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Phosphorus (P) is a critical macronutrient for plant growth, but its limited

availability requires efficient utilization strategies. The excessive use of P

fertilizers leads to low phosphorus utilization efficiency (PUE), causing severe

environmental impacts and speeding up the exhaustion of P mineral reserves.

Plants respond to inorganic phosphate (Pi) deficiency through complex signaling

pathways that trigger changes in gene expression, root architecture, and

metabolic pathways to enhance P acquisition and utilization efficiency. By

exploring the interplay between genetic regulators and microorganisms,

cultivars with superior PUE traits can be developed, which will ensure

agricultural resilience and productivity in the face of depleting global P

reserves. We highlight the synergistic interaction between genetic regulators

and microorganisms to boost PUE as well as recent advancements in unraveling

molecular mechanisms governing P homeostasis in plants, emphasizing the

urgency to improve plant traits for improved P utilization.
KEYWORDS

phosphorus use-efficiency, phosphate signaling, phosphate homeostasis, arbuscular
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1 Introduction

Phosphorus (P) is a vital macronutrient essential for plant growth and reproduction.

However, the complex physiochemical reactions in soil often lead to the fixation and

precipitation of P in forms that are insoluble and less available for plant uptake such as

calcium phosphate (Ca-P), aluminum/iron phosphate (Al/Fe-P), and calcium/magnesium

phosphate (Ca/Mg-P) (López-Bucio et al., 2002; Malhotra et al., 2018). This limitation in P

availability poses a significant challenge for sustainable agriculture and global food security. In

order to overcome these limitations, P-containing fertilizers are typically employed in

agriculture systems. Unfortunately, only a small amount of the applied P is taken up by

plants immediately. The remaining runoff into water bodies, contributing to eutrophication

and harmful algal blooms (Zak et al., 2018). Additionally, P in mineral fertilizers is
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predominantly derived from phosphate rock, a finite resource.

Therefore, the development of P-efficient cultivars that maximize

phosphorus utilization efficiency (PUE)-the ratio of the amount of P

taken up by the plant to the amount of P supplied in the environment-

is paramount for enhancing crop yields while reducing the need for

fertilizer inputs. This approach is crucial for conserving global P

resources and mitigating environmental issues.

The regulation of PUE is a complex network of genes, proteins,

and metabolites, including various signaling pathways such as

phosphate starvation response (PHR) and root development

pathways (Baker et al., 2015). Key players in this network include

the PHT1 phosphate transporters, PHO1, PHR1, SPX domain-

containing proteins, and IPS1 (Induced by Phosphate Starvation 1).

Central to the regulation of PUE is the PHR pathway, which activates

the expression of phosphate starvation-induced (PSI) genes under

Low-Pi conditions (Roychowdhury et al., 2023). PHR transcription

factors bind to PHR1-binding sequences (P1BS) in the promoters of

PSI genes, facilitating the expression of genes essential for Pi-uptake,

remobilization, and metabolic adjustments (Abdullah et al., 2024). In

parallel, root development pathways significantly enhance PUE by

improving root system architecture (RSA); they promote increased

root density, longer root hairs, and more lateral root branches, all of

which enhance the plant’s ability to absorb Pi from the topsoil (Sun

et al., 2018). For instance, auxin signaling plays a critical role in lateral

root initiation and elongation in response to Pi deficiency, expanding

the root surface area available for nutrient absorption (Zhang et al.,

2023a). Additionally, P deficiency triggers the exudation of protons,

organic anions (such as citrate and malate), and acid phosphatases,

which collectively solubilize fixed P in the soil, making it more

accessible (Roychowdhury et al., 2023). These genetic and

physiological adaptations also foster beneficial interactions with

microorganisms, like arbuscular mycorrhizal fungi that expand the

soil volume utilize for P uptake and phosphate-solubilizing bacteria,

that elevate soil P availability P availability (Pang et al., 2018). By

introducing these genes through molecular breeding into local

cultivars, plant characteristics can be enhanced.

To increase PUE under Low-Pi conditions, two approaches

should be utilized: (i) genetic enhancement and (ii) soil enzyme

manipulation. Genetic enhancement can lead to higher yields with

lower P input, reducing environmental impacts from excessive

fertilizer usage. For example, overexpression of phosphate

transporters, such as PHO1;2 in rice can lead to a reduction of Pi

accumulation in grains and increased grain yield and PUE (Ma

et al., 2021). Under normal Pi conditions, PHO1;2 helps maintain

adequate phosphate homeostasis, ensuring that plants have

sufficient nutrients for growth. In contrast, during Low-Pi

conditions, PHO1;2 expression is upregulated to enhance

phosphate uptake and distribution within the plant. Additionally,

the manipulation of enzymes that mediate Pi mobilization from

organic P pools plays a critical role in enhancing PUE in crops.

Enzymes such as phosphatase and phytase are known to facilitate

the conversion of organic P into forms that plants can absorb,

thereby enhancing PUE. Phosphatases hydrolyze phosphate esters,

which are prevalent in organic matter, releasing Pi that plants can

utilize. Phytase, specifically, breaks down phytate, a form of organic
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P found in seeds and other plant materials, into free Pi and myo-

inositol, thus facilitating its availability to plants. For instance,

overexpressing glycerophosphodiester phosphodiesterases

(GDPD2) has been shown to enhance Pi remobilization from

membrane phospholipids and increase tiller number in rice

(Mehra et al., 2019). Understanding the molecular mechanisms

behind these genes and regulatory pathway is crucial for developing

P efficient cultivars that improve PUE. In addition, advancements in

understanding the remobilization of liberated Pi within plants,

including various P fluxes and cell-specific P allocation, also offer

promising insights for enhancing PUE in crops. This knowledge

contributes to optimizing P fertilization practices, enhancing crop

yields, and mitigating the environmental impacts associated with

excessive P application. Previous studies have explored mechanisms

of P transport and signaling in plants, as well as methods for

improving PUE (Zhang et al., 2014; Wang et al., 2021a; Han et al.,

2022). Despite these advancements, the regulation of P by genetic

regulators in conjunction with soil enzymes to enhance PUE in

plants has not been previously reported. In this review, we present a

novel approach that integrates genetic regulators and soil enzymes

to enhance PUE in plants, offering a new perspective for additional

research in this field. Our investigation of the physiological and

traits for optimized P utilization.
2 Phosphorus homeostasis in plants:
mechanisms of uptake, transport, and
storage

Plants have evolved a sophisticated system of transporters to

ensure efficient absorption of Pi from the soil and its redistribution

within the plant. Key transporters l ike PHOSPHATE

TRANSPORTER 1 (PHT1) proteins, such as AtPHT1;1, AtPHT1;4

in Arabidopsis and OsPHT1;2, OsPHT1;3, OsPHT1;4 in rice, play a

crucial role in Pi uptake and transport (Victor Roch et al., 2019; Wang

et al., 2021a). Recent studies have shown that in wheat, the

overexpression of TaPHT1;9 significantly enhances Pi uptake and

PUE (Wang et al., 2021). Similarly, in soybean and barley, the

overexpression of GmPT1 and HvPHT1;1, respectively, has been

associated with improved Pi uptake and increased translocation to

the shoots (El Ifa et al., 2024; Yang et al., 2024). The Casparian band

aids in loading Pi into xylem vessels for transportation to shoots, while

PHOSPHATE 1 (PHO1) proteins mediate Pi export from cells near

the xylem (Poirier et al., 1991). Furthermore, Pi redistribution from

senescing tissues to developing organs involves various PHT1 and

PHO1 proteins (e.g., AtPHT1;5 in Arabidopsis, ZmPHT1;7 in maize,

and OsPHT1;1, OsPHT1;2, OsPHT1;3 in rice). Vacuolar Pi

transporters, including Vacuolar Phosphate Transporter 1

(AtVPT1), are responsible for storing excess Pi in vacuoles (Liu

et al., 2015). This storage mechanism is finely regulated by the

expression of PHT and PHO1 genes, influenced by Pi deficiency

and excess Pi supply (Han et al., 2022). Transcription factors such as

PHRs and WRKYs play a crucial role in this regulation. Additionally,

the phosphorylation and dephosphorylation of Pi transporters are
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modulated by various proteins like PHOSPHATE TRANSPORTER

TRAFFIC FACILITATOR 1 (AtPHF1), Arabidopsis apoptosis‐linked‐

gene 2 (ALG2), interacting protein X (AtALIX), and nitrogen

limitation adaptation (AtNLA) (For details, see recent review Wang

et al., 2021 (Wang et al., 2021a)).

Under Pi-sufficient conditions, PHT1 proteins facilitate Pi uptake at

the plasma membrane, while vacuolar influx transporters like VPT1/

PHT5;1 store Pi in vacuoles (Luan and Lan, 2019). Conversely, under Pi-

deficient conditions, regulatory mechanisms involving PHRs, WRKYs,

and proteins like PHO2 and PP95 enhance the induction of PHT1

transporter genes to improve Pi acquisition (Wang et al., 2021c). This

intricate balance of regulatory mechanisms ensures the proper uptake,

transport, and storage of Pi within plant cells to maintain Pi homeostasis

(Figure 1). Efficient P utilization in plants relies on various other complex
Frontiers in Plant Science 03
physiological processes involving phytohormones and enzymes

(Figure 2). This orchestration is essential for optimizing Pi utilization

in plants, ultimately influencing crop yields and productivity. To further

enhance plant growth and productivity, it is crucial to understand and

develop effective strategies for improving P utilization.
3 Genetic regulators influencing PUE

3.1 Decoding phosphate signaling
pathways in plants

Plant P signaling pathways are crucial for growth and respond

to changing environmental conditions. The PHO, PHT1, MYB62,
FIGURE 1

Overview of phosphate signaling pathways in plants; Pi acquisition, utilization, and translocation. The PHO Pathway regulates Pi-responsive genes
and increases Pi uptake, the PHT1 Pathway mediates high-affinity Pi transporters and membrane localization, The PHT1 pathway plays a crucial role
in mediating the symbiotic relationship between AMF and plants, especially in nutrient-deficient soils. While AMF are known to enhance nutrient
uptake, the specific regulatory mechanisms of PTs under combined abiotic stress conditions remain poorly understood. MYB62 and WRKY75
Pathways act as transcription factors in Pi Homeostasis and Stress Response, while the SPX Pathway negatively regulates Phosphate Transport and
Signal Transduction to ensure effective Pi regulation in plant systems. PP-InsPs promote the interaction between SPX proteins and the PHR1
transcription factor, leading to PHR1 inactivation. Changes in PP-InsP levels in response to Pi deficiency may facilitate plant adaptation to stress by
modulating the activity of SPX-containing proteins and their interactors. Blockage and inhibition are indicated by dotted lines and red
boxes, respectively.
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WRKY75, and SPX pathways play key roles in sensing and

responding to P availability (Figure 1).

