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Introduction:Chinese fir (Cunninghamia lanceolata) is a crucial afforestation and

timber species in southern China. Accurate estimation of its stand biomass is vital

for forest resource assessment, ecological industry development, and ecosystem

management. However, traditional biomass prediction methods often face

limitations in terms of accuracy and efficiency, highlighting the need for more

robust modeling approaches.

Methods: This study utilized data from 154 forest stands in Guangdong Province

to develop biomass regression models that incorporate random effects and

dummy variables. The models were based on airborne LiDAR-derived metrics.

Among 41 highly correlated LiDAR variables, only two—5% cumulative height

percentile and leaf area index—were retained in the final model.

Results: The results revealed that the logistic mixed-effects model was the most

effective for estimating leaf biomass, while the empirical mixed-effects model

was better suited for other biomass components. Nonlinear models

outperformed linear models, with the nonlinear mixed-effects model

(incorporating stand age as a random effect) achieving the highest predictive

accuracy. Furthermore, machine learning techniques further improved model

performance (R² = 0.855 to 0.939). Validation with independent test samples

confirmed the robustness and reliability of the nonlinear mixed-effects model.

Discussion: This study highlights the effectiveness of airborne LiDAR data in

providing efficient and precise estimates of stand biomass. It also emphasizes the

significant role of stand developmental stages in biomass modeling. The findings
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contribute to the development of a rigorous and scalable framework for large-

scale artificial forest biomass estimation, which has important implications for

forest resource monitoring, ecological industry development, and ecosystem

management strategies.
KEYWORDS

airborne LiDAR, forest biomass, regression modeling, age grouping, dummy
variable modeling
1 Introduction

As the primary component of terrestrial ecosystems, forest

ecosystems exhibit high productivity, biomass, and biodiversity,

playing a crucial and irreplaceable role in global ecosystems as well

as in human economic and social development (Song et al., 2011;

Liu et al., 2015; Organization, A, 2017). Biomass serves as the

foundational energy source and nutrient reservoir for the

functioning of forest ecosystems, making it one of the most

fundamental indicators of their health (Zhao et al., 2016).

Additionally, biomass is a significant contributor to the stability

of terrestrial ecosystems. Accurately estimating forest biomass and

quantitatively analyzing forestry and forest system issues is essential

for evaluating the health status of forest ecosystems and for studying

forest carbon cycling (He et al., 2013; Stovall et al., 2017).

Cunninghamia lanceolata has the advantages of strong

adaptability, barren tolerance, rapid growth, low afforestation cost

and easy management. It is an important commercial timber tree

species in the subtropical region of southern China. The planting

area accounts for about 20% of the total amount of China’s

plantations, and plays an important role in wood production and

forest carbon sequestration (Zhou et al., 2021; Guo et al., 2022).

Accurately estimating its biomass is of great significance for forest

resource assessment, ecological industry development, and refined

forestry management.

Traditional ground survey methods for estimating forest

biomass are constrained by human factors, making them

inefficient, time-consuming, and incapable of collecting data on a

regional or larger scale (Di et al., 2016; Mutwiri et al., 2017). In

contrast, the rapid advancement of remote sensing technology

allows for the swift acquisition of large-scale, high-temporal data,

significantly enhancing forest resource monitoring capabilities

(Eisfelder et al., 2012). Optical remote sensing data can quickly

and accurately capture large-scale forest growth factors and

ecological information, providing valuable support for forest

resource management. However, optical remote sensing is limited

to obtaining horizontal structural information of forests and does

not provide access to three-dimensional structural data (Mao et al.,

2022). Compared to traditional field surveying and optical remote

sensing technology, LiDAR (Light Detection and Ranging) uses

high-frequency laser pulses actively directed at the target to directly
02
obtain precise three-dimensional spatial coordinates and echo

information of forest trees, offering advantages such as accurate

positioning, high penetration rate, and direct measurement of

height. This is beneficial for determining vegetation structure

characteristics and estimating biomass at both individual tree and

stand scales (Tang et al., 2012; Beland et al., 2019). Currently,

LiDAR technology is divided into three types based on the sensor

platform: satellite-based, airborne, and ground-based. Airborne

LiDAR, due to its low cost, high timeliness, high spatiotemporal

resolution, and high mobility, has garnered more attention in forest

resource surveys (Maltamo et al., 2004; Noordermeer et al., 2018).

In recent years, some European and American countries have begun

using airborne LiDAR for large-scale forest resource surveys (Pawe

et al., 2017). Studies have shown that it significantly improves the

accuracy of forest structural parameter extraction and achieves

reliable performance in biomass estimation across various forest

types (Pawe et al., 2017; Zhang et al., 2024).

Establishing reliable and accurate biomass inversion models,

grounded in the strong correlation between forest biomass and

structural parameters, is essential for the effective application of

airborne LiDAR technology in forest resource surveys. Currently,

biomass inversion primarily relies on regression models, which can

be categorized into parametric and non-parametric models.

Parametric models are mostly linear regressions (LR), Logistic

regressions, etc., while non-parametric models include Support

Vector Machines, Random Forests (RF), and more (Zhu et al.,

2020; Emilien et al., 2021; Zeng et al., 2021; Xie et al., 2023). Many

researchers have analyzed data based on radar variables and stand

parameters, achieving good inversion results in biomass estimation

for different forest types within specific research areas. The variables

extracted from airborne LiDAR data mainly consist of height

characteristics and canopy characteristics (Lim and Treitz, 2004).

Wallace et al. used UAV LiDAR systems for forest stand structure

assessment, exploring the potential of UAVs in measuring and

monitoring forest structural characteristics (Wallace et al., 2016).

Xie et al. analyzed the vertical structure of subtropical evergreen

broadleaf forest communities using UAV LiDAR technology,

effectively extracting canopy height and tree location information

(Xie et al., 2020). Xu et al. used UAV imagery and LiDAR point

clouds to estimate forest stand characteristic variables in subtropical

natural secondary forests, while Yuan used airborne LiDAR
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technology to estimate the accumulation models of four typical

coniferous forests (Korean pine, Larch, Red pine, and Spruce) in the

Northeast forest region, finding that point cloud height variables

contributed the most to biomass models (Xu et al., 2015; Yuan et al.,

2021). These studies indicate that LiDAR-derived feature variables

can estimate and invert forest structure parameters at the stand

scale, but the optimal biomass model varies with the scope and

purpose of the survey.

