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Background: Accurate sorghum spike detection is critical for monitoring growth

conditions, accurately predicting yield, and ensuring food security. Deep learning

models have improved the accuracy of spike detection thanks to advances in

artificial intelligence. However, the dense distribution of sorghum spikes, variable

sizes and complex background information in UAV images make detection and

counting difficult.

Methods: We propose a multiscale and oriented sorghum spike detection and

counting model in UAV images (MOSSNet). The model creates a Deformable

Convolution Spatial Attention (DCSA) module to improve the network's ability to

capture small sorghum spike features. It also integrated Circular Smooth Labels

(CSL) to effectively represent morphological features. The model also employs a

Wise IoU-based localization loss function to improve network loss.

Results: Results show that MOSSNet accurately counts sorghum spike under

field conditions, achieving mAP of 90.3%. MOSSNet shows excellent

performance in predicting spike orientation, with RMSEa and MAEa of 14.6 and

12.5 respectively, outperforming other directional detection algorithms.

Compared to general object detection algorithms which output horizonal

detection boxes, MOSSNet also demonstrates high efficiency in counting

sorghum spikes, with RMSE and MAE values of 9.3 and 8.1, respectively.

Discussion: Sorghum spikes have a slender morphology and their orientation

angles tend to be highly variable in natural environments. MOSSNet 's ability has

been proved to handle complex scenes with dense distribution, strong occlusion,

and complicated background information. This highlights its robustness and

generalizability, making it an effective tool for sorghum spike detection and

counting. In the future, we plan to further explore the detection capabilities of

MOSSNet at different stages of sorghum growth. This will involve implementing

object model improvements tailored to each stage and developing a real-time

workflow for accurate sorghum spike detection and counting.
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1 Introduction

Sorghum [Sorghum bicolor (L.) Moench] is a C4 drought

tolerant cereal crop widely grown worldwide for food, feed, and

biofuels (Bao et al., 2024). It plays a vital role in global food security,

especially in arid regions, providing an important source of

nutrition for humans and livestock (Liaqat et al., 2024; Hossain

et al., 2022). Due to the reduction of arable land and the impact of

extreme environments, humans have been committed to

maximizing crop yields to feed the growing population (Baye

et al., 2022). Sorghum is the fifth cereal crop, and increasing the

yield per unit area of sorghum can provide a guarantee for food

security. Therefore, accurate estimation of sorghum yield is crucial

for farmers and breeders (Khalifa and Eltahir, 2023, Ostmeyer TJ

et al., 2022, Wang et al., 2024). Traditional manual sampling

methods are not only time consuming and labor intensive, but

are susceptible to human error, especially in the case of large-scale

planting (Wu et al., 2023). This makes it particularly urgent to

achieve efficient and accurate yield estimation (Liang et al., 2024;

Wang et al., 2023).

To address these challenges, many studies have used unmanned

aerial vehicle (UAV) technology, which has excellent monitoring

capabilities, as an effective tool for sorghum yield estimation

(Ahmad et al., 2020, Jianqing et al., 2023). Equipped with high-

precision sensors, UAVs can quickly capture images of large areas

of farmland, greatly improving the speed and accuracy of data

collection (Abderahman Rejeb et al., 2022). This aerial perspective

provided by UAVs offers comprehensive crop coverage and helps

reduce monitoring blind spots. It also enables real-time tracking of

crop growth. These capabilities are crucial for identifying potential

problems and making timely adjustments (Jin et al., 2021, Zhang

et al., 2024a, Zhang et al., 2024b). The flexibility and cost-

effectiveness of UAV operations enable efficient deployment in a

variety of environments and terrains. These advantages help to

significantly reduce labor costs while improving data reliability. As a

result, they provide a strong basis for scientific evaluation of

sorghum yields (Hasan MM et al., 2018, Perich G et al., 2020).

In recent years, deep learning have achieved groundbreaking

success in solving complex problems in a variety of fields (Duan

et al., 2024; Yan et al., 2022, Yang et al., 2020; Zhang et al., 2023).

The rapid development of deep learning has provided a novel

solution for the detection and counting of sorghum spikes

(Huang et al., 2023; Sanaeifar et al., 2023). Deep neural networks

show significant potential in tasks such as classification, detection

and segmentation (Cai et al., 2021, James et al., 2024). While

classification methods can effectively categorize images of

sorghum spikes, it faces challenges in dealing with complex

backgrounds and occlusions (Guo et al., 2018). Segmentation

methods achieve precise pixel-level localization but requires

significant computational resources, making it less suitable for

real-time processing of large datasets (Chenyong et al., 2020;

Genze et al., 2022; Malambo et al., 2019, Zarei et al., 2024).

