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Molecular characterization of
homogentisate phytyltransferase
and methylphytylbenzoquinol
methyltransferase genes from
olive fruit with regard to the
tocopherol content and the
response to abiotic stresses
Isabel Narváez †, M. Luisa Hernández †, M. Dolores Sicardo,
David Velázquez-Palmero, Wenceslao Moreda
and José M. Martı́nez-Rivas*

Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (IG),
Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
Two cDNA sequences, named OepHPT and OepMPBQ MT, encoding

homogentisate phytyltransferase (HPT) and methylphytylbenzoquinol

methyltransferase (MPBQ MT), respectively, have been cloned from olive (Olea

europaea cv. Picual). Sequence analysis displayed the distinguishing

characteristics typical of the HPT and MPBQ MT families and along with

phylogenetic analysis indicated that they code for homogentisate

phytyltransferase and methylphytylbenzoquinol methyltransferase enzymes,

respectively. Transcriptional analysis in distinct olive tissues indicated that

expression levels of HPT and MPBQ MT genes are spatially and temporally

regulated in a cultivar-dependent manner and together with tocopherol

analysis pointed out that both genes participate in the biosynthesis of the

tocopherols present in olive mesocarp. These data also suggest that in olive

mesocarp, HPT but not MPBQ MT could be implicated in the transcriptional

regulation of the tocopherol biosynthetic pathway. In addition, HPT and MPBQ

MT transcript levels are regulated by water status, temperature, light, and

wounding in the olive fruit mesocarp, suggesting that both genes could be

implicated in the abiotic stress response. Overall, this research constitutes a

significant advance to elucidate the factors that regulate the tocopherol

biosynthesis in olive fruit to obtain virgin olive oils with enhanced a-
tocopherol content.
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Introduction

In nature, four tocopherols and four tocotrienols have been

described, constituting a group of lipid-soluble antioxidants named

tocochromanols that belong to the group of vitamin E compounds

(Fritsche et al., 2017). The basic structure of tocochromanols is

simple, comprising a polar chromanol ring and a lipophilic

polyprenil side chain, which is saturated in tocopherols and 3-

fold unsaturated in tocotrienols (Falk and Munné-Bosch, 2010).

The number of methyl groups in the chromanol ring determines the

four a- (three-methyl groups), b- and g- (two-methyl groups), and

d- (one-methyl group) tocopherol and tocotrienol subforms (Mène-

Saffrané, 2018). Tocopherols are found in all photosynthetic

organisms, whereas tocotrienols are only present in certain plant

groups (Falk and Munné-Bosch, 2010).

In higher plants, the content and composition of tocopherols

differ considerably in distinct tissues, being generally present in the

green parts (Horvath et al., 2006). Commonly, seeds of many plant

species accumulate g-tocopherol, while leaves are rich in a-
tocopherol (Hussain et al., 2013), with some important exceptions

such as sunflower where the main tocopherol form in the seed is a-
tocopherol (Velasco et al., 2002). a-Tocopherol is localized in the

chloroplasts, specifically in the inner envelope and thylakoid

membranes, and in some cases in plastoglobuli (Hussain et al., 2013).

Tocopherol biosynthesis takes place in the plastids of

photosynthetic organisms. The first reaction of the pathway consists

in the condensation of the polar aromatic head group homogentisic

acid (HGA) with the polyprenyl side chain phytyl diphosphate (PDP),

which is catalyzed by the enzyme homogentisate phytyltransferase

(HPT), producing 2-methyl-6-phytyl-1,4-benzoquinol (MPBQ)

(Lushchak and Semchuk, 2012; Mène-Saffrané, 2018). Regarding the

origin of both substrates, the formation of HGA is derived from the

shikimate pathway and is catalyzed by the p-hydroxyphenylpyruvate

dioxygenase, whereas PDP is originated from the methylerytrithol

phosphate pathway and synthesized by the geranylgeranyl reductase

from geranylgeranyl diphosphate, as well as from the recycling of free

phytol derived from chlorophyll degradation catalyzed sequentially by

two phytol kinases (Pellaud andMène-Saffrané, 2017; Niu et al., 2022).

The reaction product MPBQ can be methylated via MPBQ

methyltransferase (MPBQ MT) to 2,3-dimethyl-6-phytyl-1,4-

benzoquinol (DMPBQ). MPBQ and DMPBQ are then further

cyclized by the tocopherol cyclase (TC) to produce d- and g-
tocopherols, respectively. Finally, the enzyme g-tocopherol
methyltransferase (g-TMT) catalyzes the methylation of d- and g-
tocopherols into b- and a-tocopherols, respectively (Fritsche

et al., 2017).

HPT catalyzes the first committed step of tocopherol biosynthesis.

Arabidopsis plants lacking HPT are completely deficient in all

tocopherols and pathway intermediates in both, seeds and leaves,

indicating that this is a limiting step in tocopherol biosynthesis (Sattler

et al., 2004). The genes encoding HPT, also named VTE2, were

initially cloned from Arabidopsis and Synechocystis (Collakova and

DellaPenna, 2001; Schledz et al., 2001). Overexpression of AtHPT in

Arabidopsis plants resulted in a 2-fold increment in total tocopherol

level in seeds (Savidge et al., 2002; Collakova and DellaPenna, 2003a).