Recent studies integrating LiDAR technology with biomass

estimation of Cunninghamia lanceolata have primarily focused on

optimal single-tree segmentation, height growth prediction, and

carbon storage estimation. The structural parameters of Chinese fir

extracted using airborne LiDAR generally correspond well with

known growth patterns, highlighting the practical value of this

approach (Yu et al., 2023; Zhou et al., 2023; Yu et al., 2024).

However, current research on Chinese fir biomass remains

relatively limited. Existing models often neglect critical factors

such as stand age and site conditions, which can introduce

significant bias into biomass estimates. Furthermore, most

available models concentrate on total tree biomass, with limited

attention given to individual tree components (Guo et al., 2022). To

improve model precision and applicability, it is essential to account

for varying stand developmental stages and to incorporate a broader

range of variables that capture both intra- and inter-group

variation, thereby better elucidating the influence of stand

structure on biomass accumulation. This study addresses these

gaps by focusing on Chinese fir plantations across eight regions

in Guangdong Province. Utilizing high-density UAV LiDAR point

cloud data, the research extracts 57 forest structural variables—

including height, intensity, canopy cover, and leaf area index. The

objectives are threefold: (1) to assess the predictive utility of
Frontiers in Plant Science 03
elevation, density, and intensity metrics derived from LiDAR

data; (2) to construct age-group-specific biomass models for

different tree components; and (3) to evaluate and compare the

accuracy of various modeling approaches to identify the most

effective estimation strategy. By systematically analyzing the

influence of stand developmental stages on biomass modeling for

Cunninghamia lanceolata, this study aims to enhance estimation

accuracy and provide a scientifically rigorous framework for large-

scale forest carbon stock assessment, precision forestry, and

sustainable ecosystem management.
2 Materials and methods

2.1 Study area

The study area is located in the northern and central parts of the

Nanling Mountains in Guangdong Province, China. The

geographical coordinates range from 23°2′12″N to 25°17′29″N
and 111°22′55″E to 115°4′54″E (Figure 1). This region is a major

distribution area of Chinese fir, where the species has been

cultivated for many years. The presence of well-established stands

across various age groups provides an ideal setting for research and

development. The terrain is generally higher in the north and lower

in the south, with mountains and high hills in the north and plains

and terraces in the south. The elevation ranges from 53 m to 580 m,

and the annual rainfall is between 1300 mm and 2500 mm,

belonging to the East Asian subtropical monsoon climate zone

(Huang et al., 2022). Sample plots were set up in state-owned forest

farms in eight counties (cities) within the region. The soil is

mountainous red soil with a slightly acidic pH value and is
FIGURE 1

Location of study area and sample distributions across North-central Guangdong, China (subfigures: (a) orthorectified RGB image of the sample plot,
(b) single-tree segmentation output derived from canopy analysis, and (c) LiDAR point cloud map of the sample plot).
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primarily sandy loam with a thickness of about 50 cm. The main

tree species in the forest farms include Cunninghamia lanceolata,

Pinus massoniana, and Eucalyptus spp., with pure plantations

being predominant.
2.2 Data sources

2.2.1 Sample plots
In September 2023, following a comprehensive reconnaissance

of the study area, 154 sample plots of 30 m × 30 m were selected

based on forest type, stand age, and management practices. This

study considered 33 plots of young forests, 34 of middle-aged

forests, 26 of near-mature forests, 34 of mature forests, and 27 of

over-mature forests. Real-time kinematic (RTK) GPS was used to

obtain the geographical coordinates and elevation data for each tree

and plot center. Terrain factors such as topography, slope, and

altitude were recorded. All trees with a diameter at breast height

(DBH) ≥ 5 cm in the sample plots were measured for tree species,

DBH, height, height to the first branch, crown width, and canopy

density. DBH was measured using a measuring tape (at a height of

1.3 m from the ground). Total tree height and height to the first

branch were measured using a TruPuls 360 laser rangefinder; crown

width was measured in two perpendicular directions (east-west and

north-south).

Forest biomass estimation based on the tree measurement

factors includes above-ground biomass, under-ground biomass,

wood biomass, bark biomass, branch biomass, and leaf biomass.

above-ground biomass includes all wood biomass and non-wood

biomass (leaf, branch, bark, leaf). The allometric growth equation

was used to calculate the above-ground biomass and its components

in the sample plots (Zeng, 2013; Xiang et al., 2021; Sun et al., 2023).

It can be expressed as (Equation 1):

MAbove−ground = a1 ∗Db1 ∗Hc1

MTrunk =
1

1+g1+g2+g3
∗MAbove−ground

MBark =
g1

1+g1+g2+g3
∗MAbove−ground

MBranch =
g2

1+g1+g2+g3
∗MAbove−ground

MLeaf =
g3

1+g1+g2+g3
∗MAbove−ground

MUnder−ground = a2 ∗Db2 ∗Hc2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(1)

In the formula, MTrunk, MBark, MBranch, and  MLeaf represent the

biomass of stand trunk, bark, branches, and leaves components,

respectively, measured in kilograms (kg). MAbove−ground and

MUnder−ground are the estimated values of stand aboveground

biomass, and underground biomass, while g1, g2, and g3 are the

ratio functions of bark, branches, and leaves relative to wood

biomass, which is set to 1. According to the established standards,

the specific calculation formulas are as follows:

  g1 = 0:37301H−0:29282, g2 = 0:80058D0:79098H−1:29690, g3 =

3:23395D0:48038H−1:71324,

where D is the average diameter at breast height of the forest

stand and H is the average tree height of the forest stand.
Frontiers in Plant Science 04
2.2.2 Lidar data
UAV-based LiDAR data was acquired in the study area. The

flight platform used was a quadcopter drone equipped with the

Huace AS-1300HL LiDAR system, operating at a wavelength of

1550 nm with an accuracy of 5 mm. The system had a scanning

angle of 330°, an effective scanning field of ±30°, a laser beam

divergence of 0.5 mrad, a pulse duration of 3.5 ns, and a side overlap

greater than 50%, achieving a point density of approximately 110

points/m². The LiDAR data underwent preprocessing using the

commercial software LiDAR360, where it was normalized and

classified to generate the Digital Surface Model (DSM), Digital

Elevation Model (DEM), and Canopy Height Model (CHM)

(Zhang et al., 2016).