Detection methods combine the strengths of both classification

and segmentation, efficiently identifying the position and shape of

sorghum spikes while demonstrating strong adaptability to varying
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backgrounds (James et al., 2024; Gonzalo-Martıń and Garcıá-

Pedrero, 2021). Deep learning models improve the accuracy and

robustness of sorghum spike detection, especially in complex

environments. These approaches effectively meet the real-time

processing requirements of large-scale agricultural automation.

Traditional object detection methods based on convolutional

neural networks, such as Faster R-CNN, SSD and YOLO, typically

use horizontal bounding boxes to localize objects in images. While

effective for standard detection tasks, these methods have significant

limitations when applied to sorghum panicle detection in UAV

imagery. Sorghum panicles have a slender morphology and

naturally occur in different orientations due to the influence of

wind, gravity and plant structure. Horizontal bounding boxes

cannot represent directional information, making it difficult for

models to learn accurate spatial features (Gonzalo-Martıń and

Garcıá-Pedrero, 2021; Lin and Guo, 2020; Zhang et al., 2024).

Sorghum panicles are small, densely packed and highly

overlapping in UAV images. Horizontal boxes often lead to the

merging of multiple panicles into a single detection, or the repeated

detection of the same panicle in crowded scenes (Duan et al., 2024;

Ming et al., 2021). Horizontal boxes tend to contain a large amount

of irrelevant background, which interferes with the learning of

target-specific features, reducing model accuracy and training

efficiency. This problem is exacerbated by the complex field

environment, where background elements such as leaves, soil and

shadows introduce additional noise (Qiu et al., 2024, Wang et al.,

2022; Xue et al., 2024). In recent years, oriented bounding boxes

have been used with an additional angular parameter to better

represent multi-oriented targets, making some progress in remote

sensing and cluttered scene detection. However, simply

incorporating orientation into the bounding box is insufficient to

address the challenges of small target size, dense overlap, and

complex spatial relationships. In UAV imagery, such approaches

still struggle with inadequate feature extraction and poor modelling

of object interactions, resulting in frequent false positives and

missed detections (Sanaeifar et al., 2023). It is therefore critical to

develop a detection model that is not only orientation-aware, but

also capable of fine-grained feature extraction and robust

spatial reasoning.

To address these challenges, this study integrates sorghum spike

orientation information into convolutional neural networks and

uses oriented bounding boxes to identify their spatial locations. We

propose a multiscale and orientation-aware sorghum spike

detection model for UAV images. This model is designed to

effectively address the detection challenges posed by the complex

morphology and significant occlusions commonly found in

sorghum spikes.
2 Materials and methods

2.1 UAV images

The experiment was conducted in 2024 at the Qiema

Experimental Station in Shijiazhuang, Hebei Province, China,
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with sorghum variety JN 4 planted in 3 plots of 900 m2 each

(Figure 1). A DJI Phantom 4 drone equipped with a visible light

camera was used to capture images of sorghum spikes under sunny

conditions between 10 am and 2 pm. The flight altitude was set at 10

meters, with a speed of 1 meters per second. The original drone

images had a resolution of 4032×2268 pixels. To increase the

efficiency of the model processing, the original images were

cropped into 600×600 pixels sub-images. The sorghum spikes

were manually annotated using the Rolabelimg tool. This process

generated annotation files containing information on each spike’s

center point, dimensions, angle, and category.
2.2 Dataset preparation

Previous studies have shown that rotation and flipping can

effectively improve the robustness of deep neural network models.

In addition, brightness adjustment helps mitigate the effects of

brightness variations caused by changes in ambient lighting and

differences in sensors (Alzubaidi L et al., 2021, Zhang et al., 2023).

Therefore, we applied data augmentation, including rotation,

flipping, and brightness adjustment, to the annotated sorghum

spike images and their associated annotation files (Figure 2).