3.1.1 PHO pathway: regulation of Pi-responsive
genes and increased phosphate uptake

The PHO pathway is a crucial signaling pathway in plants it

allows the plants to sense and respond to changes in P availability,

the PHO pathway ensures optimal growth and survival. This

pathway controls P uptake through a complex signaling cascade.

The central component of PHO pathway is the PHO1 protein,

which facilitates the transfer of Pi from roots to shoots. Studies have

highlighted the crucial functions of specific isoforms of PHO1, such

as OsPHO1;2 in rice (Ma et al., 2017) and ZmPHO1;2 in maize (Ma

et al., 2021), in Pi redistribution and homeostasis within seeds

(Vogiatzaki et al., 2017). Another important protein in the PHO

pathway is PHO2, which acts as a transcription factor and regulates

the expression of multiple genes involved in P uptake and

homeostasis. PHO2 is an E2 ubiquitin conjugase that controls

phosphorus starvation-responsive genes in plants. It is post-

transcriptionally regulated by miRNAs like miR399, while its

downstream targets include Phosphate transporters (PTs), RNase

activity, acid phosphatase, and alterations in lipid composition

(Figure 1), all of which contribute to managing P homeostasis in

plants (Prathap et al., 2022). The pathway also includes important

regulatory layers involving kinases and phosphatases. For instance,

the Pho80/85/81 kinase complex is inactivated by the regulatory

subunit Pho81 when P becomes limiting (Schneider et al., 1994;
Frontiers in Plant Science 04
Austin and Mayer, 2020). The kinase subunit Pho85 phosphorylates

the transcription factor Pho4, promoting its cytosolic localization

and inhibiting the expression of genes controlled by the PHO

pathway (Figure 1). Moreover, the PHO pathway is intricately

regulated at both the transcriptional and post-transcriptional

levels, with key regulatory factors such as PHO2 and miRNAs

(Prathap et al., 2022). For example, in hexaploid wheat, three

homologous PHO2 genes—TaPHO2-A1, -B1, and -D1—have

been identified, all containing miR399-binding sites. Knockout of

these genes results in increased leaf P concentrations, with

TaPHO2-D1 showing the most significant impact on plant

growth. Notably, disabling TaPHO2-A1 enhances P uptake and

grain yield under Low-P conditions without adversely affecting

yields in high P environments (Ouyang et al., 2016), This evidence

demonstrated the potential of targeting these genes to improve

wheat yields while reducing reliance on fertilizers. Environmental

influences, including sulfate availability and sugar levels, also play a

significant role in modulating the activity of the PHO pathway.

Additionally, the complexity of this pathway is further illustrated by

protein-protein interactions (PPIs) that occur within the PHO

pathway. For example, in rice the PROTEIN PHOSPHATASE 95

(OsPP95), dephosphorylates OsPHT1;2 and OsPHT1;8 in an

antagonistically manner with respect to OsCK2, this interaction

helps to regulate the phosphorylation status and trafficking of these

transporters. OsPHO2 mediates the degradation of OsPP95 under

Pi-sufficient conditions (Yang et al., 2020). OsCK2 affects the

stability of OsPHO2 through phosphorylation, thereby influencing
FIGURE 2

Physiological mechanisms of phosphorus utilization regulated by hormones, enzymes and microorganisms. dotted lines inside the box indicate
negative regulation, while arrows indicate positive regulation. Aux, Auxin; Eth, Ethylene; SLs, Strigolactones; ABA, Abscisic acid; PGPB, Plant Growth-
Promoting Bacteria.
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Pi homeostasis through its target protein OsPHO1 (Dai et al., 2022).

In Arabidopsis, PHO2 directly interacts with PHT1;1 at the

endoplasmic reticulum (ER) membrane, controlling its

ubiquitination and subsequent degradation (Figure 1),

corroborating its role in regulating Pi uptake (Huang et al., 2013).

Recent advances have revealed that the pathway is

interconnected with various nutritional and hormonal signaling

cascades, including strigolactones (SLs) and brassinosteroids (BR),

enhancing the plant’s ability to adapt to varying nutrient conditions

(Yang et al., 2023; Puga et al., 2024). Notably, these crosstalk

mechanisms facilitate the balance between growth and nutrient

acquisition, reinforcing that the PHO pathway is not merely a linear

response system but rather an integral node linking plant

developmental processes with nutrient signaling. Thus, the PHO

pathway exemplifies a sophisticated network that manages Pi

homeostasis through an elaborate integration of signaling inputs,

enabling plants to adapt effectively to Pi scarcity and ensuring their

survival and productivity in varying environmental conditions.

3.1.2 PHT1 pathway: high-affinity phosphate
transporters and membrane localization

The PHT1 pathway is also a crucial mechanism in plants for the

uptake of Pi from the soil, which is essential for various cellular

processes such as energy metabolism and nucleic acid

synthesis (Table 1).

The pathway primarily involves high-affinity PHT1, which are

integral membrane proteins responsible for the uptake and

transport of Pi across cell membranes (Chien et al., 2022).

The PHT1 transporters are found in the plasma membrane of

root cells (specifically in the root hair and the epidermal cells of the

root) (Wang et al., 2021c). The PHT pathway begins with the

detection of Pi levels in the soil by root cells. This sensing

mechanism activates a cascade of responses, including the

activation of PHRs, which upregulate the transcription of PHT1

transporters, such as PHT1;1, enhancing Pi uptake (Ayadi et al.,

2015). Additionally, PHRs increase the expression of microRNA827

(miR827), which targets and degrades NLA, a ubiquitin E3 ligase

that negatively regulates PHT1. To further optimize Pi acquisition,

the PHT pathway promotes the development of lateral roots and

root hairs, effectively increasing the root surface area and enhancing

the plant’s ability to forage for Pi (Fang et al., 2024). While the

specific targeting signals for PHT1 transporters remain an active

area of research, it is known that their correct localization to the

plasma membrane is critical for their function in Pi uptake. The N-

terminal region of PHT1 transporters contains important

determinants for their trafficking and plasma membrane targeting

(Bayle et al., 2011). Although the precise motifs or sequences

involved may vary among PHT1 transporter isoforms and plant

species, it is understood that these targeting signals facilitate their

appropriate placement in the plasma membrane. Recent research

has also revealed the involvement of intracellular vesicle trafficking

in the membrane localization of PHT1 transporters. It has been

proposed that the transporters are initially synthesized in ER and

subsequently targeted to the Golgi apparatus, where they undergo

post-translational modifications (Victor Roch et al., 2019). These
Frontiers in Plant Science 05
transporters exhibit a high affinity for Pi, enabling them to scavenge

even trace amounts of Pi in the soil solution. For example, in millets,

the expression of PHT1;2 and PHT1;3 genes significantly increase

under Low-P conditions. This elevation in transporter activity plays

a vital role in PUE and ultimately contributes to improved crop

yields in nutrient-poor soils (Maharajan et al., 2019). Despite the

recognized importance of various PHT1 family members, there is

still a significant gap in understanding their specific functions and

regulatory mechanisms. For example, studies on ryegrass have

shown that LpPHT1;4 functions as a high-affinity transporter

activated by P starvation, while LpPHT1;1 is a low-affinity

transporter with limited sensitivity to P availability (Parra-

Almuna et al., 2020). This distinction raises important questions

about leveraging high-affinity PHT1 transporters in breeding

programs to enhance P uptake, as well as the strategies needed to

improve the responsiveness of low-affinity transporters in P-

deficient environments. These findings highlight an urgent need

to manipulate these transporter genes in crop species, particularly in

low-input farming systems facing P scarcity. Research on maize has

identified ZmPHT1;1 as a key candidate gene for improving PUE

through genome-wide association studies (GWAS) (Li et al., 2021).

This not only points to the potential for targeted breeding strategies

but also emphasizes the need for extensive genomic research across

various crops.

It is evident that PHF1 is involved in intracellular trafficking of

multiple PHT1 family proteins, for example, Mutations in the PHF1

locus result in a severe decrease in Pi influx, as the mutant allele

leads to an abnormal accumulation of PHT1;1, PHT1;2 and PHT1;4

in the ER (Figure 1). Similar targeting defects have been observed in

rice, where a mutant of OsPHF1 affects several members of the

PHT1 family. These include the low affinity Pi transporter OsPT2

and the high affinity Pi transporter OsPT8 (Chen et al., 2015).

Recent studies have revealed the significant role of OsPHT1;3 in Pi

absorption, root-to-shoot translocation, and remobilization within

the plant, particularly under extremely low Pi conditions (Chang

et al., 2019). Moreover, it was discovered that OsPHT1;3 physically

interacts with OsPHT1;2, suggesting a potential cooperative

mechanism in Pi transport. Similar findings have been

documented for Arabidopsis PHT1;1 and PHT1;4 proteins,

highlighting their ability to form both homomeric and

heteromeric complexes (Fontenot et al., 2015). Although the

precise biological significance of these interactions remains largely

unknown, these findings strongly indicate the possibility of PHT1

proteins forming oligomeric structures in both monocots and

dicots. Moreover, recent studies in rice, identify that WRKY21

and WRKY108 have been found to activate the expression of

OsPHT1;1 under Pi-sufficient conditions to promote Pi

accumulation (Zhang et al., 2021a).

The PHT1 pathway is well-documented for its essential role in

high-affinity Pi uptake, other PHT transporter families such as

PHT2, PHT3, PHT4, and PHT5 also play significant roles in

maintaining Pi homeostasis in plants (Victor Roch et al., 2019).

The PHT2 family has been implicated in the regulation of Pi levels

under varying environmental conditions. In poplar (Populus

trichocarpa), PtPHT2;1 predominantly expresses in roots,
frontiersin.org
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TABLE 1 Functional characterization of PHT genes.

Gene Family Member Genes Function Functional Role and Characterization Method of
haracterization

Plant
Species

Reference

ranscriptomic and
RT-qPCR

White lupin (Aslam et al., 2022)

RT-PCR Wheat (Shukla et al., 2016)

RT-PCR Barley (Srivastava et al., 2021)

mi-quantitative RT-PCR
d Yeast complementation,
enopus laevis oocyte assay,
verse-transcription
uantitative polymerase chain
action, histochemical
alyses, immunostaining.