Vertical distribution variables of LiDAR point clouds are

commonly used for estimating forest biomass. These variables can

quantitatively describe the height distribution of vegetation

canopies, such as height percentiles, density percentiles, and

height statistics (Holmgren, 2004; Næsset and Gobakken, 2005;

Zhang et al., 2016). The Leaf Area Index (LAI), which is one of the
TABLE 1 Description of LiDAR metrics.

Parameter
type

Parameter name Description

Canopy
characteristics

Leaf area index (LAI)
Half the surface area of

all leaves per unit
surface area

Degree of coverage (CC)

Ratio of the number of
vegetation points in the
first Echo to the number
of vegetation points in

the first echo

Height
percentile

h1, h5, h10, …, h80, h90, h95, h99

Where are the points at X
% height within the
normalized LiDAR

point cloud

Cumulative
height

percentile

AIH1, AIH5, AIH 10, …, AIH80,
AIH90, AIH95, AIH99

Cumulative height of
points located at X%

height within normalized
LiDAR point cloud

Height statistic

hmax
Maximum Z value of

all points

hmean
Average Z value of

all points

hcv
Coefficient of variation of

point cloud height

hsd

The standard deviation of
Z value of all points in a

statistical unit

hskewness
Skewness value of point

cloud height

hkurtosis
kurtosis of point
cloud height

Intension
percentiles

d1, d2, d3, …, d7, d8, d9
Intensity percentile of the

point cloud
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most fundamental parameters characterizing canopy structure, is

defined as half of the total leaf surface area per unit ground area and

is calculated from the normalized vegetation points in the point

cloud data (White et al., 2015). The point cloud data was denoised

and filtered to obtain noise points, ground points, and vegetation

points. The classified vegetation points were then normalized for

elevation to eliminate the effects of terrain, resulting in a normalized

point cloud (Yan et al., 2020). Based on the vector boundaries of

sample plots, the normalized point cloud for each plot was clipped,

and 57-point cloud feature variables were extracted, including

height percentiles, cumulative height percentiles, height statistics,

and density percentiles (Table 1).
2.3 Model construction

Based on field-measured data of Chinese fir plots and

corresponding LiDAR data, univariate and bivariate models were

constructed for different stand biomass categories. The optimal

biomass model was selected through model comparison, and age

groups were further incorporated to develop an inversion model.

2.3.1 Basic model
This study, limited by the available measured sample data,

utilized RStudio software to establish biomass estimation models

for Chinese fir. A total of 154 samples were selected as the dataset

for model development. Widely used biomass models, including

linear, logarithmic, exponential, and power functions, were chosen

as the basic models to examine the relationship between dependent

and independent variables (Andersen et al., 2006; Trofymow et al.,

2014) (Table 2). To address the issue of reduced degrees of freedom

due to an excessive number of independent variables, a correlation

test was used to select variables. To avoid multicollinearity within

the models, only variables that significantly contributed to stand

biomass were selected. The initial analysis was conducted by fitting

the models with the entire dataset, and the optimal basic model was

selected based on model evaluation metrics (Chen et al., 2022).

In the model parameters, AGB is the aboveground biomass

calculated by allometric growth equation (Eq. 1), X1,X2, X3, …, Xn

are the height variable and intensity variable extracted from lidar

LiDAR, b0, b1, b2, …,bn are the parameter to be estimated, eAGB
represents the error term in each equation.
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2.3.2 Nonlinear mixed-effects model
A mixed-effects model was constructed based on the linear and

nonlinear relationships between the regression function and both

fixed effects and random effects parameters (Pinheiro and Bates,

2000). The general form of a single-level mixed-effects model is as

follows (Equation 2):

Yij = f (qij, xij) + eij    

qij = qAijb + Bijui

eij∼N(0, s 2),ui∼N(0, D)

ui = 1,…,M; j = 1,…,M

8>>>>><
>>>>>:

(2)

where: xij and Yij represent the explanatory variable and

response variable for the j plot in the i group, respectively; qij is
the parameter vector; eij  is the error term, assumed to follow a

normal distribution; f (qij, xij) is the aboveground biomass model;

Aij and Bij are the design matrices of b and ui, respectively; b is the

fixed effects parameter vector; ui represents the random effect

generated by the i group; e and u are independent of each other;

D is the covariance matrix of the random effects.

2.2.3 Dummy variable model
A dummy variable model was introduced to describe the impact

of different stand development stages on biomass. All Chinese fir

stands in the study area were classified into five stages: young forest,

middle-aged forest, near-mature forest, mature forest, and over-

mature forest. Corresponding variables  Qi=( Q1, Q2, Q3, Q4, Q5)

were set to represent these stages. In this approach, variables are

assigned values to represent qualitative or categorical data.Q1=(1, 0,

0, 0) represents young forest; Q2=(0, 1, 0, 0)represents middle-aged

forest; Q3 =(0, 0, 1, 0) represents near-mature forest; Q4 =(0, 0, 0, 1)

represents mature forest; Q5 =(0, 0, 0, 0) represents over-

mature forest.

The significance of parameters that include dummy variables

was tested using the t-test. If the dummy variable was not significant

at a level of a=0.05, it was excluded, and the model was refitted.

This process was repeated until all parameters would be significant

(Dong et al., 2023).

2.2.4 Random forest
The Random Forest model uses the bootstrap sampling to

construct multiple decision trees for regression prediction. The

final prediction is generated by aggregating the results of these trees,

typically by averaging the predictions for regression problems or

taking the mode for classification problems (Dinh et al., 2016; Deng

et al., 2023). The feature vector calculation formula for each

decision tree in the Random Forest is as follows (Equation 3):

minj,m oqi∈R1(j,m)(qi − cqR1
)2 +oqi∈R2(j,m)(qi − cqR2

)2
h i

   cqR1
= mean½  qi qi ∈ R1(j,m)�j

   cqR2
= mean½  qijqi ∈ R2(j,m)�

8>>><
>>>:

(3)

where: j and m are the feature vectors of the decision tree,

respectively; R1(j,m) is the set of samples of the first child node
TABLE 2 Basic model form to describe forest biomass variations.

