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polyphenol production in
Precoce and Tardiva cultivars
of Cichorium intybus L.
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Cassandra Detti3, Mauro Centritto1, Cecilia Brunetti 1,3*

and Raffaella Maria Balestrini5

1Institute for Sustainable Plant Protection, National Research Council, Sesto Fiorentino, Italy, 2Institute
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Saúde, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, 5Institute of Biosciences and
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Introduction: Plant growth and metabolism can be optimized by manipulating

light intensity and wavelength. Since the use of light-emitting diodes (LEDs)

allows easy regulation of the light spectrum, LEDs technology is largely tested to

produce high-quality food. Red leaf chicory is a horticultural plant of high

commercial value, rich in vitamins, minerals and phytochemical compounds

with bioprotective and antioxidant roles.

Methods: Cichorium intybus L. (Asteraceae family) seedlings of the cultivar Rossa

di Treviso Precoce and Rossa di Treviso Tardiva were cultivated under blue and

red LEDs for three to four weeks, whereas white LEDs, proving full visible light

spectrum, were supplied as control. The leaf polyphenols were characterized and

quantified by HPLC-DAD-Q-ToF analysis, the leaf chlorophyll content was

measured using a handheld optical analyzer and the photosystem II efficiency

was assessed with a porometer-fluorometer.

Results: The PS II efficiency decreased in response to red LEDs treatment only.

The highest levels of polyphenol and chlorophyll content were registered in

response to blue LEDs exposure in both cultivars. The Rossa di Treviso Tardiva

also exhibited a significant accumulation of polyphenols under red LEDs

compared to white LEDs. The polyphenolic composition of the two cultivars

significantly changed depending on the type of LEDs used. The leaf extracts of

plants grown under red LEDs showed a prevalence of kaempferol 3-O-

glucuronide, whereas a predominance of quercetin derivatives was found in

response to white and blue LEDs. The comparison of the two cultivars revealed

that the Rossa di Treviso Precoce was characterized by a higher content of

polyphenols, independently of the type of LEDs.
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Discussion: Species-specific protocols are required for producing high-content

nutrient vegetables. In our study, red LEDs induced a completely different leaf

polyphenol composition than blue and white LEDs, pointing out that an accurate

light spectrum selection is crucial for shaping plant metabolism. Blue LEDs improved

the content of photosynthetic pigments and induced an accumulation of highly

antioxidant polyphenols in both Rossa di Treviso Precoce and Tardiva C. intybus

cultivars, emerging as a valuable tool for improving their nutraceutical content.
KEYWORDS

Cichorium intybus L., light-emitting diodes (LEDs), polyphenols, chlorophylls, HPLC-
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1 Introduction

Chicory - Cichorium intybus L. – is a diploid species belonging

to the Asteraceae family, widespread in all Eurasia and in the

northern part of Africa. There are both wild and cultivated

varieties of C. intybus and several cultivars can be accounted

(Aldahak et al., 2021). Among the different cultivars, the

“Radicchio” ones are widely cultivated in northeastern Italy,

where they represent economically relevant vegetable crops. The

“Rossa di Treviso Tardiva” (Late Red of Treviso) and “Rossa di

Treviso Precoce” (Early Red of Treviso) cultivars are local products

certified PGI (Protected Geographical Indication) and PDO

(Protected Designation of Origin) (Carazzone et al., 2013; Papetti

et al., 2017) in Italy. In this part of the country, the Radicchio

chicories constitute, in fact, a flagship ingredient of the local cuisine.

The red crunchy leaves, characterized by a bitter taste, are

consumed as fresh salad as well as cooked, e.g., in the “risotto”

with rice, radicchio and gorgonzola cheese, as grilled radicchio, etc.

