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Introduction: Tomatoes are one of the most economically significant crops

worldwide, with their yield and quality heavily impacted by foliar diseases.

Effective detection of these diseases is essential for enhancing agricultural

productivity and mitigating economic losses. Current tomato leaf disease

detection methods, however, encounter challenges in extracting multi-scale

features, identifying small targets, andmitigating complex background interference.

Methods: The multi-scale tomato leaf disease detection model Tomato Focus-

Diffusion Network (TomaFDNet) was proposed to solve the above problems. The

model utilizes amulti-scale focus-diffusion network (MSFDNet) alongside an efficient

parallel multi-scale convolutional module (EPMSC) to significantly enhance the

extraction of multi-scale features. This combination particularly strengthens the

model's capability to detect small targets amidst complex backgrounds.

Results and Discussion: Experimental results show that TomaFDNet reaches a

mean average precision (mAP) of 83.1% in detecting Early_blight, Late_blight, and

Leaf_Mold on tomato leaves, outperforming classical object detection

algorithms, including Faster R-CNN (mAP = 68.2%) and You Only Look Once

(YOLO) series (v5: mAP = 75.5%, v7: mAP = 78.3%, v8: mAP = 78.9%, v9: mAP =

79%, v10: mAP = 77.5%, v11: mAP = 79.2%). Compared to the baseline YOLOv8

model, TomaFDNet achieves a 4.2% improvement in mAP, which is statistically

significant (P < 0.01). These findings indicate that TomaFDNet offers a valid

solution to the precise detection of tomato leaf diseases.
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1 Introduction

To meet the growing challenges faced by agricultural

production due to global population growth and the

intensification of climate change, smart agricultural technologies

are increasingly recognized as essential tools to boost crop yields

and ensure food security (Sanida et al., 2023). Among the world’s

most widely cultivated cash crops, tomatoes play an important part

in the food industry and daily diets. However, tomatoes are highly

vulnerable to multiple diseases, which not only seriously reduce

crop yields but also pose a threat to the sustainable development of

global agriculture (Kaur et al., 2022). Early blight, late blight, and

leaf mold are among the most frequently occurring and damaging

diseases in tomato cultivation (Shanthi et al., 2024). If these diseases

are not detected and treated promptly, they can lead to severe yield

losses or even complete crop failure. Developing efficient and

accurate methods for tomato disease detection is, therefore,

critical for improving agricultural productivity and reducing

economic losses.

Research on tomato leaf disease detection primarily falls into

two categories: traditional manual feature extraction (Acharya et al.,

2023; Narla and Suresh, 2023) and advanced deep learning

approaches (Liang and Jiang, 2023; Lv and Su, 2024). Traditional

methods rely heavily on manual identification by experienced

farmers or agricultural experts, making the process time-

intensive, labor-intensive, and often limited in accuracy due to

subjective judgments and personal experience. Furthermore, the

early symptoms of tomato diseases tend to be subtle, increasing the

likelihood of missed detections or misdiagnoses in manual

evaluations. Manual feature extraction methods typically involve

image processing techniques to segment diseased areas, followed by

the extraction of features such as color, shape, and texture to

construct feature vectors for classification. For instance, Sabrol

and Satish (2016) implemented an automatic classification

approach utilizing color, shape, and texture attributes of tomato

leaves. They applied Otsu’s segmentation algorithm in image

preprocessing, followed by a classification tree algorithm,

achieving an accuracy of 97.3% based on 24 features. Similarly,

Jaisakthi et al. (2019) utilized the GrabCut segmentation algorithm

to isolate leaves from the background, then employed a Support

Vector Machine (SVM) for diagnosing diseases including grapevine

black spot and leaf blight, thereby enabling more efficient

disease identification.

In contrast, Convolutional Neural Network (CNN)-based deep

learning approaches have exhibited remarkable potential in

agricultural disease detection in recent years. These methods

eliminate the need for manual feature extraction, allowing models

to autonomously learn intricate image features, which greatly

improves the precision and reliability of diseases identification.

Recent advances in deep learning have shown significant progress in

handling complex visual scenarios. For instance, techniques like

Attentive GAN have demonstrated remarkable capabilities in

processing challenging image conditions such as highlight

removal from grayscale images (Xu et al., 2022), showcasing the
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potential of deep learning in addressing complex visual tasks. The

target detection models utilizing deep learning can be generally

categorized into one-stage and two-stage models. Classical one-

stage models include SSD (Liu et al., 2016), RetinaNet (Lin et al.,

2018) and YOLO series (Bochkovskiy et al., 2020; Qiao et al., 2020;

Redmon and Farhadi, 2018, 2016; Wang et al., 2024a, b, 2022).

While two-stage models comprise R-CNN (Girshick et al., 2014),

Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2016) and

Mask R-CNN (He et al., 2018). One-stage models integrate all

detection steps within a single pipeline, directly predicting detection

boxes and category labels from images, making them faster and

ideal for instant processing. Two-stage models, however, split the

process into two distinct stages: firstly, locating candidate zones and

then classifying and refining these regions. While two-stage models

generally achieve higher accuracy, they are computationally

intensive and slower in processing.

For two-stage modeling, Zu et al. (2021) tackled the detection

and segmentation of ripe tomatoes in complex environments using

Mask R-CNN. They designed a mobile robot for automated image

acquisition, integrating it with Mask R-CNN for target region

detection and segmentation. Results demonstrated a high F1 score

of 92.0% for both bounding boxes and mask regions, successfully

detecting and segmenting tomatoes in greenhouse settings. Xie et al.

(2020) developed the Faster DR-IACNN model, combining the

Inception-v1 module, Inception-ResNet-v2 module, and Squeeze-

and-Excitation Networks, enhancing multi-scale feature

identification for grape leaf ailments. In another study, Syed-Ab-

Rahman et al. (2022) proposed a two-phase convolutional neural

network framework for identifying and classifying citrus diseases,

employing a region proposal network (RPN) to detect affected areas

and a subsequent classifier for disease classification. Gong and

Zhang (2023) focused on detecting apple leaf diseases by

introducing an enhanced version of Faster R-CNN, which

incorporates Res2Net and a Feature Pyramid Network (FPN) to

enhance multi-scale feature extraction capabilities, thereby allowing

for precise identification of apple leaf diseases even in complex

field environments.

On the other hand, You Only Look Once (YOLO), a renowned

one-stage object detection algorithm, has gained popularity in

agricultural applications due to its outstanding results on vast

datasets like COCO. The YOLO algorithm is particularly favored

for leaf disease detection tasks because of its speed and efficiency.

