep learning algorithms

like Convolutional Neural Networks (CNNs) and YOLO (You Only

Look Once) models (Redmon et al., 2016), are essential for

agricultural pest detection, enabling precise identification and

localization of diseases from images (Peng et al., 2023; Badgujar

et al., 2024). These detection techniques efficiently process images,

making them valuable for real-time detection in plant pest and

disease identification.

For example, a study by (Şahin et al., 2023) used YOLOv5 to

detect Tuta absoluta larvae and their damage in tomatoes. They

collected 1,200 photos of tomato leaves infested by the Tuta

absoluta pest to train the YOLOv5 algorithm. Their findings
frontiersin.org
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showed that the YOLOv5 algorithm could accurately categorize

tomato plant leaves and detect Tuta absoluta larvae and galleries,

achieving mean average precision (mAP) rates of 80% and 70-90%,

respectively. Similarly, studies by (Malunao et al., 2022; Brucal et al.,

2023) used YOLOv3 and YOLOv8 to detect tomato diseases and

achieved mean average precision rates of 0.983 and 0.989,

respectively. Furthermore, a study by (Ghaderi et al., 2019) used

YOLO and VGG16 to detect Tuta absoluta on a dataset gathered in

Tanzania. The models achieved a mean average precision of 0.935

with YOLO and a 91.9% accuracy with VGG16.

These studies, along with others conducted in Turkey (Uygun

and Ozguven, 2024), Greece (Giakoumoglou et al., 2023), and

Tanzania (Mkonyi et al., 2020), have proven these methods

effective in various regions where tomato leaf diseases,

particularly Tuta absoluta, have caused significant crop damage.

However, no study has been conducted to investigate the

effectiveness of these methods on Nigerian crops, despite Nigeria

being the largest tomato producer in Sub-Saharan Africa and the

14th largest globally (Rwomushana et al., 2019). Tuta absoluta has

devastated over 80% of Nigeria’s tomato yields in the past year alone

(Tarusikirwa et al., 2020), highlighting an urgent need for region-

specific solutions. Additionally, it remains unclear whether models

trained on datasets from other countries will generalize effectively to

the Nigerian farming environment, given its unique climatic and

agricultural conditions.

In a previous study, we created a new dataset of Tuta absoluta-

induced tomato leaf disease, termed the TomatoEbola dataset

(Shehu et al., 2025). This dataset was collected from three

different farms in Nigeria (Dikumari, Kasaisa, and Kukareta

farms), each representing different environmental conditions. To

evaluate the generalizability of early detection AI methods, we

proposed a transfer learning approach using transformers to

predict tomato leaf diseases, aiming to improve the model’s

adaptability across different datasets. Experimental results

demonstrated the effectiveness and generalizability of the

proposed approach on both the newly collected TomatoEbola

dataset and the widely used PlantVillage (Mohanty et al., 2016)

benchmark dataset, achieving an accuracy of up to 99.17%.

In contrast to other benchmark datasets, which are captured in

controlled environments with a single leaf per image, the

TomatoEbola dataset includes images with multiple leaves in a

single frame, which better represents actual conditions in the field.

Questions remain about the applicability of classification methods

in real-world scenarios for such datasets, especially given that a

single frame may contain both healthy and diseased leaves.

However, we know from other studies that YOLO models have

proven effective and are capable of detecting both healthy and

unhealthy leaves within the same frame (Liu and Wang, 2020a; Liu

et al., 2023; Ouf, 2023; Omaye et al., 2024; Wang Y. et al., 2024).

This is due to their ability to perform real-time object detection with

high accuracy, even in complex and cluttered environments.

Therefore, this study investigates the effectiveness of a YOLO

model, specifically YOLOv8, in detecting Tuta absoluta-induced

tomato leaf diseases on the TomatoEbola dataset, collected in

Nigeria. YOLOv8 was chosen due to its improved architecture,
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faster inference speed, and enhanced accuracy for detecting small

objects, such as pest larvae on leaves.

The main contributions of this work are as follows:
1. Annotate the TomatoEbola dataset with precise bounding

boxes, effectively delineating healthy and unhealthy regions on

tomato leaves to facilitate robust training and evaluation.

2. Propose a transfer learning approach for detection Tuta

absoluta-induced tomato leaf diseases utilizing the

advanced capabilities of the YOLOv8 model, tailored for

high accuracy in challenging agricultural environments.

3. Conduct comprehensive experimental evaluations to

demonstrate the model’s effectiveness, emphasizing

critical metrics such as real-time detection speed and

overall accuracy in diverse conditions.

4. Emphasize the potential of AI-driven solutions to

significantly reduce agricultural losses attributed to pests

like Tuta absoluta, paving the way for sustainable farming

practices and enhanced crop management.
This research advances the field of plant disease detection by

utilizing deep learning-based object identification algorithms to

promote more effective and sustainable management of tomato

leaf diseases.