In the same way, overexpression of AtHPT in rapeseed plants
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increased the total tocopherol content in the transgenic seeds

(Lassner et al., 2001). In contrast, overexpression of HPT genes in

soybean did not significantly enhance the tocopherol content in the

seeds (Karunanandaa et al., 2005). These data suggest that HPT

activity is at least partially limiting in seeds. Interestingly, only a

minor increment was observed when the seed-specific expression of

the Synechocystis HPT gene was carried out in rapeseed, indicating

species-specific differences in the regulation of tocopherol biosynthesis

(Karunanandaa et al., 2005). In leaves, the constitutive overexpression

of the HPT gene brought about a considerable increase in the total

tocopherol content in Arabidopsis (Collakova and DellaPenna, 2003b;

Li et al., 2010), tomato (Seo et al., 2011; Lu et al., 2013), and lettuce

(Lee et al., 2007). Overall, these results indicate that HPT clearly limits

leaf tocopherol synthesis, whereas it is not a major bottleneck in

tocopherol metabolism in seeds (Mène-Saffrané and Pellaud, 2017).

The MPBQ MT enzyme catalyzes the step of the tocopherol

biosynthetic pathway that controls the ratio between a- and g-
tocopherols with respect to b- and d-tocopherols, competing for the

same MPBQ substrate with the TC enzyme. Additionally, the

MPBQ MT enzyme is also involved in the methylation of 2-

methyl-6-solanyl-1,4-benzoquinone (MSBQ) to produce

plastoquinol-9 in the synthesis of plastoquinones (Lushchak and

Semchuk, 2012). The first MPBQ MT gene, also called VTE3, was

isolated from Synechocystis because of its homology to g-TMT

(Shintani et al., 2002). Arabidopsis vte3-2 mutant lines, which

have a complete gene disruption, were deficient in a- and g-
tocopherols, as well as plastoquinones, but accumulating b- and

d-tocopherols (Cheng et al., 2003; Motohashi et al., 2003).

Overexpression of AtMPBQ MT in Arabidopsis and soybean

seeds did not have a substantial increase in total tocopherol

amounts, but highly altered tocopherol composition decreasing b-
and d-tocopherols, with a corresponding increment in a- and g-
tocopherols (Van Eenennaam et al., 2003; Li et al., 2010).

In photosynthetic organisms, the main physiological role of

tocopherols has been associated with their non-enzymatic

antioxidant activity that protects lipids from oxidation by

scavenging lipid peroxy radicals and quenching singlet molecular

oxygen during stress conditions (Munné-Bosch and Alegre, 2002).

More recently, several studies suggest that tocopherols are essential

for plant development and are involved in several functions such as

the plant response to environmental stresses, the maintenance of

membrane stability, transcript regulation, and intracellular

signaling (Fritsche et al., 2017; Muñoz and Munné-Bosch, 2019;

Ma et al., 2020; Niu et al., 2022; Mesa and Munné-Bosch, 2023).

In mammalian systems, the role of vitamin E has been widely

studied since its discovery in 1922. In addition to its essential role in

animal reproduction, vitamin E has beneficial functions in human

health (Galli et al., 2017). A sufficient uptake of vitamin E can help to

prevent chronic diseases and neurological disorders, mainly those

with an oxidative stress component such as cancer or atherosclerosis

(Li et al., 2011; Qureshi et al., 2002). Among tocochromanols, the

most biologically active form of vitamin E is a-tocopherol because it
exhibits the highest affinity to the a-tocopherol transfer protein, a
cytoplasmic protein that transports tocochromanols from the

endosomal fraction of hepatocytes into the bloodstream of animals

(Hosomi et al., 1997). Because humans cannot synthesize vitamin E,
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it is an essential part of our diet. It is commonly found in nuts, seeds,

grains, and vegetable oils, but also in fruits and leafy vegetables

(DellaPenna and Last, 2006). Wheat germ and sunflower oils are the

best sources of a-tocopherol, while g-tocopherol can be found in high
concentrations in rapeseed, corn, and soybean oils (Brigelius-Flohe

and Traber, 1999). Therefore, the enrichment in vitamin E content

and the increase of a-tocopherol in vegetable oils are of particular

interest in crop breeding (Fritsche et al., 2017).

Virgin olive oil (VOO) is mainly constituted of triacylglycerols

esterified by fatty acids, which are the major components (≥98%),

and a highly diverse mixture of chemical compounds called “minor

compounds” (≤2%) (Aparicio and Harwood, 2013). Among the

minor components present in the VOO are the tocopherols. Their

total content ranges between 90 and 1400 mg/kg, with a-tocopherol
representing more than 95% (Pérez et al., 2019). b- and g-
tocopherols are also present but only in minor amounts. Almost

all the tocopherols present in VOO derive from the mesocarp of the

olive fruit, with a minor contribution from the seed (Lavelli and

Bondesan, 2005). In olive mesocarp, total tocopherols varied from

135 to 579 mg/kg (Mousavi et al., 2022). Tocopherol content and

composition in VOO and olive fruit are affected by genetic and

agronomic factors such as cultivar, fruit ripeness, and agroclimatic

conditions (Beltrán et al., 2010; Mousavi et al., 2022). Unlike the

phenolic compounds with secoiridoid structures, tocopherols do

not suffer any relevant chemical or enzymatic transformation

during the oil extraction process, being directly transferred from

the olive fruit to the VOO. However, a certain loss of tocopherols is

produced in the added water during the centrifugation step due to

their amphipathic nature (Oliveras-López et al., 2008).

In recent years, the generation of novel olive cultivars producing

VOO with improved functional quality, including the increase in

vitamin E content, has been considered an important target of olive

breeding programs (Pérez et al., 2019). To achieve that, the

identification of molecular markers associated with high vitamin

E content in VOO is needed. However, unlike oilseeds and leaves,

molecular studies about tocopherol biosynthesis in oil fruits are very

limited. In olive, no genes specific to the tocopherol biosynthetic

pathway have been cloned and characterized to date, although their

expression levels have been measured in the mesocarp of several

Greek olive cultivars (Georgiadou et al., 2015; Georgiadou et al.,

2016; Georgiadou et al., 2019). In the present work, we report the

isolation and characterization ofHPT andMPBQMT genes in olive.

