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Nitrate nitrogen uptake and
metabolism in Mikania micrantha
stem: insights into enhanced
growth and invasiveness
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Dongguang Wang1 and Changlian Peng2*

1College of Life Science, Huizhou University, Huizhou, China, 2Guangzhou Key Laboratory of
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for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China,
3Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China
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The increasing atmospheric nitrogen deposition, characterized by a rising

proportion of nitrate nitrogen (NO3⁻-N), is exacerbating the spread of invasive

plant species. Despite this trend, the responsemechanisms ofMikania micrantha,

a highly invasive plant, to NO3⁻-N remain poorly understood. This study

investigates the unique adaptation strategies of M. micrantha to elevated

NO3⁻-N levels, providing novel insights into its invasive success under

changing nitrogen deposition patterns. Field experiments showed that M.

micrantha rhizosphere soil contained higher NO3
–N content and protease

activity compared to companion plants (Paederia scandens, Ipomoea nil, and

Ipomoea cairica). Both roots and stems of M. micrantha had higher NO3
–N

content and demonstrated stronger nitrogen metabolism capabilities. Pot

experiments further showed that increasing NO3⁻-N concentrations (0 mM–40

mM) significantly promoted M. micrantha growth, with optimal phenotypic

responses (main stem length, leaf number, branch number, and biomass)

observed at 5 mM NO3⁻-N. Nitrogen metabolism enzyme assays revealed that

nitrate reductase (NR), nitrite reductase (NiR), glutamate dehydrogenase (GDH),

and free amino acid content increased progressively with NO3⁻-N concentration.

Transcriptome sequencing and qPCR analyses identified upregulation of key

genes related to transcription factors, nitrate transporter-related, nitrogen

metabolism enzyme, and amino acid synthesis pathway. These findings

demonstrate that M. micrantha employs a multifaceted strategy to exploit

elevated NO3⁻-N conditions: enhanced NO3⁻-N uptake from soil, efficient

transport to stems, and robust nitrogen metabolism facilitated by coordinated

gene expression. This study reveals the adaptation mechanisms of M. micrantha

to NO3⁻-N enrichment, offering critical insights for predicting and managing

invasive species responses to global atmospheric nitrogen deposition changes.

The results highlight the importance of considering nitrogen composition, rather

than just quantity, in invasive species management strategies.
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Introduction

Since the industrial revolution, human activities such as

fertilizer application and fossil fuel combustion have significantly

increased atmospheric nitrogen deposition (Stevens et al., 2011).

China has become one of the three major high nitrogen deposition

areas in the world. Data indicates that anthropogenic nitrogen

production was 18.3 Tg N in 1980, which doubled by 2010 to

53.9 Tg N (Gu et al., 2015). Nitrogen is an essential nutrient for

plant growth and development, with its demand significantly

increasing compared to other elements (Toor et al., 2021). While

high nitrogen deposition typically increases soil nitrogen availability

and stimulates plant growth (Dong et al., 2022), excessive nitrogen

can cause a range of ecological problems. These include impacts on

human health, alterations in biogeochemical cycles, shifts in

ecosystem structure and function, and even the potential

extinction of species (Chen et al., 2020; Jia et al., 2020; Zhao

et al., 2021). Ammonium-nitrogen (NH4
+-N) and nitrate-nitrogen

(NO3
–N) are the two main inorganic nitrogen forms absorbed by

plants (Wang et al., 2021). NO3
–N deposition primarily originates

from industrial and transportation fossil fuel emissions (Galloway

et al., 2004), whereas NH4
+-N deposition is largely derived from

artificial fertilizers and livestock farming (Behera et al., 2013).

Research indicates that the RNHx/NOy ratio in nitrogen

deposition has been decreasing in China, due to an ongoing

increase in NO3
–N deposition alongside a decrease in NH4

+-N

deposition. This marks a transition from the previous NH4
+-

dominant nitrogen deposition mode to a new mode where NH4
+-

N and NO3
–N deposition contribute equally (Zhu et al., 2015; Yu

et al., 2019). Therefore, in the context of global nitrogen deposition,

especially the alteration of nitrogen deposition components (RNHx/

NOy), controlling the invasion of exotic plants has become an

urgent priority (Shuvar and Korpita, 2021).

Biological invasions not only threaten the abundance and

diversity of native species but also alters the carbon and nitrogen

cycles in ecosystems, thereby affecting their structure and function.

Increased nitrogen deposition significantly accelerates the growth

and spread of nitrophilous plants, which can lead to the exclusion

of plants with lower nitrogen requirements from the community,

ultimately causing their decline or even extinction. Numerous

studies indicated that nitrogen fertilization favored the growth

and invasion of exotic species (Bobbink et al., 2010; Antonio and

Mack, 2006). Eller and Oliveira (2017) found that the invasive

plant Melinis minutiflora exhibited a stronger competitive

advantages and interfered with the uptake of nitrogen by native

specie Aristida adscensionis, making it more beneficial in high-

nitrogen environments. Additionally, Peng et al. (2019) reported

that nitrogen addition increased the leaf lifespan, plant height, and

early flowering of the invasive plant Solidago canadensis. Invasive

species typically exhibit excellent phenotypic plasticity and

resource use efficiency compared to native species (Vaz-Pinto

et al., 2014), enabling them to survive even under stressful

conditions. Furthermore, studies suggested that different plants

exhibit varied responses and preferences for different nitrogen
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forms (Yousaf et al., 2016; Qian et al., 2021; He et al., 2021).

The invasive species Wedelia trilobata exhibited better adaptation

to environmental conditions with an NH4
+-N/NO3

–N ratio of 2:1

through faster growth and antioxidant defense system compared to

Wedelia chinensis (Huang et al., 2022). Under elevated NH4
+-N

levels, the invasive species Phyllostachys edulis demonstrated

superior growth, nitrogen uptake and NH4
+-N tolerance

compared to Castanopsis fargesii, thereby facilitating its

expansion (Zou et al., 2020). The invasive plant Flaveria bidentis

exhibited an increase in plant height and branching under high

ammonium cultivation conditions (Huangfu et al., 2016).

Conversely, some studies suggested that invasive plants such

as Amaranthus retroflexus and Bidens pilosa exhibit better

growth advantages in habitats with higher NO3
–N level (Wang

et al., 2018; Chen and Chen, 2019). However, most researchers

have primarily focused on the physiological and ecological

responses of invasive plants to nitrogen deposition and its

various forms, leaving the invasion mechanisms of exotic plants

remain unclear.

Mikania micrantha (Asteraceae family), native to Central and

South America, has become widespread in Asia and the Pacific

Islands and is listed as one of the world’s top 100 most threatening

alien invasive species. Due to its rapid growth and strong

adaptability, it can quickly colonize invaded areas, causing

significant damage to local ecosystems and severe economic

losses (Day et al., 2016). The rapid growth of stem is an

important characteristic of M. micrantha , with certain

photosynthetic activity (Cai et al., 2023; Liu et al., 2020) and

stress resistance (Chen et al., 2024; Zhang et al., 2019), playing an

important role in its rapid invasion process. Fang et al. (2021)

found thatM. micrantha has expanded rapidly in terms of invaded

area over the past 30 years. It is predicted that in the 2050s and

2070s, M. micrantha will continue to rapidly spread from Yunnan

and Guangdong provinces towards the northern regions and

inland areas. Therefore, understanding the mechanisms

facilitating the rapid growth of M. micrantha is crucial for the

effective control of invasive plant species. Studies have shown that

as CO2 concentrations and nitrogen deposition rose, the invasive

potential of M. micrantha increased (Zhang et al., 2016).