Additionally, common chicory has also a long history of

medical and food uses. Formerly consumed by the Ancient

Egyptians for its digestive and therapeutic properties (Janda et al.,

2021), chicory extracts are extensively used against gastrointestinal

disorders, as well as added to beverages to obtain functional drinks

(Kim et al., 2017). The composition of its tissues, rich in

micronutrients (e.g. , vitamins) and various high-value

phytochemicals (e.g., inulin, tannins, chlorophyll, coumarins,

flavonoids), concentrated in both root and aerial parts, mirrors

the health benefits associated to the consumption of this plant

species (Kiani et al., 2023). Among polyphenols, chicoric and

chlorogenic acids are highly represented in C. intybus (Papetti

et al., 2017), and particularly, the red cultivars display high levels

of anthocyanins (D’evoli et al., 2013), already known to play a key

role in the prevention of cardiovascular diseases (Wallace, 2011),

obesity and diabetes (Tsuda, 2012; Iqbal et al., 2021).

The production of fresh vegetables with a high content of

phytonutrients is one of the main goals of the horticulture

industry (Martı ́nez-Ispizua et al., 2022). Providing and

manipulating artificial light by Light-Emitting Diodes (LEDs) is

one of the possible options to drive indoor cultivation in this
02
direction (Appolloni et al., 2022). These lamps enable an easy

modulation of the emitted light spectrum, which ranges from the

ultraviolet to the infrared region, allowing the improvement of

specific traits of interest, such as the color or the accumulation of

specific compounds (Carvalho and Folta, 2014; Gómez and Izzo,

2018). For these reasons, in the last decade, LEDs lighting has

emerged as dominant innovative technology, finding large use in

greenhouses and indoor environments, particularly for the

cultivation of leafy vegetables such as lettuce and chicory (Johkan

et al., 2010; Ouzounis et al., 2015; Alrifai et al., 2019; Pennisi et al.,

2019, 2020). The indoor cultivation of these microgreens through

artificial crop systems such as vertical farming technology, implies

additional benefits other than the production of high-nutrient-

content food, the most remarkable of which include increased

productivity, prevention of land consumption, water saving and

reduced transportation costs (Kalantari et al., 2018; Mir et al., 2022).

For the photosynthesis, plants prefer blue (400-480 nm) and red

light (600-700 nm), having chlorophyll a and b their maximum

absorption in these regions (Chlorophyll a: 430 and 665 nm;

Chlorophyll b: 453 and 642 nm) (Ouzounis et al., 2015; Pennisi

et al., 2019). It was reported that blue light enhances the

accumulation of anthocyanins and other functional compounds,

whereas red light promotes leaf expansion and stem elongation in

many species (Son and Oh, 2013; Carvalho and Folta, 2014; Gómez

and Izzo, 2018; Pennisi et al., 2019). In this context, it is worth

noting that the fraction of radiation emitted by LEDs in the blue

region (420-450 nm) is much higher than that of high-pressure

sodium lamps, traditionally used in greenhouses, which is

approximately only 5% of the full-visible spectrum (Islam et al.,

2012). Consequently, the selection of the optimal lighting turns to

be pivotal for a targeted plant response and a tailored production

(Gómez and Izzo, 2018; Pennisi et al., 2020).

This work aimed to assess the effect of blue and red LEDs on

two C. intybus cultivars of high commercial value, the Rossa di

Treviso Tardiva (from now called Tardiva) and the Rossa di Treviso

Precoce (from now called Precoce), in comparison with full-visible

spectrum light (white LEDs). Physiological parameters, such as the

PS II efficiency and chlorophyll content, were measured together

with leaf polyphenols content, to detect possible differences induced
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by the different irradiation and to determine the best cultivar and

light treatment association that provide the highest amount of

bioactive compounds.
2 Materials and methods

2.1 Plant cultivation and experimental
set-up

Seven seedlings for two cultivars of C. intybus, Tardiva and

Precoce (both provided by Franchi Sementi s.p.a.), were grown in

25 cc cells of polystyrene germination trays, containing a mixture of

sand:peat (4:1, v:v), in a growth chamber with a temperature of 25°C

and 60% of RH, for four weeks. Three groups of plants per cultivar

were grown under three different light conditions, provided by a

multi-channel LEDs lighting system (ENFIS Ltd, UK): i. White

LEDs (complete visible spectrum LEDs), ii. Blue LEDs

(monochromatic channel radiance, with the wavelength peak at

461 nm, set up to be 70% higher than the other light components)

and iii. Red LEDs (631 wavelength peak radiance set to 70% higher

than the other channels) (Supplementary Figure S1). In all the light

treatments, the total photosynthetic photon flux density (PPFD)

was 600 mmol m–2 s–1.
2.2 Photosystem II efficiency and
chlorophyll content

After four weeks of growth under different light conditions, the

photosystem II efficiency - jPSII - was measured on two leaves per

seedling (i.e., the two broadest leaves) with a handheld porometer-

fluorometer (Li-600, LICOR Biosciences, USA). Measurements

have been collected under white light at 600 mmol m–2 PPFD.