Tocopherol and expression analysis during the development and

ripening of olive fruit from different cultivars were performed to

investigate their specific roles in tocopherol biosynthesis and their

possible implication in the response to several environmental

stresses in the olive mesocarp.
Materials and methods

Plant material and stress treatments

Olive (Olea europaea L.) trees (cv. Picual and Arbequina) were

cultivated in the experimental orchard of Instituto de la Grasa,

Seville (Spain), using drip irrigation and fertirrigation (irrigation
Frontiers in Plant Science 03
with suitable fertilizers in the solution) from the time of full bloom

to fruit ripening. Young drupes, developing seeds, and mesocarp

tissue were collected from at least three different olive trees at

different weeks after flowering (WAF) corresponding to distinct

developmental stages of the olive fruit: green (9, 12, 16, and 19

WAF); yellowish (23 WAF); turning or veraison (28 and 31 WAF);

and mature or fully ripen (35 WAF). Young leaves were harvested

as well.

Olive trees (cv. Klon-14, Abou Kanani, Dokkar, and Piñonera)

from the Worldwide Olive Germplasm Bank of Córdoba located at

IFAPA (Alameda del Obispo, Córdoba, Spain) were grown by using

standard culture practices. Mesocarp tissue from these cultivars was

collected at distinct developmental stages of the olive fruit: green (20

WAF); yellowish (24 WAF); turning or veraison (27 WAF) and

mature or fully ripen (31 WAF).

To study the effect of water deficit, mesocarp tissue at different

WAF was collected at the Sanabria orchard, a commercial super

high-density olive (cv. Arbequina) orchard near Seville, as

previously described (Hernández et al., 2018). Full irrigation (FI)

and two regulated deficit irrigation (RDI) treatments (60RDI and

30RDI) were applied.

Stress treatments were conducted as described by Hernández

et al. (2019) using olive branches collected from different olive trees

(cv. Picual and Arbequina) with around 100 olive fruit at the

turning stage (28 WAF) and incubated in a growth chamber with

a 12 h light/12 h dark cycle (light intensity of 300 µmol m-2 s-1.) at

25°C. These incubation parameters were considered the standard

conditions since they mimic the physiological conditions of the tree.

For stress treatments, standard conditions were changed according

to the effect studied. To assess the influence of low and high

temperatures, the branches were incubated at 15 or 35°C,

respectively. To study the impact of the darkness, the light was

turned off. For wounding experiments, the entire surface of the olive

fruit was mechanically damaged affecting mesocarp tissue, with

pressure at zero time using forceps with serrated tips. The zero time

of each treatment was chosen 2 h after the beginning of the light

period to preserve the natural photoperiod day/night of the olive

fruit. The duration of stress exposure was 24 h. This short-term

exposition was selected because longer times can cause tissue

damage in the olive fruits, since they are not in the olive tree but

in branches incubated in chambers.

In all cases, olive tissues were frozen in liquid nitrogen

immediately after harvest and stored at -80°C.
Isolation of homogentisate
phytyltransferase and
methylphytylbenzoquinol
methyltransferase full-length cDNA clones

Candidate olive HPT andMPBQ MT sequences were identified in

the olive transcriptome (Muñoz-Mérida et al., 2013) and the wild olive

(var. sylvestris) genome (Unver et al., 2017) using the tblastn algorithm

together with the amino acid sequences of Arabidopsis HPT and

MPBQ MT genes (At2g18950 and At3g63410, respectively). Based on

these two new sequences, specific pairs of primers for each gene were
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Narváez et al. 10.3389/fpls.2025.1526815
designed and used for PCR amplification with VELOCITY DNA

polymerase (Bioline, Spain), which has proofreading activity. An

aliquot of an olive Uni-ZAP XR cDNA library constructed with

mRNA isolated from 13 WAF olive (cv. Picual) fruit (Haralampidis

et al., 1998) was utilized as a DNA template. One fragment with the

expected size was obtained in each reaction, subcloned into the vector

pSpark® I (Canvax, Spain), and sequenced in both directions. DNA

sequencing was carried out by GATC Biotech (Germany).

The DNA sequence data were compiled and analyzed with the

LASERGENE software package (DNAStar, Madison, WI). The

multiple sequence alignments of olive HPT and MPBQ MT

amino acid sequences were calculated using the ClustalX program

and displayed with GeneDoc. Phylogenetic tree analysis was

performed using the neighbor-joining method implemented in

the Phylip package using Kimura’s correction for multiple

substitutions and a 1000 bootstrap data set. TreeView was used to

display the tree. The conserved domains in the deduced amino acid

sequences were analyzed using the NCBI Conserved Domain

Search (http://www.ncbi.nlm.nih.gov/structure/cdd/wrpsb.cgi) and

Pfam software (https://pfam.xfam.org/). TMHMM analysis was

carried out (http://www.cbs.dtu.dk/services/TMHMM/) and

subcellular localization was predicted using three different

programs: ProtComp 9.0 (http://www.softberry.com), WoLF

PSORT (https://wolfpsort.hgc.jp/) and TargetP-2.0 (http://

www.cbs.dtu.dk/services/TargetP/). Prediction of N-terminal

chloroplast targeting peptides was performed using ChloroP 1.1

software (http://www.cbs.dtu.dk/services/ChloroP/).
Total RNA isolation and cDNA synthesis

Total RNA isolation was carried out according to Hernández

et al. (2005) using 1.5 g of frozen olive tissue. RNA quality

verification, removal of contaminating DNA, and cDNA synthesis

were performed as described by Hernández et al. (2009).
Expression analysis of homogentisate
phytyltransferase and
methylphytylbenzoquinol
methyltransferase genes

Gene expression levels of the olive HPT and MPBQ MT were

analyzed by quantitative real-time PCR (qRT-PCR) using a CFX

Connect real-time PCR System and iTaq Universal SYBR Green

Supermix (BioRad, California, USA) as described by Hernández et al.