Compared to native plants Polygonum chinense and Paederia

scandens, M. micrantha demonstrated strong competitive

resource utilization capabilities in terms of nitrogen acquisition

and soil nitrogen mineralization (Yu et al., 2021). Liu et al. (2020)

found that NH4
+-N significantly increased in soil after the

invasion of M. micrantha, but NO3
−-N content significantly

decreased. These results suggested that M. micrantha possesses a

strong ability to acquire nitrogen, potentially exhibiting

preferential selection for the NO3
–N. Hence, we propose a

hypothesis that, in the context of increasing global nitrogen

deposition, particularly with the continuous increase of NO3
−-N

deposition, the rapid growth of M. micrantha may enhance

nitrogen utilization efficiency in the main form of NO3
− by

regulating the expression levels of key genes or proteins involved

in NO3
−-N absorption, thereby accelerating its diffusion trend to
frontiersin.org

https://doi.org/10.3389/fpls.2025.1525303
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cai et al. 10.3389/fpls.2025.1525303
the north and inland. Our study aims to improve the management

ofM. micrantha invasion control in the context of global change in

the future.
Materials and methods

Plant collection and cultivation

The naturally growing M. micrantha and associated plants (P.

scandens, Ipomoea nil, and Ipomoea cairica) were used for the

identification of nitrogen absorption patterns. Samples were

collected from the South China Normal University botanical

garden in Guangzhou, China (23°10′N, 113°21′E) during growing

season (July–August). Stems from the first to the fourth internodes

of M. micrantha and its associated plants were collected for

physiological data determination. The rhizosphere soil of plant

was collected and stored at 4°C.

Control experiment starting from seed germination was carried

out to observe the response of stems under different NO3
−-N

concentrations. Seeds of M. micrantha and P. scandens were

placed in a constant temperature incubator (12h/12h light-dark

cycle, light intensity of 100–120 mmol m-2 s-1, day/night

temperature of 25 ± 1 °C). After 1–2 weeks of cultivation, healthy

seedlings were selected and transplanted into pots. The cultivation

substrate consisted of a mixture of Arabidopsis soil and vermiculite

in a 3:1 ratio. After one month of cultivation, M. micrantha and P.

scandens with consistent growth were selected for nutrient solution

cultivation experiments. Samples with similar growth were divided

into 6 groups, and were treated with modified Hoagland nutrient

solutions with 0, 0.5, 5, 10, 20, and 40 mM NO3
−-N respectively

(Table 1). Fifteen repetitions were set for each group. Each group

was treated for 30 days, with treatment every 3 days.
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Analysis of basic growth indicators

Plant main stem length, leaf number, branching number, and

axillary bud number were measured using a ruler every 3 days.

Phenotypic changes were documented using a camera. Subsequently,

the roots, stems, and leaves of each plant were separated, dried at 75°

C for 72 hours, and weighed to record the biomass.
Soil physicochemical properties

Soil physicochemical properties, including pH, moisture content,

NH4
+–N and NO3

−–N levels, and protease enzyme activity, were

measured as follows: (1) Measurement of pH value and moisture

content: Following the method by Yu et al. (2021), 5 g of fresh

rhizosphere soil was mixed with 0.01 M CaCl2 solution, shaken, and

extracted for 30 minutes. Soil pH was measured directly measured

using a pH meter (ST3100, Ohaus Instruments (China) Co., Ltd.),

and moisture content was determined after drying at 60°C. (2)

Nitrogen content determination: Inorganic nitrogen forms (NH4
+ –

N and NO3
−–N) were extracted from fresh soil using 2 M KCl

solution (Yu et al., 2021). NH4
+–N was quantified using the

indophenol blue colorimetric method, with absorbance measured at

625 nm. NO3
−–N was measured directly via UV spectrophotometry.

Standard curves were prepared using ammonium sulfate ((NH4)

2SO4) for NH4
+–N and potassium nitrate (KNO3) for NO3

−–N. (3)

Protease enzyme activity determination: Protease enzyme activity was

determined using the sodium caseinate method (Ladd and Butler,

1972). Fresh soil (2.5 g) was incubated with Tris buffer (pH=8.1) and

2% sodium caseinate solution at 50°C for 2 hours. After adding 15%

TCA solution and filtering, the supernatant was mixed with alkaline

reagent and Folin’s reagent. Absorbance was measured at 700 nm,

and a standard curve was prepared using sodium caseinate.
TABLE 1 Modified hoagland nutrient solution.

Nutrition Reagent
Concentation

(g L-1)

Dosage (mL)

0 mM 0.5 mM 5 mM 10 mM 20 mM 40 mM

Macroelement
KNO3 50.55 0 1 10 20 40 80

KCl 37.28 80 79 70 60 40 0

Microelement

CaCl2 22.2 10

KH2PO4 5.444 10

MgSO4·7H2O 24.65 10

H3BO3 0.185 1

MnSO4·H2O 0.0845 1

CuSO4·5H2O 0.0250 1

ZnSO4·7H2O 0.0288 1

(NH4)6Mo7O24·4H2O 0.124 1

FeSO4·7H2O 13.9 1

EDTANa2·2H2O 18.6 1
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Determination of nitrogen content and
nitrogen metabolism enzyme activities in
plant tissues

The nitrogen content (NO3
−–N and NH4

+–N) and key enzymes

activities related to nitrogen metabolism, including nitrate reductase

(NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate

synthase (GOGAT) in plant tissues, were measured using reagent kits

from Suzhou Koming Biotechnology Co., Ltd. The activity of GDH

was determined according to the method described by Zhou et al.

(2015). Fresh stem segments (third or fourth) and lateral roots (0.1 g)

were homogenized in 1 mL extraction buffer (Suzhou Koming

Biotechnology Co., Ltd.) with quartz sand in an ice bath. The

homogenate was centrifuged at 10,000 ×g and 4°C for 10 min, and

the supernatant was stored at 4°C for analysis. The 3 mL reaction

mixture consisted of 2.6 mL of stock solution (115.4 mmol L-1 pH=8

Tris-HCl buffer, 23.1 mmol L-1 a-Ketoglutaric acid, 231 mmol L-1

NH4Cl), 0.1 mL CaCl2, and 0.1 mL ddH2O. After incubating at 30°C

for 10 minutes, 0.1 mL of NADH and 0.1 mL of the supernatant were

added. Absorbance values at a wavelength of 340 nm were measured

every minute using a UV-2450 spectrophotometer (Shimadzu,

Tokyo, Japan). GDH activity were expressed as nmol min-1 g-1 FW.
Determination of free amino acid content

The free amino acid content was determined following Doi et al.

(1981) with slight modifications.