The remainder of the paper is structured as follows: Section 2

provides an overview of the history, lifecycle, and impact of Tuta

absoluta on tomato plants. It also discusses the technical barriers

hindering early detection of tomato leaf diseases, object detection

techniques, and the YOLO series, highlighting their advantages and

explaining the choice of YOLOv8 over other models. Additionally,

recent research on plant leaf disease detection using state-of-the-art

methods is reviewed. Section 3 describes the study area, image

acquisition procedure, dataset creation and annotation process,

dataset characteristics, and augmentation techniques used to

enhance data diversity. The section concludes by introducing the

study methodology. Section 4 presents the experimental work,

including the hardware setup, results obtained by the proposed

method, and comparisons with relevant studies and state-of-the-art

techniques. Section 5 discusses the results in detail, identifies

limitations, and suggests directions for future research. Finally,

Section 6 concludes the paper.
2 Background

2.1 Tuta absoluta tomato leaf diseases

Tuta absoluta was originally described as Phthorimaea absoluta

by Meyrick in 1917 from specimens found in Huancayo, Peru, and

has been reclassified several times under genera such as

Gnorimoschema, Scrobipalpula, and Scrobipalpuloides. It was

officially renamed Tuta absoluta in 1994 (Biondi et al., 2018), and

it is commonly known as the South American tomato pinworm

(Crespo-Pérez et al., 2015).
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The feeding behavior of Tuta absoluta makes early infestation

detection difficult, often resulting in severe damage to young plants.

Additionally, its feeding on fruits diminishes their appearance, raising

the expenses of post-harvest sorting before they can be marketed (De

Castro et al., 2013). Tuta absoluta is known for its ability to feed,

survive, and reproduce successfully on a diverse range of host plants

(Arnó et al., 2019), including tomato (Sylla et al., 2019). It has a life

cycle of 26 to 75 days and developmental thresholds between 14 °C and

36 °C, within a humidity range of 32% to 72% (Martins et al., 2016).

During the 1960s, Tuta absoluta was reported to have spread

from the central highlands of Peru to several other Latin American

countries (Campos et al., 2017; Biondi et al., 2018). Since then, it has

been detected in numerous countries, including Spain in 2006

(Aigbedion-Atalor et al., 2020), Italy in 2008 (Speranza and

Sannino, 2012), South Africa in 2016 (Son et al., 2017), and

Nigeria in 2010 (Tarusikirwa et al., 2020), as well as other

tomato-growing regions along the Mediterranean coast. Please

refer to (de Campos et al., 2021) for more discussion on the

biology, lifecycle, and global spread of Tuta absoluta.

The Tuta absoluta pest poses a significant threat to tomato

production (Desneux et al., 2011). For instance, recent studies have
Frontiers in Plant Science 04
revealed that Tuta absoluta has damaged over 80% of tomato crops

in Nigeria (Tarusikirwa et al., 2020). However, while the pest’s

impact has been extensively studied in other countries, including

Greece, Tanzania, and Turkey (see Table 1), there remains a gap in

research regarding the use of AI methods in detecting Tuta

absoluta-induced tomato leaf diseases. No study has yet been

conducted to investigate the effectiveness of AI approaches for

this purpose based on a dataset collected from Nigeria, the largest

tomato producer is Sub-Sahara Africa, where the prevalence and

severity of Tuta absoluta infestations continue to rise, impacting the

livelihoods of local farmers. Therefore, this study aims to evaluate

the capability of AI methods, specifically a YOLO model, in

detecting tomato leaf diseases caused by Tuta absoluta, based on

a dataset collected in Nigeria.
2.2 Technical barriers

Early detection of Tuta absoluta infestations in tomato plants is

hindered by several technical challenges, including the small size of

lesions and the ambiguity of symptoms. The initial damage appears
TABLE 1 Recent studies have been conducted on detecting Tuta absoluta tomato plant leaf disease.

Reference Dataset Collection
Mode

Method Parameters Data
Grouping

Country Performance

(Mkonyi et al., 2020) Collected Photography VGG16 Epochs = 1000
Batch size = 8
Optimizer = sigmoid
lr = 1e-5
Dropout = 0.5
Momentum = 0.9
Early stopping =
50 epochs

85-15 split Tanzania 91.9%

(Giakoumoglou et al., 2023) Collected Photography Faster
R-CNN

Epochs = 20000
Batch size = 2
Optimizer = sigmoid
lr = 1e-3
Momentum = 0.9

60-40 split Greece mAP = 0.58

(Loyani et al., 2021) Collected Photography CNN Epochs = 200
Batch size = 1
lr = 1e-3
Decay = 1e-4
Momentum = 0.9

80-20 split Tanzania 85.67%

(Uygun and Ozguven, 2024) Collected Photography YOLO Epochs = 100
Batch size = 8
lr = 1e-2
Optimizer = sigmoid
Decay = 5e-4
Momentum = 0.937

70-30 split Turkey mAP = 0.935

(Bütüner et al., 2024) Collected Photography Decision
Tree

- 80-20 split Turkey 98.7%

(Loyani and Machuve, 2021) Collected Photography CNN Epochs = 200
lr = 1e-2
Optimizer = Adam

80-20 split Tanzania 70%

(Loyani, 2024) Collected Photography CNN Epochs = 200
lr = 1e-3

80-20 split Tanzania mAP = 0.857
Note that lr, learning rate; mAP, mean average precision. All studies used accuracy as an evaluation metric, except for those that explicitly report mAP.
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as minor mines or blotches on leaves, often making it difficult to

distinguish from other plant stressors (Rwomushana et al., 2019).

The larvae’s feeding habits further complicate detection, as they

tunnel inside leaves, stems, and fruits while leaving the epidermis

intact. This concealed activity makes infestations less noticeable in

the early stages, leading to potential delays in diagnosis

(Rwomushana et al., 2019).