Specifically, rotation operations included rotating images by 90°,

180° and 270°, while flipping operations included both horizontal

and vertical flipping. Brightness adjustment was achieved by

increasing and decreasing the image brightness by 10% and 20%

respectively. This resulted in a dataset of 6000 images of sorghum

spikes. Since the YOLO model inherently extracts approximately

10% of the training set data as an internal validation subset during

training. This internal validation procedure continuously can

monitor model convergence, early stopping and hyperparameter

tuning. The dataset was then randomly divided into training,

validation and test sets in a ratio of 6:1:3.
2.3 Structure of MOSSNet

MOSSNet is constructed based on YOLOv8. MOSSNet

performs feature extraction and fusion on the input image to

generate multi-scale feature maps (Figure 3). A Deformable

Convolution Spatial Attention (DCSA) module is proposed to

improve the network’s ability to capture features of small

sorghum spikes. An angular feature extraction module is

developed by incorporating circular smooth labels. This enables

the network to capture the directional information of sorghum

spikes, effectively representing their morphological characteristics

in UAV images. A Wise-IoU based localization loss is applied to

further optimize the network loss for bounding boxes and detection

boxes of sorghum spikes in field environments. Finally, duplicate

sorghum spike detection boxes are removed by calculating the

overlap area of the oriented detection boxes. The size, position,

angle, and category information of the remaining detection boxes

are then output.
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2.3.1 Deformable convolution spatial attention
This study proposes DCSA module to eliminate invalid features

generated by traditional convolution operations when processing

sorghum spikes of different shapes and sizes (Figure 4). The DCSA

module has two main components. First, deformable convolution

(Dai et al., 2017) is employed to overcome the limitations of

conventional convolution in handling rectangular shapes. It allows

the network to adaptively extract effective features based on the size of

the sorghum spikes. (Figure 5). Second, the DCSA integrates

deformable convolution with the Scaled Dot-Product Attention

mechanism (Lovisotto et al., 2022). Notably, the scaled dot-product

attention mechanism enhances the model’s ability to focus on color-

dimension features, thereby improving its adaptability to the color

variations exhibited by sorghum spikes at different growth stages. By

embedding this combination in the multi-scale feature extraction and

fusion part of the network, the feature extraction capabilities are

significantly enhanced. (Figure 5). The DCSA introduces a micro-

scale detection layer branch designed to generate feature maps

optimized for small sorghum spikes. These feature maps have a

resolution of one quarter of the input image (Figure 4), ensuring

better detection of multi-scale spikes in different stages.

2.3.2 Angle feature extraction
In this study, the oriented detection box of the sorghum spike is

decoupled into a horizontal detection box. This box contains the

center of mass coordinates (x, y), length and width information (w,

h), angle information (q), and category information (cls). q is the

angle between the long side of the detection box and the x-axis, and

each angle is a category, with a total of 180 categories. Circular

smooth labels address the issue of angular periodicity (Yang and

Yan, 2020). Based on this, the study defines a periodicity labelling

code to measure the angular distance between the oriented

detection box and the bounding box using the following formula:

CSL(x) =
g(x);   q − r < x < q + r

     0;       otherwise

(

where q is the angle of the sorghum spike orientation frame, g

(x) is the Gaussian function, and r is the window radius of the

Gaussian function.

2.3.3 Optimized loss function
The IoU-based localization loss only considers the scenario

where the detection frame and the bounding box intersect, without

taking into account the complex spatial relationship between the

two frames (Rezatofighi et al., 2019). This study is based on Wise

IoU (Tong et al., 2021), which allows the evaluation of the spatial

overlap between the bounding boxes. It focuses not only on the area

of overlap, but also on the differences in shape and position between

the bounding boxes. The formula is as follows:

LWIoU = a · LIoU

LIoU =oS2

i=0oB
j=0Iij(1 − IoU)
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a = exp (
(GTx − Bx)

2 + (GTy − By)
2

(GTw + GTh)
2 )

where S2 is the feature map size output from the detection layer

and B is the detection frame. GTx , GTy , GTh and GTw are the center

coordinates, length and width of the sorghum spike bounding box

respectively. Bx and By are the center coordinates of the sorghum

spike detection frame.
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2.3.4 Duplicate detection boxes deleted
The traditional Non-Maximum Suppression (NMS) method is

primarily used to compute the Intersection over Union (IoU)

between horizontal bounding boxes. However, this approach

presents challenges when applied to the oriented bounding boxes

of sorghum spikes (Neubeck and Gool, 2006). To address this issue,

this study divides the overlapping region between the sorghum

detection box and the bounding box into multiple triangles that
FIGURE 2

Data augmentation.
FIGURE 1

Research area. (a) UAV image, (b) Labeled image.
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share the same vertices (Figure 6). The total overlapping area is

obtained by calculating and summing the area of each triangle. In

addition, the ratio of the overlapping area to the sum of the areas of

the two bounding boxes is defined. The bounding box with the
Frontiers in Plant Science 05
highest ratio is retained, while the others are discarded, resulting in

the final detection result. Figure 6 illustrates the geometric principle

for calculating the overlapping area between two oriented

detection boxes.
FIGURE 4

The structure of neck with DCSA.
FIGURE 3

The overall framework of MOSSNet.
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3 Experiment setup and evaluating
indicators