Fresh stem segments (third or fourth) and lateral roots (0.1 g)

were homogenized in 1.5 mL of 10% acetic acid with quartz sand in

an ice bath. The homogenate was centrifuged at 12,000 × g and 4°C

for 10 min to obtain the supernatant. A volume of 1 mL of the

supernatant was mixed with 1 mL sodium acetate buffer (pH=5.4)

and ninhydrin reagent, then heated in a boiling water bath at 100°C

for 15 min. After cooling, 3 mL of 60% ethanol was added, followed

by thorough mixing. The absorbance at OD570nm was measured

using a spectrophotometer.
Analysis of transcriptome sequencing

To analyze the gene expression patterns of M. micrantha stems

in response to different NO3
−-N concentrations, the third to fourth

internodes of stems at 0 mM and 5 mM were selected for

transcriptomic sequencing. Total RNA extraction and library

construction were conducted using the Spin Column Plant Total

RNA Purification Kit (Sangon, Shanghai, China.) and the HiPure

Total RNA Mini Kit (Magen), respectively. RNA integrity and

purity were assessed using agarose gel electrophoresis and UV

spectrophotometry. Qualified RNA were subjected to library

construction using the Novogene NGS RNA Library Prep Kit.

The quality of the constructed libraries was evaluated using the

Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR

System, followed by sequencing on the IIIumina HiSeq 4000

platform after passing quality control. Clean reads were aligned to
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the reference genome using HISAT2 software. Differential gene

expression analysis was performed using DESeq2 software, with the

criteria for selecting differential genes set as an absolute fold change

≥2 and Padj value ≤0.05. DEGs were functionally annotated using

databases such as Nonredundant protein (Nr), Nonredundant

nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and

Genomes (KEGG), and Gene Ontology (GO).
Quantitative real time RT-PCR of key gene
expression

Following the protocol of Cai et al. (2022), fresh stem segments

(0.1 g) were ground in liquid nitrogen. Total RNA was isolated

using a Quick RNA isolation Kit (Huayueyang) according to the

manufacturer’s protocol and was quantified using a spectrometer

(NanoDrop). cDNA was synthesized using the TopScript-RT-

DryMIX (dT18) kit (Takara, Tokyo, Japan). The relative

expression levels of key genes were analyzed was estimated by

qRT-PCR with a SYBR Green master mix (SYBR Green Premix Ex

Taq, Takara, Japan) in a Bio-Rad CFX96 Real-Time PCR Detection

System (Bio-Rad Laboratories Inc., Hercules, CA, USA). The PCR

program was run as follows: 95°C for 30 seconds, followed by 39

cycles of 95°C for 5 s, 60°C for 34 s, and 65°C for 5 s, with a final

extension step at 95°C for 50 seconds. The reference gene used was

18S, and the relative expression of the candidate genes were

calculated using the 2–DDCT method. The specific primers for

reference gene and candidate genes were listed in Table 2.
Data analysis

The statistical analyses, including significant difference analysis

and regression analysis, were conducted using IBM SPSS Statistics

19.0 (IBM, NY, USA). The results were presented as mean ± standard

error. Independent sample t-tests were utilized for the significant
TABLE 2 Gene-specific primers used for qRT-PCR.

Gene
name

Forward primer (5’-3’) Reverse primer (5’-3’)

18s GTCGGGGGCATTCGTATTTC CGGCATCGTTTATGGTTGAG

NPF5 TCAGCCGTCTTGACCACTTC ACCTGAGCTTTCCTCTGCAC

NPF6 GGGACAGGCACACTAGCATT ATTTAAGACCGCCAGTCCCG

CLC-g TGCTATCGTCGGCTCCAATC CTGTTGCGCCAATCTTGCTT

SLAH3 ATATGTCTCGGCGTCAGCAG GGACGGAGATGCACCATAGG

HY5.1 CCGAAGGTTCCCGGAGAAAA TTGACTCGCACCTCCAACTC

LBD38 GATACAGTCCTTCGAGGCGG ACGGACTTCCCTGACGTAGA

NR1.1 ACGACTGGTCCGTGGAGATA GTTGCCGGGAACTCTCTTGA

NiR1.2 AGTTCCACCAGGCTGTATGC ATCGGTTCACCGCCAATCTT

GS ATTTCCGCTGGTGACGAGTT TCCAGCACCATTCCAGTCAC

GDH ACGACTTGCTGGTTTCCGAT GCAGCAGCATGCTTGTATCC
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difference analysis between each concentration group (0.5–40 mM)

and the control group (0 mM), with * indicating a significant

difference (0.01<p<0.05), ** indicating an extremely significant

difference (p<0.01), and ns indicating no significant difference

(p>0.05). Data visualization was performed using SigmaPlot 14.0

(Systat Software, San Jose, CA, USA). Additionally, a correlational

analysis (Pearson correlation) was applied tomeasure the correlations

among between M. micrantha and P. scandens under different

concentrations of NO3
−–N (0–40 mM). Principal component

analysis (PCA) was carried out to describe the degree of association

and determine possible factors that affect the biomass in both plant

under NO3
−–N concentration. PCA analysis was performed using

Origin 2018 software (OriginLab, Northampton, MA, USA).
Results

Differences in nitrogen absorption,
utilization, and metabolism of M. micrantha
and its companion plants

The analysis of rhizosphere soil properties (Table 3) showed that I.

cairica exhibited significantly higher soil moisture content compared
Frontiers in Plant Science 05
toM.micrantha, I. nil, and P. scandens (p<0.05). The NO3
−–N content

in M. micrantha was significantly higher compared to P. scandens, I.

nil, and I. cairica by 2.3-, 2.5-, and 2-fold, respectively, as evidenced by

the non-overlapping 95% confidence intervals (CI). Conversely,

NH4
+–N content in I. cairica and I. nil were notably higher than

that in M. micrantha and P. scandens. The protease activity was

significantly higher inM. micrantha, surpassing I. cairica and I. nil by

approximately 1.3-fold but only slightly exceeding P. scandens.

Nitrogen nutrient analysis in the roots and stems (Table 3) of

M. micrantha and its companion plants revealed thatM. micrantha

exhibited the highest NO3
−–N content in both roots and stems

compared to other plants. Specifically, the NO3
−–N content in M.

micrantha roots was twice with non-overlapping 95% CI as high as

in I. nil and P. scandens, while in stems, it was 1.4- and 1.5-fold

higher than I. nil and P. scandens, respectively. The NH4
+–N

content was highest in the roots of P. scandens, while I. nil had

the highest NH4
+–N content in the stems.

Further analysis of enzyme activities involved in nitrogen

metabolism (Table 3) revealed that M. micrantha had significantly

higher NR and GDH activity in roots and stem compared to other

plants. Specifically, NR activity in M. micrantha roots and stem was

2.1-/1.6- and 1.3-/5.6-fold higher than I. nil and P. scandens,

respectively. GDH activity in M. micrantha roots was 1.6-, 1.5-, and
TABLE 3 Comparison of nitrogen absorption characteristics in soil, roots, and stems of M. micrantha and its associated plants under field conditions
(mean ± standard error, n=5, numbers in parentheses are 95% CI).