Wang et al. (2024c) based on optimizing the TDGA model

proposed by YOLOv5, by introducing global attention

mechanism (GAM), switchable atrous convolution (SAConv) and

EIoU, effectively solved the problem of shadow occlusion and small

target detection of tomato leaf disease, enhancing detection

accuracy by 2.93% relative to the original model. Liu et al. (2023)

further refined the YOLOv5 algorithm, developing a method for

detecting tomato brown rot that combines a hybrid attention

mechanism with a CIOU loss function. This approach achieved a

detection accuracy of 94.6% even in complex backgrounds,

significantly enhancing the model ’s disease recognition

capabilities. Abdullah et al. (2024) utilized YOLOv8 for tomato
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leaf disease detection, applying data augmentation techniques on

the PlantVillage dataset, which resulted in a mean Average

Precision (mAP) value of 92.5%. This performance surpassed that

of other models, including YOLOv5 and Faster R-CNN. Liu et al.

(2022) introduced the YOLOv4-TAM algorithm, which integrates a

triple attention mechanism with YOLOv4. This model optimized

anchor frames using K-means clustering and introduced a focal loss

function, leading to a significant increase in the recognition rate of

tomato pests, achieving an accuracy of 95.2%. Wang and Liu (2024)

proposed the TomatoDet model, which combines Transformer

architecture with YOLOv8. This innovative approach leverages

Swin-DDETR’s self-attention capability combined with the Meta-

ACON dynamic activation to address the challenges of detecting

small-target diseases, achieving a mAP value of 92.3%.

In summary, the aforementioned researchers have made

significant strides in enhancing the precision and efficiency of

tomato leaf disease detection. These advancements not only

optimize model performance but also facilitate the development of

intelligent agricultural disease detection technologies. However,

despite notable progress, challenges remain in identifying targets

across different scales. For instance, Sun et al. (2024) optimized the

YOLOv8 algorithm for lightweight applications, achieving

improvements in detection speed and overall performance.

Nonetheless, the model’s capacity to detect targets at various scales,

particularly small lesions in complex backgrounds, is still constrained,

especially when addressing tomato lesions of varying sizes. Similarly,

Liu et al. (2023) encountered limitations in fully resolving the

detection issues associated with different scale targets while

enhancing YOLOv5. The challenges were particularly evident in

scenarios involving overlapping leaves and intricate lighting

conditions, which hindered detection effectiveness. To address these

shortcomings, this paper concentrates on optimizing the model’s

multi-scale feature recognition capabilities. Building on the YOLOv8

algorithm, we introduce the Multi-Scale Focus-Diffusion Network

(MSFDNet) and the Efficient Parallel Multi-Scale Convolution

(EPMSC) module. This results in the proposed Tomato Focus-

Diffusion Network (TomaFDNet) model specifically designed for

tomato disease detection. The primary objective is to enhance

detection accuracy, particularly for small target spots in complex

backgrounds. The primary achievements of this paper are

outlined below:
Fron
1. A novel TomaFDNet tomato disease detection model is

proposed, and the accuracy of the model in detecting

tomato diseases is enhanced through the integration of

MSFDNet network and EPMSC module.

2. The MSFDNet network is specifically designed to effectively

integrate multi-scale features and improve contextual

semantic information through focusing and feature

diffusion mechanisms. This network achieves accurate

target detection, particularly excelling in recognizing

multi-scale features. The network structure comprises

feature focusing, diffusion, and fusion steps, which are

combined with the Multi Scale Enhancer (MSE) module
tiers in Plant Science 03
and the Cross-stage Partial Network with 2 convolutions

(C2f) module to optimize feature extraction and

refinement, ensuring accurate detection of targets across

various scales.

3. The EPMSC module is proposed based on the concept of

grouped convolution. By merging the design of grouped

convolution with multi-scale convolution kernels, the

model captures visual features at different scales more

efficiently while maintaining computational efficiency,

significantly enhancing its feature extraction performance.
The structure of the rest of this paper is as follows: In Section 2,

we provide an overview of the dataset used and the methodology

adopted for this research. Section 3 details the experiments

performed and presents the results derived from the proposed

methodology. Section 4 summarizes the study and explores

potential directions for future investigation.
2 Materials and methods

2.1 Tomato disease dataset

This study used the dataset called “Tomato Leaf Disease

Detection with Global Attention” (TDGA), which comes from

Wang et al. (2024c). It includes tomato diseases and is publicly

accessible at https://github.com/zafucslab/TDGA. This dataset

encompasses three prevalent tomato leaf diseases: Early_Blight,

Late_Blight, and Leaf_Mold, in addition to images of healthy

tomato leaves. Typical examples of these various types of diseased

leaves are depicted in Figure 1. To meet the requirements of this

study, the dataset was organized and reclassified accordingly. After

thorough processing, the final dataset consisted of a total of 3,045

images. The images were allocated into training, validation, and test

sets in an 8:1:1 proportion, with the exact count of images in each

subset outlined in Table 1. This structured approach ensures that

the model is trained and evaluated on a diverse and representative

dataset, facilitating effective learning and robust performance in

tomato disease detection.

In order to further assess the model’s ability to generalize and its

stability, this study also acquired tomato leaf images from the

Kaggle (Tomato Disease Mult iple Sources) platform,

encompassing diverse growing environments and shooting

conditions. These images feature a variety of complex

backgrounds and lighting conditions; however, they are not

included in our primary dataset and are solely utilized for

detection tests in varied scenarios to simulate real-world

complexities. Additionally, we constructed datasets for multiple

detection scenarios using the initial data. This includes images

depicting single leaves, multiple leaves, and multi-leaf tomato leaf

diseases, some of which feature shadows. The purpose of the

method is to test the validity of the model in practical

applications. Typical samples of these tomato leaf image,

showcasing varying numbers of leaves and shadow effects, are
frontiersin.org
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illustrated in Figure 2. By incorporating these diverse scenarios, we

aim to ensure the model’s steady and trustworthy operation in

multiple real-life settings.
2.2 TomaFDNet network structure

YOLOv8 is a target detection algorithm that leverages the

advantages of its predecessors, YOLOv5 and YOLOv7. The

framework comprises three primary elements: the backbone

network, the neck architecture, and the detection head. The

backbone network employs a lightweight design that integrates
Frontiers in Plant Science 04
optimized ResBlocks with efficient convolutional operations,

thereby reducing computational demands while enhancing feature

extraction capabilities. YOLOv8’s neck structure enhances the

model’s capacity to detect different-sized targets through efficient

integration of multi-scale feature maps, while maintaining the

spatial information’s completeness. Meanwhile, the detection head

utilizes an anchor-free design that directly regresses the centroid

and dimensions of the target. This simplification in model training

reduces reliance on anchor parameters, contributing to YOLOv8’s

widespread application. Despite these advantages, YOLOv8’s

detection accuracy remains insufficient when faced with

challenges posed by diverse scales, high similarity among targets,

and complex backgrounds typical of tomato diseases. In order to

overcome these limitations, we propose a novel tomato disease

detection model, called TomaFDNet, which builds upon the

YOLOv8 framework. The structure of TomaFDNet is illustrated

in Figure 3. This model aims to enhance detection capabilities,

particularly in recognizing tomato diseases across varying scales

and under complex conditions.

