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Recognition and localization
of ratoon rice rolled stubble
rows based on monocular
vision and model fusion
Yuanrui Li1,2†, Liping Xiao1,2†, Zhaopeng Liu1,2, Muhua Liu1,2,
Peng Fang1,2*, Xiongfei Chen1,2, Jiajia Yu1,2, Jinlong Lin1,2

and Jinping Cai1,2

1College of Engineering, Jiangxi Agricultural University, Nanchang, China, 2Jiangxi Key Laboratory of
Modern Agricultural Equipment, Nanchang, China
Introduction: Ratoon rice, as a high-efficiency rice cultivation mode, is widely

applied around the world. Mechanical righting of rolled rice stubble can

significantly improve yield in regeneration season, but lack of automation has

become an important factor restricting its further promotion.

Methods: In order to realize automatic navigation of the righting machine, a

method of fusing an instance segmentation model and a monocular depth

prediction model was used to realize monocular localization of the rolled rice

stubble rows in this study.

Results: To achieve monocular depth prediction, a depth estimation model was

trained on training set we made, and absolute relative error of trained model on

validation set was only 7.2%. To address the problem of degradation of model's

performance when migrated to other monocular cameras, based on the law of

the input image’s influence on model's output results, two optimization methods

of adjusting inputs and outputs were used that decreased the absolute relative

error from 91.9% to 8.8%. After that, we carried out model fusion experiments,

which showed that CD (chamfer distance) between predicted 3D coordinates of

navigation points obtained by fusing the results of the twomodels and labels was

only 0.0990. The CD between predicted point cloud of rolled rice stubble rows

and label was only 0.0174.
KEYWORDS

ratoon rice, model fusion, depth prediction, deep learning, monocular vision
1 Introduction

Ratoon rice is a rice cultivation method that is planted once and harvested twice

(Firouzi et al., 2018), which has the advantages of short fertility, high yield, low cost and

sustainable economic benefits compared to ordinary rice (Yang et al., 2024). Ratoon rice is

grown in many parts of the world, mainly in East and South Asia, some countries in Africa,
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southern United States and Latin America (Pasaribu et al., 2018).

However, existing harvesters often cause a large area of rolling

damage when harvesting the first season of ratoon rice, leading to a

decline in the yield of the regeneration season, which seriously

affects yield and restricts further promotion of planting area (Xiao,

2018). To solve this problem, our research team developed a rolled

rice stubble righting machine, which was shown to significantly

increase the yield of ratoon rice (Chen et al., 2022; Chen et al.,

2023). The righting machine is mounted on the back of a paddy

field vehicle, and the driver needs to concentrate highly on

observing the relative positions of the back of rolled stubble row

and righting machine, so the driver is easily fatigued, and due to the

rolled stubble row is very irregular, the righting accuracy needs to be

improved. In order to solve the above problems, the righting

machine needs to realize the automatic row alignment, and

obtaining spatial position of rolled stubble row is a prerequisite.

Currently, Global Navigation Satellite System (GNSS), Light

Detection and Ranging (LIDAR), and machine vision are the

commonly used sensing methods for obtaining navigation and

position information in agriculture, GNSS can only provide

absolute position information, which is suitable for use under the

condition of fixed position of crop rows (Bonadies and Gadsden,

2019). LIDAR can obtain the relative distances of the objects in a

certain area, but it has the problems of sparse point cloud data, and

it is sensitive to rain, fog, dust, etc (Zhang et al., 2022). Machine

vision detects the position of objects by acquiring its color, texture,

shape, and other features through vision sensors (Kim et al., 2021),

which is less costly than the previous two methods, and its

robustness strengthens with algorithmic enhancement, and is

widely used in field navigation operations, such as weeding,

tilling, spraying, etc (Zhang et al., 2024).