Moreover, the diversity in symptoms across different tomato

leaf diseases adds another layer of complexity. Symptoms vary in

size and appearance, and certain diseases, such as tomato leaf mold

and late blight, exhibit lesions that are highly sensitive to

environmental factors like light exposure, making them harder to

differentiate (Wang Y. et al., 2024).

These challenges are particularly relevant to Tuta absoluta-

induced damage, which often presents with overlapping visual

symptoms. Distinguishing Tuta absoluta infestations from fungal

infections or nutrient deficiencies can be difficult, increasing the risk

of misclassification in automated detection systems. This

underscores the need for carefully curated training datasets that

reflect real-world farming conditions. Factors such as humidity,

temperature, and light exposure must be considered when

collecting data, as they can influence symptom expression. Thus,

ensuring that AI models are trained on diverse, high-quality data is

critical for improving their ability to accurately detect and

differentiate subtle variations in tomato plant diseases.
2.3 Object detection

Object detection is a computer vision technique that identifies

and locates objects within images or videos (Zhao et al., 2019).

Unlike image classification, it provides object positions with

bounding boxes, enabling the detection of multiple objects

simultaneously. Using deep learning algorithms, often

Convolutional Neural Networks (CNNs), object detection predicts

the location and class of each object. It is vital in applications like

autonomous driving (Qian et al., 2022), surveillance (Kumar et al.,

2020), medical imaging (Ragab et al., 2024), and agriculture

(Badgujar et al., 2024).

Popular models include Faster R-CNN (Girshick, 2015) for high

accuracy, SSD (Liu et al., 2016) for real-time processing, and
Frontiers in Plant Science 05
RetinaNet (Lin et al., 2017) for handling class imbalance. In

contrast, YOLO (You Only Look Once) (Redmon et al., 2016)

series, including versions from YOLOv1 to YOLOv12 (see Section

2.4), are widely used for their speed and versatility. Their ability to

process images in a single pass while maintaining competitive

accuracy makes them ideal for detecting Tuta absoluta-induced

tomato diseases, where rapid identification is crucial for

timely intervention.
2.4 You only look once model

YOLO (You Only Look Once) (Redmon et al., 2016) is widely

used for real-time object detection, including in plant pest and

disease detection. Figure 1 demonstrates the timeline for the release

of different YOLO versions. Since its introduction, the YOLO family

has progressed through several iterations, with each version

advancing from the previous ones to overcome limitations and

improve performance (Terven et al., 2023).

Its versions, such as YOLOv2 (Redmon and Farhadi, 2017),

YOLOv3 (Redmon, 2018), YOLOv4 (Bochkovskiy et al., 2020),

and YOLOv5 (Jocher, 2020), have advanced in accuracy and

speed, with YOLOv3 introducing multi-scale prediction and

YOLOv4 enhancing GPU optimization. YOLOv6 (Li et al.,

2022) focuses on edge device deployment, while YOLOv7

(Wang et al. , 2023) refines architecture for speed and

generalization. YOLOv8 (Solawetz and Francesco, 2023)

improves object scaling and interpretability, crucial for

detecting small or subtle disease symptoms on tomato leaves

(Ahmed and Abd-Elkawy, 2024; Ma et al., 2024), making it ideal

for this study. YOLOv9 (Wang C-Y. et al., 2024) and YOLOv10

(Wang A. et al., 2024) further enhance performance with neural

architecture search and transformer modules. YOLOv11

(Ultralytics, 2024) optimizes speed and accuracy with fewer

parameters, and finally, YOLOv12 (Tian et al . , 2025)

introduced an attention-centric framework, outperforming

earlier versions in terms of performance.

YOLOv8’s auto-scaling and improved interpretability make it

the model of choice for agricultural disease management (Quach

et al., 2024).
FIGURE 1

Timeline showing the release of YOLO versions.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1524630
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shehu et al. 10.3389/fpls.2025.1524630
2.5 State-of-the-art methods in plant
disease detection

Deep learning, as the state-of-the-art method in plant leaf

disease detection, has achieved promising accuracy and

robustness in various real-world applications. For instance, the

transformer architecture has been modified to support computer

vision tasks through the Vision Transformer (ViT) (Thakur et al.,

2021). Similarly, deep Convolutional Neural Network (CNN)

approaches like GoogleNet, ResNet, VGG, Inception, and

EfficientNet have all been applied to various plant disease

detection tasks (Ferentinos, 2018; Shaheed et al., 2023).

Swami et al. (2022) proposed a VGG architecture to detect

tomato diseases by analyzing the leaves through a combination of

transfer learning on the Plant Village dataset. Similarly, Shi et al.

(2022) applied transfer learning to retrain an EfficientNetV2 model

to detect tomato diseases. The proposed model not only achieved

state-of-the-art performance but was also deployed in the field

through a hosted instance in the cloud and an integrated Android

application for real-time disease identification and monitoring.

In addition, object detection frameworks like YOLO and Faster

R-CNN have also been applied to plant disease detection tasks.

These models are suitable for real-time object detection, capable of

processing images at high speeds while maintaining accuracy.

For instance, Yu et al. (2023) modified the CNN architecture in

YOLOv5 to shrink the parameters, introduced an attention

mechanism, and modified the loss function to detect tomato

diseases with improved model speed and efficiency. The Faster R-

CNN model has been proposed to detect tomato leaf diseases from

images, achieving a mean average precision of 0.58, which was

considered reasonable due to the complexity of the data and the
Frontiers in Plant Science 06
challenges of implementing a real-time study (Giakoumoglou

et al., 2023).