TomaFDNet replaces the neck structure of YOLOv8 with the

Multi-Scale Focused Diffusion Network (MSFDNet). This

innovative approach, through a customized focusing module and

diffusion mechanism, not only facilitates the extraction of richer
FIGURE 2

Examples of single-leaf, multiple-leaf, and shaded leaves.
TABLE 1 Image distribution of the dataset.

Disease type Train Validation Test

Early_blight 770 99 101

Late_blight 404 44 53

Leaf_Mold 485 68 69

Healthy 777 93 82

Total 2436 304 305
FIGURE 1

Examples of tomato disease dataset.
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feature information across multiple scales but also improves the

network’s capacity to detect objects of different sizes, ultimately

improving overall detection accuracy. Additionally, the C2f-

EPMSC module is introduced to replace the original C2f module

in YOLOv8. This modification optimizes the network’s feature

extraction capabilities, enabling more efficient capture of multi-

scale features. By employing grouped convolution strategies, we

decrease the parameter count and computational burden, thereby

enhancing both the computational efficiency and overall model

efficacy. This design choice allows TomaFDNet to excel in the
Frontiers in Plant Science 05
complex task of detecting tomato diseases across diverse conditions

and target sizes.
2.3 Multi-scale focus-diffusion network

In YOLOv8, the neck structure is built upon the integration of

the Feature Pyramid Network (FPN) and the Path Aggregation

Network (PAN), as illustrated in Figure 4. The primary function of

the FPN is to facilitate the propagation of information among
FIGURE 4

PAN-FPN structure in the YOLOv8 network.
FIGURE 3

TomaFDNet network structure.
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feature maps across different scales via top-down paths, enabling

the integration of features frommultiple scales. Specifically, the FPN

transmits high-level semantic information down to lower-level

feature maps via a layer-by-layer up-sampling process,

subsequently merging these with corresponding low-level features.

This approach effectively boosts the model’s target detection

capability across different scales, particularly excelling in the

identification of small targets.

However, this top-down feature propagation can sometimes

result in the gradual dilution of high-level semantic features during

the fusion process, potentially impacting detection accuracy in

certain scenarios. To address this issue, YOLOv8 incorporates the

PAN structure in addition to the FPN. The PAN progressively

transmits local details from the low-level feature maps upwards

through a bottom-up path propagation strategy, ultimately fusing

these with the high-level feature maps. This bottom-up feature

propagation compensates for the limitations of the FPN in small

target detection, enabling the model to gather intricate details from

low-level features more effectively, thereby improving the detection

accuracy for small targets. This strategic enhancement in feature

fusion is a critical aspect of the TomaFDNet model, which builds

upon these principles to further improve multi-scale feature

recognition and target detection accuracy in tomato leaf

disease identification.

Although the integration of FPN and PAN demonstrates strong

performance in various tasks, challenges remain, particularly in the

context of small-target and contextually complex tasks like tomato

leaf disease detection.

First, while the FPN effectively fuses high-level contextual

information with low-level fine details during the up-sampling
Frontiers in Plant Science 06
process, this fusion can lead to the cascading dilution of high-

level semantic features. During up-sampling and lateral

connections, the resolution of the feature map may increase;

however, the intensity of high-level semantic features can be

overshadowed by noise present in the low-level feature maps.

This phenomenon hinders the model’s capacity to precisely

identify small objects in cluttered scenes.

Second, although the PAN introduces a bottom-up path

propagation strategy to enhance detail capture, it remains

deficient in capturing global contextual information within the

feature maps. The design of both FPN and PAN primarily focuses

on the fusion of features across different scales, yet it does not fully

leverage multisensory field information. This limitation becomes

particularly evident when processing images with intricate textures

and backgrounds.

Finally, in the context of tomato leaf disease detection, lesions

are often characterized by subtle color and texture variations. The

existing FPN and PAN structures struggle to integrate these fine-

grained features effectively. While the PAN can convey fine details

extracted from lower-level features, these details are frequently lost

when combined with higher-level features because of the lack of

multi-receptive field processing capabilities. This deficiency

ultimately impacts the accurate identification of disease spots,

highlighting the need for a more robust approach to feature

integration and recognition in complex scenarios.

Based on the analysis of the limitations inherent in the YOLOv8

neck structure for tomato leaf disease detection, we propose a novel

neck structure named Multi-Scale Focus-Diffusion Network

(MSFDNet) to supplant the original FPN-PAN configuration. The

primary concept of MSFDNet revolves around the focused
FIGURE 5

Structure of the MSFDNet.
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processing of feature maps at multiple scales, complemented by a

diffusion mechanism that propagates the information derived from

these focused feature maps across different scales.

The overall architecture of MSFDNet is composed of multiple

stages, each encompassing three key steps: feature focusing, feature

diffusion, and feature fusion. This design allows the network to

seamlessly combine data from various scales, thereby enhancing the

contextual semantic information of the features. As a result,

MSFDNet is capable of achieving more precise target detection in

complex scenes, particularly when addressing targets characterized

by multi-scale features. The structure of MSFDNet is illustrated in

Figure 5, showcasing its innovative approach to feature processing

and integration, which aims to improve the model’s effectiveness at

tomato leaf disease detection by addressing the challenges

associated with diverse scales and complex backgrounds.

The MSFDNet framework incorporates a structure akin to a

feature pyramid, augmented with the Multi-Scale Enhancer (MSE)

module, whose details are discussed further in Section 2.4. The core

workflow of MSFDNet can be outlined in several key stages:
Fron
1. Focused Multi-Scale Feature Extraction: The network

initially processes the multi-scale feature maps (P3, P4,

P5) produced by the main network through the MSE

module. This module produces a more concentrated

multi-scale feature representation, serving as the

foundation for feature focusing and diffusion. The MSE

module effectively captures essential information from

input features across varying scales while preserving rich

contextual semantics.

2. Feature Fusion Across Scales: MSFDNet then combines

multi-scale feature maps via numerous upsampling and

downsampling operations. These feature maps are

concatenated via Concat operations, thereby integrating

information across various spatial resolutions and yielding

richer feature representations.

3. Enhanced Feature Refinement with C2f and C2f-EPMSC

Modules: After feature fusion, MSFDNet utilizes

YOLOv8’s original C2f module alongside the newly

designed C2f-EPMSC module for further feature

enhancement. This refinement involves blending features

across spatial and channel dimensions, which increases

feature diversity and improves target recognition.