Indices M. micrantha I. cairica I. nil P. scandens

Soil

Moisture content(%) 21.17±0.19b (20.68, 21.66) 26.12±1.59a (22.04, 30.21) 21.73±0.51b (20.53, 22.93)
22.85±0.99b
(20.31, 25.39)

NH4
+–N (mg g-1 Fw) 0.22±0.01bc (0.20, 0.25) 0.34±0.02ab (0.23, 0.45) 0.41±0.07a (0.18,0.64) 0.16±0.08c (0.13, 0.19)

NO3
-–N (mg g-1 Fw) 0.65±0.03a ( 0.57, 0.72 ) 0.28±0.05b ( 0.13, 0.43) 0.26±0.18b ( 0.20, 0.31) 0.31±0.06b ( 0.13, 0.49)

Protease (mg g-1 h Fw) 26.88±0.40a ( 25.16, 28.59) 20.36±2.02b (15.18, 25.55) 20.58±1.10b (17.53, 23.63)
25.37±0.93ab
(21.36, 29.38)

Root

NH4
+–N (mg g-1 Fw) 22.37±0.95b (19.33, 25.41) 26.31±0.73ab (24.44, 28.17) 25.23±0.91b (22.33, 28.13)

32.05±3.73a
(21.68, 42.42)

NO3
-–N (mg g-1 Fw)

123.14±8.35a
(99.95, 146.32)

118.71±9.04a
(89.95, 147.47)

53.97±3.06b (46.12, 61.83)
62.41±3.99b
(45.24, 79.59)

NR (nmol min-1 g-1 Fw)
225.05±11.74a
(187.69, 262.41)

233.09±15.39a
(184.11, 282.07)

106.90±3.56c
(95.56, 118.24)

172.32±6.56b
(154.12, 190.53)

GS (mmol min-1 g-1 Fw) 5.59±0.09c (5.31, 5.87) 7.80±0.30a (6.83, 8.76) 6.33±0.08b (6.09, 6.56) 6.77±0.21b (6.10, 7.44)

GDH (nmol min-1 g-1 Fw) 0.14±0.10a (0.10, 0.18) 0.09±0.01b (0.07, 0.10) 0.09±0.01b (0.07, 0.12) 0.06±0.01c (0.03, 0.09)

NH2-N content (mg g-1 Fw) 0.22±0.05a (0.07, 0.37) 0.14±0.03ab (0.03, 0.25) 0.10±0.01b (0.07, 0.13) 0.11±0.01ab (0.08, 0.15)

Stem

NH4
+–N (mg g-1 Fw) 18.94±1.50d (14.16, 23.71) 44.99±3.50b (35.27, 54.71) 58.61±3.16a (48.56, 68.67)

34.28±2.82c
(25.31, 43.25)

NO3
-–N (mg g-1 Fw)

345.31±46.37a
(145.79, 544.82)

136.77±14.10b
(76.13, 197.41)

234.63±19.53b
(150.59, 318.66)

226.24±31.74b
(125.24, 327.25)

NR (nmol min-1 g-1 Fw)
167.18±16.18a
(97.56, 236.80)

212.19±22.58a
(115.03, 309.35)

102.88±19.64b
(18.36, 187.40)

30.01±5.67c
(5.61, 54.41)

GS (mmol min-1 g-1 Fw) 4.86±0.29c (4.12, 5.61) 8.30±0.65b (6.64, 9.97) 13.10±0.38a (12.12, 14.07) 4.68±0.22c (4.06, 5.30)

GDH (nmol min-1 g-1 Fw) 0.11±0.01ab (0.07, 0.14) 0.11±0.01a (0.08, 0.14) 0.08±0.00b (0.07, 0.10) 0.04±0.01c (0.03, 0.06)

NH2-N content (mg g-1 Fw) 4.35±0.73a (1.21, 7.49) 3.62±0.37a (2.46, 4.78) 1.60±0.11b (1.12, 2.08) 2.21±0.28b (0.99, 3.44)
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2.3-fold higher than I. cairica, I. nil, and P. scandens. In the stem, GDH

activity in M. micrantha was similar to I. cairica but significantly

higher than P. scandens. However, GS activity in M. micrantha was

lower than that of other plants in both roots and stems.

As products of nitrogen metabolism, the free amino acid

content in M. micrantha was also higher than in other plants,

with the root content significantly higher than I. nil, approximately

2.2-fold. In stems, free amino acids were 2.7- and 2.0-fold higher

than in I. nil and P. scandens, respectively.
The change in phenotypic parameters of
M. micrantha stems under different NO3

−–
N concentrations

The results showed that there was a significant increase in the

main stem length, leaf number and branch numbers of M.
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micrantha in the 5, 10, 20, and 40 mM treatment groups

compared to the 0 mM (p<0.05). The increments in stem length

for the 0.5, 5, 10, 20, and 40 mM groups were respectively 1-, 1.4-,

1.3-, 1.3-, and 1.1-fold (Figure 1A). Notably, the 5 mM group

exhibits a significantly highest mean value compared to the 0 mM

(Supplementary Table S1; mean difference (D) (95% CI of D) =
26.733 (19.720, 33.747), p<0.001); The increases in leaf numbers

were 1.3-, 2.1-, 2.3-, 2.1-, and 2.2-fold, respectively (Figure 2B), in

which the 10 mM group has the highest mean increment compared

to the 0 mM (Supplementary Table S1; D(95% CI of D) = 4.000

(3.274, 4.726), p<0.001); and the increases in branch numbers were

2.7-, 11.3-, 11.3-, 13-, and 12.7-fold higher than the 0 mM group,

with the 20 mM group exhibiting the highest mean value

(Supplementary Table S1; D(95% CI of D) = 13.000 (11.323,

14.677), p<0.001), while axillary buds numbers significantly

decreased (Figure 1C). In contrast, P. scandens showed no

significant changes in stem length across treatments, as their
FIGURE 1

Change in growth indicators of M. micrantha and P. scandens under different NO3⁻-N concentrations at 30 days. (A) is the increment of stem length,
(B) is the increment of leaf number, (C) is the increment of axillary bud and branch number, (D) is the stem and leaf biomass ratio, and (E) is the
plant biomass, including the stem, leaves, aboveground biomass, and total biomass. The results are the mean ± SEM of five biological replicates.
Each concentration group (0.5–40 mM) was compared with the control group (0 mM) by independent sample t-tests. Asterisks indicate significant
differences (*p < 0.05, **p < 0.01, ***p < 0.001), and ns indicates no significant difference.
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95% confidence intervals of mean difference include zero

(Supplementary Table S1), though branching and axillary bud

numbers increased compared to the control, with the exception of

axillary buds in the 20 mM group. Overall,M. micrantha exhibited
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greater increases in stem length, leaf number, branch, and axillary

bud numbers than P. scandens at the same NO3
−–N

concentrations, consistent with the phenotypic results

(Supplementary Figure S1).
FIGURE 2

Changes in NO3
−–N content and nitrogen metabolic enzyme Activity of M. micrantha and P. scandens under different NO3

−–N concentrations at 30
days. (A) is the NO3

−–N content in stem and leaf, (B–G) is the NR, NiR, GS, GDH, GOGAT activity and amino acid content in stem, respectively. The
results are the mean ± SEM of five biological replicates. Each concentration group (0.5-40 mM) was compared with the control group (0 mM) by
independent sample t-tests. Asterisks indicate significant differences (*p < 0.05, **p < 0.01, ***p < 0.001), and ns indicates no significant difference.
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The changes in biomass of different plant
organs of M. micrantha stems under
different NO3