Chlorophyll leaf content has been assessed at three and four weeks

of growth using a handheld optical analyzer (Dualex, Force

One, France).
2.3 Leaf extracts

Two leaves per plant from four plants were collected, frozen in

liquid nitrogen and stored at −80°C until the moment of the

extractions for biochemical analyses. Leaves from the same plants

were pooled together to make individual replicates (n=4). Four

replicates per treatment were used. Leaf fresh material (100 mg) was

ground in a mortar with liquid nitrogen and then extracted with 3 ×

1 mL ethanol 75% solution (pH 2.5 adjusted with formic acid) using

an ultrasonic bath (BioClass® CP104, Pistoia, Italy) at a constant

frequency of 39 kHz and power of 100 W, during 30 min, at 5°C.

After that, extracts were centrifuged (5 min, 9000 rpm, ALC®

4239R, Milan, Italy), and the supernatants were partitioned with

3 × 2 mL of n-hexane to remove lipophilic compounds that could

interfere with the analysis. The hydroethanolic phase was reduced

to dryness using a rotavapor (BUCHI® P12, Cornaredo, Italy;
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coupled to a vacuum controller V-855), and the residue was

resuspended with 250 µL of MeOH: Milli-QH2O solution (1:1 v/

v, pH 2.5 adjusted with formic acid). After the extraction procedure,

the solution was characterized and quantified by HPLC-DAD/

Q-TOF.
2.4 HPLC-DAD/Q-TOF analyses

The characterization and subsequent quantification of

polyphenols was made by LC-QTOF (Agilent 6530C, Agilent

Technologies SpA, Milan, Italy) utilizing a quadrupole mass

spectrometer operating in the electrospray ionization (ESI) negative

mode coupled to a diode array detector (DAD). The applied ESI

parameters were as follows: capillary voltage, 4000 V; fragmentor

180 V; skimmer 60 V; OCT 1 RF Vpp 750 V; pressure of nebulizer

20 psi; drying gas temperature 325°C; sheath gas temperature 400°C.

Compounds separation was performed using an Agilent Poroshell

120 Aq-C18 column (2.7 mm) applying a 40-minute linear gradient

solvent passing from 97% of water acidified with 0,1% formic acid

(solvent A) to 97% of acetonitrile acidified with 0,1% formic acid

(solvent B). The flow rate was of 0.30 mL min-1 and the injection

volume was 1 mL. The quantification was performed in DAD at the

specific wavelengths of the different compounds using five-point

calibration curves of the following standards (all from Extrasynthese,

Lyon, France): caftaric acid, chlorogenic acid, chicoric acid, quercetin

7-O-glucoside, apigenin 7-O-glucoside, kaempferol 7-O-glucoside,

isorhamnetin 7-O-rhamnoside, luteolin 7-O-glucoside, ferulic acid,

epigallocatechin, cyanidin 3-O-glucoside chloride and cyanidin 3,5-

diglucoside chloride.
2.5 Statistical analysis

The data were analyzed for normality of distribution (Shapiro-

Wilk test) and homoscedasticity (Levine test) and when at least one of

these two assumptions was missing, the non-parametric Kruskal-

Wallis test for multiple comparisons, followed by the Mann-Whitney

U test for pairwise comparison, was performed. For normally

distributed data, a one-way ANOVA, followed by Tukey’s multiple

comparison test, was performed within the same sampling time (i.e.,

3 or 4 weeks). For the comparison between the same treatment

supplied to the two cultivars, an unpaired Student’s t-test was run.