(2019). Primers for gene-specific amplification of OeHPT and

OeMPBQ MT were designed using the Primer3 program (http://

bioinfo.ut.ee/primer3/) and the Gene Runner program

(Supplementary Table 1). The housekeeping olive ubiquitin2 gene

(OeUBQ2, AF429430) was used as an endogenous reference to

normalize (Hernández et al., 2009). The qRT-PCR data were

calibrated relative to the corresponding gene expression level at

12 WAF ‘Picual’ mesocarp for developmental studies, at 13 WAF

‘Arbequina’ mesocarp of FI treatment for water deficit study, and

zero time for each stress treatment and cultivar, respectively, as
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calibrator. The relative expression level of each gene was calculated

following the 2-DDCt method for relative quantification (Livak and

Schmittgen, 2001). The data are presented as means ± SD of three

biological replicates, each having two technical replicates per 96

well plate.
Tocopherol analysis

Lyophilized mesocarp tissue (500 mg DW) was processed in a

glass tube with 3 mL of hexane and the mixture was shaken for 15

min including 1 min vortexing. After centrifugation at 2000 rpm for

10 min at RT, the hexane phase was recovered, and the tissue was

extracted twice. The hexane phases were mixed, and hexane was

added to complete an exact volume of 10 mL in a graduated flask.

An aliquot of the extracts was filtered and injected into an HPLC.

The tocopherols were determined according to Abdallah et al.

(2015), using a Supersphere Si60 Lichrocart 250-4 HPLC

cartridge (Merck), and eluted with hexane:2-propanol (99:1) at a

flow rate of 1 mL/min. A fluorescence detector (Shimadzu RF535)

was used, setting the excitation and emission wavelengths at 290

and 330 nm, respectively. The injection volume of the sample was

20 µL. Peaks of a-, b-, g- and d-tocopherol were identified using a

mix standard solution of all the four compounds. The quantitative

evaluation was performed by external standardization using an a-
tocopherol calibration curve. The data are presented as means ± SD

of three biological replicates, each having three technical replicates.
Results and discussion

cDNA cloning and sequence analysis of
olive homogentisate phytyltransferase and
methylphytylbenzoquinol
methyltransferase genes

Two sequences were identified from the olive transcriptome

(Muñoz-Mérida et al., 2013) and the olive (var. sylvestris) genome

(Unver et al., 2017), which displayed an elevated degree of similarity

to the Arabidopsis HPT and MPBQ MT genes (Collakova and

DellaPenna, 2001; Cheng et al., 2003). Based on these sequences,

specific primer pairs were designed and utilized for PCR

amplification, along with an aliquot of an olive fruit (13 WAF)

cDNA library (cv. Picual). Two full-length cDNA clones were

isolated and named OepHPT and OepMPBQ MT, with sizes of

1296 and 1264 bp, respectively. They exhibited ORFs encoding

predicted proteins of 408 and 346 amino acid residues, which

correspond to calculated molecular masses of 45.7 and 38.8 kDa,

respectively, and pI values of 9.6 for OepHPT and 9.1 for

OepMPBQ MT. Alignment of the olive HPT deduced amino acid

sequences with Arabidopsis HPT indicated that they displayed 60%

identity (Figure 1A), while olive MPBQ MT shared 75% identity

with Arabidopsis MPBQ MT (Figure 1B).

The Conserved Domain search revealed that the olive HPT

protein belongs to the PLNO2878 superfamily, with homogentisate

phytyltransferase activity, whereas olive MPBQ MT belongs to the
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http://www.ncbi.nlm.nih.gov/structure/cdd/wrpsb.cgi
https://pfam.xfam.org/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.softberry.com
https://wolfpsort.hgc.jp/
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/ChloroP/
http://bioinfo.ut.ee/primer3/
http://bioinfo.ut.ee/primer3/
https://doi.org/10.3389/fpls.2025.1526815
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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PLNO2490 superfamily, with MPBQ methyltransferase activity. In

addition, Pfam analysis indicated the presence of an UbiA

prenyltransferase domain between amino acids 137-396 for

OepHPT, and a methyltransferase and an UbiE methyltransferase

domain between amino acids 123-215 and 232-262, respectively, in

the case of OepMPBQ MT.