3.1 Experiment settings

The deep network models were trained and tested on a server

equipped with an Intel® Xeon Platinum 8268 CPU, NVIDIA

TITAN V graphics processor (12 GB of graphics memory), and

500 GB of RAM, running Ubuntu 16. Considering the dataset size,

model parameters, and computational resources, model training
Frontiers in Plant Science 06
was performed with a learning rate of 0.001, a batch size of 32, a

weight decay value of 1e-4, and a momentum of 0.9.
3.2 Evaluating indicators

This study evaluates the accuracy of MOSSNet and other deep

learning network models in recognizing and counting sorghum

spikes using five indicators grouped into three categories.

Specifically, a mean Average Precision (mAP) is used to evaluate
FIGURE 5

The structure of DCSA and Dconv module.
FIGURE 6

Area calculation for two overlapping oriented detection boxes. (a) intersecting graph is a triangle, (b) intersecting graph is a quadrilateral, (c)
intersecting graph is a pentagon, (d) intersecting graph is a hexagon, (e) intersecting graph is a heptagon, (f) intersecting graph is an octagon.
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the accuracy of MOSSNet and specialized detection models in

detecting the number and location of sorghum spikes. RMSEa and

MAEa are used to evaluate the accuracy of the models in estimating

the angle of sorghum spike. Meanwhile, RMSE andMAE are used to

assess the performance of MOSSNet compared to general object

detection methods for spike detection.

The mAP represents the mean accuracy across all categories

within a recall range of 0 to 1, with higher values indicating better

detection accuracy. In this study, the only object category is

sorghum spikes and the formula for calculating mAP is as follows:

mAP =
Z 1

0
P(R)dR

where P and R are the precision and recall, respectively, defined

as follows:

P =
TP

FP + TP

R =
TP

FN + TP

TP and FP are the number of correctly and incorrectly detected

sorghum spikes, and FN is the number of undetected sorghum spikes.

RMSEa and MAEa are used to evaluate the difference between

the angle of the sorghum spike detection frame and the angle of the

bounding box.

RMSEa =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Fo

F

i=1
pni − qnið Þ2

s

MAEa =
1
Fo

F

i=1
pni − qnij j

where F is the number of images for which the calculation was

performed. pni is the predicted angle of the nth sorghum spike in

image i of the model calculation. qni is the true angle of the

corresponding sorghum spike.

As the output of the generalized one-stage and two-stage object

detection methods is a horizontal detection box, it is not possible to

use the mAP for comparison with MOSSNet. For the collected UAV

images, we use manual annotation, where each sorghum spike was

surrounded by a bounding box, and each predicted box from the

model was correspondingly treated as a spike. To assess the

accuracy of the model in predicting the total number of spikes

and the associated variance, RMSE and MAE are used to compare

the difference between the total number of spikes in the annotations

and that predicted by the model.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Fo

F

i=1
(ai − ti)

2

s

MAE =
1
Fo

F

i=1
ai − tij j
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where t is the number of sorghum spikes included in the model-

calculated image i, and a is the number of manually labeled

sorghum spikes in image i.
4 Results

This study evaluates the performance of MOSSNet in sorghum

spike detection against R2CNN (Jiang et al., 2017), R3DET (Yang

et al., 2019), RRPN (Liu JH et al., 2017), RIDET (Ming et al., 2021),

SCRDET (Yang et al., 2019) and RSDET (Qian et al., 2021) using

metrics such as mAP, RMSEa and MAEa. These oriented object

detection methods are primarily designed to detect rotated objects

in remote sensing imagery, and their core mechanisms can be

grouped into two categories. The first involves the incorporation of

rotated bounding box regression (e.g., R2CNN, RRPN, R3Det),

either at the proposal generation stage or at the regression stage, to

model the angular information of objects. The second focuses on

feature refinement and structure optimization (e.g. SCRDet, RIDet,

RSDet) to improve detection performance for small objects or those

with large angular variations in complex backgrounds. The results

show that MOSSNet achieves a mean average precision (mAP) of

90.3% (Table 1), outperforming the other methods in terms of

detection accuracy. MOSSNet also achieved the highest precision in

predicting sorghum spike orientation, with RMSEa and MAEa of

14.6 and 12.5 respectively. MOSSNet’s frame per second (FPS)

reached 35, demonstrating its ability to efficiently detect the

orientation of sorghum spikes in UAV imagery.