No. Model
Model
source

I
AGB = b0 + b1 X1 + b2 X2 + b3 X3 + … + bn Xn

+ eAGB
Linear

II
AGB = b0/[1 + b1 exp(- b2 X1 - b3 X2 - b4 X3 - … -

bn + 1 Xn)] + eAGB
Logistic

III
AGB = b0 exp(- b1 X1 - b2 X2 - b3 X3 - … - bn Xn)

+ eAGB
Exponential

IV AGB = b0X
b1
1 Xb2

2 Xb3
3 · · · Xbn

n + eAGB Empirical
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obtained by splitting feature m on node j, R2(j,m) is the sample set

of the second child node obtained after splitting feature m on node j;

qi is the actual measured value of the i-th sample; q̂R1
  and q̂R2

  are

the predicted values of stand biomass for R1(j,m) and R2(j,m),

respectively. The study chose to import the sample biomass data

and LiDAR variables for simulation with the help of Random forest

function in RStudio to derive the predictions.
2.4 Model accuracy evaluation criteria

The fitting performance of the models was evaluated using

coefficient of determination (R²), relative residual, root mean square

error (RMSE), and total relative error (TRE) (Fu et al., 2018; Guo

et al., 2022). We randomly divided the data into two datasets, with

70% of the data used for model training (108 sample plots) and the

other 30% for model validation (46 sample plots).

To further assess the model, verification set covering different

age groups were used to obtain the predicted biomass values for

these test samples. A linear regression relationship was then

established between the predicted values and the observed values,

expressed a as y=b+ax, with b corresponding coefficients and R²

values. When a is close to 1, b is close to 0, and R2 is high, it

indicates minimal bias between predicted and observed values,

signifying high prediction accuracy of the model.

�e =o​ei=n = o
n
i=1(yi − byi)

n
(4)

s 2 =on
i=1(ei − �e)

2=(n − 1) (5)

R2 = 1 −o
n
i=1(y − ŷ )2

on
i=1(y − �y)2

(6)

 TRE = o
n
i=1(y − ŷ )2

on
i=1y

2 ∗ 100 (7)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e2 + s 2

p
(8)

AIC = 2k − ln l (9)

where  yi and ŷi are the stand biomasses estimated by the

allometric equation and predicted by the newly developed

biomass model, respectively, and y is the mean biomass by the

allometric equation; and n is the number of sample plots; and k is

the number of model parameters; and l is the likelihood function

value; and �e, s 2, R2, TRE and RMSE are the mean bias, variance of

bias, coefficient of determination, total relative error and root mean

square error, respectively. RMSE is defined as the combination of
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the mean bias and its variance and is the most important evaluation

criterion of the model.
3 Results and analysis

3.1 Statistical results of measured data

Tree height and diameter at breast height (DBH) were

measured for 33,628 Chinese fir trees within the sample plots.

The results showed that the number of Chinese firs per plot ranged

from 39 to 478, with a canopy density between 0.35 and 0.90. The

average DBH (calculated using the quadratic mean method) ranged

from 6.10 cm to 28.24 cm, and the average tree height ranged from

5.05 m to 21.35 m. The slope of the plots varied between 6°and 37°,

with most plots located on eastern slopes. Based on the measured

tree height and DBH, the aboveground biomass in the plots was

calculated using an allometric growth equation, resulting in a range

of 41.92 t/hm² to 523.90 t/hm², with an average value of 228.90 t/

hm². Detailed statistical data are presented in Table 3.

There are differences in parameters such as tree height and biomass

across different age groups of Chinese fir. As shown in Figure 2, the

biomass of young, middle-aged, near-mature, and mature forests

shows an upward trend, while the biomass of over-mature forests

slightly decreases compared to mature forests. In terms of dispersion,

the biomass distribution within different plots is relatively concentrated

for young, near-mature, and mature forests, while it is more scattered

among over-mature forests. Regarding outliers, young forests tend to

have more instances of extremely low biomass values, while mature

forests have more instances of relatively high biomass values.
3.2 Correlation analysis of feature variables

A Pearson correlation analysis was conducted between LiDAR

point cloud variables and plot biomass, revealing 41 significantly

correlated feature variables. The biomass of the trunk, bark,

aboveground, and belowground components showed a high

correlation with LiDAR point cloud variables, with Pearson

correlation coefficients generally above 0.4. The correlation between

branch and leaf biomass and LiDAR point cloud variables was

moderate. Specifically, leaf biomass had a significant correlation with

only seven LiDAR point cloud variables (P<0.05). The intensity

variables had a generally low correlation with the measured biomass,

with an average correlation coefficient of only 0.445.

Variables with a high correlation to different biomass components

of the stand were selected. As shown in Figure 3, height percentiles (h1,

h2) and cumulative height percentiles (AIH2, AIH3, AIH4, AIH6,

AIH7) exhibited high Pearson correlation coefficients with various
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TABLE 3 Biomass characteristics of all age groups for modeling.

Stand Mean
Branch
(t/hm2)

Leaf
(t/hm2)

Above-ground
biomass(t/hm2)

Below-ground
biomass(t/hm2)

1.40 4.39 34.81 7.11

19.45 24.17 227.32 35.00

12.06 16.28 151.51 23.76

4.90 5.95 57.04 8.52

28.96 25.81 269.18 40.32

15.54 18.35 175.41 26.40

7.99 12.00 108.85 17.84

31.99 29.79 301.82 41.38

20.07 19.98 198.32 28.16

9.38 11.59 109.71 16.77

72.37 41.08 469.58 54.32

35.80 24.78 268.44 33.45

11.54 12.80 123.88 17.18

53.86 29.46 329.48 39.40

27.43 20.22 215.15 27.57

4.94 9.89 85.05 15.16

16.57 19.02 180.67 27.65

11.02 15.71 144.21 23.13

5.70 7.80 72.70 11.41

30.56 29.70 297.65 41.54

17.21 18.77 182.85 26.70

14.66 17.30 165.57 24.29

24.24 21.27 213.84 29.94

20.66 19.49 196.53 27.19

20.77 18.40 118.29 25.38

37.61 27.51 331.74 39.98

32.62 23.78 254.65 32.25

(Continued)
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4.20

25.90

17.32

6.45

30.42

19.82

12.55

33.29

22.03

12.44

48.58

28.57

13.91

34.36

23.08

10.01

20.35

16.56

8.32

32.98
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18.70

23.46

21.71

20.66

35.04

27.29
Dataset
Age

group
Sample

plot number
Statistics

Crown
density

density
(trees/hm²)