Rice (Sun et al., 2012) (Dai
et al., 2022)

ver-expression Rice (Zhang et al., 2023b)

ver-expression Rice (Zhang et al., 2014)

RT-PCR and yeast
mplementation assays

Ryegrass (Parra-Almuna
et al., 2020)

RT-PCR soybean (Fan et al., 2013)

RISPR-edited TaPHT1;9
heat mutants

Gene
TaPHT1;9 is
studied in
both wheat
and rice to
understand
its effects
on PUE

(Chen et al., 2024)

IGS, CRISPR/Cas9 Wheat (Wang et al., 2021)
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C

Phosphate
Transporters
(PHTs)

LaPHT1, LaPHT2,
LaPHT3, LaPHT4

P-absorption Identified 35 PHT genes distributed across 16 chromosomes. LaPHT1 subfamily
showed increased expression under P-deficient conditions, aiding in P absorption
and adaptation.

T
q

TaPHT1.1, TaPHT1.2,
TaPHT1.4,
TaPHT3.1, TaPHT4.2

P-uptake during
grain development

TaPHT1.1 enhances P uptake in aleurone tissues, contributes to higher P
accumulation in mature seeds. Upregulated TaPHT1.2 plays a critical role in
downregulating under P-deficient conditions. TaPHT1.4 and TaPHT3.1 Significant in
P accumulation and remobilization during grain filling; strong correlation with grain
yield under low P conditions. TaPHT4.2 Critical for Pi transport in the embryo
during germination; facilitates seedling establishment by mobilizing P reserves.
Functions in Pi transport within endosperm tissues; enhances overall grain P content,
impacting grain quality and yield.

q

PHT1 HvPHT1;1, HvPHT1;5,
HvPHT1;11,
HvPHT1;12

P-
uptake enhancement

HvPHT1;1 Enhances Pi uptake during P starvation; HvPHT1;5 induced under sucrose
deficiency; HvPHT1;11 facilitates Pi uptake through AM fungi association. HvPHT1;12
Involved in enhancement of P uptake via AM fungal colonization

q

OsPht1;1, OsPHT1;7 Increased P content,
Mediates
Pi transport

Overexpression of OsPht1;1 increases P content; Involved in Pi redistribution; higher
expression in anthers; affects germination and seed-setting rate.

S
a
X
r
q
r
a

UGPase Ugp1 Sucrose
accumulation

Ugp1 is a UDP-glucose pyrophosphorylase that enhances sucrose accumulation during
Pi starvation stress, affecting P signaling. Overexpression leads to increased sucrose
and Pi accumulation while regulating expression of PHT1 genes.

O

OsPht1;6 (OsPT6) Growth and biomass Overexpressing OsPT6 in rice improves growth and P accumulation. Higher Pi uptake
leads to increased grain yield.

O

LpPHT1;4, LpPHT1;1 Pi-uptake Expression increased under P starvation; can complement yeast mutant Dpho84 under
Pi-deficient conditions. Not correlated with P supply.

q
c

GmPHT1;1 AMF colonization Enhances Pi transfer to roots through AM fungi interaction. q

TaPHT1;9 Pi-absorption Mutants showed reduced PUE under low Pi; transgenic rice highlighted
enhanced PUE.

C
w

TaPHT1;9-4B Pi-acquisition Regulates TaPHT1;9-4B, essential for Pi acquisition; transgenic expression improves Pi
uptake in rice.
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TABLE 1 Continued

Gene Family Member Genes Function Functional Role and Characterization Method of
Characterization

Plant
Species

Reference

er Low-P conditions. qRT-PCR Millets (Maharajan
et al., 2019)

activity at root tips. Quantitative reverse-
transcription PCR analysis,
promoter activity assay, cis-
element analysis, yeast one-
hybrid assay

Rapeseed,
Arabidopsis

(Ren et al., 2014)

ignificantly higher qRT-PCR Soybean (Wei et al., 2023)

tosynthesis; role in Pi Semi-quantitative RT-PCR
and qPCR analyses

Wheat (Guo et al., 2013)

itochondrial matrix, Over-expression Arabidopsis (Jia et al., 2015)

upports qRT-PCR Arabidopsis (Guo et al., 2008)

4;5 localize to Heterologous expression in
yeast, Pi transport assays,
subcellular localization using
GFP fusions, quantitative RT-
PCR for expression analysis.

Arabidopsis (Versaw and
Garcia, 2017)

ortant for maintaining GUS-promoter agrobacterium
transformation and qRT-PCR

Arabidopsis,
rice

(Liu et al., 2015); (Liu
et al., 2016)

owth deficiencies and Functional analysis in yeast
to assess Pi transport activity
and characterization of
double mutants using
CRISPR-Cas9 to evaluate
their impact on growth and
Pi accumulation.

Rapeseed (Han et al., 2022)
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PHT1;2, PHT1;3 Pi-uptake Constitutive expression across millets, notable induction und
Involved in Pi distribution and remobilization.

BnPht1;4 High-affinity
phosphate
transporter

BnPht1;4 is upregulated under Pi deficiency and has impaired

PHT2 GmPHT2;1, GmPHT2;2 P-
metabolic
homeostasis

Up-regulated under Low-Pi conditions; GmPHT2;2 exhibits s
expression under Low-Pi stress compared to GmPHT2;1.

TaPHT2;1 Chloroplast Pi levels Knocking down reduces chloroplast Pi levels, decreasing pho
signaling and regulation of PHTs.

PHT3 PHT3;1 Mitochondrial
Pi transport

Ubiquitously expressed; transports Pi from cytosol into the m
supporting ATP synthesis.

PHT4 PHT4;1, PHT4;4 Pi transport
in chloroplasts

PHT4;1 enhances photosynthesis and P utilization, PHT4;4 s
carbohydrate synthesis.

PHT4;1, PHT4;3,
PHT4;5, PHT4;6

Various Pi
transport roles

Involved in H+/Na+-coupled Pi transport; PHT4;3 and PHT
chloroplasts; PHT4;6 involved in Golgi Pi export.

PHT5 Vacuolar phosphate
transport (VPT1)
(PHT5;1),
PHT5;2, PHT5;3

Tonoplast
influx transporter

Functions as a tonoplast influx transporter for Pi storage; imp
cytosolic Pi homeostasis under Pi starvation.

BnA09PHT5;1b,
BnCnPHT5;1b

Cellular
Pi homeostasis

Crucial for cellular Pi homeostasis; double mutants exhibit gr
higher cellular Pi, affecting seed yield and traits.
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cambium-phloem, mature petioles, and dormant buds, while

PtPHT2;2 is mainly expressed in roots and leaves under Low-P

conditions (Zhang et al., 2016). These expression patterns indicate

their potential as markers for high PUE genotypes. In wheat,

knockdown of the TaPHT2;1 transporter caused a significant

reduction in Pi accumulation, regardless of Pi availability (Guo

et al., 2013). Notably, TaPHT2;1 enhances Pi concentration in

chloroplasts, facilitating Pi transfer from the cytosol (Guo et al.,

2013, Victor Roch, Maharajan et al. , 2019). Similarly,

overexpressing OsPHT2;1 in rice led to increased biomass and

elevated leaf Pi levels (Shi ShuLin et al., 2013). However,

characterization of the PHT2 family in plants beyond poplar,

including Arabidopsis, remains limited. while PHT3 transporters

are known to facilitate Pi transport across membranes in different

tissues, particularly in the mitochondria, where PHT3;1 plays a

critical role in maintaining Pi homeostasis essential for ATP

synthesis and redox balance (Jia et al., 2015). The widespread

expression of PHT3;1 across various tissues underscores its

significance in supporting mitochondrial functions, especially in

root cells, whereas the more restricted expression patterns of

PHT3;2 and PHT3;3 in green and reproductive tissues indicate a

specialized role in plant development (Jia et al., 2015). The PHT4

and PHT5 transporter families exhibit distinct physiological roles

that are crucial for enhancing PUE in plants and adapting to Low-Pi

conditions. PHT4 transporters, such as PHT4;1, are primarily

involved in the remobilization of Pi during plant development.

They facilitate Pi transport in thylakoid membranes, which is

essential for ATP synthesis, helping maintain adequate internal Pi

levels during periods of high demand, particularly during

photosynthesis (Wang et al., 2014a; Karlsson et al., 2015).

Conversely, the PHT5 family, localized mainly in vacuoles, plays

a critical role in accumulating and regulating intracellular Pi levels.

Under Low-P conditions, these transporters, like PHT5;1, prevent

Pi depletion by facilitating the uptake from vacuolar stores (Liu

et al., 2016; Victor Roch et al., 2019). Disrupting PHT5;1 in plants

leads to a noticeable decrease in total Pi content (Liu et al., 2015). By

functioning in concert, these transporter families enable plants to

optimize PUE, ultimately improving resilience to Low-P conditions

and paving the way for the development of P-efficient crops that can

reduce dependence on Pi fertilizers (Table 1).

3.1.3 MYB62 and WRKY75 pathways: transcription
factors involved in Pi homeostasis and stress
response

MYB62 is a member of the MYB transcription factor family,

specifically belonging to the MYB-R2R3 subfamily. It is

predominantly localized in the nucleus, indicating its role in

transcriptional regulation (Abdullah et al., 2023). Specifically,

MYB62 controls the expression of PTs like PHT1;1, PHT1;4, and

PHT1;8 in plant roots. Furthermore, MYB62 modulates the

expression of genes involved in intracellular P transport and

redistribution, enabling appropriate allocation of P in various plant

tissues (Figure 1). Notably,MYB62 not only activates genes associated

with P acquisition andmobilization but also influences the expression

of phosphatases, including PAPs and ribonucleases (Abdullah et al.,
Frontiers in Plant Science 08
2023). These phosphatases release P from organic compounds,

promoting its recycling for plant utilization. Additionally, MYB62

regulates P homeostasis through its modulation of microRNAs,

specifically affecting the expression of miR399 and miR827, which

target specific transcripts such as PHO2 and IPS1 (Figure 1) (Yang

and Finnegan, 2010). The MYB62 pathway plays a critical role in

regulating Pi homeostasis and stress responses across various crops,

although its mechanisms and interactions vary among species. In

Arabidopsis overexpression ofMYB62 in plants leads to a gibberellin-

deficient (GA-deficient) phenotype, as transcript levels of GA

biosynthetic genes and PSI genes decrease in MYB62-

overexpressing plants (Devaiah et al., 2009). Furthermore, MYB62

is induced in P-limited leaves and suppresses the expression of shoot

PSI genes, including SOC1 (Figure 1) which encodes a crucial

molecular regulator of flowering time in plants. SOC1 acts as a

central integrator of flowering signals by promoting floral transition

in response to environmental cues, thus linking nutrient status to

reproductive development. This suppression of SCO1 by MYB62

highlights its critical role in integrating Pi-starvation responses with

GA-signaling, potentially influencing not only root and shoot

development but also the timing of flowering under nutrient-

limiting conditions. Consequently, the interaction between MYB62

and SCO1 presents a fascinating avenue for understanding how

plants adapt their growth and reproductive strategies in response to

fluctuating nutrient availability (Borges Osorio, 2018).