Various distinctive conserved motifs were identified in the

alignment of the HPT deduced amino acid sequences
Frontiers in Plant Science 05
(Figure 1A). Among them, OepHPT contains prenyl-DP and

divalent cation binding motifs typical for polyprenyltransferases

(Lopez et al., 1996; Collakova and DellaPenna, 2001). In addition,

an Asp-rich motif is also present in the olive HPT sequence, which

is involved in substrate binding (Huang et al., 2014). Regarding

olive MPBQ MT (Figure 1B), three conserved domains (SAM I, II,

and III) were detected in the alignment, which are characteristic of

S-adenosylmethionine-dependent methyltransferases (Kagan and
FIGURE 1

Comparison of the deduced amino acid sequences of olive HPT (A) and MPBQ MT (B) genes, with those from Arabidopsis. The sequences were
aligned using the ClustalX program and displayed with GeneDoc. Identical and similar residues are shown on a background of black and grey,
respectively. The putative cleavage sites of the chloroplast transit peptides are indicated by triangles. In the case of HPT, the prenyl-DP binding motif
I and the divalent cation binding domain, both typical for polyprenyltransferases, are boxed with solid and dashed lines, respectively, and the Asp-
rich motif II, which is involved in substrate binding is framed with a solid line. Regarding MPBQ MT, the three conserved domains SAM I, II, and III
characteristics of S-adenosylmethionine-dependent methyltransferases are denoted by continuous lines. The cDNA sequences corresponding to
OepHPT and OepMPBQ MT have been deposited in the GenBank/EMBL/DDBJ database with accession numbers PQ479102 and PQ479103,
respectively. The accession numbers of AtHPT and AtMPBQ MT are AF324344 and CAB87794, respectively.
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Clarke, 1994; Joshi and Chiang, 1998). SAM I and II correspond to

the binding sites for substrate S-adenosylmethionine, while SAM III

corresponds to the binding site of catalytic products.

Regarding the subcellular localization, analysis of the deduced olive

HPT and MPBQ MT protein sequences with subcellular localization

prediction software such as ProtComp, WoLF PSORT, or TargetP

suggests that both proteins could be located in the chloroplast. In

addition, an N-terminal transit peptide with the characteristic features

of chloroplast targeting peptides was detected by ChloroP software in

both sequences (Figure 1), with a predicted cleavage site after Cys at

residue 39 and Ser at residue 65 for OepHPT and OepMPBQ MT,

respectively. In line with these observations, experimental evidence of

chloroplast localization for HPT and MPBQ MT from sweet potato in

tobacco leaves has been reported (Ji et al., 2016).

As shown in Supplementary Figure 1, both olive HPT and

MPBQ MT proteins are highly hydrophobic based on hydropathy

plotting (Kyte and Doolittle, 1982), indicating that they are

membrane proteins. Concerning the membrane topology,
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transmembrane predictions based on a hidden Markov model

(TMHMM) analysis of the olive HPT and MPBQ MT proteins

were generated (Supplementary Figure 2). OepHPT showed nine

putative transmembrane domains as reported for other plant HPT

proteins (Wunnakup et al., 2018), whereas, in the OepMPBQ MT

sequence, only one transmembrane domain was found in the C-

terminal region at positions 316-335. This transmembrane domain

was previously identified in the Arabidopsis MPBQ MT and it has

been suggested that the protein is anchored to the inner chloroplast

envelope membrane at this position (Motohashi et al., 2003).

Two unrooted phylogenetic trees based on deduced amino acid

sequences of known and characterized plant HPT (Figure 2A) and

MPBQ MT (Figure 2B) were generated to investigate the

phylogenetic relationship of olive HPT and MPBQ MT,

respectively. In agreement with previous findings (Chaudhary and

Khurana, 2009; Ji et al., 2016), plant HPT and MPBQ MT could be

classified into two separate monocot and dicot-specific clades, with

OepHPT and OepMPBQ MT being positioned, respectively, in the
FIGURE 2

Phylogenetic tree analysis of plant homogentisate phytyltransferases (A) and methylphytylbenzoquinol methyltransferases (B). Alignments were
calculated with ClustalX and the analysis was performed using the neighbor-joining method implemented in the Phylip package using Kimura’s
correction for multiple substitutions, and a 1000 bootstrap data set. TreeView was used to display the tree. Positions of the olive HPT and MPBQ MT
are in bold and underlined. Accession numbers of the different HPT and MPBQ MT included in this analysis are indicated in Supplementary Table 2..
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branch accompanied by other HPT and MPBQ MT from dicots

plants. It seems that HPT and MPBQ MT evolved differently

between dicots and monocots species.

Altogether, sequence analysis of the olive HPT and MPBQ MT

displayed the distinguishing characteristics typical of the HPT and

MPBQ MT families and along with phylogenetic analysis indicated

that they code for homogentisate phytyltransferase and

methylphytylbenzoquinol methyltransferase enzymes, respectively.
Tissue specificity of olive homogentisate
phytyltransferase and
methylphytylbenzoquinol
methyltransferase genes

Olive HPT and MPBQ MT transcript levels were determined in

distinct olive organs and tissues from ‘Picual’ and ‘Arbequina’, the

two main cultivars for oil production, using qRT-PCR (Figure 3) to

investigate their physiological function. Both genes exhibit higher

expression levels in green tissues from both cultivars such as young

drupes, green mesocarp, and leaves compared to mature mesocarp

or young seeds. Analogous observations have been reported in the

case of oil palm HPT (Ling et al., 2016) and tomato MPBQ MT

(Quadrana et al., 2014). The high transcript levels detected for both

genes in green tissues are consistent with the elevated tocopherol

content characteristic of photosynthetic organs, given the protective

role of tocopherols against photooxidation and photoinactivation

(Havaux et al., 2005). In addition, all these data indicate a spatial

regulation of HPT and MPBQ MT genes in olive considering that

they were differentially expressed in all organs and tissues studied.
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Developmental expression of
homogentisate phytyltransferase and
methylphytylbenzoquinol
methyltransferase genes in the olive fruit in
relation to the tocopherol content

Afterward, the expression levels of olive HPT and MPBQ MT

genes in the olive fruit were studied in more detail. Specifically,

seeds and mesocarp tissue during the development and ripening of

olive fruit from the cultivars Picual and Arbequina were analyzed.