Mean
DBH (cm)

Mean tree
height(m)

branch
height(m)

Basal area
(m²/hm²)

Trunk
(t/hm2)

Training
set

young 23

Min. 0.45 2100 6.1 5.0 1.9 12.18 24.81

Max. 0.90 4167 15.3 11.8 6.3 50.33 158.63

Mean. 0.71 3242 12.2 9.3 4.9 37.81 105.86

middle-
aged

24

Min. 0.35 844 9.2 6.9 3.4 15.32 39.64

Max. 0.90 4355 22.8 16.7 10.1 60.16 186.95

Mean. 0.66 3065 13.2 10.5 6.3 39.96 121.71

near-
mature

18

Min. 0.60 1611 11.0 6.4 3.8 30.35 76.31

Max. 0.90 3711 17.1 14.5 8.9 57.92 206.75

Mean. 0.75 2563 14.5 11.5 6.4 40.78 136.25

mature 24

Min. 0.40 1078 13.3 8.6 3.9 29.64 76.30

Max. 0.90 2478 26.2 21.3 12.6 71.68 307.66

Mean. 0.66 1764 19.2 13.8 7.4 19.30 179.29

over-
mature

19

Min. 0.40 822 13.4 8.8 4.2 30.41 85.63

Max. 0.90 2856 26.9 20.0 10.8 54.07 216.54

Mean. 0.68 1767 17.3 12.9 6.9 39.01 144.42

Validation
set

young 10

Min. 0.70 2878 9.1 6.3 2.1 25.96 60.20

Max. 0.90 5311 13.0 10.3 5.7 40.00 124.73

Mean. 0.80 3543 11.4 8.6 4.1 35.49 100.93

middle-
aged

10

Min. 0.40 867 10.2 9.1 5.0 18.72 50.85

Max. 0.85 4355 22.8 16.7 8.3 49.20 204.40

Mean. 0.64 2448 14.6 11.9 6.9 35.15 126.37

near-
mature

8

Min. 0.60 1267 12.5 9.8 5.4 34.50 114.92

Max. 0.85 2811 18.8 14.3 7.1 43.06 145.56

Mean. 0.73 1911 16.6 12.7 6.2 39.25 134.67

mature 10

Min. 0.60 911 14.2 11.4 4.9 18.60 128.46

Max. 0.90 3244 23.1 18.4 8.0 23.90 220.70

Mean. 0.80 1836 18.2 14.1 6.7 21.50 170.97
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biomass components. Notably, the 5% cumulative height percentile

had the highest correlation coefficients with trunk biomass (0.847),

bark biomass (0.813), branch biomass (0.688), and aboveground

biomass (0.817). Leaf biomass had the highest correlation with the

Leaf Area Index (LAI), with a correlation coefficient of 0.608.
3.3 Model construction and accuracy
analysis

3.3.1 Base model
To enhance model accuracy, variance inflation factor (VIF<10)

analysis was used to remove multicollinearity among the variables.

These were then analyzed for correlation with various biomass

components of the forest stands. After screening, only three LiDAR

feature variables—cumulative height percentile AIH2, Leaf Area

Index (LAI), and intensity percentile d9—had a VIF of less than 10.

Based on the correlation analysis results in the previous text, the 5%

cumulative height percentile AIH2 and LAI were chosen as the

parameters for the equations. The estimation accuracy results of the

univariate and bivariate regression base models are presented in

Tables 4, 5. Due to space constraints, only the validation set results

are presented in the article.

From the model evaluation results, in the univariate regression

model, the 5% cumulative height percentile AIH2 as an

independent variable showed a significantly better fit than LAI.

Moreover, only leaf biomass selected LAI as a parameter in the

optimal model. Considering the accuracy evaluation of both

regression models, the R² values for the univariate regression

model ranged from 0.269 to 0.712, with a median of 0.537. In

contrast, the R² values for the bivariate regression model ranged

from 0.443 to 0.780, with a median of 0.619, and most were above

0.6. When comparing RMSE, TRE, and AIC values, the bivariate

regression model also reflected a better fit. Therefore, the bivariate

regression model better explains the variations in biomass among

the different components of Chinese fir stands, and this analysis

focuses primarily on the bivariate regression model.

The fitting results indicate that UAV LiDAR point cloud feature

variables have a good fitting effect on trunk, branch, aboveground,

and belowground biomass, with most R² values above 0.6. The

fitting effect for branch and leaf biomass was relatively poor, with

leaf biomass showing the worst fit, having R² values around 0.5.

This suggests the need to introduce more parameters to improve the

fitting model for leaf biomass.

Comparing the four basemodels, the results show that the Empirical

model had the highest R² values and the lowest RMSE and TRE values

for predicting the biomass of the trunk, branches, bark, aboveground,

and belowground components, indicating high predictive accuracy for

the biomass of Chinese fir stands. For leaf biomass prediction, the

Logistic model had a higher R² value, and its TRE value of 1.750 was the

lowest among all models, suggesting that this model provides a better fit

for leaf biomass and has high predictive accuracy. Additionally, the AIC

values of the Logistic model were all at low levels.