4. Iterative Focusing and Diffusion: The network iteratively

updates and enhances the feature map through repeated

focusing and diffusion processes. This ensures that at the

end of each stage, feature maps across different scales are

enriched with more robust contextual information.

5. Detection via Multi-Scale Input: After multiple focusing

and diffusion iterations, the final multi-scale feature maps

are processed by the Detect module, which takes inputs

from the P3, P4, and P5 scales. This multi-scale input

enables the model to effectively detect target objects across

various scales, ensuring that detection performance is

r o bu s t e v e n i n s c e n a r i o s w i t h c omp l e x o r

overlapping objects.
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Overall, MSFDNet strengthens multi-scale feature integration

and contextual understanding, addressing challenges in identifying

disease spots of varying scales in intricate backgrounds.
2.4 Multi scale enhancer

The Multi-Scale Enhancer (MSE) module is a key feature fusion

component within the MSFDNet network, designed to enhance

multi-scale feature fusion and processing. This module consists of

five main parts: upsampling, a downsampling layer, a depthwise

convolutional layer (DWConv) with multiple kernels, a pointwise

convolution (PWConv) layer, and a residual connection. The inputs

to the MSE module are three feature maps of different resolutions:

X1, X2 and X3. Features X1 and X2 are adjusted via upsampling and

downsampling, respectively, using conventional convolution to

maintain consistent channel numbers. For downsampling X3, we

introduced the Adown (Wang et al., 2024b) module, which

leverages max pooling and average pooling operations to capture

diverse contextual information, thereby generating enhanced

features through downsampling.

As illustrated in Figure 6, the ADown module begins by

applying average pooling to the feature map X. This pooling

operation reduces noise by averaging adjacent regions, capturing

an overall representation of the input features. After average

pooling, the feature map X is divided along the channel

dimension into X1 and X2, allowing the module to apply different

processing strategies to each part and thus retain more spatial

information. The difference between X1 and X2 lies in an additional

max pooling applied to X2, which helps retain critical information

within the feature map. Following these operations, both feature

maps undergo convolution processing and subsequently fused

together along the channel dimension, resulting in a new feature

map. Through these steps, the ADown module not only reduces

spatial dimensionality but also minimizes information loss during
FIGURE 6

Structure of the ADown model.
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downsampling, providing a richer feature representation for

subsequent processing.

Next, Depthwise Separable Convolutions (Chollet, 2017) are

applied to the scaled-adjusted feature maps, which are processed by

deep convolutions of varying kernel sizes (5×5, 7×7, 9×9, 11×11) in

parallel. Each convolution kernel is designed to capture essential

information within distinct receptive fields, providing a more

nuanced feature representation. Following these operations, the

outputs from each kernel are fused using a pointwise convolution

layer, resulting in a more comprehensive feature map. The

illustration of Depthwise Separable Convolutions’ structure is

provided in Figure 7.
Frontiers in Plant Science 08
Finally, to preserve the integrity of the original feature map and

enhance the representation of new features, the module combines

the original and enhanced features via a residual connection,

outputting the final multi-scale enhanced feature map. By

integrating the Depthwise Separable Convolutions mechanism,

the MSE module significantly improves MSFDNet’s performance

in complex scenes and for subtle object detection. Its efficient

strategy for feature enhancement and fusion allows MSFDNet to

effectively integrate information across feature maps of varying

scales, thereby greatly enhancing the precision and reliability in

detecting targets. This design effectively addresses the limitations of

traditional FPN and PAN structures in complex scenarios. Figure 8
FIGURE 7

Structure of depthwise separable convolutions. top: DWConv; bottom: PWConv.
FIGURE 8

Network Structure of MSE.
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illustrates the structure of the MSE module. MSE is detailed in

Equation 1:

Y = Xconv1 + PWConv o
k∈kernels

DWCk(Concat(Xconv1,Xconv2,XADown))

 !

(1)

In the formula, Xconv1 is the feature graph of input feature X1

after up-sampling and convolution processing, Xconv2 is the feature

graph of input feature X2 after convolution processing, and XADown

is the feature graph of input feature X3 after ADown downsampling

processing. Concat Indicates the concatenation operation of feature

maps. DWCk represents deep convolution operations with different

kernel sizes. PWConv is the pointwise convolution operation, and Y

is the enhanced feature after fusion.
2.5 Efficient parallel multi-scale
convolution

2.5.1 GhostConv grouping idea
Traditional convolutional feature extraction in object detection

models often results in redundant information, increasing the

computational complexity. To address this, the lightweight

network GhostNet, proposed by Han et al. (2020), leverages

grouped convolution to eliminate unnecessary feature

information, reducing model parameters and enhancing detection

speed. The core innovation of GhostNet, known as “GhostConv”,

generates more feature maps with fewer computations, effectively

capturing essential features while maintaining a compact model
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size. GhostConv accomplishes this by splitting the input channels

into smaller groups and applying simple linear operations to

produce “ghost” features, subsequently combined with the initial

feature map. The GhostConv principle is illustrated in Figure 9.

In Ghost convolution, the input feature map first generates a

small set of base feature maps (Subgroup 1) using a standard

convolution operation. These foundational feature maps are then

subjected to a series of simple linear transformations to create

additional ghost features (Subgroup 2). The ghost features are

subsequently merged into the base feature map to yield the final

output feature map, as illustrated in Figure 9.

The parameter count for GhostConv is defined as follows: let

the number of input channels be C, and the convolution kernel sizes

for the grouped convolutions be K1 and K2, respectively, with the

number of groups denoted by g. The total parameters Pg of

GhostConv can be expressed as by Equation 2:

Pg =
K2
1�C
2 + K2

2�C
2 + C2

g (2)

Where the first and second terms: K2
1�C
2 + K2

2�C
2 represent the

number of parameters in the grouping convolution, and the third

term: C2

g represents the parameters that generate the ghost feature

(subgroup2) by linear operation from the base feature graph

(subgroup1). In contrast to the standard convolution, the number

of output channels is C0 and the convolution kernel size is K. The

number of standard convolution parameters Pc is given by Equation

3:

Pc = K2 � C � C0 (3)
FIGURE 9

Ghost convolution.
FIGURE 10

Network structure of GLDS.
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In the formula, all channels are engaged in convolution

operations, resulting in high computational effort. To compare

the efficiency of Ghost convolution with that of standard

convolution, the ratio of their parameter count reduction can be

determined by Equation 4:

Pg
Pc
= K2

1 +K
2
2

2K2�g +
1
g (4)

This formula demonstrates that Ghost convolution significantly

reduces the parameter count, particularly when the count of groups

g is large, making the reduction effect even more pronounced.
2.5.2 C2f-EPMSC module
Inspired by the concept of grouped convolution, we designed a

module named C2F-Efficient Parallel Multi-Scale Convolution

(C2f-EPMSC) to serve as a replacement for the original C2f

module of the YOLOv8 algorithm. C2f-EPMSC is a novel

lightweight multi-scale convolution module that integrates

grouped convolution with multi-scale convolution kernels. This

design enables more efficient capture of multi-scale features while

maintaining computational efficiency and improving the model’s

ability to extract features.