−–N concentrations

Further analysis of the biomass of the two plants showed that,

compared to the 0 mM group, M. micrantha exhibited a significant

increase in aboveground biomass and total biomass in the 5, 10, 20,

and 40 mM treatment groups (Figures 1C, E), with the 10 mM

group exhibiting the highest increment in aboveground biomass

(Supplementary Table S1; D(95% CI of D) = 1.290 (1.046, 1.534),

p<0.001). Specifically, the biomass values for stem, leaf,

aboveground, and total biomass in M. micrantha were

consistently higher across all treatments, with increases ranging

from 1.1- to 2.8-fold for stem biomass, 1- to 3.5-fold for leaf

biomass, 1.1- to 3-fold for aboveground biomass and 1.1- to 2.4-

fold for total biomass. In contrast, P. scandens showed more

moderate increases in biomass, with the highest increments in the

5 and 20 mM groups. Additionally, M. micrantha demonstrated an

increase in leaf biomass ratio with the increase in NO3
−–N

concentration, while the stem biomass ratio remained relatively

unchanged except for a 15.9% increase at 10 mM. Conversely, P.

scandens showed no significant changes in stem and leaf biomass

ratios under different treatments (Figure 1D).
The changes in NO3
−–N content and the

expression levels of key genes involved in
NO3

−–N absorption and transport in M.
micrantha stems under different NO3

−–N
concentrations

The NO3
−–N content in the stems of two plants was higher than

that in the control group, with M. micrantha and P. scandens stems

showing NO3
−–N content 1.2-/1.9-fold, 3.1-/3.4-fold, 6.9-/4.9-fold,

15.7-/6.1-fold, and 21.9-/6.3-fold higher than the control group under

0.5, 5, 10, 20, and 40 mM treatments, respectively, suggesting that

NO3
−–N content of two species reached the highest level in the 40

mM group (Supplementary Table S2; D(95% CI of D) = 518.866

(398.579, 639.156), p<0.001/D(95% CI of D) = 296.782 (200.144,

393.421), p<0.001). Interestingly, the elevation inM. micrantha at 20

and 40 mM treatments were higher than that in P. scandens, as the

higher mean values and mean differences of M. micrantha

(Figure 2A; Supplementary Table S2). RNA-seq and qPCR results

revealed thatM. micrantha exhibited upregulation of genes related to

NO3
−–N absorption at 5 mM group. Notably, NPF6.3, CLCb1,

CLCb2, and SLAH3 showed the most significant upregulation, with

expression levels 3.8- to 9.3-fold higher than 0 mM group,

respectively. However, two genes in the NPF family, NPF8.1 and

NPF5.10, were significantly downregulated at 5 mM, with expression

levels 0.48- and 0.17-fold of the control, respectively (Figure 3).

QPCR results further demonstrated that under 0.5, 5, 10, 20, and 40

mM group, the expression levels of NPF5 in M. micrantha were 3.3-

to 10-fold of the 0 mM group (Figure 4A). The expression levels of

NPF6 in M. micrantha were 2.4- to 3.4-fold of the 0 mM group

(Figure 4B). Further analysis showed varying expression patterns of
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transcription factors. Positive regulators, such as CLC-g, HY5.1, and

SLAH3, exhibited the highest expression at different concentrations,

with CLC-g (Figure 4C) and SLAH3 (Figure 4D) peaking at 5 mM

(2.1- and 1.6-fold, respectively), whileHY5.1 (Figure 4E) peaked at 20

mM (12-fold). The negative feedback factor LBD38 decreased in

expression with higher NO3
−–N concentrations (Figure 4F),

especially at 10, 20, and 40 mM, where expression levels were 0.3-,

0.2-, and 0.2-fold of the 0 mM group.
The changes in nitrogen metabolism
enzyme activities and the expression levels
of key genes in nitrogen metabolism
pathways in M. micrantha stems under
different NO3

−–N concentrations

In M. micrantha, NR activity significantly increased at 5, 10, and

20 mM NO3
−–N concentrations compared to the 0 mM group, with

3.4-, 1.8-, and 1.9-fold increases, respectively, and a similar trend was

observed in P. scandens (Figure 2B). NiR activity inM. micrantha was

1.8- and 1.5-fold higher in the 5 and 20 mM groups (Supplementary

Table S2; D(95% CI of D) = 1.446 (1.051, 1.840), p<0.001/D(95% CI of

D) = 0.853 (0.458, 1.247), p<0.001), while P. scandens showed a 16%

increase at 5 mM (Supplementary Table S2; D(95% CI of D) = 1.296

(0.186, 2.406), p<0.05, Figure 2C). For the GS/GOGAT cycle, GS

activity inM. micrantha significantly decreased in the 20 and 40 mM

groups, while P. scandens showed no significant difference, except for a

significant increase in the 20 mM group (Figure 2D). GOGAT activity

in M. micrantha peaked at 5 mM, showing a 2.2-fold increase

(Supplementary Table S2; D(95% CI of D) = 129.980 (79.608,

180.352), p<0.001), whereas P. scandens exhibited a significant

decrease of 41.1% in the 5 mM group (Supplementary Table S2;

D(95% CI of D) = -158.831 (-264.702, -52.960), p<0.01, Figure 2F).

GDH activity in M. micrantha increased significantly at 5 mM

(Supplementary Table S2; D(95% CI of D) = 10748.817 (7330.776,

14166.857), p<0.001), being 2.4-fold higher than in P. scandens

(Figure 2D). Combining RNA-seq and qPCR results to further

analyze genes related to nitrate assimilation, including NR, NiR, and

GDH, showed high expression at 5 mM in M. micrantha. Notably,

NiR1/2/3 expression increased 21.6-, 10.7-, and 11-fold, respectively

(Figure 4G). In contrast, GS1 and GS2 expression was low at 5 mM.

NR1.1 expression increased 11.8-fold at 10 mM (Figure 4H), while

NiR1.2 expression was significantly higher in the 5, 10, and 20 mM

groups (4.6-, 7.6-, and 6.6-fold, respectively). GS expression decreased

by 62.4–71.0% at higher NO3
−–N concentrations (Figure 4I), while

GDH gene expression increased by 159.2% at 5 mM (Figure 4J).
The change in free amino acid content and
the expression levels of key genes in amino
acid synthesis pathways in M. micrantha
stems under different NO3

−–N
concentrations

The free amino acid content in M. micrantha significantly

higher under 5, 10, 20, and 40 mM treatments, with increases of
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5.8-, 5.3-, 5.3-, and 6.3-fold, respectively. Similarly, P. scandens

showed a significant increase in free amino acid content under 10,

20, and 40 mM treatments, with no significant difference under 0.5

and 5 mM treatments. Overall, M. micrantha exhibited higher free

amino acid content than P. scandens under 5, 10, 20, and 40 mM

treatments, as shown by the higher mean values and mean

differences of M. micrantha (Figure 2G; Supplementary Table S2).