In crop row-based machine vision navigation applications, the

common method is to first obtain the position of the navigation

reference target on the image through image processing algorithms,

the commonly used algorithms can be classified into image

processing algorithms based on traditional image processing and

based on deep learning, the deep learning model benefits from its

powerful information extraction ability, even in complex

environments, can also obtain high recognition accuracy, such as

semantic segmentation model and instance segmentation models

and so on (O’Mahony et al., 2020). Then the navigation deviation is

determined based on the position of the recognized target and the

declination of the forward direction (Yuan et al., 2024; Kong et al.,

2025). Although this method is straightforward, it cannot acquire

the metric relative distance of the navigation target with regard to

the working machine, in order to solve this problem, some

researchers have used multi-sensor fusion to acquire distance

information while acquiring the RGB image, such as binocular

camera (fusion of two monocular cameras) (Li et al., 2022), RGB-D

camera (RGB camera fusion of depth sensor) (Silva et al., 2022),

RGB camera fusion LIDAR (HE et al., 2022), etc., but these methods

still have many problems, such as complex fusion algorithms, sparse

point clouds, high cost, and complex calibration.

In recent years, with the development of deep learning, the

information contained in images has been further mined, in

addition to models such as target detection and instance
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segmentation, some scholars have proposed a monocular depth

prediction model, which predicts the depth (distance relative to

the camera) at each pixel position from a single image (Abuolaim

and Brown, 2020), even though the training process uses sparse

depth maps, the trained model is capable of outputting dense

depth maps. In combination with the camera’s intrinsics, depth

can also be converted into a 3D point cloud in the camera’s

coordinate system (Fu et al., 2021). In a recent study, the state-of-

the-art model had only 3.9% absolute relative error in predicted

depth versus label on the KITTI dataset (Hu et al., 2024),

demonstrating its potential for autonomous driving, robotics,

3D reconstruction, and more. In recent years, depth prediction

models have begun to be applied in the field of agriculture. Zhao

et al. (2022) used the P3ES-Net depth prediction model to

reconstruct a 3D point cloud of a plant from a single image and

measured the phenotypic parameters of the plant from the point

cloud. Cui et al. (2022) used the MonoDA model to achieve

monocular depth prediction in a vineyard environment, with an

absolute relative error of 13.4%. Coll-Ribes et al. (2023) improved

the accuracy of grapes image instance segmentation by fusing

depth and RGB information, where the depth is predicted by a

model, improving the F1 value from 0.882 to 0.924 compared to

using only RGB images. Shu et al. (2021) built a field SLAM system

using a monocular depth prediction model, which allowed the

system to get rid of the LIDAR and stereo cameras and can be

easily deployed on existing equipment. Although there has been

an influx of research on the application of depth prediction

models in agriculture, more application scenarios still need to be

explored, such as monocular visual navigation.

In a recent study, we used a deep learning model to achieve

instance segmentation of ratoon rice rolled stubble rows (Li et al.,

2023), but in order to achieve automatic navigation, it is also

necessary to locate the position of the stubble rows. In this paper,

machine vision is used to realize monocular vision-based 3D spatial

localization of rolled stubble rows of ratoon rice, unlike the multi-

sensor fusion approach, this study adopts a deep learning model

fusion-based method, where one model is used for recognition and

the other is used for localization, in which the recognition model is

an instance segmentation model, which is one of our previous

research results (Li et al., 2023), and the localization model is a

depth prediction model. We investigated the depth prediction

performance of the depth prediction model under the ratoon rice

field scene, and finally fused the outputs of the instance

segmentation model and the depth prediction model to obtain

the spatial location of the navigation line and 3D point cloud of

ratoon rice rolled stubble rows.

The main structure of this paper is as follows: in Section 2, we

first introduced the model fusion method, and then described the

structure and training method of the depth prediction model used

in this paper. In Section 3, we trained the depth prediction model,

tested the model performance on a validation set, and then obtained

the law of the influence of the change of the focal length of the input

image on the depth value predicted by the model, according to

which we proposed two optimization methods to improve the

performance of the model migrating to a monocular camera.