Furthermore, this study compared MOSSNet with several

mainstream horizontal bounding box object detection methods,

including Faster RCNN (Ren et al., 2017), EfficientNet (Tan and

Le, 2019), RetinaNet (Lin et al., 2017), SSD (Wei et al., 2016),

YOLOv5, YOLOv8, and YOLOv11 (Figure 7). In Figure 7, the x-

axis represents the actual number of spikes in a given image, while

the y-axis represents the number of spikes predicted by the model.

Each point on the scatterplot thus corresponds to an image that

pairs its labelled spike count with the model’s predicted spike
TABLE 1 Comparison between the proposed method and other oriented
object detection approaches.

Method mAP (%) RMSEa MAEa FPS

Proposed 90.3 14.6 12.5 35

R2CNN 67.1 46.9 39.5 24

R3DET 76.5 31.3 25.3 32

RRPN 71.4 42.3 36.8 28

RIDET 84.7 19.5 18.3 20

SCRDET 78.3 26.6 21.2 27

RSDET 75.2 32.3 28.4 25
RMSEa and MAEa are used to evaluate the difference between the angle of the sorghum spike
detection frame and the angle of the bounding box. The subscript lowercase letter ‘a’ means
that they are different from RMSE and MAE.
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count. The distribution of these points around the diagonal

visually illustrates the overall accuracy and error distribution of

the model. The results show that each image contains on average

about 30 sorghum spikes and MOSSNet still achieves the highest

accuracy among all methods, with an RMSE of 9.3 and an MAE of

8.1. Comparing this benchmark with the outputs of different

detection models, Faster R-CNN, EfficientNet, RetinaNet, SSD,

YOLOv5, YOLOv8, YOLOv11, and the proposed MOSSNet

detected approximately 81, 60, 43, 40, 34, 46, 33, and 31 spikes

per image, respectively. These results indicate that some models

significantly overestimate the number of spikes, whereas

MOSSNet produces spike counts closest to the ground truth,

demonstrating higher detection accuracy and better model

alignment. As an improved model based on YOLOv8, MOSSNet

reduced the RMSE by 29% and the MAE by 26% compared to

YOLOv8. This study also tested the latest YOLOv11, released this

year, and the results showed that MOSSNet reduced the RMSE by

13% and the MAE by 12% compared to YOLOv11. These results

show that the proposed MOSSNet performs well in detecting and

counting sorghum spikes in complex field environments.
5 Discussion

5.1 The influence of angle and size
distribution for the detection

The number, length and width of crop spikes are critical

parameters for crop growth monitoring and yield prediction,

which rely heavily on spike angle information in images (Chang

et al., 2021; Li et al., 2022). Traditional non-deep learning methods

using features such as size, texture, color and morphology combined

with operators such as Harris have successfully measured spike

morphology. These methods highlight the importance of angular

features for effective spike detection (AB et al., 2015, Guo et al.,

2016). By manually annotating sorghum spike angles, MOSSNet

introduces and extracts spike angle features, providing a more

accurate description of sorghum spike morphology in UAV

imagery. This study analyses UAV image data to quantify the

number of sorghum spikes at different angles. Figure 8 shows the

analysis of UAV images used to quantify the number of sorghum

spikes at various angles. Specifically, the horizontal axis, which

ranges from 0 to 180, represents the angles at which the sorghum

spikes are rotated in the images. This allows their morphological

features to be captured. The red and blue lines in the figure show the

number of sorghum spikes detected at specific angles. At an angle of

0°, the corresponding number of detected sorghum spikes is 661.