Concerning developing seeds (Supplementary Figure 3), gene

expression analysis revealed that HPT and MPBQ MT genes

exhibited an increase in their transcript levels during the whole

period of olive fruit development and ripening in both cultivars,

showing maximum values for both genes at 35 and 31 WAF for

‘Picual’ and ‘Arbequina’, respectively. The detected increase of HPT

and MPBQ MT transcripts during seed development has been

previously observed in other plants, as in the case of the rice and

blackberry HPT (Wang et al., 2013; Yang et al., 2020), and the HPT

and MPBQ MT from oat (Gutierrez-Gonzalez and Garvin, 2016).

However, in the case of olive, this increase in HPT and MPBQ MT

expression levels detected in the seed is not in accordance with the

slight continuous decrease of tocopherol content observed in oils

from Picual and Arbequina cultivars obtained at different stages of

development and ripening (Pérez et al., 2019), likely because the

contribution of the seed to the final composition of the VOO is very

minor (Hernández et al., 2016).

A similar investigation was performed in the olive mesocarp of

Picual and Arbequina cultivars (Figure 4). The observed pattern in

HPT and MPBQ MT expression levels during olive mesocarp
FIGURE 3

Relative expression levels of olive HPT and MPBQ MT genes in different organs and tissues of Picual and Arbequina cultivars. The relative expression
levels were determined by qRT-PCR in the indicated organs and tissues as described under section “Materials and Methods”. Data are presented as
means ± SD of three biological replicates. *Indicates significantly different (P<0.05) to ‘Picual’ by two-way analysis of variance (ANOVA) with a
Bonferroni posttest in ‘Arbequina’ tissues.
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development and ripening (Figure 4B) is in line with that of the total

tocopherol content and the (a+g)-tocopherol/(b+d)-tocopherol
ratio (Figure 4A), respectively, with a peak at 28 WAF in the case

of ‘Picual’, coinciding with the beginning of the ripening period. In

the case of the cultivar Koroneiki, a decrease in their expression

levels has been described for both genes (Georgiadou et al., 2015).

All these data point out that in olive fruit the expression ofHPT and

MPBQ MT genes seems to be temporally regulated.

Concerning other fruits, a reduction of HPT expression levels

has been reported during fruit ripening in apple and the pulp of

Citrus species (Seo et al., 2011; Rey et al., 2021b), whereas a

significant up-regulation was observed for oil palm HPT at late

stages of mesocarp ripening (Ling et al., 2016). On the contrary,
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MPBQ MT from tomato fruit and the pulp of Citrus species

exhibited comparable transcript levels along development and

ripening (Quadrana et al., 2014; Rey et al., 2021b).

Our study was expanded to other olive cultivars characterized

by a low (190 and 285 mg/kg oil for ‘Klon-14’ and ‘Abou Kanani’,

respectively) or high (820 and 1610 mg/kg oil for ‘Piñonera’ and

‘Dokkar’, respectively) tocopherol content in their oils (Pérez et al.,

2019), using mesocarp tissue corresponding to four different

representative stages of fruit development and ripening

(Figure 5). Unlike OeMPBQ MT which shows similar expression

levels for each stage of these four cultivars (Figure 5B), the

transcript levels of OeHPT were higher in those cultivars with a

higher tocopherol content such as ‘Piñonera’ and ‘Dokkar’
FIGURE 4

Total tocopherol content and (a+g)-tocopherol/(b+d)-tocopherol ratio (A), and relative expression levels of olive HPT and MPBQ MT genes (B) in the
mesocarp tissue from Picual and Arbequina cultivars. The beginning of fruit ripening corresponding to the appearance of a pink-purple colour is
denoted by an arrow. At the indicated stages, tocopherols were analyzed by HPLC, and the relative expression levels were determined by qRT-PCR
as described under section “Materials and Methods”. Data are presented as means ± SD of three biological replicates. *Indicates significantly different
(P<0.05) to ‘Picual’ by two-way ANOVA with a Bonferroni posttest in ‘Arbequina’.
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(Figure 5A). In contrast, in ‘Klon-14’ and ‘Abou Kanani’,

characterized by a low content of tocopherols, their expression

levels were lower. These data suggest that HPT, but not MPBQMT,

could be involved in the regulation of the tocopherol biosynthetic

pathway in olive mesocarp at the transcriptional level, which is

consistent with its role in catalyzing the first committed step of this

route. However, the variation in the OeHPT and OeMPBQ MT

transcript levels during olive mesocarp development and ripening

(Figure 5B) was not parallel to that of the total tocopherol content
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and the (a+g)-tocopherol/(b+d)-tocopherol ratio (Figure 5A),

respectively. This fact indicates that not only HPT but also other

factors such as the availability of HGA and PDP as precursors

regulate the flux of the tocopherol biosynthetic pathway (Pellaud

and Mène-Saffrané, 2017).

Collectively, these results point out that olive HPT and MPBQ

MT participate in the biosynthesis of the tocopherols present in

VOO and their gene expression levels are cultivar-dependent, as

reported from five Greek cultivars (Georgiadou et al., 2019).
FIGURE 5

Total tocopherol content and (a+g)-tocopherol/(b+d)-tocopherol ratio (A), and relative expression levels of olive HPT and MPBQ MT genes (B) in the
mesocarp tissue from different olive cultivars. At the indicated stages, tocopherols were analyzed by HPLC, and the relative expression levels were
determined by qRT-PCR as described under section “Materials and Methods”. Data are presented as means ± SD of three biological replicates.
Different letters denote significant differences (P < 0.05) for each gene and cultivar by one-way ANOVA followed by Tukey’s post-test for
multiple comparisons.
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Effect of regulated deficit irrigation on
homogentisate phytyltransferase and
methylphytylbenzoquinol
methyltransferase gene expression in the
olive fruit mesocarp

It is well described that drought stress increases tocopherol

content in the leaves of several plant species, including olive juvenile

trees (Baccari et al., 2020). The effect of three distinct RDI

treatments on the oil accumulation, fatty acid profile, and fatty

acid desaturase gene expression levels in ‘Arbequina’ fruit mesocarp

has been previously studied by our group (Hernández et al., 2018).