Finally, we conducted model fusion experiments.
frontiersin.org
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2 Materials and methods

2.1 Method of recognizing and locating the
rolled stubble rows

Flowchart for model fusion is shown in Figure 1, where an image

is input into the instance segmentation model and the monocular

depth prediction model to output the instance mask and the depth

map, respectively. Then, the instance mask is horizontally divided

into n blocks, and the average horizontal and vertical coordinates of

each instance mask in each block are calculated in the image

coordinate system, which are used as the coordinates of the

navigation points, and the navigation lines are formed by

connecting the navigation points in the instances. According to the

image coordinates of the navigation point, corresponding depth value

can be obtained in the depth map. Then, the planar 2D image is

converted to a 3D point in the camera coordinate system according to

a conversion equation between image coordinates and camera

coordinates in the camera imaging principle:
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Z equals depth, u, v are image coordinates, and X, Y, Z are 3D

coordinates in the camera coordinate system, fx and fy , Cx and Cy

are intrinsic parameters that represent the pixel-represented focal

length in x and y directions, the x and y coordinates of the optical

center in the image coordinate system, respectively.
2.2 Depth dataset

The dataset is collected using two depth cameras, one for

training and validation, and the other for testing the

generalization ability of the trained model. This is critical in real-
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world deployments, as the trained models will be migrated to the

monocular camera for deployment.

2.2.1 Data collection in the field
The dataset was collected in Cailing Town, Duchang County,

Jiujiang City, Jiangxi Province, China, in the mornings of August 10

and 11 2024, under sunny weather. The collection environment was

a paddy field after the first harvest of ratoon rice, and the collection

environment and equipment is shown in Figure 2, two depth

cameras were used to collect data, the Intel RealSense D457

(D457) and Stereolabs ZED (ZED), the resolution of the images

collected by the D457 is 1280*720, and that of the images collected

by the ZED is 640*360, their models are shown in Figure 3 of the

Supplementary Material, and setup information is given in Table 2

of the Supplementary Material.

As shown in Figure 2, Two depth cameras were mounted in

front of the paddy field vehicle, and the vehicle was manually driven

through the field, with the two depth cameras automatically

collecting data every 0.2 seconds. As the environments in the

centre of the field were very similar and the environments at the

edges of the field varied considerably, the vehicle was driven around

the boundaries most of the time when collecting data on a field in

order to increase the diversity of the data.

2.2.2 Dataset production
In order to improve the reading and writing efficiency of the

depth data, the png image format was adopt to store the depth data,

the original data collected were of floating type with the unit of m

which becomes mm after being multiplied by 1000, and the data

type was converted to unsigned 16-bit integer and saved, which can

retain the precision of three decimals. 33706 sets of data were

collected by the two depth cameras, D457 and ZED, each set of data

contains a left eye RGB image and a depth map, 19808 sets collected

by the D457 depth camera, and 13898 sets collected by the ZED

depth camera. All data can be categorized into general and obstacle

according to the scene, several sets of data are shown in Figure 3,
FIGURE 1

Flowchart of the navigation line localization method based on model fusion. Each color of mask represents a row of rolled rice stubble. The image
coordinate system (u, v) is in pixel and the camera coordinate system (X, Y, Z) is in m. The size of the depth map is equal to that of the input image,
and the valid depth value (greater than 0) on each pixel indicates the vertical distance of the object from the camera, i.e., the value of the Z axis in
the camera coordinate system.
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where the black part is the missing depth value. The depth values

were saved in the range of 0-20 meters.

The collected data are divided into training, validation and test sets,

where the training set contains 16,808 sets of data from the D457, the

other 2,000 sets of data from the D457 are the validation set, and 2000

images captured by ZED were randomly selected as test set to test the

performance of the model migrated to the monocular camera.