The EPMSC module employs a Grouped Lightweight

Downsampling (GLDS) structure, as illustrated in Figure 10. This

module implements a lightweight adaptive weight downsampling

procedure. Initially, the input feature map goes through an average

pooling layer followed by a 1×1 convolution layer to generate a

spatial attention map. This attention map then performs a

rearrangement operation to map the 2×2 regions to a new

dimension, normalizing it along the last dimension using the

Softmax function to derive the weights for each subregion.

Subsequently, the input feature map is downsampled using a

grouped convolution layer, resulting in an output channel count

that is four times the original. The subsampled feature map is
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rearranged to group every four channels into a new dimension.

Ultimately, the rearranged feature map is assigned weights and

multiplied by the previously generated weight map, and the weight

dimension is summed to produce the final downsampling result.

In the EPMSC module, input features are grouped, and each

group is convolved independently using convolution kernels of

varying sizes (1×1, 3×3, 5×5, and 7×7). This grouping strategy

significantly reduces both the parameter count and computational

demands, while preserving the diversity and expressiveness of the

features. This structure enables different convolution kernels to

operate on distinct sets of channels, allowing each kernel to

concentrate on extracting features at a specific scale without

interfering with the operations of others. Figure 11 provides an

illustration of the structure of the EPMSC module.

The EPMSC module works as follows:
1. Feature Splitting: Initially, the input feature map is

segmented into four distinct channel groups through a

“Split” operation, with each group representing 25% of the

total input channels. This grouping prepares the data for

subsequent multi-scale convolution, enabling each set to be

processed independently.

2. Multi-Scale Convolution: Each group is then convolved

with a different kernel size (1×1, 3×3, 5×5, and 7×7).

Smaller kernels, such as 1×1, focus on fine-grained local

details, whereas larger kernels, like 7×7, capture wider

contextual information. This multi-scale approach allows

the module to adapt effectively to different spatial patterns

within the feature map, enhancing both the perceptual

range and generalization ability of the network.

3. Feature Concatenation: After convolution, the processed

feature maps from each kernel size are combined through a

“Concat” operation along the channel dimension, restoring

the feature map to its original channel count. This step
FIGURE 11

Network structure of EPMSC.
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Fron
ensures that the information gathered from each scale is

preserved and accessible for subsequent processing.

4. Final Integration with 1x1 Convolution: The concatenated

feature map is subsequently processed with a 1×1 convolution.

This operation reduces redundant information while

enhancing the interaction between features at different

scales, creating a more cohesive multi-scale representation.

5. Output Generation: The final feature map, enriched with

information from multiple receptive fields, is now ready for

subsequent layers. By leveraging both grouping andmulti-scale

convolution, the EPMSC module effectively captures diverse

spatial features and improves detection accuracy, particularly

in tasks involving small objects and complex backgrounds.
2.6 Method evaluation

We selected average precision (AP) and its mean, mean average

precision (mAP), as the evaluation metrics to assess the

performance of the TomaFDNet model. These metrics are

commonly utilized in object detection tasks. The formulas for

each evaluation indicator are detailed in Equations 5–8

Precision = TP
TP+FP (5)

Recall = TP
TP+FN (6)

AP =
Z 1

0
P(R)dR (7)

mAP = oc
i=1

APi
C

(8)

Where, TP (True Positive) represents the count of samples that

are accurately identified as having tomato disease, whereas FP (False

Positive) indicates the number of samples that are erroneously
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labeled as diseased when they are actually healthy. FN (False

Negative) represents the samples misclassified as background

when they exhibit tomato disease. Precision-recall (P-R) curve’s

area is quantified by AP which reflects the relationship between

precision (P) and recall (R). On the other hand, mAP is determined

by averaging the AP values for all disease categories, not the optimal

value for a single type of disease. mAP is an overall measure of

model performance.
3 Results and discussion

In this section, we assessed the performance of the TomaFDNet

model by analyzing its effectiveness in detecting tomato diseases. To

evaluate the performance of the TomaFDNet model, we used a

publicly available tomato leaf disease dataset. The dataset contains

three common tomato Leaf diseases: Early Blight, late Blight, Leaf

Mold, and images of healthy tomato leaves. The total number of

images in the dataset is 3045, and the dataset is divided into training

set, verification set and test set, with a ratio of 8:1:1. During model

training and prediction, we maintained consistent hyperparameter

settings across all experiments, which included a batch size of 16, 28

workers, and 200 epochs. To guarantee the reliability and

comparability of the experimental outcomes, all experiments were

conducted in a uniform hardware and software environment.

Detailed configurations of the experimental platform and training

parameters are presented in Tables 2 and 3.
3.1 Ablation experiment

This section primarily evaluates the effectiveness of the

proposed MSFDNet structure and EPMSC module for tomato

disease detection. We conducted ablation experiments based on

the YOLOv8 algorithm, incorporating two improvements: the

MSFDNet structure and the EPMSC module, into the original
TABLE 2 Experimental environment setup details.

Device name Model or Name
Parameter
or version

GPU
NVIDIA GeForce RTX

4060 Laptop
Video Memor:8GB

CPU
13th Gen Intel(R) Core

(TM) i9-13900HX
frequency:2.20 GHz

Computer
operating system

Windows 11
Internal

memory:32GB

Development
environment software

PyCharm 2023.2.1

Programming language Python 3.8

Deep
learning framework

PyTorch 2.1.0

Computational
acceleration

CUDA 12.1
TABLE 3 Hyperparameter settings for experiments.

Hyperparameters Configurations

Image Dimensions 640

Batch size 16

Workers 28

Epoch 200

Learning rate 0.01

Momentum 0.937

Weight_decay 0.0005

Close_mosaic 0

Device 0

Optimizer SGD

Cache False
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YOLOv8 framework. The experimental results are summarized in

Table 4. Here, “YOLOv8” refers to the original YOLOv8 algorithm,

“YOLO+MSFDNet” indicates that the neck structure of YOLOv8

has been replaced with the MSFDNet structure, and “YOLO

+EPMSC” signifies the incorporation of the EPMSC module in

place of the C2f module. Finally, “TomaFDNet” represents the

combination of both the MSFDNet structure and the EPMSC

module integrated into the YOLOv8 framework.