The numbers labelled in the figure represent the exact number of

spikes at intervals based on a threshold of 100, which emphasizes

the differences in spike quantities. These results show that sorghum

spikes are unevenly distributed across different angles, appearing

mainly between 0°-45°, 90° and 120°- 180°, with the highest number

at 0°. This distribution may be influenced by visual preferences and

operational habits during manual annotation (Zhao et al., 2022).
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Consequently, the uneven distribution of spike angles suggests

variation in morphology and orientation in UAV imagery based

on Figure 8. By incorporating directional features, MOSSNet can

more accurately capture the true morphology of sorghum spike in

UAV images. This improves the model’s ability to provide reliable

data for future UAV-based estimation of sorghum spike

morphological parameters.

In this study, a detailed analysis of the bounding box length,

width and area of sorghum spikes in the measured data was

conducted (Figure 9). The bounding box length and width of

sorghum spikes in drone images are generally less than 100

pixels. It indicates that the scale of sorghum spikes is relatively

small and falls within the range of small object detection. On the

other hand, the study used visible light images with a resolution of

4032×2268 taken by a drone flying at an altitude of 10 meters,

resulting in a ground resolution of 0.4 cm/pixel. The combination of

observation scale and representation scale determines that the

acquired drone images have the characteristics of small size and

high density of sorghum spikes. Under these conditions, the pixel

area of small objects in the image is relatively small, resulting in

blurred image representation, limited extractable features, and

weaker feature representation ability (Zhao et al., 2021).

Therefore, it is necessary to make improvements to the detection

model based on the characteristics of small-sized objects to improve

its performance in detecting and representing sorghum spikes.
5.2 Ablation study and generalization test

To further investigate the impact of DCSA, CSL and Wise IoU

on the experimental results, this study evaluates the effectiveness

of these improvements with mAP (Table 2). The results show that

CSL is the most effective improvement, increasing mAP by 5.5%,

while DCSA and Wise IoU contribute increases of 3.9% and 1.6%

respectively. The baseline model only transforms sorghum spike

angle information into standard categorical features, which is

insufficient to capture the relative distances between different

angles and the periodic nature of angle features. Comparing the

results of oriented and horizontal bounding boxes for sorghum

spike detection, it is clear that the inclusion of CSL for oriented

detection offers significant advantages. The oriented bounding

boxes are better able to capture the morphological features of the

sorghum. In addition, they contain less background noise, which

improves the overall detection accuracy (Figure 10). Without CSL,

the horizontal bounding boxes tend to generate significant

overlap, which interferes with sorghum spike detection and

leads to missed detections. In addition, horizontal bounding

boxes containing excessive background not only increase false

detections, but also prevent further in-depth analysis of the

detection boxes. Using our existing data resources, we

conducted additional tests on JN3, JN6 and JN8 and their

inbred lines (Figure 11). The results show that the proposed

model has high generalization and robustness in different

backgrounds and field conditions.
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FIGURE 7

Comparison of the number of spikes labeled on the images by MOSSNet and other methods.
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5.3 Optimized pathways for sustainable
monitoring of sorghum spikes

Sorghum spikes have a slender morphology and their orientation

angles tend to be highly variable in natural environments. Traditional

horizontal detection boxes contain a significant number of non-target

background pixels, reducing detection accuracy (Sanaeifar et al., 2023).

The output does not capture the directional characteristics of rice

spikes. The inclusion of complex background information in the

horizontal bounding boxes can further degrade the model’s training

performance and make it difficult to visualize the detection results

(Zhang et al., 2025). Sorghum plants have flexible structures, with

dense, interlaced inflorescences that often overlap heavily, making

false positives and false negatives more common than in standard

object detection tasks. Under the influence of natural wind or UAV

rotor wash, sorghum spikes can sway and intertwine, making it

difficult to identify individual spikes. Our results show that sorghum

spikes are unevenly distributed at different angles, occurring mainly

between 0°-45°, 90° and 120°-180°, with the highest concentration at
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0°. The model shows excellent adaptability, even in windy conditions.

This angular distribution highlights a potential subjective bias in

manual counting and serves as a reminder to farmers to consider

the angular variations caused by wind, as failure to do so may

compromise the accuracy of yield estimation. The model proposed

in this study outputs oriented detection boxes with directional features

that closely align with each sorghum ear, reducing background

interference and improving counting accuracy.