However, data related to the effect of water stress on the expression

levels of olive genes belonging to the tocopherol biosynthetic

pathway are lacking. In the present work, higher expression levels

of HPT and MPBQ MT genes were found along all the fruit

developmental and ripening processes in ‘Arbequina’ mesocarp

from olives subjected to 30RDI and 60RDI treatments, which

produced substantial levels of water stress, in comparison to FI

treatment (Figure 6). This result is in agreement with the increase of

tocopherol content reported by Garcıá et al. (2017) in oils obtained

from the same olive fruit samples when comparing FI and RDI

treatments (255, 327, and 321 mg/kg oil; for FI, 60RDI and 30RDI

treatments, respectively). Therefore, the tocopherol biosynthetic

pathway appears to be transcriptionally up-regulated in water-

stressed olive mesocarp, with OeHPT and OeMPBQ MT genes

increasing their expression levels and causing an increment in the

tocopherol content in ‘Arbequina’ mesocarp and, consequently, in
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the corresponding oils. In line with these data, the transcription of

genes involved in tocopherol biosynthesis in olives from the

Koroneiki cultivar was up-regulated in response to lower rainfall

during consecutive seasons (Georgiadou et al., 2016).

An increase in the HPT expression levels has also been detected

in leaves from other plants under drought stress, such as Cistus

cetricus (Munné-Bosch et al., 2009), lettuce (Ren et al., 2011), sweet

potato (Ji et al., 2016), or barley (Schuy et al., 2019). Furthermore, it

has been reported that drought-induced expression of HPT from

Solanum chilense in tobacco plants results in the accumulation of a-
tocopherol and increases tolerance to drought stress by delaying

foliar tissue damage (Espinoza et al., 2013), demonstrating the role

of HPT in drought stress resistance. On the contrary, no significant

effect on MPBQ MT transcript levels has been described in plants

under drought stress to date.
Transcriptional regulation of
homogentisate phytyltransferase and
methylphytylbenzoquinol
methyltransferase genes in the olive fruit
mesocarp under different
environmental stresses

To investigate the effect of several abiotic stresses on the

expression levels of the olive HPT and MPBQ MT genes in

mesocarp tissue from ‘Picual’ and ‘Arbequina’, olive tree branches

holding olive fruit at the turning stage (28 WAF) were incubated for
FIGURE 6

Effect of regulated deficit irrigation (RDI) treatments on the relative expression levels of olive HPT and MPBQ MT genes in the mesocarp tissue from
cultivar Arbequina during olive fruit development and ripening. The relative expression levels were determined by qRT-PCR at the indicated stages of
fruit development as described in “Materials and Methods”, using the expression level of the corresponding gene at 13 WAF from full irrigation (FI)
treatment as calibrator. Data are presented as means ± SD of three biological replicates. *Indicates that 60 RDI is significantly different (P < 0.05) to
FI by two-way ANOVA with a Bonferroni post-test. **Indicates that 30 RDI is significantly different (P < 0.05) to FI by two-way ANOVA with a
Bonferroni post-test.
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24 h modifying the standard conditions (25°C with 12 h light/12 h

dark cycle) dependent on the effect to be examined. No significant

changes in the olive HPT and MPBQ MT transcript levels

were observed in the mesocarp tissue when olive fruit were

incubated under the above-mentioned standard conditions

(Supplementary Figure 4).

It has been shown that tocopherols play a key role in the low-

temperature adaptation of plants such as maize (Leipner et al.,

1999) or Arabidopsis (Maeda et al., 2008). When olive fruit was

incubated at a low temperature (15°C) a significant increment in the

expression levels of HPT and MPBQ MT genes in the mesocarp

from both cultivars was noticed (Figure 7A). In ‘Picual’, a strong

transient increase was observed for the transcript levels of both

genes with maximum values after 0.5-1 h and 3-6 h of treatment for

HPT and MPBQ MT, respectively. In contrast, in ‘Arbequina’

mesocarp a continuous increase was detected along all the

incubation time, being higher in the case of the OeMPBQ MT

gene. A similar up-regulation of HPT and MPBQ MT transcript

levels has been described in mandarin fruit and grapefruit during

long-term cold storage (Rey et al., 2021a; Rey et al., 2021c). In the
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same way, when Chlamydomonas reinhardtii cells were incubated at

low temperature, an increase in HPT expression levels was observed

(Gálvez-Valdivieso et al., 2015). In addition, HPT has been

demonstrated to be essential for cold tolerance and low-

temperature adaptation, since Arabidopsis and rice vte2 mutants

were hypersensitive to cold stress (Maeda et al., 2006; Wang et al.,

2017; Zhang et al., 2018).