However, these state-of-the-art methods have their limitations.

For instance, CNN-based models often require large datasets for

optimal performance, making them less effective in cases with

limited labeled data. Additionally, transformer-based models like

ViT, while effective, demand high computational resources, limiting

their deployment in real-time applications. Object detection models

such as YOLOv5 and Faster R-CNN, although efficient, may

struggle with accurately detecting subtle lesions due to variations

in disease appearance and environmental factors. To address these

limitations, this study proposes a transfer learning approach using

YOLOv8. This approach leverages pre-trained weights to enhance

feature extraction, improving detection accuracy while maintaining

computational efficiency. Additionally, the model is optimized for

real-time deployment, ensuring practical applicability in

field conditions.
3 Materials and methods

3.1 Data collection

This section details the collection of tomato leaf images from

three farms in Yobe State, Northern Nigeria, emphasizing the

geographical context and the creation of the dataset.

3.1.1 Study area
Tomato leaf images were obtained from three prominent farms

situated in Yobe State, Northern Nigeria. The location of the data

collection is illustrated in Figure 2. These images were gathered
FIGURE 2

Map of the study location highlighting Yobe State, Nigeria. The cardinal directions (N, S, E, and W) are indicated on the map to assist in orientation.
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during the early rainy season, starting with farms in the Dikumari

and Kukareta districts in late May 2024, followed by collection from

a farm in the Kasaisa district in mid-June 2024.

The approximate geographical locations of these farms are

depicted in Figure 3, as sourced from ArcGIS
1.

3.1.2 Image acquisition and dataset building
The study adhered to established protocols and guidelines,

emphasizing the capture of images of both healthy tomato leaves

and those affected by varying degrees of infestation, particularly

focusing on leaves infested with Tuta Absoluta. The images were

captured based on expert evaluation of symptoms, ensuring that the

selection process accurately represented the various stages of

infestation. A Nikon D610 camera, featuring a 24.3MP FX-format

CMOS sensor and capable of continuous shooting at 6 frames per

second, was used with a 50mm lens positioned 1.3 meters above the

leaves during image capture. To maintain image quality, the camera

was kept at a consistent distance from the leaves, and images were

taken around midday in optimal natural lighting conditions,

utilizing appropriate settings to minimize noise.

From the naturally captured images of diseased leaves, 326

images representing various health conditions of the tomato leaves

were selected. This included 174 images of leaves with different

levels of infestation and 152 images of healthy leaves collected from

the three farms. This selection led to the creation of a diverse dataset

of 326 images that include both healthy and diseased tomato leaves

in their natural setting. The newly formed dataset, referred to as the

TomatoEbola dataset, serves as a robust resource for further

analysis and model training.
1 ArcGIS (Esri, 2024) is a geographic information system that enables

mapping, analysis, and visualization of spatial data, facilitating the creation

of detailed maps and spatial analyses.
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Further details about the dataset can be found in Section 3.2.
3.2 TomatoEbola dataset

This section provides a description, annotation, augmentation,

and characteristics of the TomatoEbola datasets captured from the

three farms.
3.2.1 Description
The TomatoEbola dataset is a newly curated dataset designed to

address the specific challenges posed by tomato leaf diseases,

particularly the Tomato Leafminer Tuta absoluta, which is

prevalent in certain regions. This dataset, collected from three

farms in Yobe State, Nigeria (see Figure 3), includes a

comprehensive collection of images depicting both healthy and

infected tomato leaves. Focusing on region-specific data, the

TomatoEbola dataset aims to complement existing datasets,

providing valuable information that enhances the accuracy and

generalizability of disease prediction models.

Figure 4 depicts sample images from the TomatoEbola dataset.

A detailed breakdown of the images from the TomatoEbola dataset

can be found on Table 2.
3.2.2 Annotation
All annotations for the datasets were performed using the

Roboflow software (Roboflow, 2024a). This tool facilitated the

labeling process by allowing precise and efficient annotation of

image data. Supplementary Figure 1 provides a visualization of the

statistical analysis of the bounding box labels.

Table 2 provides a summary of the total number of annotations

performed on each class of images within the datasets. Each image

was manually labeled by experts to ensure accurate identification of
FIGURE 3

Map showing the locations of the three farms in Yobe State, Nigeria.
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healthy and infected leaves. However, the annotation of subtle

lesions required additional scrutiny to maintain consistency

across the dataset.

It is worth noting that no augmentation techniques (see 3.2.3)

were applied during the creation of these datasets. Consequently, all
Frontiers in Plant Science 08
labeled images are original and were captured directly from their

respective environments. This ensures that the dataset reflects real-

world conditions without additional modifications, preserving its

authenticity. Researchers who wish to train their models may

choose to use augmentation to increase the diversity of the dataset.
FIGURE 4

Examples of tomato leaves from the TomatoEbola dataset. Each set contains healthy and unhealthy images from (a) Kasaisa, (b) Dikumari, and (c)
Kukareta farms.
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3.2.3 Augmentation
The augmentation pipeline consists of several image

transformations de-signed to enhance the diversity and

robustness of the training dataset.

Augmentation techniques were applied to increase both the size

and diversity of the training data. Hue, saturation, and value (HSV)

Shift modifies the hue, saturation, and value of the image to

simulate different lighting conditions. Translation shifts the image

by 10% of its dimensions, providing variation in positioning.