2.2.3 Dataset augmentation
Data augmentation has proved to be a robust technique for

solving a variety of challenging deep learning tasks, including image

classification, natural language understanding, speech recognition,

and semi-supervised learning (Gong et al., 2021). The main method

(DNNs) to improve the generalization ability of deep neural

networks is data augmentation by expanding the training set

through data transformation (Dabouei et al., 2021). In this study,

in order to reduce or even eliminate the effect of color during model

training and to avoid the depth prediction model predicting depth

based on color information, we used image enhancement

techniques during model training. Before feeding the images into

the model, we performed random color transformations on the

images and all the transformation operations are done by

Albumentations (Buslaev et al., 2020).The flow chart of

transformation is shown in Figure 1 of the Supplementary

Material, the partial data augmentation results for one image are

shown in Figure 2 of the Supplementary Material.
2.3 Monocular depth prediction model

2.3.1 Model structure
The depth prediction modeling framework used in this study is

BinsFormer (Li et al., 2024), and its overall structure is shown in

Figure 4, which consists of three parts: a pixel-level module, a
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transformer module, and a depth prediction module. An image is

first fed into the backbone network (The swin-L (Liu et al., 2021) was

used) in the pixel-level decoding module, which extracts features from

the image and then decodes them into multiscale features F and pixel-

level representations. Then, in the Transformer module, queries

interact with F with the help of the attention mechanism and their

outputs go into the independent MLPs. MLPs output embeddings into

bins predictions and bins embeddings. Then the model predicts the

probability distribution map via a dot product between pixel

representations and bins embeddings in depth estimation module.

The final depth estimation is calculated by a linear combination

between the probability distribution map and post-processed N bins

centers. The model output are absolute depths in m.

2.3.2 Model training methods
The training process of the depth prediction model is shown in

Figure 5. During the training process, in addition to the input RGB

images for inference, labels are needed to calculate the loss, the

labels include the depth map captured by the depth camera and the

corresponding mask, the mask is the part of the label that is not null,

the mask avoids missing part (denoted by 0) of label depth map is

involved in the loss calculation. The loss function used in training is

silog (Bhat et al., 2023). The data used in training is the D457

training set. The hardware used for training is mainly a Xeon (R)

Platinum 8358P CPU, 10 NVIDIA GeForce 4090 24G GPUs. the

training hyperparameters are shown in Table 1. To highlight that

the model was trained on the D457 dataset, this model is uniformly

referred to as ‘Model-D457’ in the following.
2.4 Evaluation metrics

In this study, eight commonly used evaluation metrics were

used to assess the accuracy performance of the depth prediction
FIGURE 2

Dataset collection scene and collection equipment. The equipment consists of a power supply and controller, a monitor, two depth cameras, and a
Yanmar Paddy Chassis. The controller is an AGX Xavier Orin. The images taken by the cameras are transmitted to the monitor in real time. Two
depth cameras mounted side by side with lenses tilted to look at the ground.
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model, including absolute relative error (ABS-REL), root mean

squared error (RMSE), threshold accuracy (d1, d2, d3) etc., and

their calculation methods are as follows.

ABS� REL =
100%
N oj ypred − ygt

ygt
j (2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No ypred − ygt

� �2r
(3)
Frontiers in Plant Science 05
Silog =
1
No

n
i d

2
i +

1
N2 oN

i di
� �2

,   d = log ypred
� �

− log ygt
� �

    (4)

  dn(% ) =
100
N oN

i max(ai,a*i ) < 1:25n,      a =
ygt
ypred

  

a* =
ypred
ygt

,    where   n = 1, 2, 3

(5)

RMSElog =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No log ypred

� �
− log ygt

� �� �2r
(6)
FIGURE 3

Dataset visualization. (A, B) denote general, obstacle type data captured by the D457 camera, (C, D) denote general, obstacle type data captured by
the ZED camera, (E) Color bar for depth map, m. The first column is the rgb image and the second column is the depth map. The black part of the
depth map indicates that the depth information is null here. The unit of the color bar is m.
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SQ� REL =
1
No

ypred − ygt
ygt

 !2

(7)

where ypred is the model prediction at the pixel position and ygt
is the depth value (not null) captured by the depth camera at the