Based on the model accuracy results, the following models were

selected as the base models for predicting the biomass of each

component (Equation 10).
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BTrunk = a0H
a1

2 LAIa2 +  eSG

BBark = b0H
b1

2 LAIb2 +  eSP
BBranch = c0H

c1
2 LAIc2 +  eSZ

BLeaf =  d0 = ½1  +  d1  exp(  −  d2  H2  −  d3  LAI  )�  +  eSY
BAbove−ground = e0H

e1
2 LAIe2 +  eDS

BUnder−ground = f0H
f1

2 LAIf2 +  eDX

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(10)
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3.3.2 Nonlinear mixed-effects models
To increase the accuracy of the base models, nonlinear mixed

effects models (NLME) were constructed in this study. Considering

the effects of different management practices, various age group

were treated as random variables influencing the parameters

a0~a2、b0~b2、… 、f0~ f2, resulting in a total of 50 NLME

models. Out of these, 47 models were statistically significant, with

AIC values ranging from 326.222 to 848.969 (Figure 4). The results
FIGURE 2

Boxplots of the six measured stand biomass for different forest types (The subfigures represent the biomass distribution across different tree
components in the following order: Trunk, bark, branches, leaves, aboveground, and underground across various age groups).
FIGURE 3

Pearson’s correlation coefficient between the selected metric and measured biomass (AIH1, AIH2,…, and LAI represent the corresponding LiDAR
characteristic variables in sequential order, as detailed in Table 1).
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showed that the AIC values within the model groups were relatively

similar, but there were substantial differences between groups.

The following NLME models for Chinese fir biomass

components exhibited optimal fitting statistics. Parameter

estimates, standard errors, adjusted R², RMSE, and TRE are

shown in Table 6. For the fitted models, the adjusted R² values
Frontiers in Plant Science 10
for each biomass component model were above 0.65.

Simultaneously, the RMSE and TRE values decreased, reflecting

an improved fit. At a significance level of 0.05, all parameters in the

NLME models were statistically significant, indicating that the

explanatory variables had a notable impact on the biomass of

various forest components.
TABLE 4 Statistical indicators for the validation set of the univariate biomass model based on stand factors.

Indicator

Logistic Linear

Trunk Bark Branch Leaf
Above-
ground

Under-
ground

Trunk Bark Branch Leaf
Above-
ground

Under-
ground

RMSE 2.167 2.167 3.479 1.332 19.289 4.367 13.307 2.144 3.269 1.468 19.427 4.337

R2 0.588 0.588 0.269 0.560 0.621 0.495 0.686 0.597 0.355 0.466 0.616 0.502

TRE 3.068 3.068 3.392 1.764 2.875 2.991 3.308 3.001 3.030 2.151 2.904 2.950

AIC 437.273 437.273 531.670 334.510 867.247 591.068 793.626 439.081 538.136 358.860 869.107 594.088

Variable AIH2 AIH2 AIH2 LAI AIH2 AIH2 AIH2 AIH2 AIH2 LAI AIH2 AIH2

Indicator

Exponential Empirical

Trunk Bark Branch Leaf
Above-
ground

Under-
ground

Trunk Bark Branch Leaf
Above-
ground

Under-
ground

RMSE 13.383 2.157 3.296 1.562 19.634 4.392 12.737 2.091 3.184 1.413 18.672 4.177

R2 0.682 0.592 0.344 0.422 0.607 0.490 0.712 0.617 0.388 0.504 0.645 0.538

TRE 3.341 3.025 3.058 2.331 2.956 3.009 3.073 2.883 2.891 1.191 2.711 2.759

AIC 793.586 437.181 533.944 366.381 867.967 591.789 799.36 446.377 542.413 351.594 874.883 598.527

Variable AIH2 AIH2 AIH2 LAI AIH2 AIH2 AIH2 AIH2 AIH2 LAI AIH2 AIH2
fr
The bolded values represent the biomass of different components of Chinese fir, with the following correspondences: 'Trunk' (trunk biomass), 'Branch' (branch biomass), 'Bark' (bark biomass),
'Leaf' (leaf biomass), 'Above ground' (aboveground biomass), and 'Under ground' (underground biomass).
TABLE 5 Statistical indicators for the validation set of the bivariate parameter biomass model based on stand factors.

Indicator

Logistic Linear

Trunk Bark Branch Leaf
Above-
ground

Under-
ground

Trunk Bark Branch Leaf
Above-
ground

Under-
ground

RMSE 1.852 1.852 3.024 1.327 16.471 3.813 12.197 1.928 2.939 1.450 17.456 3.906

R2 0.700 0.700 0.448 0.564 0.724 0.615 0.736 0.674 0.479 0.479 0.690 0.596

TRE 2.319 2.319 2.646 1.750 2.165 2.345 2.840 2.490 2.513 2.098 2.403 2.450

AIC 416.633 416.633 519.453 335.821 850.536 580.622 787.018 421.944 526.336 361.073 856.661 585.710

Indicator

Exponential Empirical

Trunk Bark Branch Leaf
Above-
ground

Under-
ground

Trunk Bark Branch Leaf
Above-
ground

Under-
ground

RMSE 12.151 1.950 3.039 1.509 17.782 4.034 11.134 1.800 2.801 1.401 16.080 3.667

R2 0.738 0.667 0.443 0.436 0.678 0.570 0.780 0.716 0.527 0.514 0.737 0.644

TRE 2.841 2.554 2.675 2.275 2.500 2.608 2.424 2.206 2.299 1.954 2.074 2.184

AIC 782.482 417.547 523.401 368.673 853.529 583.87 787.185 426.498 532.259 354.362 859.607 590.205
The bolded values represent the biomass of different components of Chinese fir, with the following correspondences: 'Trunk' (trunk biomass), 'Branch' (branch biomass), 'Bark' (bark biomass),
'Leaf' (leaf biomass), 'Above ground' (aboveground biomass), and 'Under ground' (underground biomass).
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FIGURE 4

AIC values of non-linear random effects combination for each sub item biomass (a0, a1, …f2 refer to the parameters needs to be included as random
effects; + refer to the combinations of the random effects).
TABLE 6 Fitting results of nonlinear mixed effects model for various tree component biomass.