Differences were considered statistically significant at p <0.05.
3 Results

3.1 Effect of the light treatments on the
photosystem II efficiency and
chlorophyll content

The values of the photosystem II efficiency (j PS II) measured

for plants grown under red LEDs were significantly lower than

those of blue and white LEDs treatments. This result was registered
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in both cultivars. Regarding the comparison of the two cultivars, no

significant differences were observed within each single treatment

(e.g. white/blue/red LEDs) (Figures 1A, B).

The chlorophyll content measured in Tardiva after three weeks

of irradiance with white, blue and red LEDs did not change

depending on the different light, as no significant differences were

detected among the treatments (Figure 2A). A significant increase

was registered for plants exposed to blue LEDs for four weeks, with

this value being significantly higher than those observed for white

and red LEDs treatments. The overtime comparison of each single

treatment revealed that a significantly lower chlorophyll content

was registered after four weeks of irradiance with red LEDs, whereas

no significant time-dependent differences were observed for white

and blue LEDs treatments (Figure 2A).

Considering the Precoce, significantly higher chlorophyll contents

were measured after three weeks of irradiance with both blue and red

LEDs with respect to white LEDs, the blue and red values being

comparable to one another (Figure 2B). After four weeks of irradiance,

plants exposed to white and red LEDs showed similar chlorophyll

contents, whereas a significantly higher value was observed for blue

LEDs treatment. Considering the single treatment, white and blue

LEDs induced a significant increase in chlorophyll content over time, as

values after four weeks were significantly higher than those registered

after three weeks, whereas no time-dependent changes were observed

for red treatment (Figure 2B).

Comparing the two cultivars, a significantly higher content of

chlorophyll was registered for Precoce exposed to blue and red

LEDs for four weeks, whereas the Tardiva showed a significantly

higher value after three weeks of white LEDs irradiance

(Supplementary Figure S2).
3.2 Effect of the LEDs treatments on the
polyphenolic content

The total content of polyphenols measured in Tardiva was

significantly increased by the exposure to blue and red LEDs for

three weeks, showing comparable values in the two treatments
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(Figure 3A). The highest content of polyphenols was measured in

plants exposed to blue LEDs after four weeks of irradiation. In

Tardiva, this value was significantly higher than in the red

treatment, which in turn, significantly differed from the control

(white LEDs). Blue LEDs also induced a significant increase in the

total polyphenols content over time: after four weeks this content

was significantly higher than that measured after three

weeks (Figure 3A).

Looking at the Precoce, significantly higher levels of

polyphenols were registered in response to blue LEDs irradiation

compared to red one, after three weeks of exposure (Figure 3B). Red

treatment also induced a significant accumulation of polyphenols

compared to the control (white LEDs). After four weeks of

treatment, the highest content of polyphenols was observed for

blue LEDs treatment, inducing a significant accumulation of these

compounds when compared to white and red LEDs. Regarding the

overtime effect, a significant accumulation of polyphenols was

registered in response to white and blue LEDs, whereas no

significant differences were found between three and four weeks

of red LEDs irradiance (Figure 3B).

The comparison of the two cultivars showed that Precoce has a

significantly higher polyphenol content than Tardiva, regardless of

the sampling time. This result was observed for all the treatments

except for the blue LEDs at four weeks (Supplementary Figure S3).
3.3 Effect of the light treatments on the
polyphenolic composition

The HPLC-DAD-MS analysis allowed the identification of the

polyphenols in the two cultivars (Table 1) and revealed differences

in the composition depending on the light treatment supplied and,

to a lesser extent, on the considered cultivar. In both cultivars, a

similar composition was observed in plants grown under white and

blue LEDs, and a time-dependent accumulation was observed for all

compounds. Under white and blue LEDs, 12 polyphenolic

compounds were detected in the Precoce (Supplementary Table

S1, Figure 4A). The same composition was observed in Tardiva,
FIGURE 1

Photosystem II efficiency (j PS2) of C. intybus Tardiva (A) and Precoce (B) cultivars after four weeks of irradiance with white, blue and red LEDs.
Values are expressed as mean ± SE of 6-7 replicates per thesis (Tardiva: white LEDs n=6, blue LEDs n=7, red LEDs n=6; Precoce: white LEDs n=7,
blue LEDs n=6, red LEDs n=7). Statistical differences among treatments are indicated by asterisks (** p<0.01; *** p<0.001).
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excepting for the absence of kuromanin and three cyanidin

derivatives, and the presence of isorhamnetin-7-O-glucuronide

(Supplementary Table S2, Figures 5A, 6A).