Scaling reduces the image size by half while maintaining its

aspect ratio through resizing and padding. Horizontal Flip creates

a mirrored version of the image, offering an alternative perspective.

Mosaic combines four images into a single composite image,

preserving the contextual relationships among them. Random

Erasing randomly removes a significant portion (40%) of the

image to introduce occlusions, encouraging the model to focus on

other features. Lastly, RandAugment randomly selects and applies

an augmentation technique, which, in this case, is a vertical flip of

the image, introducing variability and preventing overfitting

during training.

Together, these methods enrich the dataset, enabling the model

to generalize better to unseen data.

3.2.4 Characteristics
Table 2 summarizes the key characteristics of the Kasaisa,

Dikumari, and Kukareta datasets. Each dataset varies in the

number of images, annotation count, and median image ratios,

reflecting differences in data complexity and class distribution.

Kasaisa has the highest average annotations per image, while

Dikumari has the largest median image ratio and image size.

Kukareta shows a balanced number of annotations but has a

smaller image size compared to Dikumari, providing a diverse

representation of healthy and infected annotations across

the datasets.

Figure 5 shows the correlogram distribution graphs of the

bounding box labels from the data collected at (a) Kasaisa, (b)

Dikumari, and (c) Kukareta farms. These graphs illustrate the

spatial distribution and density of disease occurrences within the

images from each farm, highlighting potential differences in

disease patterns and spread across the datasets . The

visualization provides insights into how diseases manifest

differently at each site, which could impact the development

and evaluation of detection models.
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3.3 YOLOv8

YOLOv8 is a state-of-the-art deep learning model designed for

various computer vision tasks, including object detection,

segmentation, pose estimation, tracking, and classification (see

Section 2). It offers five scaled versions tailored to different

computational and performance needs: YOLOv8n (nano),

YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and

YOLOv8x (extra-large). Each version balances accuracy and

speed, allowing researchers to select the most suitable model for

their specific application.

Figure 6 presents an overview of the approach for predicting

tomato leaf diseases. In this study, we utilized the YOLOv8l (large)

version. This choice was primarily based on empirical findings (see

Section 4.4) demonstrating that YOLOv8l is particularly well-suited

for detecting tomato leaf diseases from the TomatoEbola dataset,

characterized by a small sample size. Thus, its efficiency, providing a

balance between precision and lower computational requirements,

makes it ideal for tasks such as this, requiring real-time

object detection.

YOLOv8l was employed to perform object detection by

predicting bounding boxes and class probabilities in a single

forward pass through the network. The procedure involves

dividing the input image into a grid of cells, each responsible for

detecting objects within its region. For each cell, the model predicts

bounding boxes, class probabilities, and confidence scores. The

model optimizes a multi-part loss function L that combines

classification loss Lcls, localization loss Lloc, and objectness loss

Lobj, as shown in Equation 1.

L = lclsLcls + llocLloc + lobjLobj (1)

where lcls, lloc, and lobj are the weights balancing the

contributions of each component. The classification loss Lcls

measures the accuracy of class predictions, the localization loss

Lloc assesses the precision of the predicted bounding box

coordinates, and the objectness loss Lobj evaluates the likelihood

that the predicted boxes contain objects. This combination of losses

ensures that the model not only learns to classify objects accurately

but also improves the precision of bounding boxes, crucial for

detecting the subtle symptoms of tomato leaf diseases with

high accuracy.

Finally, we filtered redundant and irrelevant bounding boxes

using the Non-Maximum Suppression (NMS) algorithm with a
TABLE 2 Summary of the Kasaisa, Dikumari, and Kukareta Datasets.

Farm

Images Annotations Image Properties

Total Avg. Annotations Total Healthy Infected Size (megapixel) Median Ratio

Kasaisa 122 2.6 319 138 181 0.62 667x906

Dikumari 101 2.1 217 117 100 2.24 1345x1673

Kukareta 103 2.4 248 164 84 0.87 929x943
The table provides details on the number of images, total annotations, average annotations per image, image size, median image ratio, and the distribution of healthy and infected annotations for
each dataset.
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threshold (T) value of 0.5 (see Algorithm 1). Bounding boxes with

confidence scores below this threshold were removed, retaining

only those with scores above T in the final output (see Figure 7).
Input: Set of predicted bounding boxes B,

confidence scores S, IoU threshold t, confidence

threshold T

Output: Set of filtered bounding boxes F

F ← 0

Filter the boxes: B←fb eB jS(b) ≥ Tg;

Sort the boxes B by their confidence scores in

decending order;

while B ≠ 0 do

Select the box b with the highest confidence

score;

Add b to the set of final boxes F :  F←F ∪ fbg;

Remove b from the set of boxes B :  B←B − fbg;

for all remaining boxes r in B do

Calculate the IoU between b and r: iou ← IoU(b,

r);

if iou ≥ t then

Remove r from the set of boxes B :  B←B − frg;
Algorithm 1. Non-Maximum Suppression Algorithm
4 Experimental work

4.1 Hardware specification

A MacBook M1 laptop with 16 GB RAM, an M1 GPU, and a

512 GB SSD was used for these experiments.
FIGURE 5

Correlogram distribution graphs of the bounding box labels of the
data from (a) Kasaisa, (b) Dikumari, and (c) Kukareta farms.
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4.2 Parameter settings

A number of different parameters, such as varying epochs,

learning rates, and batch sizes, have been experimented with

during the model training phase. Among these, the parameters

listed in Table 3 provided the best accuracy results.
4.3 Evaluation metrics

The evaluation metrics used are precision, recall, and mean

average precision (mAP). These metrics provide insights into the

effectiveness of the model in terms of its accuracy and ability to

detect the desired classes.
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4.3.1 Precision
Precision measures the proportion of true positive detections

among all positive detections made by the model. The formula for

computing recall is given in Equation 2.