Component
Estimate (SE) Training set Verification set

bi0 bi1 bi2 bi3 RMSE R2 TRE RMSE R2 TRE

Trunk

NLME 6.4926 (1.176)
0.8025
(0.0646)

0.3231
(0.0773)

10.696 0.832 2.107 10.238 0.814 2.002

Dummy
6.184
(1.040)

0.8325
(0.0650)

0.3118
(0.0664)

10.897 0.815 2.690 11.996 0.798 2.236

Bark

NLME
1.5321
(0.2319)

0.6430
(0.0556)

0.3483
(0.0666)

1.670 0.826 1.806 1.686 0.751 1.895

Dummy
1.4815
(0.2126)

0.6825
(0.0564)

0.3181
(0.0582)

1.805 0.808 2.168 1.864 0.678 2.362

Branch

NLME
4.0062
(0.6072)

0.3927
(0.0557)

0.3642
(0.0718)

2.730 0.739 2.102 2.799 0.559 2.121

Dummy
4.5820
(0.6515)

0.3735
(0.0586)

0.3097
(0.0623)

2.996 0.672 2.589 2.863 0.657 2.255

Leaf

NLME
11.2872
(0.4570)

9.0153
(4.0861)

0.0175
(0.0306)

0.7148
(0.1378)

1.146 0.674 1.302 1.327 0.563 1.762

Dummy
12.7999
(1.3018)

2.4059
(0.6328)

0.0589
(0.0353)

0.2875
(0.0934)

1.433 0.569 1.875 1.405 0.549 1.856

Above-ground

NLME
12.6607
(2.0266)

0.6715
(0.0535)

0.3724
(0.0668)

15.496 0.831 1.830 15.233 0.763 1.825

Dummy
14.3207
(2.1072)

0.6657
(0.0580)

0.3092
(0.0601)

17.104 0.804 2.294 16.445 0.796 1.927

Under-ground

NLME
3.5641
(0.6163)

0.5960
(0.0584)

0.3386
(0.0732)

3.841 0.761 2.296 3.507 0.674 1.974

Dummy
4.9122
(0.7274)

0.4795
(0.0600)

0.2994
(0.0634)

4.043 0.732 2.609 3.994 0.705 1.737
F
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In Table 6, “NLME” represents the nonlinear mixed-effects

model, while “Dummy” denotes the dummy variable model.

3.3.3 Dummy variable models
Compared to the NLME models, the dummy variable models

showed a reduction in R², with increases in RMSE and TRE values,

indicating slightly poorer fit for the biomass of Chinese fir

(Table 6).When compared to the corresponding univariate and

bivariate models, the fit of the biomass models improved, with

noticeable enhancements in branch biomass model (Training set

R2 = 0.672, RMSE=2.996; Verification set R2 = 0.657, RMSE=2.863),

while the leaf biomass fitting did not show significant changes.

Figure 5 shows the residual plots for the NLME and dummy

variable models showed that residuals are uniformly distributed

around zero, with no apparent trends of divergence or convergence

related to predicted biomass values. This suggests that there are no

significant systematic biases or heteroscedasticity, and the NLME

model residuals are closer to zero with fewer outliers.
Frontiers in Plant Science 12
3.3.4 Machine learning methods
Compared to traditional parametric models, the Random Forest

algorithm demonstrated certain advantages (Table 7). The R2 value

has increased compared to the average of the base model, random

effects model, and dummy variable model, demonstrating a

significant improvement in fitting accuracy. The largest

improvements were seen in leaf biomass (Training set R2 = 0.855,

RMSE=0.804; Verification set R2 = 0.862, RMSE=0.934), where the

parameter models had lower fitting accuracy.
3.4 Model validation

Due to the more reasonable distribution of relative residuals in

NLME, this study employed the Logistic and Empirical models,

incorporating age groups as mixed effects, the validation sample

data were then use in the NLME models to obtain predicted value.

The calculations show that the majority of a values fall within the
FIGURE 5

Residual distribution diagram of nonlinear mixed effects model and dummy variable model (“-NLME” represents the residual of the nonlinear mixed-
effects model for each branch, “-Dummy” represents the residual of the dummy variable model for each branch).
TABLE 7 Fit statistics of machine learning models.

Component
Training set Verification set

RMSE R2 TRE RMSE R2 TRE

Trunk 7.223 0.939 0.095 6.163 0.910 0.150

Bark 1.080 0.935 0.082 1.113 0.880 0.127

Branch 1.758 0.900 0.074 1.705 0.855 0.106

Leaf 0.804 0.855 0.066 0.934 0.862 0.074

Above-ground 9.902 0.937 0.081 9.400 0.894 0.119

Under-ground 2.277 0.920 0.076 2.246 0.857 0.117
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range of 0.6 to 1.1, while most b values remain between -1 and 5,

despite a few extreme values exceeding 10. Overall, the scatter plot

of the model shows a balanced distribution around the fitting line.

Across different age groups, the model performs better for young

and middle-aged forests, while the fitting accuracy for near-mature

forests is relatively lower compared to the other four age groups. In

terms of different biomass components, except for leaf biomass,

there is no significant deviation between the observed and estimated

values for other components of Chinese fir biomass. Notably, the
Frontiers in Plant Science 13
estimation accuracy for trunk biomass and aboveground biomass is

higher than that of other components. Figure 6 displays the fit

between the predicted and observed values for the NLME models.

The diagnostic analyses in Figures 5, 6 and Table 7 the

demonstrate that the model in this study exhibits a good overall

fit, with no significant heteroscedasticity. The bivariate models

provided a better fit for biomass than the univariate models, and

tree height was found to be a significant factor influencing the

models. The inclusion of age group factors in the NLME and
FIGURE 6

Fitting diagram of estimated and observed values of nonlinear mixed effects model (Trunk, Bark, Branch, Leaf, Aboveground, and Underground
represent the biomass distribution of different components of Chinese fir, while Young, Middle, Near-Mature, Mature, and Over-Mature indicate the
respective age groups).
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dummy variable models led to improvements over conventional

models, while machine learning methods significantly enhanced the

fitting accuracy over the NLME model.
4 Discussion

This study constructed biomass inversion models for

Cunninghamia lanceolata (Chinese fir) stands using UAV-based

LiDAR point cloud data integrated with field survey measurements.

The parametric and non-parametric models achieved coefficients of

determination of R² = 0.832 and R² = 0.939, respectively, indicating

high predictive accuracy. These results are comparable to those

reported by Yu et al. (2023) and outperform several previously

developed UAV-LiDAR-based biomass estimation models for

Chinese fir (Yu et al., 2023; Xian et al., 2024). This demonstrates the

reliability and applicability of LiDAR-derived structural metrics in

estimating stand biomass, providing critical methodological support for

biomass estimation and carbon stock assessments at the regional scale.