On the other hand, the color of sorghum spikes in UAV images

is influenced by the growth stage, which plays a dominant role in

the performance of sorghum spike detection methods. This

observation suggests that color-based detection approaches are

generally used for specific growth stages (Chen H et al., 2024,

Ghosal et al., 2019). In this study, the dataset covers both the

heading and flowering stages of sorghum and includes several

varieties (JN3, JN4, JN6 and JN8). Differences in cultivars and

growth stages result in differences in spike color, such as green or

brown. Some studies suggest that very early green spikes can exhibit

significant differences in shape and size, requiring a larger amount

of training data to maintain model generalizability and

computational efficiency (Zhang et al., 2022). This study

introduced the DCSA module, integrating Deformable

Convolution and the Scaled Dot-Product Attention mechanism
FIGURE 8

Classification for angles of sorghum spikes.
TABLE 2 Ablation study of components of MOSSNet.

CSL

DCSA

Wise
IoU

mAP
(%)Dconv

Scaled
dot-product
attention

79.3

√ 84.8

√ √ 85.9

√ √ √ 88.7

√ √ √ √ 90.3
fro
Checkmark (√) indicates that the corresponding module is used. The absence of a checkmark
indicates that the module is not used.
FIGURE 9

The size distribution of sorghum spikes in UAV images.
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into the multi-scale feature extraction and fusion processes. The

DCSA module combines deformable convolution with a scaled dot-

product attention mechanism. The deformable convolution

component introduces learnable 2D offsets to the regular

sampling grid, enabling the sampling pattern to be deformed

freely. This allows the model to focus adaptively on the key

spatial features of the panicle regions in the image. Meanwhile,

the scaled dot-product attention mechanism enables the model to

focus on the most relevant parts of the input, thereby enhancing its

ability to model information along the color dimension. Combining

adaptive spatial sampling with color feature attention markedly

improves the model’s stability in recognizing sorghum panicles

across images from different growth stages, effectively mitigating the

drop in detection accuracy caused by variation in panicle color. we

will also incorporate more rigorous statistical significance analyses

in future studies to strengthen the reproducibility and

persuasiveness of our results.

In addition, UAV flight parameters directly affect image quality,

which has a significant impact on the accuracy of sorghum spike

detection and yield estimation. Future research will focus on
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expanding and refining the sorghum spike dataset. It will also aim

to identify the optimal UAV parameters and flight conditions. In

addition, images from other growth stages will be incorporated to

further improve the accuracy and applicability of the oriented

sorghum spike detection model.

The proposed MOSSNet demonstrates significant effectiveness in

detecting sorghum spikes of different sizes fromUAV images, making

it highly valuable for practical applications in field environments.

Traditional detection methods struggle to capture the size and

morphological characteristics of sorghum spikes in complex

environments, especially given the dynamic changes in spike size

and shape during the growth process (Guo et al., 2018; Salas

Fernandez MG et al., 2017). The DCSA module in MOSSNet

accurately captures the characteristics of small and densely spaced

spikes. Horizontal detection boxes often contain excessive

background information and are susceptible to interference from

densely packed spikes (Chen H et al., 2024). By incorporating the CSL

module, MOSSNet effectively discriminates the morphological and

directional characteristics of sorghum spikes, thereby improving

detection accuracy and reliability. In addition, MOSSNet, built with
FIGURE 10

Detection results with MOSSNet (a) and the YOLOv8 (b).
FIGURE 11

Detection results on different varieties with MOSSNet. (a) JN3; (b) JN6; (c) JN8.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1526142
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1526142
Pytorch, is a deep learning model that can be deployed on cloud

servers or edge computing devices. It supports automated, real-time

monitoring of sorghum. As a result, it provides farmers with efficient,

accurate and informed planting and management strategies.
6 Conclusions

This paper proposes a multiscale and oriented sorghum spike

detection method in UAV images. Experimental results show that

MOSSNet accurately identifies and counts sorghum spike under

field conditions, achieving mAP of 90.3%. MOSSNet shows

excellent performance in predicting spike orientation, with

RMSEa and MAEa of 14.6 and 12.5 respectively, outperforming

other directional detection algorithms. Com-pared to general object

detection algorithms which output horizonal detection boxes,

MOSSNet also demonstrates high efficiency in counting sorghum

spikes, with RMSE and MAE values of 9.3 and 8.1, respectively.

These results demonstrate the model’s ability to handle complex

scenes with dense distribution, strong occlusion, and complicated

background information. This highlights its robustness and

generalizability, making it an effective tool for sorghum spike

detection and counting. In the future, we plan to further explore

the detection capabilities of MOSSNet at different stages of sorghum

growth. This will involve implementing object model

improvements tailored to each stage and developing a real-time

workflow for accurate sorghum spike detection and counting.
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