Precision =
TP

TP + FP
(2)

where TP represents the number of true positives and FP

represents the number of false positives.

4.3.2 Recall
Recall measures the proportion of true positive detections

among all actual positive instances. The formula for computing

recall is given in Equation 3.
FIGURE 6

Overview of an end-to-end method for predicting Tuta absoluta in tomato leaves using YOLOv8.
FIGURE 7

Exemplar predictions by the YOLOv8l model (a) before and (b) after filtering irrelevant bounding boxes using the Non-Maximum
Suppression algorithm.
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Recall =
TP

TP + FN
(3)

where TP represents the number of true positives and FN

represents the number of false negatives.

4.3.3 Mean average precision
Mean Average Precision, as presented in Equation 4, is the

average of the average precision scores for each class. Average

Precision (AP) for a class is calculated by taking the area under the

precision-recall curve for that class.
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mAP =
1
No

N

i=1
APi (4)

where N is the number of classes and APiis the average precision

for the i-th class.

These metrics are computed for each dataset and summarized

to assess the overall performance of the YOLOv8l model.
4.4 Empirical findings

Table 4 presents the performance evaluation of various

YOLOv8 model variants on the Kasaisa dataset.

YOLOv8l stands out as the optimal choice due to its balanced

trade-off between accuracy and inference speed. It achieves a high

mAP of 0.737, surpassing all other variants except YOLOv8x, while

maintaining a manageable inference time of 1072.5 ms, which is

significantly lower than that of YOLOv8x (1447.1 ms).

Furthermore, it delivers consistent results across all classes, with

both precision and recall exceeding 0.52 for healthy and infected

categories. In contrast, the other variants have at least one class

falling below this threshold. Thus, YOLOv8l is the preferred model

for this task.
4.5 Experimental results

The following sections present the experimental results,

highlighting the performance of the proposed model across

different datasets, each reflecting various conditions.
TABLE 3 Summary of training parameters used for model optimization.

Parameter Value

Epochs 100

Batch Size 16

Image Size 640 x 640

Workers 8

Learning Rate (lr) 0.01

Momentum 0.937

Weight Decay 0.0005

Warmup Epochs 3.0

Warmup Momentum 0.8

Warmup Bias Learning Rate 0.1
The table lists key hyperparameters that were used during the training process to enhance
model performance.
TABLE 4 Performance evaluation of YOLOv8 model variants on the Kasaisa dataset.

Model Class Instances P R mAP Inference

YOLOv8n

Healthy 10 0.871 0.7 0.806

228.6Infected 18 0.764 0.444 0.535

All 28 0.817 0.572 0.67

YOLOv8s

Healthy 10 0.654 0.8 0.733

316.8Infected 18 0.435 0.778 0.643

All 28 0.544 0.789 0.688

YOLOv8m

Healthy 10 0.876 0.6 0.828

615.3Infected 18 0.791 0.444 0.625

All 28 0.834 0.522 0.727

YOLOv8l

Healthy 10 0.729 0.9 0.873

1072.5Infected 18 0.53 0.556 0.602

All 28 0.629 0.728 0.737

YOLOv8x

Healthy 10 0.586 1 0.858

1447.1Infected 18 0.728 0.3 0.621

All 28 0.657 0.65 0.74
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4.5.1 Performance analysis on multiple datasets
The results presented in Table 5 provide a comprehensive

performance evaluation of the YOLOv8l model across the

Kasaisa, Dikumari, and Kukareta datasets.

The model achieves comparable accuracy, as indicated by the

mAP, on the Kukareta and Kasaisa datasets, with scores of 0.733

and 0.737, respectively. In contrast, the Dikumari dataset shows a

lower mAP of 0.614, which may be attributed to the subtle changes

in the infected leaves within this dataset. These subtle variations can

make it challenging for the model to detect infections, sometimes

posing difficulties even for the human eye.

In terms of processing efficiency, Table 6 highlights the speed

metrics associated with each dataset.

The YOLOv8l model exhibits rapid preprocessing times across

all datasets, with the Kukareta dataset demonstrating the fastest

inference time at 1018.4 ms. However, the Kasaisa and Dikumari

dataset exhibits a significantly longer inference time (> 1072 ms),

likely due to the complexity of detecting subtle infections. The post-

processing times are relatively low for all datasets, indicating that

the model’s pipeline is efficient overall.

For a more detailed analysis of the model’s training

performance, the loss graphs for box and mask loss are presented

in Supplementary Figures 2-4.

Additionally, the confusion matrix for the YOLOv8l model is

shown in Figure 8, providing insights into the model’s classification

performance across different classes.
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Overall, the findings suggest that the YOLOv8l model is

effective in detecting plant diseases, with certain datasets posing

more challenges than others. The combination of high accuracy

and efficient processing times demonstrates the model’s

potent ia l for rea l -wor ld appl icat ions in agr icul tura l

disease detection.
TABLE 6 Speed metrics for the Kasaisa, Dikumari, and Kukareta datasets.