Unlike AtPHR1, AtMYB62 expression is specifically induced by

Pi starvation in the leaves of young seedlings, unaffected by

deficiencies in potassium, iron, or nitrogen (Yang and Finnegan,

2010; Borges Osorio, 2018). The Rapid loss of AtMYB62 transcripts

upon Pi resupply, indicating its significant role in regulating Pi

deficiency-related genes involved in Pi signaling, high-affinity Pi

transport, and mobilization. Additionally, Overexpression of

AtMYB62 under Pi-sufficient conditions induces responses similar

to Pi starvation, including increased anthocyanin production,

reduced primary root length, and increased root acid phosphatase

activity (Yang and Finnegan, 2010). Exogenous GA partially rescues

the phenotype, suggesting that MYB62 may regulate Pi starvation

responses through changes in GA concentration. In rice, for instance,

MYB62, particularly OsMYB2P-1, modulates Pi responses by

regulating gene expression and root architecture under low Pi

conditions (Dai et al., 2012). Similarly, in wheat, MYB62

contributes to abiotic stress tolerance (e.g., drought and salinity)

and Pi uptake by regulating stress-responsive genes (e.g., TaPHT1;2

and TaPHT1;4) and other Pi-related genes such as TaIPS1 and

TaSPX1. These roles are reflected in the phenotypic differences

between P-efficient and P-inefficient wheat genotypes, with the

former exhibiting greater root biomass and length (Zheng et al.,

2020). Recent studies in maize further highlight MYB62 as a key

regulator of Pi homeostasis, interacting with genes linked to root

architecture, including Zm00001d002837 and Zm00001d002842,

which may promote or suppress their expression under Pi-deficient

conditions. Additionally, MYB62 interacts with transcription factors

like ARF4, ARF7, ARF10, and bZIP11, which are crucial for root

development and Pi uptake (Rajput et al., 2024), thereby extending its

regulatory network to legumes, where MYB62 may also influence
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nodulation signaling pathways, impacting both nitrogen and Pi

acquisition (Mishra et al., 2024).

In addition to MYB62, several other MYB transcription factors

are integral to P uptake and PUE in plants (Table 2). For example,

AtMYB2 functions as a transcriptional activator of miR399,

significantly influencing Pi starvation signaling in Arabidopsis

(Baek et al., 2013a), which in turn affects root architecture under

P-deficient conditions. Similarly,MdMYB2 regulates P assimilation

while also impacting plant growth and flowering in Malus, thereby

establishing a critical connection between P availability and

developmental processes (Peng et al., 2020). Moreover, TaMYB4-

7D enhances the expression of P transporter genes in wheat, thereby

markedly improving P efficiency under low P conditions (Luo et al.,

2024). Additionally, GmMyb73 acts as a negative regulator of Pi-

deficiency tolerance in soybean (Hu et al., 2024), underscoring the

diverse regulatory mechanisms by which MYB transcription factors

mediate responses to P availability across various plant species

(Table 2). On the flip side, the WRKY75 pathway is involved in

stress response, including responses to biotic and abiotic stresses

(Table 2, Figure 1) (Kurt and Filiz, 2020; Huang et al., 2022; Gao

et al., 2023). Recently, Kurt et al. conducted a gene co-expression

network (GCN) analysis and found that Glyma.19G094100 and

Glyma.16G054400 seed genes, orthologs to Arabidopsis WRKY75,

have a direct connection to P deficiency, underscoring the

significance of this pathway in nutrient stress responses (Kurt and

Filiz, 2020). A root hair-specificWRKY75 gene has been discovered

to have significant effects on the transcriptional cross-talk among Pi

starvation, phytohormones, and biotic stress signaling pathways

(Baek et al., 2017). WRKY75 mutation suppresses the transcription

of PSI genes, including phosphatases, Mt4/TPS1-like genes, and Pi

transporters (Figure 1) (Devaiah et al., 2007).

There are 72 WRKY gene family members in Arabidopsis

thaliana, 4 members are determined to participate in responding

to low P, containing AtWRKY75 (Devaiah et al., 2007), AtWRKY6

(Chen et al., 2009), AtWRKY45 (Wang et al., 2014) and AtWRKY42

(Su et al., 2015). Research has shown that AtWRKY75 (Devaiah

et al., 2007) and AtWRKY45 (Wang et al., 2014) are positive TFs for

P deficiency response, but AtWRKY42 (Su et al., 2015) and

AtWRKY6 (Chen et al., 2009) are negative regulators of P

deficiency response in Arabidopsis (Huang et al., 2022).

Interestingly, WRKY75 and WRKY45 exhibit a mutual negative

regulatory relationship in terms of auto-regulation. WRKY75 binds

to two W box elements within the WRKY45 promoter, repressing

the transcription of the WRKY45 gene (Wang et al., 2014). This

finding point out the intricate nature of the interplay between

WRKY transcription factors in coordinating various stress

responses. Recently Gao et al. (2023) have identified the crucial

roles of WRKY75 and MYB86, members of the MYB transcription

factor family, in the response of wild soybean to P deficiency (Gao

et al., 2023). The upregulation of WRKY75 and downregulation of

MYB86 contribute to the enhanced resistance of wild soybean

against low P stress (Figure 1). This regulation positively affects

the expression of high affinity PTs and phosphatase genes,

facilitated by WRKY75 (Kurt and Filiz, 2020). Additionally, it

leads to increased anthocyanin synthesis, which plays a protective
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role by absorbing ultraviolet light and safeguarding chloroplast

membranes from damage, thus aiding the resistance against low P

stress. Furthermore, the negative regulation of MYB86 by these

transcription factors helps reduce stress-induced damage (Gao

et al., 2023). Beyond WRKY75, other members of the WRKY

transcription factor family also play critical roles in mediating

plant responses to P deficiency, highlighting the broad

significance of this gene family in nutrient stress management

(Table 2). For instance, recent transcriptome analyses in wheat

have identified TaWRKY74 as a key factor influencing tiller

development under low P stress, as it regulates hormonal

pathways, particularly ABA and auxin signaling, essential for

optimizing plant architecture and nutrient uptake (Li et al., 2024).

Similarly, in flax, the expression of LusWRKY genes (LusWRKY7,

LusWRKY22, LusWRKY48, and LusWRKY71) was significantly

upregulated in response to P deficiency, suggesting that these

transcription factors facilitate root adaptations to enhance P

acquisition by promoting lateral root growth and altering

hormone levels (Huang et al., 2022). Furthermore, studies on rice

demonstrate thatOsWRKY74 enhances tolerance to Pi starvation by

modulating root system architecture and activating P-responsive

genes, also indicating potential crosstalk with iron and nitrogen

deficiency responses (Devaiah et al., 2009). The MYB62 and

WRKY75 transcription factors represent vital components in the

plant regulatory network governing Pi homeostasis and stress

response. Their intricate interactions and roles suggest potential

targets for enhancing P efficiency and stress tolerance in

crops (Table 2).

3.1.4 SPX pathway: negatively regulating
phosphate transport and signal transduction

The SPX pathway is essential for regulating P transport in

plants. It involves the SPX domain-containing protein family,

which acts as a negative regulator of Pi signaling. The SPX

domain binds to small molecules, such as inositol polyphosphate

signaling molecules (InsPs) and interacts with other proteins such

as PHR1 to control Pi signaling in plants (Figure 1), especially in Pi-

deficient cells (Jung et al., 2018).

SPX genes, such as AtSPX1 in Arabidopsis and OsSPX1 in rice,

play significant roles in regulating PSI genes (Figure 1). In

Arabidopsis, AtSPX1 acts as a P-dependent suppressor of AtPHR1

(Zhou et al., 2015), while in rice, OsSPX1 inhibits P uptake and P-

starvation signaling through negative feedback regulation (Wang

et al., 2009). The interaction between OsSPX1 and OsPHR2 also

influences P concentration and PSI gene expression (Lv et al., 2014).

Legume plants, such as soya beans, also utilize SPX genes to

regulate P acquisition and transport, with their expression being

highly sensitive to low P conditions, for example GmSPX-RING1

affects P efficiency by negatively regulating P concentration in soybean

hairy roots (Du et al., 2020). Wheat possesses TaSPX3, which is

strongly induced during low P stress and downregulated upon P

supply restoration. Additionally, the SPX subfamily in maize has also

been found to play pivotal roles in P stress sensing and response. The

SPX subfamily, especially ZmSPX4.1 and ZmSPX4.2, were

significantly induced under P-deficient conditions and exhibited
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ARFs and bZIP11.
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protein i

MYB62 Transcription Factors Upregulated during Pi-starvation; regulates root architecture,
Pi uptake, and gibberellin biosynthesis.

Expressi
transgen
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AtMYB62 R2R3-type
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remarkably different expression patterns in low Pi sensitive and

insensitive cultivars of maize (Kant et al., 2011).

A recent study revealed the interaction of OsSPX4 with

OsbHLH6 and their participation in the phosphate-starvation

response (PHR) (He et al., 2021) in rice. This MYB-like

transcription factor is homologous to phosphorus starvation

response 1 (PSR1), which participates in the P sensing process in

Chlamydomonas reinhardtii (Bari et al., 2006). PHR1 regulates the

expression of SPX genes, by binding to their promoters through the

cis-element PHR1-binding sequence (P1BS; GNATATNC)

(Figure 1) (Rubio et al., 2001; Bari et al., 2006). The mechanisms

governing SPX protein function are not limited to modulation of P

transport; they also extend to the intricate regulatory networks

involving nitrogen status through nitrate-inducible (NIGT1)

proteins. These NIGT1 proteins directly bind to the promoters of

several SPX genes, including SPX1 and SPX4, repressing their

expression and thereby integrating nitrogen signaling with Pi

starvation signaling to optimize nutrient uptake PSR (Ueda

et al., 2020).

Overall, the SPX pathway’s multifaceted regulatory roles affirm

its significance in plant responses to varying nutrient levels,

emphasizing its potential as a target for enhancing PUE in

agricultural systems.
3.2 The intricate regulation of
phytohormones in influencing PUE and
allocation

The general responses of plants to P deficiency include a

multifaceted set of strategies such as morphological, physiological

changes and molecular regulation of gene expression. It has been

well documented that numerous phytohormones and signalling

molecules are involved in the responses to P deficiency in plants,

including auxin (Wang et al., 2014b), ethylene (Zhang et al., 2020;

Marro et al., 2022), nitric oxide (NO) (Zhu et al., 2016a; Zhu et al.,

2017), strigolactones (Santoro et al., 2022) and abscisic acid (ABA)

(Fang Zhu et al., 2018; Castro-Valdecantos et al., 2023).