corresponding position. N denotes the total number of ygt in the

depth map. All are smaller and better except dn which is larger

and better.
Frontiers in Plant Science 06
3 Results and analysis

In this chapter, the depth prediction model was trained and its

performance was tested on the validation set, then we obtained the

law of the influence of focal length through the model prediction

results, based on which two optimizations were proposed to

improve the performance of the model migrated to a monocular

camera (ZED test set). Once the model was ready, model fusion
FIGURE 4

BinsFormer overview.
FIGURE 5

Flowchart for training of depth prediction model. The white portion of the Mask has a value of 1 and the black portion has a value of 0.
'Prediction*Mask' indicates a pixel-by-pixel multiplication of the depth in the prediction depth map and the mask.
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experiments were carried out to obtain the 3D coordinates of the

navigation points and the rolled rice stubble rows, and the CD

values between them and the labels were calculated.
3.1 Model training process and
performance on validation set

The change curves of some important values of Model-D457

during the training process are shown in Figure 6. As the training

proceeds, the loss decreases significantly, and the evaluation metrics

d1 rises, RMSE and ABS-REL show a decreasing trend, indicating

that the depth information predicted by the model is getting closer

and closer to the depth captured by the depth camera. Although the

loss still decreases significantly after iteration up to 10000, the

accuracy on the validation set does not improve significantly, which

may be due to the learning rate being too small at this time. The best

RMSE is achieved on the validation set at 17000 training iterations,

and the model weights at this point are saved as the final weights.

The visualization of Model-D457’s inference results on several

images of the validation set is shown in Figure 7. By comparing the

full predicted depth maps and labels, it can be seen that despite the

large number of nulls in the label depth maps used in the training

process, but the predicted depth map has significant depth errors at

long range due to the absence of long-distance depth label.

Comparison of the label depth map and the predicted depth map

at the corresponding locations shows that the depth values obtained

by the model inference are very close to the label depth map in
Frontiers in Plant Science 07
color, which is further evidenced by the error maps, where the

difference between the label depths and the predicted depths is so

small that it presents large areas of white color, in addition, we also

find that the larger error values are concentrated at the far distance,

which presents blue and red colors in error map.

In Table 2, the ABS-REL between the predicted and label values

of the model is only 7.2%, the RMSE is only 0.383, and the other

evaluation metrics also exhibit small errors. The above results show

that the depth prediction value of Model-D457 is very close to the

measured value of D457 depth camera, which demonstrates its

strong spatial perception ability.
3.2 Effect of pixel-represented focal length
on depth prediction

Pixel-represented focal length expresses the physical focal length

in pixels, zooming in on an image causes pixel-represented focal

length to increase, zooming out causes it to decrease, and cropping an

image does not change pixel-represented focal length. Recently, a

scholars have achieved the training of a depth prediction model on

mixed dataset by adjusting the pixel-represented focal lengths on

different publicly available datasets to be consistent (Yin et al., 2023),

which demonstrated that the pixel-represented focal length of the

input image has an effect on the prediction results of the model, but

the exact effect is not clear, and we experimentally explore the exact

effect in this section.

We carried out experiments using Model-D457 on one of the

images in the validation set and obtained its outputs under four

conditions, which are visualized in Figure 8, and the evaluation

metrics are calculated in Table 3:
1. In the results of the original image, both the visualization

results and the evaluation metrics calculations show that

the predicted and label values of the model are close;

2. After the original image is centrally cropped to 360*640

from 720*1280 resolution, the predicted and label values

are also close to each other, and the RMSE is slightly

increased compared to that before the cropping, and the

error map is reddish at distance and bluish in near area

before cropping, and blueish at distance and reddish in near

area after cropping, the reason for this phenomenon is

still unknown;
FIGURE 6

Change curves of some key values during training. (A) loss change curve, (B) d1 change curve on validation set, (C) RMSE change curve on validation
set, (D) ABS-REL change curve on validation set, (E) Learning rate change curve. Their horizontal directions are all in iter.
TABLE 1 Hyperparameters for model training.