The red LEDs induced an accumulation of nine compounds in

both cultivars (Supplementary Tables S1, S2). The Precoce also

showed the presence of two additional compounds, i.e., kuromanin

and cyanin 3,5 diglucoside (Figure 4B).

Chicoric acid, followed by quercetin derivative and quercetin 7-

O-glucoside, were the main polyphenolic compounds detected in

both cultivars exposed to white and blue LEDs. Kaempferol 3-O-

glucuronide was the most represented compound found in plants

exposed to red LEDs, and in the case of Tardiva cultivar, also high
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levels of 5-O-feruloylquinic acid were observed after four weeks of

treatment (Figures 5B, 6B).
4 Discussion

In greenhouse horticulture, LEDs enable precise manipulation

of light spectral composition, which makes them effective tools for

optimizing both crop production and quality (Paradiso and Proietti,

2022). Light treatments using precisely tuned red and blue

wavelengths are known to enhance the secondary metabolite

content in plants, including polyphenols (Taulavuori et al., 2018;
FIGURE 2

Chlorophyll content (Chl) of C. intybus Tardiva (A) and Precoce (B) cultivars after three and four weeks of irradiance with white, blue and red LEDs.
Values are expressed as mean ± SE of 4-7 replicates per thesis (Tardiva 3 weeks: white LEDs n=4, blue LEDs n=7, red LEDs n=6, Tardiva 4 weeks:
white LEDs n=5, blue LEDs n=6, red LEDs n=7; Precoce 3 weeks: white LEDs n=6, blue LEDs n=7, red LEDs n=7, Precoce 4 weeks: white LEDs n=7,
blue LEDs n=6, red LEDs n=7). Capital letters and lowercase letters indicate significant differences among treatments after three and four weeks of
irradiance, respectively. Statistical differences within the same treatment at three and four weeks are indicated by asterisks (*** p<0.001).
FIGURE 3

Content of polyphenols (mg/g FW) C. intybus Tardiva (A) and Precoce (B) cultivars after three and four weeks of irradiance with white, blue and red
LEDs. Values are expressed as mean ± SE of 4 replicates per thesis. Capital letters and lowercase letters indicate significant differences among
treatments after three and four weeks of irradiance, respectively. Statistical differences within the same treatment at three and four weeks are
indicated by asterisks (**** p<0.0001).
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Alrifai et al., 2019; Loi et al., 2020). However, since specific

responses may vary among species and genotypes, determining

the optimal combination of cultivar and light treatment is crucial

for achieving the best composition and highest accumulation of

useful bioactive compounds (Gómez and Izzo, 2018; Taulavuori

et al., 2018). This study elucidated the impact of different LEDs on

the phenolic composition of two C. intybus cultivars, thus allowing

the selection of the most promising light treatment to improve the

content of antioxidant polyphenols.
Frontiers in Plant Science 06
4.1 Effect of the light treatments on the PS
II efficiency, the content of chlorophylls
and the content of total polyphenols

PS II efficiency was negatively affected by the red LEDs

treatment in both cultivars, whereas the performances of the PS II

did not vary in response to white and blue LEDs exposure. It is

worth noting that longer wavelengths, such as those in the red and

far-red region of the light spectrum, preferentially excite PS I and
TABLE 1 UV-vis, MS and MS2 data of the polyphenolic compounds detected in C. intybus Precoce and Tardiva cultivars in response to white, blue and
red LEDs-treatments.