Auxin plays a crucial role in regulating plant responses to P

deprivation. Specifically, research has shown that auxin signaling is

integral in modifying root architecture under low P conditions,

particularly by promoting the growth of root hairs (Li et al., 2019).

Maintaining auxin homeostasis is essential for elongating root hairs

in P-deficient conditions. However, the molecular mechanisms

governing root hair elongation under P stress are not well

understood. The concentration of auxin in plant tissues can be

controlled through both biosynthesis (TAA1) and transport

(AUX1) mechanisms (Figure 2), allowing plants to adapt to

different P availability by regulating their responses to nutrient

stress (Bhosale et al., 2018). Additionally, a connection between

auxin signaling and the response to P starvation in various plant

species has been discovered. For example, in Arabidopsis, auxin has

been linked to the response to P starvation, with mutants displaying

reduced auxin sensitivity and altered P uptake (Huang et al., 2018).

Similarly, in rice, AUXIN RESPONSE FACTOR 16 (ARF16) acts as
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an integrator of both auxin and P starvation signals to regulate root

development and nutrient uptake. Loss of function of OsARF16 leads

to decreased root growth, reduced sensitivity to auxin, and Low-P

conditions (Shen et al., 2013). Additionally, ARF16 is associated with

the cytokinin signaling pathway, which modulates P uptake and

utilization. Cytokinin may repress the response to P starvation by

increasing intracellular Pi content (Shen et al., 2014). Conversely, the

mutant lacking OsARF12 shows increased P concentrations and

symptoms of P toxicity, suggesting a loss of regulation over P

absorption and translocation. ARF12 negatively regulates P uptake

and translocation through the PHT1 gene family. The transcription of

PHT1 genes is regulated by auxin through the presence of auxin-

related cis-acting elements in their promoters (Baek et al., 2017).

Auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) and

AUXIN RESPONSE FACTOR19 (ARF19) are also involved in

enhancing auxin sensitivity in plants under Low-P conditions.

ARF19 promotes root hair elongation by regulating the expression

of genes like ROOT HAIR DEFECTIVE 6-LIKE 2 (RSL2) and ROOT

HAIR DEFECTIVE 6-LIKE 4 (RSL4), which encode transcription

factors that promote root hair initiation and elongation (Yi et al.,

2010). Bhosale et al. (2018) demonstrate that Low-P levels increase

the levels of auxin (IAA) in the root apex, facilitated by TAA1-

mediated auxin synthesis and AUX1-dependent auxin transport.

This increase in IAA levels induces the expression of ARF19 in the

root apex, resulting in the induction of RSL2 and RSL4 in the

elongation and differentiation zones, respectively, promoting root

hair elongation (Bates and Lynch, 1996).

P deficiency also decreases GA and activates the DELLA-

mediated signaling pathway, which impacts root hair and lateral

root growth (Jia et al., 2017). Similarly, the SUMO E3 ligase SIZ1 is

associated with P starvation responses and may negatively regulate

auxin patterning, thus affecting root architecture under Low-P

conditions. On the other hand, the cotton defense-related gene

GbWRKY1 has recently been identified as a positive regulator of the

P response by enhancing auxin sensitivity and driving

modifications in the root system (Miura et al., 2011). Importantly,

GbWRKY1 appears to function independently of both SIZ1 and

PHR1 in response to P (Wang et al., 2014b). The involvement of

auxin signaling through ARF12, ARF16, and ARF19 in PUE

underscores the importance of understanding the mechanisms

underlying nutrient uptake and utilization.

Numerous studies have shown that abscisic acid (ABA) plays a

crucial role in regulating genes involved in P uptake and utilization

under low-P conditions (Nagatoshi et al. , 2023). ABA

accumulation, perceived by PYRABACTIN RESISTANCE1/

PYR1-LIKE/REGULATORY COMPONENTS OF ABA

RECEPTOR (PYR/PYL/RCAR) receptors, can upregulate the

expression of ABA biosynthesis genes (ABA1, NCED3, NCED6,

ABA2 and AAO3) and ABA-glucosyl ester deconjugation genes

(BG1 and BG2), while repressing ABA catabolism genes (CYP707A1

and CYP707A3) (Figure 2) (Zhang et al., 2022). The transcription

factor ABI5 (basic leucine zipper (bZIP) transcription factor), a

central player in the ABA signaling pathway, facilitates P

acquisition by activating the expression of PHT1;1 and PHT1;4

(Carles et al., 2002). ABA also mediates stomatal closure, which
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contributes to the overall regulation of P utilization in plants

(Castro-Valdecantos et al., 2023). P-starved plants show an

increase in foliar ABA concentration, which regulates stomatal

closure. Other hormones like Jasmonic acid (JA) and trans-zeatin

(TZ) may also affect stomatal opening and ABA sensitivity in P-

starved plants (Figure 2). JA has been suggested to interact

synergistically with ABA to cause stomatal closure (de Ollas and

Dodd, 2016). ABA accumulation in leaves is believed to be

responsible for P-starvation-induced stomatal closure. ABA also

influences P remobilization of root cell wall in rice independent of

nitric oxide and ethylene (Fang Zhu et al., 2018). It inhibits the re-

utilization of P stored in root cell walls and decreases the expression

of a high-affinity Pi transporter, resulting in reduced shoot soluble P

content (Fang Zhu et al., 2018). These interactions between ABA

and other hormones highlight the complexity of regulating P uptake

and utilization.

However, the exact mechanisms by which ABA regulates gene

expression under low P conditions are not fully understood. Further

studies are needed to elucidate the hormonal crosstalk involved in

these responses and to explore other signaling pathways and

transcription factors that may be involved, such as the mitogen-

activated protein kinase cascade and ABA-responsive element

binding transcription factors.

Ethylene also plays a crucial role in helping plants adapt to P

starvation by regulating changes in the root system’s structure

(Dubois et al., 2018). Under P-deficient conditions, plants

produce more ethylene, which acts as a regulator for root system

architecture (RSA) (Liu, 2021). It inhibits the extension of the

principal root and stimulates the development and elongation of

lateral roots. The production of ethylene is highest in adventitious

roots and is inhibited by Low-P stress, redirecting carbon allocation

to adventitious roots at the expense of other roots. Pectin, the major

component of plant cell walls, is known to respond to P starvation,

and its concentration determines a plant’s resistance to Low-P

stress. Ethylene increase pectin concentrations and pectin

methylesterase (PME) activity in the root cell wall under P-

deficient conditions, enhancing PUE. For instance, groundnut’s

root cell walls contain “contact reaction” pectin (Figure 2), allowing

it to efficiently acquire soil P in P-deficient soil (Zhu et al., 2016b).

Additionally, ethylene also enhances pectin concentrations in the

root cell walls of rice under P-deficient conditions. SAMS1,(an

enzyme involved in ethylene biosynthesis) increase pectin

concentrations and PME activity in tomato under P-deficient

conditions (Figure 2), suggesting that optimizing the interactions

between ethylene and other metabolic pathways may enhance plant

response to P stress (Wang et al., 2022).

Ethylene also promotes root hair development by influencing

auxin biosynthesis and transport, regulating cell wall modifications

(Stepanova et al., 2011; Song et al., 2016), and altering JA

biosynthesis. Overexpression of GmETO1, a member of the ETO1

family strongly induced by Pi deficiency, significantly enhances Pi

deficiency tolerance. This enhancement is achieved by increasing

the proliferation and elongation of hairy roots, as well as improving

Pi uptake and use-efficiency. Conversely, silencing of GmETO1

leads to opposite results (Zhang et al., 2020). Ethylene improves P
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acquisition by mobilizing phosphate (Po), activating acid

phosphatase (APase) activity, promoting P remobilization, and

inducing the transcription of PTs (Figure 2) (Zhu et al., 2016b).

Fine-tuning ethylene biosynthesis or signaling is a practical

approach to enhance plant P utilization without compromising

desirable agronomic traits. However, directly manipulating the

enzymes responsible for regulating ethylene biosynthesis (ACS

and ACO) can have negative effects on traits such as plant height,

fruit ripening, and senescence (Ye et al., 2018).

Strigolactones (SLs) are carotenoid-derived phytohormones

primarily synthesized in plant roots in response to nitrogen and/

or P deficiencies in various plant species (Marro et al., 2022). They

function as signaling molecules that elicit various morphological,

physiological, and biochemical responses, enabling plants to adapt

to Low-P conditions (Figure 2).

Recent studies have demonstrated increased SL biosynthesis

and exudation in many species under P-starved conditions. For

instance, Pi-deficiency affects leaf angle and root SL production in

rice. The up-regulation of SL-signaling genes, such as D3 and D14,

under P deficiency (Figure 2) suggests that endogenous SLs may

mediate the plant’s leaf angle sensitivity to low Pi levels (Ruan et al.,

2018). Moreover, SLs significantly influence the expression of key P

signaling and regulatory genes, including high-affinity P

transporters and phosphorus-hydrolyzing enzymes in tomato

plants (Santoro et al., 2021). Marro et al. (2021) Proposed

mechanisms which suggest that SLs act on the SPX-PHR1

complex, which releases the transcriptional activator PHR1.

Furthermore, Santoro et al. (2021) proved that, this interaction

leads to an increase in mature miR399 levels and subsequent

expression of TPSI1, a gene involved in miR399 sequestration.

This process reduces the transcript levels of the PSR suppressor

PHO2, activating the phosphate starvation response (PSR) pathway

and inducing the expression of genes encoding PTs for enhanced P

acquisition (Gamir et al., 2020; Santoro et al., 2021; Marro et al.,

2022). Furthermore, SLs also exert regulatory control over other P

starvation-related hormones, such as auxin, ethylene, and BR,

through complex interplay (Gamir et al., 2020). Under Low-P

conditions, acclimation involves the repression of ethylene

biosynthesis by ACC and ACC oxidase, and the activation of

auxin signaling. Additionally, SLs regulate the expression of genes

involved in GA production, which is connected to BR through the

positive regulator BES1 (Wang et al., 2021b). These interactions

highlight the intricate network of hormone cross-talk underlying

plant responses to P deficiency (Figure 2).