The findings displayed in Table 4 demonstrate that the

introduction of the MSFDNet and EPMSC modules significantly

enhances the mAP compared to the original YOLOv8 model, with

increases of 1.8% and 1%, respectively. When both modules are

incorporated simultaneously, the mAP reaches 83.1%, representing

an overall improvement of 4.2%. These findings indicate that the

proposed model effectively enhances the accuracy of tomato leaf

disease detection.

To demonstrate the superiority of the MSFDNet structure in

tomato disease detection, we conducted comparative experiments

with several mainstream neck structures, including the original

YOLOv8’s FPN-PAN, BiFPN (Tan et al., 2020), MAFPN (Yang

et al., 2024), HSFPN (Chen et al., 2024) and EfficientRepBiPAN (Li

et al., 2022). The results are displayed in Table 5. In this table,

“YOLOv8” refers to the original network without any modifications,

which utilizes the FPN-PAN structure as its neck. “YOLOv8+BiFPN”

indicates that the neck structure of YOLOv8 has been replaced by

BiFPN, with the remaining structures named similarly.

Based on our examination of the experimental outcomes, we

reach the following conclusions:
Fron
1. Replacing the neck structure of the YOLOv8 algorithm with

BiFPN resulted in a 0.8% increase in mAP. The
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enhancement is due to BiFPN’s capacity for adaptive

weighted fusion of feature layers, enabling two-way

information flow by facilitating the passage of information

from lower-level to higher-level features, while also allowing

feedback from higher-level features to lower-level ones.

However, the additional weighting and fusion operations

required by BiFPN increase computational costs,

consequently reducing the model’s inference speed.

2. The MAFPN structure improved mAP by 0.7%, enhancing

the extraction capability for small targets and multi-scale

features through shallow and deep information interactions

in multi-branch assisted fusion (MAFPN). While this

enhancement contributes to greater accuracy, it may also

render the model overly sensitive to specific details, leading

to potential overfitting on small targets in noisy data or

under complex lighting and background conditions,

thereby affecting the model’s generalization ability.

3. The HSFPN structure yielded a 1% increase in mAP. By

introducing a hierarchical adaptive fusion strategy, HSFPN

can flexibly adjust the feature fusion weights based on the

resolution and semantic information of different feature

layers. Although the adaptive weighting mechanism of

HSFPN can effectively utilize feature maps of varying

scales in ideal conditions, the model may struggle to

adjust weights correctly in complex background scenarios

due to noise interference.

4. The application of the EfficientRepBiPAN improved

structure resulted in a 0.7% decrease in mAP. While the

efficiency of feature fusion is enhanced, this lightweight

design may compromise the model’s ability to extract

small-scale targets and detailed features. Given that
TABLE 4 Results of ablation experiment.

Methods mAP
AP

Early_blight healthy Late_blight Leaf_Mold

YOLOv8 0.789 0.686 0.994 0.826 0.649

YOLOv8 + MSFDNet 0.807 0.685 0.992 0.871 0.679

YOLOv8 + EPMSC 0.799 0.689 0.992 0.872 0.642

TomaFDNet 0.831 0.708 0.993 0.870 0.753
TABLE 5 Comparison of replacement mainstream neck structures.

Methods mAP
AP

Early_blight healthy Late_blight Leaf_Mold

YOLOv8(FPN-PAN) 0.789 0.686 0.994 0.826 0.631

YOLOv8 + BiFPN 0.797 0.68 0.992 0.847 0.671

YOLOv8 + MAFPN 0.796 0.701 0.993 0.837 0.654

YOLOv8 + HSFPN 0.799 0.684 0.99 0.85 0.673

YOLOv8 + EfficientRepBiPAN 0.782 0.667 0.99 0.828 0.642

YOLOv8 + MSFDNet 0.807 0.685 0.992 0.871 0.679
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tomato disease detection requires heightened detail

sensitivity, the EfficientRepBiPAN structure may

inadequately capture critical information, leading to a

decline in mAP values.

5. By replacing the YOLOv8 neck structure with our proposed

MSFDNet structure, we achieved a notable increase in mAP

of 1.8%, outperforming all other comparison structures.

This enhancement is attributed to the aggregation and

diffusion concept inherent in the MSFDNet structure,

which effectively integrates information across different

scales through multiple upsampling and downsampling

operations. This approach not only preserves the

semantic information of each scale but also enhances the

ability to capture fine-grained features, significantly
tiers in Plant Science 13
improving detection accuracy. Furthermore, MSFDNet

reinforces the contextual information of feature maps

through repeated focusing and diffusion processes,

ensuring comprehensive information flow and fusion

between multi-scale feature maps.
From the analysis above, it is evident that the original YOLOv8

algorithm, utilizing the FPN-PAN structure, achieves a mAP of

78.9%. The mAP decreased by 0.7% following the implementation

of the EfficientRepBiPAN structure. Conversely, upon replacing the

neck structure with BiFPN, MAFPN, and HSFPN, the mAP

improved by 0.8%, 0.7%, and 1%, respectively. Although these

three structures demonstrated slight enhancements in detection

performance, the improvements were minimal compared to the
FIGURE 12

P-R curve of YOLO series algorithm.
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substantial gains achieved with the MSFDNet structure. The

experimental results and subsequent analysis clearly indicate that

the MSFDNet structure outperforms other mainstream neck

structures, effectively enhancing the accuracy of tomato disease

detection. Consequently, we have integrated the MSFDNet

structure into our proposed model.
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3.2 Performance comparison experiments
of different detection networks

In this performance comparison, we conducted comparative

experiments using the same training set, test set, and environmental

configuration parameters across various target detection models. This
FIGURE 13

Comparison of detection results.
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approach allowed us to further validate the superior performance of

the TomaFDNet model in detecting tomato diseases.

Figure 12 illustrates the P-R curves for various YOLO series

target detection algorithms applied to the tomato disease test set.

The PR curve is utilized to assess the models’ comprehensive

performance at various thresholds in the object detection task,

highlighting the relationship between precision and recall, thereby

reflecting the models’ ability to manage positive and negative

samples. AP can be understood as the area under the PR curve

and is an indicator of performance detection. The higher the AP

value, the better the performance. As depicted in Figure 12, the P-R

curves for YOLOv5, YOLOv7, YOLOv8, YOLOv9, YOLOv10,

YOLO11, and TomaFDNet are presented. Notably, the

TomaFDNet model outperforms the other models in detecting

the three tomato diseases. Specifically, the TomaFDNet model

exhibited increased AP values by 2.2% for Early Blight, 4.4% for

Late Blight, and 10.4% for Leaf Mold, in comparison to the

original YOLOv8.