ESI(-)-QToF/MS Assignment

Compound
no

LC
Rt
(min)

DAD
max
abs
(nm)

Precursor
ion (m/z)

Adducts and
fragment Ions

Exp.
Acc.
Mass [M
- H]-

Detected
mass

Diff
(ppm)

Tentative
Identification

Molecular
formula

1 5.39
330,
300 sh 311.04 135.04 311.0416 311.0416 1.08 Caftaric acid C13H12O9

2 7.94
325,
295 sh 353.08 191.05 353.0878 353.0909 7.82 Chlorogenic acid C16H18O9

3 11.81 325 473.07 179.03; 149.00 473.0725 473.0703 -5.46 Chicoric acid C22H18O12

4 12.78
355,
300sh 477.05 301; 151 477.0675 477.0677 -1.23

Quercetin
derivative C21H18O13

5 12.95 350 463.08 300.02 463.0882 463.0890 1.38
Quercetin-7-
O-glucoside C21H20O12

6 13.86
355,
300sh 549.08 300.03 549.0886 549.0893 1.39

Quercetin-7-O-(6’’-
O-
malonyl) glucoside C24H22O15

7 14.09
330,
295 sh 515.11 173.04;191.05 515.1195 515.1150 -6.33

3,5-Di
caffeoylquinic acid C25H24O12

8 14.61 340 491.08
300.02;
315.04;271.02 491.0831 491.0792 -8.45

Isorhamnetin-7-
O-glucuronide C22H20O13

9 6.78 335, 290 339.07 177.01 339.0722 339.0724 0.86 Cichoriin C15H16O9

10 7.97 330,290 367.10 235.11; 367.16 367.1035 – -
5-O-
Feruloylquinic acid C17H20O9

11 9.99 345, 270 609.14 447.09;285.03 609.1461 609.1417 2.39
Luteolin-7,3’-di-
O-glucoside C27H30O16

12 10.9 338, 270 623.12 285.04; 461.07 623.1254 623.1275 3.35

Luteolin 7-
glucoside
3’-glucuronide C27H28O17

13 13.08
350, 270
sh 255 sh 461.03 285.02 461.0725 461.0733 1.46

Kaempferol 3-
O-Glucuronide C21H18O12

14 14.45 350,285 695.28 303.14;161.04;101.02 695.2768 695.2808 5.08

Kaempferol-3-O-
glucosyl-7-O-(6”-
O-
malonyl)-glucoside C30H48O18

17 16.97 275 489.10 445.2 489.0886 489.0863 -4.59

Kaempferol-7-O-
(6’’-O-
acetyl)-glucoside C19H22O15

15 15.44
355,
270 sh 433.20 – 433.2079 433.2090 2.51

Epigallochatechin
derivative C20H34O10

16 17.56 265 481.11 213.09;257.08 481.0988 481.1163 –

Epigallocatechin 3’-
O-glucuronide C21H22O13
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when a PS is overexcited the efficiency of the other one is limited

(Zhen et al., 2019). An overexcitation of the PS I caused by the red

treatment could explain the lower efficiency values observed in both

C. intybus cultivars with respect to the other treatments.

Nevertheless, it has been observed in other species, such as potato

(Chen et al., 2021) and Artemisia argyi (Su et al., 2024) that plants

grown under monochromatic red light develop a reduced potential

photosynthetic capability in PS II and an increased light energy

dissipation via non-photochemical quenching, compared to plants

grown under white or blue light.

Concerning the chlorophyll content, the highest accumulation

was induced by blue LEDs in both cultivars. Particularly, in the
Frontiers in Plant Science 07
Precoce, chlorophyll accumulation was directly proportional to the

time, also highlighting a clear distinction between the effect of blue

LEDs and that of the other two irradiance systems at a more mature

stage of development of the leaf (i.e., 4 weeks).

The blue LEDs also determined the greatest accumulation of

polyphenols in both cultivars, at the early and mature state of leaf

development. Similar increases in total chlorophyll content and

polyphenols levels induced by blue LEDs light were previously

observed in other herbaceous species (Johkan et al., 2010;

Manivannan et al., 2015; Lobiuc et al., 2017; Park et al., 2019;

Azad et al., 2020). Particularly, under blue LEDs, the polyphenols

content in the Tardiva was more than doubled at four weeks,
B

A

FIGURE 4

Polyphenolic composition of C. intybus Precoce cultivar after three and four weeks of treatment with white, blue (A) and red (B) LEDs.
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pointing out the correlation between the accumulation of these

metabolites and leaf development. This is in agreement with

previous studies demonstrating that blue LEDs-irradiation

constitutes a powerful tool to produce high-quality red leaf

vegetables, leading to an improved content of bioprotective

pigments (Son and Oh, 2013; Carvalho and Folta, 2014).