GA does not directly regulate P uptake from the soil to the

plant. However, it plays a critical role in the development of

arbuscular mycorrhizal (AM) associations in plants, which in turn

enhances P uptake. GA can either inhibit or promote AM

colonization and can positively interact with symbiotic responses

in the host root. The balance between ABA and GA is crucial for

AM formation, as a high ABA/GA ratio can reduce arbuscule

abundance (Figure 2). Interestingly, certain bacteria can produce

GAs, which enhance GA production in plants, further promoting

AM symbiosis. On the other hand, blocking GA biosynthesis can

decrease AM fungal colonization and hyphal branching in the host
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root, emphasizing the importance of GA in arbuscular mycorrhiza

development. The intricate interactions between hormones and

microorganisms in the rhizosphere warrant further research for a

thorough understanding in response to P deficiency. These

interactions enhance the understanding of plant physiology and

have significant implications for agricultural practices aimed at

improving PUE in crops.
3.3 Soil enzymes and phosphorus uptake in
low-P availability environments

Soil enzymes are essential for the uptake and utilization of P by

plants, especially in conditions of Low-P availability. There are

numerous enzymes found in soil, including phosphatase, phytase,

nuclease, amylase, and cellulase. Among them phosphatase and

phytase, are important for the uptake and utilization of P by plants,

particularly in conditions of low P availability. Phosphatase

enzymes help convert organic forms of P into inorganic forms

that plants can absorb, while phytase enzymes help break down

phytic acid, a form of organic phosphorus found in plant tissues and

soil, making it available for plant uptake. The other enzymes

mentioned, such as nuclease, amylase, and cellulase, may have

other roles in soil processes but may not directly contribute to P

uptake and utilization.

3.3.1 Phosphatases enhancing PUE and inorganic
phosphate fixation

Phosphatases are critical for the acquisition and utilization of Pi.

Among various phosphatases, acid phosphatases (APase) play a

pivotal role as they increase the bioavailability of Pi by breaking it

down into a more accessible form (Zhang et al., 2010). The activity

of APase is detected throughout development, and their release to

the rhizosphere is a typical response of Phosphorus-deficient in

higher plants (Lazali and Drevon, 2018). A study by Lu et al. (2016)

identified OsPAP10c, a novel secreted APase in rice that belongs to a

monocotyledon-specific subclass of Ia group PAPs and is

specifically expressed in the epidermis/exodermis cell layers of

roots (Lu et al., 2016). Overexpression of OsPAP10c resulted in a

more than ten-fold increase in APase activity, which enhanced the

plant’s efficiency in utilizing external organic P in turn.

Recently, it has been discovered that the expression of APase

and phytase genes, as well as the activities of the corresponding

enzymes, are positively correlated with the increases in both P use-

efficiencies for N2 fixation and nodule O2 permeability in the

rhizobial symbiosis in legumes (Lazali and Drevon, 2018). In

soybean nodules, there is also evidence of the overexpression of

numerous APase enzymes involved in Pi homeostasis, suggesting

that the excretion of nodular APase may be stimulated by low P

availability (Li et al., 2012). Similar findings have been identified in

Brassia napus by (Zhang et al., 2010) and in various grasses such as

Axonopus afnis, Paspalum notatum, and Andropogon lateralis (de

Oliveira et al., 2018). These studies demonstrate the relationship

between Apase activity and P remobilization in grasses with

different growth rates. Particularly, higher growth rates are
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associated with elevated P uptake efficiency and increased

remobilization of P due to higher demand, as observed in A. afnis

(de Oliveira et al., 2018).

Another important subtype of APase found in plants is the

Purple Acid Phosphatases (PAPs). These enzymes have a high

affinity for organic phosphorus compounds, making them critical

in optimizing plant growth and crop productivity, especially in soils

with limited available P. The expression of PAPs and its

homologues are primarily regulated at the transcriptional level by

PHR1 (Sun et al., 2016; Mehra et al., 2017). Most of the PAPs have

PHR1 binding sites in their promoters and are responsive to Pi

deficiency (Bhadouria et al., 2017). Furthermore, plant growth

regulators such as auxin, cytokinin, and ethylene have a role in

regulating the expression of PAPs at the transcriptional level. For

example, in rice mutants of the auxin-responsive transcription

factor, osarf12, elevated the expression of 4 PAPs genes OsPAP9b,

OsPAP10a, OsPAP10c, and OsPAP27a enhanced APase activity,

suggesting that ARF12 influenced transcript abundance from PAP

genes in P sufficient and deficient conditions (Wang et al., 2014b).

Cytokinins negatively regulate the expression of PAPs, such as

AtPAP17 and OsPAP10, as shown in studies where exogenous

cytokinins decreased the expression of these PAPs (Fang et al.,

2009). Ethylene, a component of local cellular signaling in response

to Pi levels in the rhizosphere, influences the regulation of AtPAP10

expression in a Pi-dependent manner. Specifically, AtPAP10

expression, protein accumulation, and activity increase under Pi-

sufficient conditions in the presence of ACC (an ethylene precursor)

(Zhang et al., 2014). Apart from their primary function in Pi

homeostasis, PAPs are also involved in other processes such as

root growth, symbiotic association, carbon metabolism,

phospholipid hydrolysis, defense response, and cellular signaling.

The intricate regulatory mechanisms and versatile roles of PAPs

make them essential for optimizing plant growth and crop

productivity, particularly in P-deficient soils. These phosphatases

utilize a ping-pong mechanism to cleave the phosphodiester bond

and coordinate with metal ions to increase bioavailability. The

metal ions act as a catalyst and coordinate the substrate and the

enzyme active site (Gottlin et al., 1998). The roles of various

phosphatases in P-acquisition are essential, particularly in P-

deficient environments. The capacity of soil enzymes to enhance

P-uptake in these low-availability conditions indicates that

optimizing enzyme activity is a vital strategy for enhancing PUE

and overall crop productivity. A more profound understanding of

these enzymes’ functionalities and efficiencies could bolster

breeding programs focused on developing plant varieties that can

efficiently utilize soil P. As research in this field advances, the

prospects for innovative agricultural practices and enhanced crop

varieties grow more promising.

3.3.2 Phytate in facilitating ion-ligand complex
formation to enhance PUE

Phytases are enzymes that facilitate the conversion of phytate to

Pi, thereby releasing Pi and minerals in an accessible form, enhancing

their absorption by plants (Sun et al., 2021). Phytate is a chemical

derivative of inositol (myo-inositol hexabisphosphate) and is the most
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widely distributed form of P in the soil (Duong et al., 2018). For soil

phytate to contribute to plant P nutrition, phosphate ester (C-O-P),

phosphoanhydride (P-O-P), or phosphonate (C-P) must first be

dephosphorylated through phytase-mediated hydrolysis. Desorption

and solubilization are two approaches to improving phytate access

(Richardson et al., 2011). Protons, organic acids, and phenolic acids

can all desorbate or solubilize P in soil, with organic acids being the

main solubilizer of the rarely available P (Richardson et al., 2011).

Carboxylate groups found in organic acids play a multifaceted role in

the mobilization of phytate. They facilitate this process by substituting

Pi with a carboxylate anion, thereby promoting phytate solubility.

Carboxylates further aid in phosphate anion desorption from the soil

through ligand exchangemechanisms. Additionally, they contribute to

the removal of P sorption sites by solubilizing iron (Fe) and aluminum

(Al) through proton (H+) activity. Finally, carboxylates facilitate the

dissolution of organic matter (OM) bound to P via Fe/Al-bridges,

resulting in the release of Pi as part of the OM-Fe/Al-P complex

(Gerke, 2010). Small quantities of Po added to the rhizosphere might

act as a stimulator to phytic acid mineralization, thus improving plant

P feeding. Both plant and microbial phytases play pivotal roles in the

solubilization of phytate, which is a crucial step in P acquisition. In

addition, transgenic plants, including maize, rice, and soybean, have

been engineered to express phytase genes origin from

microorganisms. This genetic modification aims to enhance plant P

accumulation and promote increased biomass production, thus

contributing to improved agricultural yields and sustainable crop

growth (Puppala, 2018; Singh et al., 2020). It was found that the

plants had significantly higher grain yields and P accumulation in their

tissues, in transgenic maize expressing a fungal phytase gene (Xu et al.,

2018). In the last decade, the genes involved in the synthesis of

microbial phytases having a high affinity toward phytate have been

utilized to produce transgenic plants. Phytase genes from bacteria,

fungi, and yeasts such as Bacillus subtilis, Selenomonas ruminantium,

Escherichia coli, Aspergillus ficuum, Aspergillus niger, and

Thermomyces lanuginosus have been used to develop transgenic

plants. The most studied A. niger enzyme has been successfully

expressed in Arabidopsis, tobacco, wheat, maize, soybeans, alfalfa,

and rapeseed (Valeeva et al., 2018). Several studies back up the

advantages brought forth by transgenic types, such as the high

expression of a PHY US417-related gene in Arabidopsis that led to

increased growth and Po content without inducing inorganic

phosphorus starvation-triggered (PSI) genes. Enhanced biomass and

Pi were seen in plants co-cultured with ePHY overexpression when

the PSI gene was suppressed (Belgaroui et al., 2016).

To fully understand how plants, acquire and utilize P, it is

important to consider the various enzymes involved in this process.

In addition to the well-studied acid phosphatases, purple acid

phosphatases, and phytases, another enzyme called nucleases also

play a role in releasing Po. Nucleases play a crucial role in the

acquisition and utilization of P by plants. They break down nucleic

acids, such as DNA and RNA, which are present in plant residues

and soil organic matter. As they degrade nucleic acids, nucleases can

hydrolyze phosphomonoesters and phosphodiester bonds, releasing

Po that can be absorbed by plants (Solhtalab et al., 2022). This

characteristic sets nuclease apart from other enzymes involved in P
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nutrition because they can release P sources other than soluble Po.