Gene expression analysis revealed that the expression levels of

ALDO and CYSK genes in M. micrantha was significantly higher

at 5 mM group, approximately 2.5- and 3.8-fold of the 0 mM group,

respectively. Conversely, PK gene expression was lower in the 5 mM

group (Figure 5). qPCR results further demonstrated that under 0.5,

5, 10, 20, and 40 mM group, the expression levels of ALDO in M.

micrantha were 0.8-, 2,4-, 2.0-, 4.9-and 0.2-fold of the 0 mM group,

respectively (Figure 4K). The expression levels of CYSK in M.

micrantha were 1.0-, 1.2-, 0.9-, 5.3- and 0.7-fold of the 0 mM

group, respectively (Figure 4L).
Correlation analysis between biomass and
nitrogen metabolism-related enzyme
activities

The correlation analysis revealed significant associations

between biomass and nitrogen metabolism-related enzyme

activities in two species. In M. micrantha, leaf biomass, stem

biomass and total biomass displayed a highly positive correlation

with NO3
−–N content (Figure 6A). However, NO3

−–N content had

a relatively small impact on the stem biomass of P. scandens, and

with no significant effect on leaf biomass (Figure 6B). Additionally,

in M. micrantha, biomass demonstrated a significant positive

correlation with GOGAT and FAA, a strong negative correlation

with GS, and a positive correlation with NR and NiR but without

statistical significance (Figure 6A). In P. scandens, biomass showed
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significant positive correlations with NR, Gs, GDH, and FAA, while

presenting a negative correlation with NiR (Figure 6B).
Principal component analysis

The scores plot showed that M. micrantha was significantly

separated under different NO3
−–N concentrations (Supplementary

Figure S5A), suggesting its high sensitivity to changes in NO3
−–N

concentration and more variable metabolic response. The first two

principal components (PC1 and PC2) accounted for 80.35% of the

total variation. PC1 accounted for 52.21% of the total variance, with

the highest contributions from Biomass (0.41), NiR (0.36), GOGAT

(0.41) and FAA (0.44). These strongly correlated eigenvectors may

affect stem growth by dynamically regulating nitrogen enzyme

activities (NiR, GOGAT), thus explaining the rapid response to

nitrate fluctuations. PC2 explained 28.14% of the total variance and

was primarily influenced by Nitrate (-0.52), NR (0.46), GS (0.43),

and GDH (0.40). The significant negative loading of NO3
−–N and

positive loadings of enzymes in PC2, potentially highlighting the

influence of NO3
−–N absorption and distribution on nitrogen

metabolism (Supplementary Table S3-1). The PCA biplot reveals

two distinct clustering groups. The 5 mM-40 mM groups were

positively linked to NR, GDH, NiR, GOGAT, FAA, Biomass, and

Nitrate, while the 0 mM-0.5 mM groups were positively associated

with GS (Figure 7A). The diversity of biochemical traits in the 5

mM-40 mM group may suggest that M. micrantha responds to

external nitrate fluctuations through flexible nitrogen assimilation

strategy. Conversely, P. scandens clustered closely under different

NO3
−–N concentrations, indicating that it is insensitive to nitrate

treatment and a relatively consistent response pattern

(Supplementary Figures S5B, Figure 7B). PC1, which captures

55% of the variance, is largely influenced by Biomass (0.41),

Nitrate (0.44), GS (0.35), GDH (0.37) and FAA (0.39), which may
FIGURE 3

Heat map of genes related to nitrogen metabolism in M. micrantha stem under 0 mM and 5 mM NO3
−–N treatment.
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indicate that nitrogen metabolism (especially GS and GDH)

possibly related to the insignificant changes in stem growth

during increasing NO3−–N concentrations. PC2, which explains a

smaller portion of the variance (21.59%), captures eigenvectors

changes less directly related to responses under nitrate

concentration (Supplementary Table S3-2).
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Discussion

M. micrantha prefers to absorb NO3
−–N

The observed variations in soil properties among M. micrantha

and its companion plants not only highlight the influence of plant
FIGURE 4

Gene expression related to nitrogen absorption transporters in M. micrantha stem under different NO3
−–N concentrations. (A, B) are E3N88_41881

(NPF5), E3N88_09314 (NPF6), respectively. (C–F) are CLC-g, SLAH3, HY5.1 and LBD38, respectively. (G–J) are NiR1.2, NR1.1, Gs and GDH,
respectively. (K, L) are ALDO and CYSK, respectively. The results are the mean ± SEM of six biological replicates. Each concentration group (0.5-40
mM) was compared with the control group (0 mM) by independent sample t-tests. Asterisks indicate significant differences (*p < 0.05, **p < 0.01,
***p < 0.001), and ns indicates no significant difference.
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species on rhizospheric characteristics but also raise intriguing

questions about the underlying mechanisms. The significant

variations in NO3
−–N and NH4

+–N levels in the rhizospheric soil

among different plant species underscore the complexity of nitrogen

cycling in the root zone. The preferential uptake of NO3
−–N by M.

micrantha, as evidenced by the higher NO3
−–N content in its

rhizospheric soil (Table 3), aligns with the well-documented

preference of certain plant species for specific nitrogen forms

(Wang et al., 2018;Chen and Chen, 2019). Previous studies had

shown that blackberry plants preferentially take up NH4
+–N (Duan

et al., 2023). Sphagneticola canadensis was a NO3
−-N-preferring

plant (Wang et al., 2023). The invasive plant Xanthium strumarium

preferred to use NO3
−, while its native congener X. sibiricum

preferred to use NH4
+ (Zhang et al., 2022). The preference of

Cymbidium tracyanum for NO3
− as a nitrogen form may be a result

of long-term adaptation to epiphytic habitat (Dong et al., 2024). The

rhizospheric soil of Bidens pilosa (Spanish needle) exhibited a high

concentration of NO3
−–N, possibly attributed to the significant

enhancement of soil nitrification by root exudates. This process

converts more NH4
+–N into absorbable NO3

−–N, thereby

increasing the root’s absorption efficiency of nitrogen nutrients

and promoting the aboveground growth (Chen et al., 2009; Yu et al.,

2021). Additionally, protease, as a crucial enzyme in the soil

nitrogen cycle, influences the release of soil available nutrients.

The rhizospheric soil of M. micrantha demonstrated elevated

protease activity (Table 3), indicating an accelerated nitrogen

metabolism process, thereby enhancing its efficiency in utilizing

organic nitrogen (Li et al., 2006). Similar results have been observed
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in studies of other invasive plants such as I. cairica, Synedrella

nodiflora, Lantana camara, and W. trilobata, where high protease

activity in the rhizospheric soil was identified (Li et al., 2008).
High expression of transporter genes
promotes the absorption of NO3

−–N

Nitrate is one of the main forms of inorganic nitrogen absorbed

by plants, and its concentration variation has a direct impact on

plant growth. Currently, research on the influence of NO3
−–N on

plant growth primarily focuses on aspects such as leaf

photosynthetic capacity, leaf morphology, or root architecture

(Takei et al., 2001; Crawford and Forde, 2002; Guiboileau et al.,

2012; Vidal et al., 2014; Chen and Chen, 2019). However, limited

attention has been given to non-foliar organs such as stems. Most

studies have observed changes in physiological characteristics such

as increased plant height, stem thickness, and biomass under higher

nitrate nitrogen levels (Song et al., 2021), consistent with the

findings of our study (Figure 1). The rapid growth of stems is one

of the most prominent characteristics of M. micrantha. Our study

found that with increasing NO3
−–N concentration, the main stem

length (Figure 1A) and leaf number (Figure 1B) of M. micrantha

significantly increased, indicating that the axillary buds

continuously activated the development of growth component

branches (Figure 1C). As a result, the number of axillary buds

decreased, while the number of branches increased (Bennett and

Leyser, 2006). Results from PCA (Figure 7) and correlation analysis
FIGURE 5

Heat map of genes related to biosynthesis of amino acids in M. micrantha stem under 0 mM and 5 mM NO3
−–N treatment.
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(Figure 6) further indicated that, unlike P. scandens, M. micrantha

was more significantly influenced by NO3
−–N, and its biomass was

positively correlated with NO3
−–N, NR, NiR, GOGAT, and FAA.

The transport and assimilation of NO3
−–N within plants directly

impact plant growth and development, linked to their nitrogen

metabolism capabilities (Yang et al., 2023; Xu et al., 2023).