To provide a more intuitive demonstration of the TomaFDNet

model’s performance in tomato disease detection tasks, we

conducted a visual comparison experiment, with results displayed

in Figure 13. This figure presents the actual prediction outcomes of

the YOLO series algorithms alongside those of the TomaFDNet

model for detecting Early Blight, Late Blight, and Leaf Mold. In the

Figure 13, white circles indicate missed detections, while red circles
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denote incorrect detections. The numbers within the detection

boxes represent the confidence levels, which range from 0 to 1; a

higher value signifies greater certainty that the model has accurately

identified the target object.

It is evident from the Figure 13 that the TomaFDNet model

consistently demonstrates high confidence levels in detecting

tomato diseases, outperforming other YOLO series algorithms.

Specifically, for Early Blight, TomaFDNet’s detection confidence

exceeds that of the original YOLOv8 algorithm by 0.14, indicating

enhanced reliability. In the case of Late Blight, TomaFDNet

successfully detected the disease, while the original YOLOv8

failed to identify a lesion in the middle right portion of the image

(marked by a white circle), showcasing TomaFDNet’s superior

sensitivity and accuracy in detecting fine lesions. Furthermore,

during the Leaf Mold detection tasks, models such as YOLOv5,

YOLOv9, and YOLOv10 exhibited varying degrees of misdetections

and missed detections (indicated by red and white circles). In

contrast, TomaFDNet not only avoided these errors but also

demonstrated a stronger performance in both detection regions

and confidence levels.

To further confirm the efficacy of the TomaFDNet model in

identifying tomato diseases, we selected leaf images representing

three distinct disease types and conducted comparative

experiments. Additionally, we utilized Gradient-weighted Class

Activation Mapping (Grad-CAM) technology to visualize the
FIGURE 14

Grad-CAM comparison of different types of tomato diseases.
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decision-making process of YOLOv8 and the TomaFDNet model.

Grad-CAM generates heatmaps that visually highlight the areas of

the image that the model focuses on during decision-making, with

varying color intensities indicating the level of attention. Darker

shades represent areas of greater focus by the model.

As shown in the experimental results in Figure 14, TomaFDNet

exhibited superior accuracy and sensitivity in detecting disease

spots compared to the original YOLOv8 algorithm. Notably,

TomaFDNet demonstrated enhanced precision in accurately

locating lesions of varying sizes and shapes, effectively avoiding

misclassification of non-lesion areas. Furthermore, the heatmaps

produced by TomaFDNet displayed stronger color responses,

indicating a heightened attention to diseased regions. In contrast,

while YOLOv8 was able to recognize lesions, its color responses

were relatively weak, and the delineation of lesion shapes and

boundaries appeared ambiguous.

We performed a comparative assessment of the TomaFDNet

model against seven mainstream target detection algorithms,

including Faster R-CNN and YOLO series, such as v5, v7, v8, v9,

v10, and 11. The results of the experiment are displayed in Table 6.

As evidenced by the data, TomaFDNet achieved the highest

detection performance in identifying tomato leaf diseases, with a

mAP of 83.1%, significantly surpassing all other models. Notably,

substantial improvements were observed in the detection of Late

blight and Leaf Mold. In contrast, Faster R-CNN recorded a mAP of

only 68.2%. While the mAP values of the other YOLO series
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algorithms exceeded that of Faster R-CNN, none matched the

performance of TomaFDNet. These comparative experiments

demonstrate that TomaFDNet not only outperforms other

detection models in terms of overall accuracy but also exhibits

excellent stability and precision in identifying specific

disease categories.

In order to comprehensively evaluate the performance of

TomaFDNet, we compare and analyze the existing research

methods. As shown in Table 7, our proposed TomaFDNet

implements 83.1% mAP while s ignificant ly reducing

model complexity.

As shown in Table 7, the detection accuracy of VGG19 and CNN

models on similar data sets is 78.3% and 76.0%, respectively. In

contrast, TomaFDNet improved its detection accuracy by 4.8% and

7.1%, respectively, compared to the two models, despite targeting

fewer disease categories. In terms of performance comparison,

although Mask R-CNN achieved 88.2% of the mAP value, its model

volume reached 41.18MB, which was significantly higher than the

5.6MB of TomaFDNet. This large model size leads to a significant

shortfall in computational efficiency for Mask R-CNN, which limits its

application potential in real-time agricultural scenarios. It is worth

noting that although the YOLO-TGI-M model achieves a mAP value

similar to that of TomaFDNet, reaching 83.0%, its model volume of

23.6MB is more than 4 times that of TomaFDNet. In addition, the

number of parameters of TomaFDNet is 2.66M, and the number of

parameters of YOLO-TGI-M is 11.6M, which is 77% less than that of
TABLE 6 Comparison of 7 mainstream detection models.

Methods Params (M) Model size (MB) mAP
AP

Early_blight healthy Late_blight Leaf_Mold

Faster R-CNN 137.1 108 0.682 0.504 0.986 0706 0.532

YOLOv5 7.02 14.5 0.755 0.640 0.994 0.826 0.561

YOLOv7 36.50 71.3 0.783 0.614 0.993 0.831 0.694

YOLOv8 3.01 6.3 0.789 0.686 0.994 0.826 0.649

YOLOv9 2.62 6.1 0.790 0.677 0.991 0.843 0.649

YOLOv10 2.70 5.8 0.775 0.666 0.981 0.828 0.627

YOLO11 2.58 2.5 0.792 0.692 0.994 0.825 0.658

TomaFDNet 2.66 5.6 0.831 0.708 0.993 0.870 0.753
TABLE 7 Comparison of existing relevant research methods.

Method Dataset Disease categories Params (M) Model size (MB) Performance (%)

CNN (Ferdouse Ahmed Foysal
et al., 2020)

Plant village 6 / / 76.0 (Average Accuracy)

VGG19 (Rubanga et al., 2020) Tomato leaves 3 / / 78.3 (Average Accuracy)

Proposed_Mask RCNN (Kaur et al., 2022) TLDD 6 / 41.18 88.2 (mAP)

YOLO-TGI-M (Kang et al., 2024) Tomato leaves 4 11.6 23.6 83.0 (mAP)

TomaFDNet (Ours) TDGA 3 2.66 5.6 83.1 (mAP)
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YOLO-TGI-M, fully reflecting its advantages in lightweight design.