Regarding high temperature, when olive fruit from both

cultivars were incubated at 35°C the transcript levels of HPT and

MPBQ MT showed a severe reduction until undetectable values

were reached (Figure 7B). Both genes started to decrease their

transcript levels after 6 h of incubation in the case of ‘Picual’, while

in ‘Arbequina’ the diminution began sharp and rapidly from the

start of the treatment. Interestingly, it has been reported that total

tocopherol concentrations in olive fruit at the end of the oil

accumulation period were generally higher when the air

temperature was increased by 4°C in young trees from Arbequina

and Coratina cultivars (Hamze et al., 2022). However, these authors

suggest that the observed increase in total tocopherols appeared to

be related to a reduction in fruit oil concentration with heating. In
FIGURE 7

Effect of low (A) and high (B) temperature on the relative expression levels of olive HPT and MPBQ MT genes in the mesocarp tissue from Picual and
Arbequina cultivars. Olive tree branches with about 100 olive fruits (28 WAF) were incubated using standard conditions except that the temperature
was 15°C (A) or 35°C (B). At the indicated times, the relative expression levels were determined by qRT-PCR as described in “Materials and Methods”,
using the expression level of the corresponding gene at zero time as a calibrator. Data are presented as means ± SD of three biological replicates.
*Indicates significantly different (P<0.05) to time 0 h by two-way ANOVA with a Bonferroni posttest. Boxes in the upper part indicate light (open) or
dark (closed) periods.
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line with our results, C. reinhardtii cells incubated at high

temperature exhibited a slight decrease in HPT expression levels

(Gálvez-Valdivieso et al., 2015), and leaves of Cinnamomum

camphora under high temperature showed a down-regulation of

the MPBQ MT transcript levels (Wang et al., 2023).

Previous studies in plant tissues demonstrated that the

tocopherol content is light regulated (Lichtenthaler, 2007). To

examine whether darkness affects HPT and MPBQ MT expression

levels in olive mesocarp from Picual and Arbequina cultivars, olive

branches were incubated at 25°C for 24 h in the darkness.

Expression analysis showed a substantial decline of OeHPT and

OeMPBQ MT transcript levels in both cultivars mostly during the

first 3-6 h of treatment, remaining with small values the rest of the

experiment (Figure 8A). In agreement with these results, a down-

regulation of the HPT expression levels has also been observed in

dark-grown tomato fruit and grapefruit (Gramegna et al., 2019; Rey

et al., 2021c). In addition, Gálvez-Valdivieso et al. (2015) reported a

fast and strong reduction of HPT transcripts in C. reinhardtii cells
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transferred to darkness. In the case of MPBQ MT, very low

transcript levels were found in the leaves of Arabidopsis plants

grown in the dark (Motohashi et al., 2003). These data indicate that

HPT and MPBQ MT are regulated by light.

Finally, the impact of wounding on the HPT andMPBQMT gene

expression levels was investigated for the first time. In particular, this

effect was studied in the mesocarp of olive fruit from Picual and

Arbequina cultivars subjected to mechanical damage from branches

incubated at standard conditions. In both cultivars, OeHPT and

OeMPBQ MT transcript levels exhibited a slight transient induction,

showing peak values after 1 h of treatment and followed by a decrease,

especially marked in the case ofMPBQMT (Figure 8B). Notably, a role

for tocopherol biosynthesis in Arabidopsis basal immunity to bacterial

infection has been recently proposed (Stahl et al., 2019). Specifically, a

substantial increase of HPT gene expression levels was detected in

Arabidopsis leaf in response to inoculation with Pseudomonas syringae,

and an enhanced susceptibility toward P. syringae was observed in

Arabidopsis vte2 mutant plants. In contrast, no significant differences
FIGURE 8

Effect of darkness (A) and wounding (B) on the relative expression levels of olive HPT and MPBQ MT genes in the mesocarp tissue from Picual and
Arbequina cultivars. Olive tree branches with about 100 olive fruits (28 WAF) were incubated using standard conditions except that the olive fruit
were incubated under darkness (A) or were mechanically damaged (B). At the indicated times, the relative expression levels were determined by
qRT-PCR as described in “Materials and Methods”, using the expression level of the corresponding gene at zero time as a calibrator. Data are
presented as means ± SD of three biological replicates. *Indicates significantly different (P<0.05) to time 0 h by two-way ANOVA with a Bonferroni
posttest. Boxes in the upper part indicate light (open) or dark (closed) periods.
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in HPT and MPBQ MT transcript levels were found in sweet potato

leaves infected with the bacterial pathogen Pectobacterium

chrysanthemi compared to the control (Ji et al., 2016).
Conclusion

The isolation and characterization of olive HPT and MPBQ MT

genes have been performed. Sequence analysis of both genes shows that

they code for HPT and MPBQ MT enzymes, respectively. Tocopherol

and expression analysis reveals not only a spatial and temporal

regulation of olive HPT and MPBQ MT transcript levels in olive

fruit in the course of development and ripening but also indicates that

both genes are involved in the biosynthesis of the tocopherols present

in VOO. These data also point out that oliveHPT andMPBQMT gene

expression is cultivar-dependent and suggest that in olive mesocarp

HPT, but not MPBQ MT, could be involved in the regulation of the

tocopherol biosynthetic pathway at the transcriptional level. Our results

have also shown that the expression of HPT and MPBQ MT genes in

olive fruit is regulated by water status, temperature, light, and

wounding, suggesting that HPT and MPBQ MT participate in the

response to abiotic stresses. This study represents substantial progress

in the knowledge of the regulation of tocopherol biosynthesis in olive

fruit. In addition, it will help to establish optimum conditions for olive

tree cultivation and olive fruit harvesting to obtain VOO with

enhanced a-tocopherol content. Furthermore, this information will

allow the generation of molecular markers for the marker-assisted

selection of new olive cultivars with increased tocopherol content in

the VOO.
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