Both blue and red lights are efficiently absorbed by plant

photosynthetic pigments, but the blue wavelength contains more

energy (Ouzounis et al., 2015; Gómez and Izzo, 2018; Sytar et al.,

2019). Among all monochromatic radiations, the red one is the

most efficiently converted into chemical energy, hence resulting in

very photosynthetically active radiation (Gómez and Izzo, 2018).

Tardiva in fact positively reacted also to the treatment with red
Frontiers in Plant Science 08
LED, exhibiting a significantly higher polyphenols content than

plants exposed to white LEDs. This increase was stable over time,

although considerably lower compared to that observed for blue

light. Research on LEDs manipulation already showed that the

responses to light quality are species-specific, requiring unique

protocols to obtain high-productive and high-nutritive vegetables,

since a great variability of responses can be observed depending on

the lighting conditions (i.e., light wavelength, intensity,

photoperiod) (Mitchell and Stutte, 2015; Gómez and Izzo, 2018;

Appolloni et al., 2022; Orlando et al., 2022; da Cristina Bungala

et al., 2024). In some cases, responses can be different in diverse

cultivars within the same species (Gómez and Izzo, 2018). In the

case of chicory, our results suggested that the main differences
B

A

FIGURE 5

Polyphenolic composition of C. intybus Tardiva cultivar after three and four weeks of treatment with white, blue (A) and red (B) LEDs.
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seemed not to be correlated to the cultivars, but rather to the type of

light provided during plants growth. Overall, the best performances

in terms of both chlorophyll and polyphenols accumulation were

obtained under blue LEDs. In terms of quantities, the Precoce

showed the greatest content of polyphenolic compounds, regardless

of the type of LEDs used for its cultivation. Most of the studies on

microgreens, including those conducted on chicory (Pennisi et al.,

2020), explore the effect of blue and red LEDs combined in different

ratios, but very different results have been reported, especially

regarding metabolite accumulation (Appolloni et al., 2022). In

some cases, the best performances were obtained with

monochromatic light only (Zhang et al., 2019), suggesting that

the lighting system must be carefully tuned according to the species

responses, in order to optimize the production.
4.2 Effect of blue, red and white LEDs on
the polyphenolic composition

The polyphenolic composition of the two C. intybus cultivars

was strongly influenced by the type of light used for their

cultivation. For plants grown under white and blue LEDs, only
Frontiers in Plant Science 09
quantitative differences were found in the leaf polyphenols, whereas

a completely different composition characterized the leaf extracts of

those plants grown under red LEDs. This pattern was consistent

across both cultivars (Supplementary Figure S4). When exposed to

white/blue LEDs, the leaves accumulated polyphenolic compounds

with high antioxidant potential, such as quercetin derivatives and

chicoric acid (Lesjak et al., 2018). This aligns with the increased

efficiency exhibited by the PS II in response to white/blue LEDs and

the higher content of chlorophyll as well, suggesting an intense

photosynthetic activity. In such conditions, the disposal of strong

antioxidant compounds ensures the prevention of ROS-related

damages, being ROS massively produced during photosynthesis

(Foyer, 2018; Singh et al., 2021).

The biosynthesis of quercetin is catalyzed by flavonol synthase

(FLS), an enzyme that is affected by light spectral composition

(Singh et al., 2021). For example, it was observed that the expression

of LsFTS gene coding for the FLS in lettuce, was considerably

enhanced by the combined irradiation with UV-B plus blue light

compared to UV-B radiation only. This corresponded to a

significant increase in the leaf quercetin (Ebisawa et al., 2008).