Although the full significance of nucleases in plant P nutrition is still

not clear, they may be more active in certain soil conditions, such as

acidic soils with Low-P availability.
4 Interplay between rhizosphere
microorganisms and factors
influencing phosphorus efficiency in
plant roots

Since, P is not only a fundamental macronutrient for plants, but

its limited availability in soils poses significant challenges for

agricultural productivity, especially under Low-P conditions. This

subsection explores the specific factors influencing PUE in plant

roots, including root morphology, genetic traits, and the vital roles

played by rhizosphere microorganisms such as arbuscular

mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB),

and plant growth-promoting bacteria (PGPB) (Figure 3).
4.1 Root morphological adaptations to
low-P conditions

The adaptation of plant root morphology to low P conditions is

strongly influenced by crop genotypes and regulated by both plant

regulators and inherent genetic factors. P acquisition in different

crop genotypes relies on the development of an extensive root

system that grows in multiple directions until it encounters areas

with available P. The growth pattern of the primary root (radicle)

plays a crucial role in shaping the overall root morphological

structure as it represents the initial point of root growth. This

growth pattern is determined by the genetics of the specific crop,

which control the processes of cell proliferation and differentiation

within the primary root’s meristematic cells (Sánchez-Calderón

et al., 2006; Desvoyes et al., 2021). Under low P conditions, plants

respond by undergoing various changes in root morphology

(Figure 3). For example, common beans experience inhibition of

root secondary growth and the formation of more root cortical

aerenchyma, along with a reduction in lateral root numbers and an

increase in primary root formation and whole root depth. Similarly,

maize exhibits an increase in primary root formation and whole

root depth (Li et al., 2012). Rice, on the other hand, shows a

reduction in lateral root length (Vejchasarn et al., 2016), while

sugarcane exhibits a shallower root distribution. Conversely,

soybean and Arabidopsis show an increase in primary root

length, number of lateral roots, and root hair density (Bello,

2021). Additionally, these plants also form root clusters, which

can alter the root structure and result in reduced plant growth and

an increased root-to-shoot ratio (Strock et al., 2018). These changes

in root morphology have been found to enhance plant efficiency

under low P conditions.

A recent study found that root hairs play a significant role in

acquiring P by increasing the proximity between soil P pools and
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the root surface (Chen et al., 2021; Liu, 2021). This is particularly

important for seedlings that rely on root uptake when stored P in

seeds is depleted under low P soil conditions. It also results in less

disturbance to root growth compared to the shoot, leading to an

increased root-to-shoot ratio.
4.2 Microbial interactions and P availability

The synergistic association between plant roots and rhizosphere

microorganisms, particularly AMF, is pivotal for enhancing P

uptake (Huo et al., 2022). These fungi are endomycorrhizal

organisms that penetrate the cell walls of roots and connect with

the plasmalemma, allowing the plants to access P pools beyond the

reach of roots. Fungi extend their hyphae into the inner cortex of

roots, providing a highly efficient interface for signaling and

nutrient exchange (Figure 2). This symbiosis not only improves

nutrient absorption but also stimulates root growth by increasing

lateral root length and overall root biomass, especially under P-

deficient conditions.

Moreover, AMF release glomalin, a glycoprotein that facilitates

the uptake of nutrients like P and iron that are often hard to dissolve

(Smith and Read, 2010). Recent research conducted by Zhang et al.

(2019) demonstrated that Zenia insignis seedlings inoculated with

three AMF species, Funneliformis mosseae, Rhizoglomus

intraradices, and Diversispora versiformis, significantly enhanced

their growth and drought tolerance (Zhang et al., 2019). Although

the association between AMF and plants is generally beneficial for

plant growth, it is not always advantageous due to the parasitic

nature of the fungi, which can incur carbon costs for the plants.

Nevertheless, research has shown that 70-90% of plant species,
Frontiers in Plant Science 16
including ferns, bryophytes, flowering plants, and most agricultural

crops, are capable of forming interdependent connections with

AMF (Sinha and Tandon, 2020).

Additionally PSB and PGPB (Gupta et al., 2021) or Plant

growth-promoting rhizobacteria (PGPR) (Chea et al., 2021) also

play a crucial role in the biogeochemical cycling of organic and

inorganic P in the rhizosphere. These P solubilizing bacteria

enhance P availability for plants by secreting organic acids,

siderophores, exopolysaccharides that solubilize insoluble P

compounds (Figure 3). They produce enzymes like phytases that

break down organic P, releasing inorganic forms for plant uptake.

Furthermore, PSB form biofilms around roots, improving moisture

retention and root health.

Meanwhile, PGPB produce phytohormones (e.g., indole-3-acetic

acid, or IAA) that stimulate root growth and lateral root formation

(Figure 3). Studies indicate that PGPB or PGPR enhance organic P

availability, particularly inositol phosphates, and improve plants’

access to P (Menéndez and Paço, 2020). for example, under P

deficiency, PGPR have been shown to significantly improve root

and shoot biomass, root length, and surface area by 32-45% in

potatoes (Unno et al., 2005, Richardson and Simpson, 2011; Hyder

et al., 2023). Many PGPR can also produce secondary metabolites and

phytohormones that can stimulate the hormonal pathways of plants

involved in root development. These positive effects of PGPR have

been reported in pea and other vegetable crops (Jiang et al., 2012).

Various bacterial genera, such as Bacillus, Burkholderia,

Enterobacter, Pseudomonas, Serratia, and Staphylococcus, produce

phytase enzymes that break down phytate and release P for plant

uptake (Figure 3). However, the effectiveness of rhizobacteria in

solubilizing P can vary depending on soil types, nutrient

concentrations, and crop types. It’s important to note that the
FIGURE 3

The key components affecting PUE in plants. The central concept, (PUE in Plants), is influenced by three primary factors: (Genetic Factors), which
encompass the traits that enhance Pi-uptake and utilization; (Root Morphology), which refers to the structural adaptations of roots that facilitate P
absorption; and (Rhizosphere Microorganisms), highlighting the role of microbial communities in enhancing nutrient availability.
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synergy between different bacterial species and nutrient interactions

in the soil can enhance P solubilization and mineralization efficiency.
4.3 Mechanisms of action: enzymatic and
genetic interactions

Plants under P deficiency respond by, secreting organic acids,

(mainly citrate, malate and oxalate), into the rhizosphere, to

enhance the availability of inorganic P in the soil (Pang et al.,

2015) (Figure 3). The quantity and quality of root exudates can vary

under different environmental stress conditions. In a P-deficient

environment, plants produce and secrete more organic acids, which

helps destabilize organic matter and promote the cycling of organic

P and P into the soil solutions (Tiziani et al., 2020). Crop genotypes

that exhibit a higher ability to exude organic acids in response to

low soil P availability can enhance plant-available P and improve

PUE in growing plants.

In terms of nutrient uptake, plants exhibit an increased

efficiency through high-affinity Pi/H+ symporters (belong to the

PHT1 gene family) (Figure 3), associated with plasma membranes,

which facilitate the uptake of rhizospheric P (Gu et al., 2016).

Additionally, plants also induce enzymes that scavenge and recycle

Pi, such as acid phosphatase that hydrolyzes Pi from Pi–

monoesters, nuclease that degrades extracellular DNA and RNA,

and phosphodiesterase that liberates Pi from nucleic acids (Gaume

et al., 2001).
4.4 Integration of microbial and genetic
approaches for improved P efficiency

Exploring the interactions between microbial communities,

such as AMF and PSB like Flavobacterium C2, along with the

inherent genetic variations across different crop genotypes, is

essential for optimizing PUE in Low-P environments. Previous

studies show that maize plants inoculated with AMF have improved

root development and P-uptake compared to non-mycorrhizal

plants (Etesami, 2020). In a similar vein, Flavobacterium C2

enhances P availability through the production of organic acids,

such as citric and malic acids, which can lower rhizosphere pH and

increase the solubility of mineral P (Liu et al., 2024).

This highlights how beneficial microorganisms can play a vital

role alongside genetic traits tailored to improve P acquisition. By

integrating insights from both genetics and microbial ecology,

agricultural practices can be significantly enhanced to improve

crop resilience and productivity. Focusing on breeding programs

that enhance root traits—like increased root hair density or deeper

rooting systems—while also applying beneficial microbes like C2

provides critical pathways to enhance P-uptake. Additionally, C2’s

ability to produce IAA may further stimulate root growth,

supporting plants in P-deficient soils. This comprehensive

strategy not only optimizes plant growth but also encourages

sustainable agricultural practices that are crucial for addressing

global food security challenges.
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5 Impact of phosphorus on respiratory
metabolism and ATP production
under low-P conditions

Plant respiratory metabolism breaks down glucose and other

organic molecules to produce energy in the form of ATP. P plays a

crucial role in this process by synthesizing and activating key

molecules involved in respiratory metabolism, including ATP.

This involves a series of enzymatic reactions in the mitochondria,

starting with the breakdown of glucose via glycolysis and

subsequent oxidation in the tricarboxylic acid cycle. The final

stage, oxidative phosphorylation, occurs in the electron transport

chain, where P is used to synthesize ATP from ADP and Pi

(Deshpande and Mohiuddin, 2020). During long-term Pi stress,

the decline in adenylate and Pi content restricts the activity of

several enzymes involved in classical glycolysis and mitochondrial

respiration that depend on ATP, ADP, and/or Pi. However, the

cytosolic level of inorganic pyrophosphate (PPi) remains relatively

stable. PPi, a byproduct of biosynthetic reactions, plays a crucial role

in enhancing cellular processes’ energetic efficiency (Dissanayaka

et al., 2021). Interestingly, PPi-dependent reactions are utilized by

anaerobic microorganisms and plant cells to yield ATP and recycle

Pi. This suggests that the upregulation of PPi-dependent enzymes in

-Pi plant cells may play a significant role in respiration and Pi

recycling during Pi stress. It connects the importance of P not only

in ATP production but also in overall metabolic adaptation under

Pi limitations.
6 Epigenetic modulation of
phosphorus acquisition and utilization

Epigenetic modifications, including DNA methylation and

histone modifications, miRNA, and LncRNA, play a crucial role in

regulating various plant processes, including the uptake and

utilization of P. By influencing gene expression, these modifications

impact nutrient acquisition and metabolism (Li et al., 2021). Notably,

the addition of a methyl group to DNAmolecules can either enhance

or suppress key genes involved in P pathways, ultimately affecting a

plant’s ability to efficiently acquire and utilize P. For instance, in

Arabidopsis, DNA methylation levels increase in response to Pi

deficiency, leading to changes in root growth and density of root

hairs under Pi-replete conditions. This suggests that regulatory

components involved in the P starvation response, such as SPX2

and miR827, experience differential methylation (Yong-Villalobos

et al., 2015). Moreover, DNA methylation selectively modulates Pi

signaling through important cis-elements like P1BS, WRKY, and

MYB motifs (Yong-Villalobos et al., 2016). The identification of

specific regulatory components like SPX2 and miR827 reveals

potential targets for genetic intervention. Manipulating their

expression could enhance plants’ adaptive responses to P

deficiency, thereby fostering more sustainable agricultural practices

and improving crop yields in P-limited soils. In maize and rice, the

response to P deficiency in terms of DNA methylation may differ (Li
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et al., 2021). For instance, in maize, Low-P conditions have only a

minor effect on global DNA methylation levels. In contrast, long-

term P deficiency in rice leads to gradual changes in gene expression

and DNA methylation patterns, which persist even after P supply is

restored (Secco et al., 2015).