Currently, there was limited research on the nitrogen metabolism

capacity of plant stems. RNA-seq analysis was conducted on M.

micrantha stems treated with 5mM and 0 mMNO3
−–N. Using Fold

Change ≥ 2 and FDR < 0.01 as criteria for differential gene selection,

345 differentially expressed genes were identified, with 181

upregulated and 164 downregulated (Supplementary Figure S2).

These genes primarily enriched pathways related to plant hormone

signal transduction, phenylpropanoid biosynthesis, pentose and

glucuronate interconversions, and nitrogen metabolism

(Supplementary Figure S4). The results suggested associations
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between these pathways and nitrogen nutrient responses,

indicating the involvement of some components in multiple

nitrogen-related metabolisms, consistent with Wei et al. (2016)

findings in Barley. The primary processes for plants to acquire and

utilize NO3
−–N include the absorption and transport of NO3

−,

reduction of NO3
− to NH4

+, and assimilation of NH4
+ into glutamic

acid. Four gene families involved in NO3
−–N absorption and

transport have been discovered: NRT1/NPF, NRT2, CLC, and

SLAH. These proteins are essential for the absorption, transport,

and transfer of nitrate from the external environment to various cell

types, tissues, and organs (Krapp et al., 2014). NO3
− induced the

upregulation of NPF6.3, a nitrate transporter, which was primarily

involved in transporting nitrate from the root to aboveground

organs (Tsay et al., 2007). The expression of NPF6.3 was

significantly upregulated in the stem of M. micrantha (Figure 3),

which played a role in transporting more NO3
−–N for plant growth
FIGURE 6

Correlation analysis between biomass and nitrogen metabolism-related enzyme activities in M. micrantha (A) and P. scandens (B).
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(Figure 4A) and as a signaling molecule regulating other

physiological and ecological processes (Fan et al., 2017; Fredes

et al., 2019). The high expression of NPF5 genes (Figure 4A) in

M. micrantha stems can regulate NO3
− balance between cytoplasm

and vacuoles in response to changes in nitrogen supply (Wang et al.,

2020), indicating that NPF5 gene significantly enhances the

nitrogen redistribution ability in plants and improves nitrogen

utilization efficiency. In contrast, the expression of NPF5.10 in M.

micrantha stem was downregulated (Figure 3), which reduces the

efflux of NO3
−–N from the vacuole (Lu et al., 2022).

Additionally, the high expression of CLC and SLAC gene family

members in M. micrantha (Figure 3) promotes NO3
−–N transport

within stems. Research suggested that these transporters also

exhibited certain activity in NO3
− transport, altering the balance

and storage of NO3
− and Cl− in cells (Chopin et al., 2007; O’Brien

et al., 2016). M. micrantha absorbed NO3
−, and its transcription

factor expression levels were correlated with its involvement in

regulating NO3
−, uptake. Under NO3

−–N treatment, the

transcription factor HY5 in M. micrantha, involved in nitrate root

signal regulation, showed increased expression levels at 10 mM and

20 mM NO3
−–N treatments (Figure 4E). Previous research has

highlighted the crucial role of HY5 in regulating genes associated

with nitrogen uptake and assimilation in plants (Mankotia et al.,

2024). HY5 positively regulates the expression of Nitrite reductase 1

(NiR1), known for converting nitrite into ammonium (Huang et al.,

2015). Conversely, As a negative regulator, overexpression of LBD

could have a certain inhibitory effect on nitrate responsive genes

(NRT1.1, NRT2.5, etc.) (Rubin et al., 2009). Consistent with

previous findings, the LBD gene family members in M. micrantha

showed low expression levels under high NO3
−–N treatment

(Figure 4F). Therefore, the absorption and transport of NO3
−–N

are key steps in nitrogen absorption. The upregulation of key genes

such as NPF6.3, NPF5, CLC, and SLAC, along with the regulatory

roles of transcription factors like HY5 and LBD, underscores the

complexity of nitrogen absorption in M. micrantha compared to

native plant, which was more conducive to its absorption of

NO3
−–N.
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Enhancing nitrogen metabolism capacity
promotes the efficient assimilation of
NO3

−–N

The key enzymes involved in nitrogen metabolism play a crucial

role in the nitrogen metabolism in plants. In M. micrantha, the

expression levels of NR, NiR, and GDH were higher, while the

expression of GS showed an opposite trend (Figures 4G–J, 3), which

was consistent with physiological data (Figure 2). These results

indicated that a portion of NO3
− in the stem was being reduced,

primarily through the GDH pathway for nitrogen assimilation, thus

ensuring a higher nitrogen metabolism capacity. GDH and GS are

key enzymes involved in ammonium assimilation in the nitrogen

metabolism process. Previous studies have shown that nitrate can

promote GS activity to some extent (Thu Hoai et al., 2003).

However, under stress conditions, protein degradation produces a

large amount of NH4
+, which is prone to ammonia toxicity. The

increase in GDH activity has a certain detoxification effect on NH4
+

accumulation (Bittsánszky et al., 2015), which is similar to the

opposite relationship with GS. With the increase of NO3
−–N

concentration, the NR (Figure 2B) and NiR (Figure 2C) activities

in M. micrantha were higher, indicating that a large amount of

NO3
− was gradually reduced to NH4

+. To avoid the toxic effects of

NH4
+, the plant upregulated the expression of GDH gene

(Figure 4J), enhancing GDH enzyme activity (Figure 2E),

converting free NH4
+ into glutamic acid and further converts it

into other forms of organic nitrogen, providing precursors for the

biosynthesis of nitrogen-containing compounds in plants.

Therefore, GDH is considered the main nitrogen assimilation

pathway in the stems of M. micrantha. Under high nitrogen

conditions, with the increasing concentration of nitrate, the

expression level of GDH was upregulated, indicating that M.

micrantha optimizes nitrogen utilization by adjusting nitrogen

metabolism pathways, thus enhancing its biomass and

adaptability. This finding provides new insights into how M.

micrantha responds to high-nitrogen environments. Similar

studies (Yang et al., 2010) found that in cucumber seedlings, root
FIGURE 7

The principal component analysis (PCA) of in M. micrantha (A) and P. scandens (B).
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ammonia assimilation was primarily accomplished through the

GDH-induced pathway, while leaf ammonia assimilation was

achieved through the GS/GOGAT cycle under nitrate treatment.

However, the interaction between GDH and GS in ammonia

assimilation in M. micrantha and how they balance the response

to external NO3
− requires further research for in-depth exploration.

GDH and GS play important roles in the assimilation process ofM.

micrantha, but further research is needed to balance the response to

external NO3
− and increase more nutrients for plant growth.

Positive regulatory genes (ALDO and CYSK) play a role in

enhancing amino acid synthesis. It was observed that M.

micrantha upregulated the expression levels of these two genes

(Figures 4KJ, 7), providing more precursors for amino acid

synthesis, which was consistent with the significant increase in

free amino acid content observed. Previous studies have suggested

that tomato (Solanum lycopersicum L.) under low nitrogen

conditions enhances the expression levels of ALDO gene to

increase metabolism and obtain the substances or energy needed

to adapt to environmental changes (Xu et al., 2023). Therefore, by

regulating the expression levels of related transcription factors and

nitrate transporter genes, M. micrantha enhances its ability to

absorb nitrate nitrogen, improves nitrogen metabolism in the

stem, and promotes the accumulation of a large number of amino

acids, ensuring its higher biomass.
Conclusion

M. micrantha, as a rapidly growing invasive plant, has garnered

widespread attention and research. Our study analyzed

physicochemical properties in rhizosphere soils, identified relevant

differentially expressed genes, and constructed key transcriptional

regulatory pathways. The results revealed that NO3
−–N effectively

promoted the growth ofM.micrantha, including an increase in plant

height, branching and biomass. Two potential mechanisms underlie

these phenotypic changes in M. micrantha for better NO3
−

acquisition. Firstly, compared to companion plants, M. micrantha

exhibited higher NO3
−–N content and protease activity in the soil.