Remote sensing-based biomass modeling, particularly using

LiDAR, offers significant advantages in characterizing vertical forest

structure and spatial heterogeneity, addressing limitations inherent in

traditional ground-based inventory methods. However, challenges

remain regarding optimal variable selection, model transferability,

and reduced accuracy in structurally complex or heterogeneous

forest stands. Model accuracy is not only contingent upon stand

structure and geographic characteristics but is also influenced by the

specific LiDAR-derived metrics selected for modeling (Li et al., 2019;

Chen et al., 2022). In this study, a comprehensive set of LiDARmetrics

was extracted, including 46 height variables, 9 intensity variables, and 2

density variables. Following comparative analysis, two key variables—

cumulative 5th percentile height and Leaf Area Index (LAI)—were

selected as final predictors. These findings are consistent with previous

research by Du et al. (2021) and Qu et al. (2014), who identified

percentile-based height metrics and canopy cover as dominant

variables in biomass modeling (Qu et al., 2014; Du et al., 2021).

Height-related metrics were found to effectively capture mean stand

height, while density and intensity variables reflected canopy closure

and horizontal structure. The integration of these three types of features

enhances the capability of LiDAR-based models to accurately estimate

biomass across various stand conditions (Wallace et al., 2016).

Regarding model architecture, four commonly used base

models were tested, with enhancements including nonlinear

mixed-effects modeling, dummy variables, and machine learning

techniques. Model performance was assessed using R², RMSE, TRE,

and residual diagnostics (Li et al., 2022). Results revealed that

different base models were optimal for different biomass

components: the Logistic model was best suited for foliage

biomass, while the Empirical model provided superior

performance for other components. Overall, nonlinear models

demonstrated better fit and stability than linear regressions,

aligning with previous findings (Fu et al., 2018; Chen et al., 2022).
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The inclusion of stand age as a covariate in the mixed-effects

models significantly improved model accuracy, indicating that

developmental stage plays a critical role in biomass accumulation.

This aligns with the work of Guo (2022), who highlighted the

influence of stand age in ground-based biomass models for Chinese

fir (Zhao et al., 2020). In managed plantations—such as those in

Guangdong Province where initial planting densities are high—

tending and thinning practices during early to mid-rotation stages

alter stand density and structural attributes (e.g., DBH, height,

volume), thereby impacting biomass distribution (Jiang et al., 2022).

Furthermore, both dummy-variable models and mixed-effects

models were evaluated. The dummy-variable models showed

slightly lower accuracy compared to nonlinear mixed-effects

models, which may be attributed to the selection of input

variables and sample size distribution among age classes. This

aligns with the guidance of Wang (2008) and Chen (2018), who

suggest that when the number of categories is small (<10), dummy-

variable models are suitable, whereas mixed-effects models are more

appropriate when category count is higher or sample sizes are

imbalanced (Wang et al., 2008; Chen et al., 2017).

Component-wise biomass modeling showed the following order

of model performance: trunk > aboveground > bark > underground >

branch > leaf. This ranking is consistent with the results reported by

Sun et al. (2021), who also found trunk and underground biomass to

be more predictable than foliage biomass (Sun et al., 2023). As stands

mature, increases in DBH and height lead to higher trunk, bark, and

underground biomass, while branch and leaf biomass are more

sensitive to stand density and light competition. Including stand

age in foliage biomass models improved their accuracy, though

performance remained lower than for other components. This may

explain why the foliage biomass model required a distinct base

function (Logistic) to accommodate its nonlinear growth pattern.

Despite the strong performance of the proposed models, several

limitations remain. While stand age was incorporated, other

environmental factors such as site conditions and canopy closure

were not included and may have significant impacts on biomass

allocation. Future research could incorporate two-level or multi-level

mixed-effects models to account for these sources of variability.

Moreover, this study focused on monospecific plantations, and

further investigations in mixed-species forests are necessary to

explore the effects of species composition and structural

complexity. Prior studies have indicated that LiDAR detection

accuracy may be reduced in steep terrain or multi-layered canopies,

warranting methodological refinement in such contexts (Wang et al.,

2008; Khosravipour et al., 2015; Chen et al., 2017; Jiang et al., 2022).

Additionally, only the Random Forest algorithm was evaluated

among non-parametric methods. Future work should include other

machine learning approaches, such as Support Vector Machines

(SVM), Artificial Neural Networks (ANN), and K-Nearest

Neighbor (KNN), to compare their performance against traditional

models. Due to space limitations, integrated estimation of component

and total biomass will be discussed in a follow-up paper.
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5 Conclusion

This study focused on Chinese fir plantations in Guangdong

Province and employed a combination of airborne LiDAR data and

ground-measured data to construct biomass models for different

components of forest stands using both parametric and non-

parametric modeling methods. Forest stand age was incorporated

as a random factor in the models. The following conclusions were

drawn based on the fitting and validation results:
Fron
1. Multicollinearity among LiDAR-derived variables: There is

significantmulticollinearity among the characteristic variables

derived fromUAVLiDARdata, with height variables showing

a strong positive correlation with stand biomass. The 5%

cumulative height percentile and leaf area index (LAI) were

identified as more suitable predictor variables.

2. Good fitting performance of basic models: Both univariate

and bivariate basic models demonstrated good fitting

performance, with coefficients of determination R2

generally above 0.6. The fitting accuracy was highest for

trunk and branch biomass, while leaf biomass model

showed relatively lower fitting accuracy.

3. Impact of stand development stage on biomass: The stand

developmental stage significantly influences the biomass of

Chinese fir stands, making it essential to consider stand age

when constructing stand models. Nonlinear mixed-effects

models demonstrated higher fitting accuracy compared to

dummy variable models. Machine learning methods

significantly improved model fitting accuracy.

4. High predictive accuracy of the models: The models

developed in this study exhibited high predictive accuracy,

with all errors remaining within reasonable limits. These

models are suitable for estimating the biomass of Chinese fir

stands at the scale of Guangdong Province and can be applied

in practical scenarios.
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