Recently Gladman et al. (2022) found that sorghum responds to

Low-P conditions by showing a decrease in global DNA 5-

methylcytosine and H3K4 and H3K27 trimethylation levels.

Interestingly, they discovered that H3K4me3 peaks and DNA

hypomethylated regions contain regulatory motifs for various

developmental and nutrient-responsive transcription factors,

including SHORTROOT (SHR), SCARECROW (SCR), and

ROOTLESS CONCERNING CROWN and SEMINAL ROOTS

(RTCS). Additionally, these regions exhibit distinct expression

patterns among different root tissues, such as the primary root apex,

elongation zone, and lateral root apex (Gladman et al., 2022). The

response to DNAmethylation under P deficiency, as well as the specific

genes involved, can vary across different species (Gladman et al., 2022).

Histone modifications have a pivotal role in regulating gene

expression associated with P metabolism. These modifications

impact the accessibility of genes to regulatory proteins and

transcription factors. Acetylation of histones, in particular,

promotes gene expression by relaxing chromatin structure and

facilitating the binding of activating proteins. One gene involved

in histone acetylation, AtGCN5, plays diverse roles in plant

development and stress response (Xing et al., 2015; Zheng et al.,

2019). Mutation of AtGCN5 affects P accumulation and impairs the

activation of genes like At4 and AtWRKY6 under low-P conditions

(Wang et al., 2019). In addition to acetylation, methylation is

another important histone modification that influences gene

expression in P metabolism. Methylation at specific loci can

recruit activating proteins or modify chromatin structure, thereby

favoring gene transcription. This modification can promote the

expression of P metabolism-related genes by facilitating the binding

of transcription factors or remodeling the chromatin architecture.

For instance, in Arabidopsis, the ALFN protein encoded by AtAL6

plays a role in root hair elongation under low-P conditions

(Chandrika et al., 2013). AtAL6 recognizes H3K4me3, a specific

form of histone methylation, through its Plant Homeo Domain

(PHD) finger. By recognizing H3K4me3, AtAL6 promotes the

transcription of AtETC1, a gene involved in root growth, and

activates downstream targets such as AtNPC4, AtSQD2, and

AtPS2 (Taverna et al., 2006; Wei et al., 2017). This ultimately

leads to root hair elongation in response to P deficiency.

Therefore, histone methylation, particularly the recognition of

specific methyl marks by proteins like AtAL6, is crucial for

regulating the expression of P metabolism-related genes

(Chandrika et al., 2013).

Conversely, histone modifications can also act as repressive

signals. Methylation of histones at specific lysine residues, like

H3K9, is often associated with gene silencing. In the case of P

metabolism-related genes, methylation at repressive loci can recruit

proteins that inhibit gene expression or induce a more compact
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chromatin structure, thereby preventing the access of activating

proteins. Similarly, the deacetylation of histones is linked to gene

repression. Deacetylated histones result in a condensed chromatin

structure, which is typically associated with gene silencing.

Deacetylation at the promoter regions of P metabolism-related

genes can suppress their expression by limiting the accessibility of

transcription factors and other activating proteins. In addition to

histone modifications and DNA methylation, there are some other

epigenetic regulations such as substitution of histone variant

H2A.Z, nucleosome remodeling, and chromatin accessibility,

which can also modulate gene expression (Zovkic et al., 2014).

Furthermore, Post-transcriptional regulation by miRNAs and

LncRNAs adds an epigenetic control layer to gene expression. These

non-coding RNAs bind to mRNA, leading to degradation or

translation inhibition. They have a significant impact on plant

gene regulation, generating phasiRNAs that influence plant

development, physiology, and stress response (Meng et al., 2021).

In maize, miR399 regulates ZmPHO2 expression, maintaining P

homeostasis by targeting it for degradation and controlling genes

involved in P uptake and utilization (Du et al., 2018). While Two

lncRNAs, At4 and IPS1, are induced by Pi starvation in Arabidopsis.

These lncRNAs have orthologous counterparts in Medicago (Mt4)

and tomato (TPS1) (Shin et al., 2006). Mutations in At4 lead to

problems in Pi redistribution between the root and shoot under

deficient conditions. The members of the At4/IPS1 gene family

contain a conserved motif that is partially complementary to

miR399. However, a central mismatch prevents cleavage of the

transcript by miR399 (Huang et al., 2013). As a result, the binding

of At4/IPS1 lncRNAs acts as a decoy, reducing miR399 activity and

consequently upregulating its target transcript, PHO2. PHO2

encodes the ubiquitin-conjugating enzyme UBC24, which

mediates the degradation of several high-affinity PHT1 and the

PHO1 protein involved in Pi loading in the xylem (Huang et al.,

2013). Recently Yuan et al. (2016), used a genome-wide sequencing

approach to identify lncRNAs responsive to P starvation in

Arabidopsis. They predicted 1212 novel lncRNAs, including 78

poly(A)- lncRNAs, some of which were associated with genes

involved in Pi starvation-related processes. Furthermore, they

identified 104 lncRNAs as potential targets of PHR1 and 16

lncRNAs as potential targets of miR399, both important

regulators of plant Pi homeostasis (Yuan et al., 2016). Similarly,

Zhang et al. (2021a) conducted RNA sequencing on soybean roots

of different genotypes with varying P tolerance. They identified

4,166 novel lncRNAs, of which 525 were differentially expressed

under different P levels. These differentially expressed lncRNAs

were found to be associated with various Pi-related biological

processes based on GO and KEGG analysis (Zhang et al., 2021b).

Additional Computational analysis of Arabidopsis and rice

genomes revealed numerous potential lncRNAs that mimic

miRNA targets. The role of miR160 and miR166 target mimics in

Arabidopsis development was confirmed. This suggests that

lncRNAs have a general regulatory mechanism for controlling

miRNA activity in plants (Wu et al., 2013).
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Recent studies have also implicated circular RNAs (CircRNAs) in

the epigenetic regulation of P metabolism. CircRNAs, a type of non-

coding RNA, are formed through a head-to-tail splicing process,

resulting in a covalently closed loop structure. Emerging evidence

suggests that CircRNAs can modulate various plant processes,

including P acquisition and utilization (Pan et al., 2018). For

instance, novel_circ_000013, novel_circ_000349, novel_circ_000351,

and novel_circ_000277 have been found to interact with multiple

miRNAs (Lv et al., 2020). One mechanism by which CircRNAs

regulate P metabolism is through their role as miRNA sponges.

CircRNAs bind to miRNAs, preventing their interaction with target

mRNAs and effectively sequestering them (Zhou et al., 2020). This

sequestration of miRNAs by CircRNAs, where miR399, miR319,

miR156 and miR159 were sponged, lead to the upregulation of key

genes involved in P pathways. Additionally, CircRNAs directly

interact with proteins and influence their activity, thereby impacting

P acquisition and utilization (Lv et al., 2020). However, further

research is needed to fully understand the specific mechanisms by

which CircRNAs function in the context of P metabolism and their

potential roles in plant adaptation to P deficiency.
7 Conclusion and future perspectives

Improving crop PUE is critical for minimizing P fertilizer use,

protecting the environment from eutrophication, and conserving

global P mineral resources (Bello, 2021). Historical analyses show

that global PUE has significantly improved, rising from 44% in the

1980s to approximately 66% in 2019, despite an increase in P

fertilizer usage. This improvement highlights the urgent need to

address challenges posed by P pollution and diminishing

rock reserves.

Recent studies, including GWAS by Rajamanickam et al.

(2024), identified 14 PUE traits in wheat, revealing substantial

SNP associations and significant advancements in understanding

P transport through the candidate gene TaPHT1;9 (Rajamanickam

et al., 2024). Moreover, functional studies on CRISPR-edited

mutants in transgenic rice demonstrated notable increases in

grain yield, biomass, P concentration, and overall PUE under

Low-P conditions (Chen et al., 2024). It is evident that plants can

reprogram their gene expression in response to P deficiency—

engaging various regulatory pathways, particularly involving TFs

such as WRKY. For instance, transgenic soybeans overexpressing

GmWRKY46 have shown improved root development, enhancing

plant growth and P uptake (Li et al., 2021a). Additionally, genetic

contributions to low P tolerance, such as those from the

Gm6PGDH1 gene, indicate pathways to enhance PUE further (Li

et al., 2021b). Other P signaling pathways PHO, MYB62 and SPX

pathway also occupy a very important position in the P signaling

network, which is tightly related to P uptake, transport, storage and

homeostasis. Further exploration of their involvement in epigenetic

regulation of P can provide valuable insights (Figure 1). The

analysis of Arabidopsis PHO1 (AtPHO1) with its EXS domain

alongside SPX (Ribot et al., 2008) offers a potential illustration of
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how these pathways may contribute to the interplay between P,

enzymes, and phytohormone signaling pathways to improve PUE.

The interplay between plant roots and rhizosphere

microorganisms is vital for enhancing PUE in Low-P

environments. For example, the fungi Funneliformis mosseae play

a significant role in improving P content and promoting growth in

rice through systemic gene expression changes (Campo and San

Segundo, 2020). Moving forward, future research should focus on

integrating microbial and genetic approaches to enhance PUE.

Identifying key genetic traits that facilitate beneficial microbial

interactions and exploring multi-strain microbial inoculations

could further optimize P availability. Ultimately, harnessing these

microbial relationships can lead to more sustainable agricultural

practices, reducing reliance on chemical fertilizers while improving

soil health and crop resilience.

Advancements in PUE research are expected to significantly

influence plant physiology and breeding strategies. However, a

limited understanding of the genetic basis underlying PUE

continues to hinder the development of P-efficient cultivars

(van de Wiel et al., 2016).

Recent advancements in crop genomics, including SNP marker

development and pan-genome assemblies, have made identifying

genomic regions associated with PUE more efficient. Resources like

genomic selection and prediction methods can facilitate the creation of

progenies with improved PUE. The implementation of speed breeding

protocols will further streamline breeding timelines for mapping

populations. Furthermore, high-throughput phenotyping innovations

are crucial for advancing our understanding of root morphology and

architecture in relation to P availability. Techniques such as 3D laser

scanning and digital imaging facilitate robust assessments of root traits

in variable environments (Fang et al., 2009). Additionally, integrating

modern technologies like machine learning and genome editing can

markedly improve breeding strategies.

In conclusion, a multifaceted approach that incorporates

genetic, molecular, physiological, and epigenetic strategies is

essential for developing crops capable of thriving in Low-P

conditions. Such advancements will be instrumental in addressing

global food security challenges in the face of climate change and

resource depletion.
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