Dataset Preprocess
(ms)

Inference
(ms)

Postprocess/
Image (ms)

Kasaisa 1.1 1072.5 0.4

Dikumari 1.0 1072.2 0.3

Kukareta 1.4 1018.4 0.4
All times for each processing stage are reported in milliseconds (ms).
FIGURE 8

Normalized confusion matrix from (a) Kasaisa, (b) Dikumari, and (c)
Kukareta farms, showing classification results of healthy and
unhealthy tomato leaves from the TomatoEbola dataset.
TABLE 5 Performance evaluation of the YOLOv8l model on the Kasaisa,
Dikumari, and Kukareta Datasets.

Dataset Class Instances P R mAP

Kasaisa

Healthy 10 0.729 0.9 0.873

Infected 18 0.53 0.556 0.602

All 28 0.629 0.728 0.737

Dikumari

Healthy 9 0.819 0.889 0.822

Infected 11 0.695 0.273 0.406

All 20 0.757 0.581 0.614

Kukareta

Healthy 20 0.747 0.75 0.825

Infected 9 0.73 0.556 0.64

All 29 0.738 0.653 0.733
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4.5.2 Sample prediction outcomes
The results depicted in Figure 9 clearly illustrate the

effectiveness of the proposed method in accurately identifying

infected areas in images from the TomatoEbola dataset. Each pair

of original and detected images demonstrates the model’s ability to

highlight the specific regions affected by disease, providing a visual

confirmation of its detection capabilities.
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Moreover, the accurate delineation of infected regions across both

datasets reinforces the robustness of the YOLOv8 large model. This

level of precision is crucial for timely and effective disease

management in agricultural practices, enabling farmers to make

informed decisions based on the model’s predictions. Overall, the

figure highlights the method’s reliability in detecting plant diseases,

contributing significantly to advancements in agricultural diagnostics.
FIGURE 9

Original images (a, c, e) and detected (b, d, f) regions of diseases using the YOLOv8 large model. Each pair illustrates the identified infected areas in
images from the TomatoEbola dataset.
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4.5.3 Comparison with state-of-the-art object
detection models

Here, results are presented with upper and lower bound of 95%

confidence interval obtained from multiple independent test runs.

Table 7 presents a comparison of the proposed approach with

state-of-the-art methods, specifically Faster-RCNN, YOLOv5l, and

YOLOv8n, across three subsets of the TomatoEbola dataset

(Kasaisa, Dikumari, and Kukareta).

As can be seen, the results indicate that the proposed approach

achieves higher performance compared to the state-of-the-art

methods across all three TomatoEbola datasets, suggesting that

the method demonstrates more stable performance across different

datasets, further strengthening its robustness.

The differences in performance are statistically significant, as

evidenced by a two-sample t-test (all p <.005), indicating that the

proposed method is not only robust but also dependable for

practical applications, highlighting its effectiveness in detecting

tomato leaf diseases. This makes it a more reliable choice than

the existing state-of-the-art models.

4.5.4 Comparison with similar studies
The results presented in Table 8 demonstrate that although this

is not a direct comparison, the proposed approach has shown a

marked improvement over other methods in predicting plant

diseases, including those affecting tomato leaves.
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This indicates that the methodologies employed in the proposed

framework are effective in enhancing detection accuracy and

performance. These findings highlight the robustness and

superiority of the proposed method, making it a valuable tool for

accurate and efficient tomato leaf disease detection.

4.5.5 Overall impact
In contrast to traditional approaches, such as widespread

pesticide application, the AI-driven solution offers a more

sustainable and targeted method for managing pests like Tuta

absoluta. By enabling precise detection of affected areas, farmers

can apply pesticides only to the infested regions or remove damaged

crops before the pests spread and cause further harm. This reduces

the excessive use of chemicals, minimizing environmental impact

and lowering production costs. The ability to identify infestations

early allows for timely interventions, leading to more efficient pest

management and improved crop health without the drawbacks of

blanket pesticide use.
5 Discussion

This paper proposed an innovative approach for detecting Tuta

absoluta tomato leaf diseases on the TomatoEbola dataset. We

created annotations by drawing bounding boxes to label both

infected and healthy plant leaves within the dataset. The

performance of the proposed approach, based on YOLOv8l, was

assessed to investigate its recognition speed and detection efficacy.

Our findings indicate that the YOLOv8l algorithm is effective in

detecting both infected and healthy tomato leaves, achieving a mean

average precision of nearly 74% and a fast inference time, averaging

less than 1055 ms across all datasets. These results demonstrate the

effectiveness of the proposed method and its potential for

deployment in real-world applications, given its success in

maintaining both accuracy and speed.

The results demonstrate that the proposed approach

consistently outperforms state-of-the-art methods, including

Faster R-CNN, YOLOv5l, and YOLOv8n, across all subsets of the
TABLE 7 Comparison of the proposed approach with other state-of-
the-art methods.

Model
mAP

Kasaisa Dikumari Kukareta

Faster-RCNN 0.614 0.57 0.685

YOLOv5l 0.57 0.536 0.658

YOLOv8n 0.67 0.585 0.684

Proposed 0.737 ± 0.095** 0.614 ± 0.009** 0.733 ± 0.02*
** represents p < 0.001 and * represents p < 0.005.
Note bold highlights indicate the best performance for each dataset.
TABLE 8 Comparison of the proposed approach with similar studies conducted in detecting plant leaf disease.