This process may accelerate nitrogen metabolism in the rhizosphere

soil of M. micrantha, improving the efficiency of root utilization of

nitrate nitrogen. Secondly, increased activities of NR, NiR, GS, and

GOGAT in the stem enhanced nitrogen assimilation and amino acid

biosynthesis, thereby promoting plant growth. In summary, under

the backdrop of increasing global nitrogen deposition, particularly

with the continued rise in NO3
−–N deposition, the rapid growth of

M.micranthamay be facilitated by the regulation of NO3
−–N uptake

transcription factors (HY5) and transport proteins (CLC, SCLA/C,

NPF), as well as the expression regulation of key enzyme genes

involved in nitrogen assimilation (NR, GS, GOGAT), thereby

enhancing the nitrogen utilization efficiency of NO3
−–N as the

main form and accelerating the spread of M. micrantha. This

study reveals the adaptation mechanisms of M. micrantha to

NO3⁻-N enrichment, offering critical insights for predicting and

managing invasive species responses to global atmospheric nitrogen

deposition changes. The results highlight the importance of
Frontiers in Plant Science 14
considering nitrogen composition, rather than just quantity, in

invasive species management strategies.
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Bittsánszky, A., Pilinszky, K., Gyulai, G., and Komives, T. (2015). Overcoming
ammonium toxicity. Plant Sci. 231, 184–190. doi: 10.1016/j.plantsci.2014.12.005

Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., et al.
(2010). Global assessment of N deposition effects on terrestrial plant diversity: a
synthesis. Ecol. Appl. 20, 30–59. doi: 10.1890/08-1140.1

Cai, M., Chen, L., Ke, W., Chen, M., Zhang, J., Huang, J., et al. (2023). Understanding
the invasion mechanism of Malignant alien weed Mikania micrantha from the
perspective of photosynthetic capacity of stems. Biol. Invasions 25, 1181–1119.
doi: 10.1007/s10530-022-02973-6

Chen, W. B., and Chen, B. M. (2019). Considering the preferences for nitrogen forms
by invasive plants: a case study from a hydroponic culture experiment. Weed Res. 59,
49–57. doi: 10.1111/wre.2019.59.issue-1

Chen, L., Cai, M., Zhang, Q., Pan, Y., Chen, M., Zhang, X., et al. (2024). Why can
Mikania micrantha cover trees quickly during invasion? BMC Plant Biol. 24, 511.

Chen, Q., Niu, B., Hu, Y., Wang, J., Lei, T., Zhou, J., et al. (2020). Multilevel nitrogen
additions alter chemical composition and turnover of the labile fraction soil organic
matter via effects on vegetation and microorganisms. J. Geophysical Research:
Biogeosciences 125, e2019JG005316. doi: 10.1029/2019JG005316

Chen, B. M., Peng, S. L., and Ni, G. Y. (2009). Effects of the invasive plant Mikania
micrantha HBK on soil nitrogen availability through allelopathy in South China. Biol.
Invasions 11, 1291–1299. doi: 10.1007/s10530-008-9336-9

Chopin, F., Orsel, M., Dorbe, M. F., Chardon, F., Truong, H. N., Miller, A. J., et al.
(2007). The Arabidopsis AtNRT2.7 nitrate transporter controls nitrate content in seeds.
Plant Cell 19, 1590–1602. doi: 10.1105/tpc.107.050542

Crawford, N. M., and Forde, B. G. (2002). Molecular and developmental biology of
inorganic nitrogen nutrition. Arabidopsis Book 1, e0011. doi: 10.1199/tab.0011

Day, M. D., Clements, D. R., Gile, C., Senaratne, W. K., Shen, S., Weston, L. A., et al.
(2016). Biology and impacts of Pacific Islands invasive species. 13. Mikania micrantha
Kunth (Asteraceae). Pacific Sci. 70, 257–285. doi: 10.2984/70.3.1

Doi, E., Shibata, D., and Matoba, T. (1981). Modified colorimetric ninhydrin
methods for peptidase assay. Analytical Biochem. 118, 173–184. doi: 10.1016/0003-
2697(81)90175-5

Dong, S., Shang, Z., Gao, J., and Boone, R. (2022). Enhancing the ecological services
of the Qinghai-Tibetan Plateau’s grasslands through sustainable restoration and
management in era of global change. Agriculture Ecosystems Environ. 326, 107756.
doi: 10.1016/j.agee.2021.107756

Dong, X. M., Zhang, W., Hu, H., Gao, T. Y., Wang, X. Q., Shi, Q., et al. (2024).
Physiological and transcriptome analysis reveal the nitrogen preference and regulatory
pathways of nitrogen metabolism in an epiphytic orchid, Cymbidium tracyanum.
Environ. Exp. Bot. 219, 105618. doi: 10.1016/j.envexpbot.2023.105618

Duan, Y. K., Yang, H. Y., Yang, H., Wu, Y., Fan, S., Wu, W., et al. (2023). Integrative
physiological, metabolomic and transcriptomic analysis reveals nitrogen preference
and carbon and nitrogen metabolism in blackberry plants. J. Plant Physiol. 280, 153888.
doi: 10.1016/j.jplph.2022.153888

Eller, C. B., and Oliveira, R. S. (2017). Effects of nitrogen availability on the
competitive interactions between an invasive and a native grass from Brazilian
cerrado. Plant Soil 410, 63–72. doi: 10.1007/s11104-016-2984-0

Fan, X., Naz, M., Fan, X., Xuan, W., Miller, A. J., and Xu, G. (2017). Plant nitrate
transporters: from gene function to application. J. Exp. Bot. 68, 2463–2475.
doi: 10.1093/jxb/erx011

Fang, Y., Zhang, X., Wei, H., Wang, D., Chen, R., Wang, L., et al. (2021). Predicting
the invasive trend of exotic plants in China based on the ensemble model under climate
change: A case for three invasive plants of Asteraceae. Sci. Total Environ. 756, 143841.
doi: 10.1016/j.scitotenv.2020.143841

Fredes, I., Moreno, S., Dıáz, F. P., and Gutiérrez, R. A. (2019). Nitrate signaling and
the control of Arabidopsis growth and development. Curr. Opin. Plant Biol. 47, 112–
118. doi: 10.1016/j.pbi.2018.10.004

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
Seitzinger, S. P., et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry
70, 153–226. doi: 10.1007/s10533-004-0370-0

Gu, B., Ju, X., Chang, J., Ge, Y., and Vitousek, P. M. (2015). Integrated reactive
nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. 112, 8792–8797.
doi: 10.1073/pnas.1510211112

Guiboileau, A., Yoshimoto, K., Soulay, F., Bataillé, M. P., Avice, J. C., and Masclaux‐
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