Flavonol accumulation induced by blue LEDs has also been

reported in other species (Li et al., 2018; Wang et al., 2022). A
FIGURE 6

Representative chromatograms obtained by HPLC-DAD-MS analysis for C. intybus Tardiva cultivar after the treatment with blue (A) and red (B) LEDs.
1: Caftaric acid; 2: Chlorogenic acid; 3: Chicoric acid; 4: Quercetin derivative; 5: Quercetin-7-O-glucoside; 6: Quercetin-7-O-(6’’-O-malonyl)
glucoside; 7: 3,5-Di-caffeoylquinic acid; 8: Isorhamnetin-7-O-glucuronide; 9: Cichoriin; 10: 5-O-Feruloylquinic acid; 11: Luteolin-7,3’-di-O-
glucoside; 12: Luteolin 7-glucoside 3’-glucuronide; 13: Kaempferol 3-O-glucuronide; 14: Kaempferol-3-O-glucosyl-7-O-(6”-O-malonyl)-glucoside;
15: Epigallocatechin derivative; 16: Epigallocatechin 3’-O-glucuronide.
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similar effect could be hypothesized for the two C. intybus cultivars

considered in this study, as the metabolic pathway for the

biosynthesis of flavonols is very ancient and highly conserved

(Pollastri and Tattini, 2011). Particularly, in our study, it is likely

that the enhancement of both FLS and F3’H (Flavonoid 3’-

hydroxylase) activity induced by blue LEDs led to the

accumulation of quercetin derivatives rather than kaempferol

derivatives (Shi et al., 2014). In particular, blue LEDs enhanced

the accumulation of three different quercetin derivatives (quercetin

derivative, quercetin 7-O-glucoside, quercetin-7-O-(6’’-O-malonyl)

glucoside), all present in the control (white LEDs), but in lower

amounts. By enhancing the activity of several enzymes involved in

the polyphenols biosynthesis, and in particular of the above-

mentioned FLS and F3’H, blue light induces the accumulation of

functional compounds with nutraceutical properties in many

horticultural crops (Heo et al., 2012; Alrifai et al., 2019; Orlando

et al., 2022).

In contrast, red LEDs drove the flavonoid biosynthetic pathway

towards the accumulation of kaempferols, with kaempferol 3-O-

glucuronide being predominant in both cultivars (Supplementary

Figure S4). Due to their structure (i.e. lower number of hydroxyl

groups and lack of catechol in the molecule), these compounds are

less antioxidant than quercetins (Rice-Evans et al., 1996; Agati and

Tattini, 2010; Dueñas et al., 2011). This structural difference

supports the hypothesis that red LEDs irradiance may induce

lower stress levels in plants, as also confirmed by a reduced

amount of caffeic acid derivatives in favor of ferulic acid

derivatives which have a more structural property for cell walls

rather than antioxidant activity (Harris and Trethewey, 2010).

Accordingly, only few anthocyanins, which are also known to

play a protective role as antioxidants and ROS scavengers (Quina

et al., 2009; Tena et al., 2020; Agati et al., 2021), were found in

Precoce seedlings treated with red LEDs compared to those exposed

to blue LEDs. This result is in accordance with the presence of

epicatechin derivatives detected only under red light, suggesting an

induction of ANR (anthocyanidin reductase) by red light (Zhang

et al., 2018). Monochromatic red light was found to prevent the

synthesis of anthocyanins in red curly lettuce (Heo et al., 2012),

whereas there is good evidence that blue LEDs typically induces an

accumulation of anthocyanins in many horticultural plants, even at

the postharvest phase (Johkan et al., 2010; Xu et al., 2014; Sytar

et al., 2019). For instance, Stutte et al., 2009 evaluated the effect of

different LEDs on red leaf lettuce, finding that after exposure to blue

LEDs, the content of bioprotective anthocyanins was more than

doubled compared to what observed under red LEDs.
5 Conclusions

Blue LEDs irradiance induced a time-dependent accumulation of

leaf polyphenols and chlorophylls in seedlings of C. intybus belonging

to Precoce and Tardiva cultivars, favoring the biosynthesis of highly

antioxidant compounds (e.g., quercetin derivatives and chicoric acid)

compared to red LEDs. The Precoce cultivar exhibited the highest

content of polyphenols, regardless of the type of LEDs used for

cultivation. These findings suggest that blue LEDs could be effectively
Frontiers in Plant Science 10
used as a tool for improving the nutraceutical content of C. intybus,

especially for the Precoce cultivar.
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