Reference Dataset Plant Model mAP

(Giakoumoglou et al., 2023) Collected Tomato Faster R-CNN 0.58

(Shill and Rahman, 2021) PlantDoc Apple, Bell pepper, Blueberry
Cherry, Corn, Grape, Peach,
Potato, Raspberry, Soybean,
Squash, Strawberry, Tomato

YOLOv3 0.53

(Shill and Rahman, 2021) PlantDoc Apple, Bell pepper, Blueberry
Cherry, Corn, Grape, Peach, Potato, Raspberry,

Soybean,
Squash, Strawberry, Tomato

YOLOv4 0.55

(Liu and Wang, 2020b) PlantVillage Tomato Faster R-CNN 0.56

Proposed TomatoEbola Tomato YOLOv8 0.737
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TomatoEbola dataset. This superior performance, coupled with the

method’s stability across different datasets, underscores its

robustness in detecting tomato leaf diseases. Furthermore,

statistical significance analysis using a two-sample t-test (see

Section 4.5.3) confirms that the observed improvements are not

due to random variations but rather to the effectiveness of the

proposed model. These findings suggest that the method is not only

more accurate but also more reliable for real-world applications,

where precise and efficient detection of plant diseases is critical for

timely intervention and improved agricultural outcomes.

However, it is noteworthy that the approach achieved the lowest

mean average precision on the Dikumari dataset. This discrepancy

can be attributed to the subtle nature of the disease images captured

from the Dikumari farm, which poses challenges for detection.

Consequently, this resulted in a higher inference time for this

dataset, reflecting over a 620% increase compared to the Kasaisa

and Kukareta datasets.

Despite these challenges, the model’s ability to achieve a higher

mean average precision of up to 0.737 compared to similar studies

(Liu and Wang, 2020b; Shill and Rahman, 2021; Shill and Rahman,

2021; Giakoumoglou et al., 2023) – where all other models recorded

below 0.59 suggests its competitiveness within the agricultural

application landscape. Moreover, when compared to the

benchmark model on the COCO dataset (Roboflow, 2024b), which

achieved a mean average precision of 0.529, the YOLOv8l model

demonstrates superior performance. This suggests that our approach

is not only effective in detecting Tuta absoluta diseases but can also be

applied to other crops in the agricultural domain, contributing to

advancements in agricultural machine learning applications.

In this study, we opted to utilize the YOLOv8l model for this

task, primarily because the TomatoEbola dataset contains a

considerably smaller number of images per farm (less than 320

images). This lower image count is particularly suited for the

YOLOv8l model, which is designed to be lightweight and efficient,

making it suitable for scenarios where computational resources are

limited or when working with smaller datasets.

In this study, we leveraged the YOLOv8l model due to the

inherent limitations of the TomatoEbola dataset. With fewer than

320 images from all the three farms combined, the dataset presents

a challenge for larger, data-hungry models, which are prone to

overfitting with limited training examples. The YOLOv8l model,

known for its efficiency and smaller footprint, offers a compelling

solution. Its deeper architecture allows for better feature extraction,

enabling the model to capture subtle disease patterns while

maintaining computational feasibility. This ensures robust

performance even with a constrained amount of training data,

making it an optimal choice for this study.

Overall, the findings from this study suggest the effectiveness of

the YOLOv8 large model in accurately detecting Tuta absoluta

diseases, providing a foundation for further exploration in

agricultural disease detection systems.

However, this study has some limitations. First, the YOLO

model is a deep learning architecture that requires a significant
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amount of data; however, the TomatoEbola dataset contains a

relatively small number of images. Future work should focus on

collecting additional data to enhance the sample size from each

dataset. Additionally, data augmentation techniques, such as

generative adversarial networks and other synthetic data

generation methods, can be explored to increase both the sample

size and diversity, thereby improving the model’s generalizability.

Second, our investigation was limited to the effectiveness of the

YOLOv8n model. It remains unclear whether alternative YOLO

models could achieve higher accuracy with this data. Future studies

should explore the performance of other YOLO variants to

fullyassess their capabilities in detecting Tuta absoluta and other

agricultural diseases.

6 Conclusion

This study demonstrates the effectiveness of AI-driven solutions,

particularly the YOLOv8l model, for detecting tomato leaf diseases

caused by Tuta absoluta. We successfully annotated the TomatoEbola

dataset, creating a valuable resource for ongoing research and

applications in agricultural pest management. By leveraging

advanced deep learning techniques, we assessed the YOLOv8l

model’s performance in real-world scenarios, highlighting AI’s

potential to provide sustainable alternatives to traditional

pestcontrol methods. This will allow farmers to implement

interventions more selectively, minimizing the use of pesticides and

enhancing overall effectiveness. Our findings emphasize the critical

role of timely detection in mitigating agricultural losses, ultimately

contributing to improved food security.

This work paves the way for further exploration of AI

applications in agriculture, highlighting the need for continued

innovation in addressing the challenges posed by pests and diseases

in crop production. Future advancements will benefit from

interdisciplinary collaboration between AI researchers and

agricultural experts to refine detection models, ensure practical

deployment, and develop integrative solutions that align with

farmers’ needs and agricultural best practices.
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