The experimental results show that TomaFDNet not only performs

well in terms of detection accuracy, but also effectively solves key

problems in resource-constrained environments, which is crucial for

practical agricultural applications.
3.3 Comparison of detection performance
in different environments

We also assessed the robustness and generalization capabilities of

the TomaFDNet model by utilizing a tomato leaf dataset sourced

from the Kaggle platform (Tomato Disease Multiple Sources) under

varying growth environments and shooting conditions. A selection of

images depicting different scenarios, including single, multiple, and

shaded leaves, was randomly chosen for prediction testing to simulate

diverse lighting conditions. As illustrated in Figures 15 and 16,

TomaFDNet demonstrated superior accuracy in detecting three

common tomato leaf diseases. While TomaFDNet recorded one

missed detection in the Early Blight category, the original YOLOv8
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model exhibited ten false detections with significantly lower

confidence scores. Notably, TomaFDNet effectively minimizes both

false and missed detections, even in complex backgrounds or

fluctuating lighting conditions. In scenarios involving multiple

leaves and shadows, TomaFDNet’s detection results were more

precise, and its confidence scores were markedly higher than those

of YOLOv8. These findings indicate that TomaFDNet maintains

excellent detection performance across varied environments and

scenes, making it well-suited for multi-scene tomato disease

detection tasks.
4 Discussion

In this study, we addressed the bottleneck challenges in

detecting tomato leaf diseases under complex environments and

recognizing small targets by designing the MSFDNet structure and

EPMSC module, leading to the development of our TomaFDNet

model. The results of the experiments reveal that TomaFDNet

significantly outperforms the original YOLOv8 algorithm in terms
FIGURE 15

The result of the actual environment test.
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of detection accuracy and robustness. The MSFDNet structure

improves the model’s capabilities in two ways. First, it enhances

the acquisition of multi-scale features through focused processing.

Second, it uses feature diffusion mechanisms to better integrate

these features. These improvements lead to better detection

accuracy, particularly for small targets in complex backgrounds.

Additionally, the EPMSC module further enhances the recognition

capability for objects of varying scales while reducing

computational resource consumption through its efficient group

convolution and multi-scale convolution kernel design.

The results from the ablation experiments effectively validate

the independent contributions of the MSFDNet and EPMSC

modules. When only the MSFDNet structure was introduced, the

model demonstrated an improvement in mean Average Precision

(mAP) across various disease detection tasks, highlighting its

capability to capture fine-grained features in the detection of

small target diseases. The combination of the MSFDNet with the

EPMSC module resulted in even more significant enhancements,

achieving an mAP of 83.1%, which represents a considerable

advancement compared to the original YOLOv8 algorithm.

Furthermore, we conducted comprehensive comparisons with

popular detection models, including Faster R-CNN, YOLOv10,

and YOLO11. The results indicated that TomaFDNet consistently

outperformed these models in multiple disease detection tasks.

While YOLOv8 excels in detection speed, it exhibits limitations in

managing complex backgrounds. In contrast, the TomaFDNet
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model enhances the transmission of contextual semantic

information through a series of upsampling, downsampling, and

feature diffusion processes. This approach not only enhances the

model’s capacity to identify intricate details in small target detection

but also mitigates issues of false detection that may arise from

complex backgrounds or high target density.

In addition to the advancements in deep learning-based

detection, recent developments in wireless sensing systems, such as

Vis/NIR optical sensing and capacitive sensing, have shown great

potential in agricultural monitoring (Han et al., 2024). For instance,

Wang et al. (2023) demonstrated the effectiveness of Vis/NIR sensing

in non-destructively monitoring fruit ripening by analyzing spectral

changes, achieving high prediction accuracy. Similarly, Kim et al.

(2023) proposed a low-power, wireless sensing system for real-time

monitoring of tomato ripening stages, which could complement our

TomaFDNet model by providing additional environmental data for

disease prediction. Integrating such wireless sensing technologies

with TomaFDNet could further enhance the model’s ability to

detect diseases under varying environmental conditions,

particularly in complex agricultural settings.

The practical deployment potential of TomaFDNet in

agricultural scenarios is significant. The model could be

integrated into various automated monitoring platforms. For

aerial surveillance, TomaFDNet could be deployed on agricultural

drones, enabling rapid disease detection across large-scale tomato

fields. In greenhouse environments, the model could be
FIGURE 16

Results of different number of tomato leaves and tomato leaves with shadows.
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incorporated into fixed camera monitoring systems for continuous

plant health assessment and early disease warning. For small-scale

farmers, TomaFDNet could be implemented in mobile applications,

allowing real-time disease diagnosis using smartphone cameras.

Despite the remarkable results achieved by the TomaFDNet

model in tomato disease detection, there are still some limitations

and challenges that require further improvement and research. In

the detection of some specific diseases, especially in the early stages

of the disease, the features of the diseased areas may be very weak

and have a low contrast with the healthy parts, which makes the

model may misjudge or omit to recognize these diseases. In

addition, environmental factors may also have an impact on

model performance. Complex backgrounds and different lighting

conditions may interfere with the identification of diseased areas.

Although we have used multi-scale feature fusion and feature

diffusion mechanisms in the model to enhance the detection

ability under background complexity, the model still faces some

challenges under extreme weather conditions (e.g., glare, shadow,

haze, etc.) or harsh environments (e.g., moisture, dust). Especially in

agricultural environments, plant shading and overlapping may

make it difficult to correctly identify certain small disease areas.

Future research will focus on improving the performance of the

TomaFDNet model for specific disease detection and environmental

adaptation. We plan to introduce higher resolution image acquisition

techniques and incorporate more deep learning methods to further

improve the recognition of early disease features. To cope with the

limitation of computational resources, future research will also focus

on the lightweight design of the model and optimize the model

structure so that it can run efficiently on resource-limited devices to

ensure its usability and real-time performance in practical

agricultural applications. In addition, we will explore how to

integrate wireless sensing technologies, such as visible/near-infrared

sensing and capacitive sensing, to provide real-time environmental

data to further enhance the robustness and accuracy of agricultural

disease detection systems.
5 Conclusion

In this study, we proposed the TomaFDNet model, a multi-scale

detection method for tomato diseases based on an improved

YOLOv8 architecture. By integrating the MSFDNet and EPMSC

modules, the model significantly enhances its ability to capture

multi-scale features and improve robustness in complex

environments. The experimental results demonstrate that the mAP

of the TomaFDNet model is superior to that of several mainstream

models, achieving an impressive mAP of 83.1%. This represents

increases of 14.9%, 7.6%, 4.8%, 4.2%, 4.1%, 5.6%, and 3.9% over

Faster R-CNN and various YOLO series algorithms (v5, v7, v8, v9,

v10, and 11), respectively. Furthermore, predictive experiments

conducted in diverse environments revealed that the TomaFDNet

model can accurately detect tomato diseases across different

scenarios, underscoring its effectiveness in disease detection.
Frontiers in Plant Science 19
Future work will focus on developing a lightweight version of the

model to enhance detection speed and real-time performance.
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