Hyperparameters Value

Optimizer AdamW

Weight decay 1.00e-04

Initial learning rate 0.001

Max iters 40000

Validation interval 1000

Minibatch size 10

Learning rate scheduler Poly

Learning rate drop power 0.5
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Fron
3. After the cropped image is enlarged to 720*1280, there are

obvious color differences between the predicted depth map

and the label depth map, and the error map as a whole is

reddish, indicating that the predicted depth value of the

model is smaller than the label value as a whole, and

comparing the calculation results of the evaluation

metrics before and after the enlargement, the ABS-REL

grows from 5% to 39.6%, the RMSE increases from 0.442 to

2.427, and the performance of other evaluation metrics also

decreases significantly;

4. After the original image is reduced to 360*640, there are

obvious color differences between the predicted depth map

and the label depth map, and the error map as a whole is

blueish, indicating that the predicted depth value of the model

is greater than the label value as a whole, the performance of

the evaluation metrics also decreased significantly.
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In conclusion, changing the pixel-represented focal length in

the input image will affect the output of the Model-D457: Increasing

the pixel focal length will result in smaller depths predicted by the

model, and decreasing the first-estimate focal length will result in

larger depths predicted by the model.
3.3 Adjusting inputs and outputs to
improve model migration performance

Although Model-D457 performs well on the validation set, the

goal of this paper is to migrate the model to a monocular camera,

which is in line with practical application scenarios, however, there

is a big difference in the pixel-represented focal length between the

photos taken by the D457 camera and the ZED camera, and the

average evaluation metrics of all the images in the test set are shown
TABLE 2 Performance of Model-D457 on the validation set.

ABS-REL↓ RMSE↓ Silog↓ d1↑ d2↑ d3↑ RMSElog↓ SQ-REL↓

7.2% 0.383 0.037 0.984 0.999 0.999 0.039 0.024
FIGURE 7

Visual comparison of Model-D457's output on the validation set with labels. (A) Input images, (B) Full predicted depth map, (C) Predicted depth map
at label position, indicates the portion of the predicted depth map that corresponds to valid values at the label position, (D) Label depth map,
acquired by the D457 camera, (E) Error map, is calculated as the valid depth value in the label depth map minus the predicted value pixel by pixel, (F)
Color bar for error map, m. The color bar for depth map is shown in Figure 3.
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in Table 4. when the original (original) ZED images are directly

input into the model, it can be seen that compared to the model’s

results on the D457 validation set, all the metrics are significantly

decreased, the ABS-REL is more than 90%, the RMSE is more than

3.2, and the d1 is only 0.004, indicating that the model’s

performance is significantly decreased. The visualization results

are shown in Figure 9, when the original ZED image is input,

there is a significant difference in the color of the predicted depth

map compared to the label at the same location, and the error value

map shows blue color as a whole, indicates that the depth of

prediction is greater than the depth of label.

According to the experimental results in section 3.2, for the above-

mentioned phenomenon that the predicted depth of the model on the

test set is too large, we adopt two optimization methods namely,

adjusting the input and adjusting the output to improve the

performance of the model on ZED camera, and the results of

average evaluation metrics are shown in Table 4, and results of

visualization are shown in Figure 9:
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1. Adjusting the size of the input image. When the input

image of the model is enlarged to 2.14 times of the original,

that is, i.e., the resolution of the input image is enlarged to

1369*770, the model performance reaches the best, and at

this time, all the evaluation metrices such as ABS-REL and

RMSE are significantly improved, and they are even close to

the performance of the model in the validation set in

Table 2, and the predicted depth maps of the model at

this time are very close to the labels in terms of color, and

the error map overall close to white, all indicating that the

predicted depth values are close to the labels.

2. Adjusting the scale of the output depth values. After

reducing the overall depth value by 1.94 times, the

evaluation metric reaches the best, which is close to the

result obtained by adjusting the input. The predicted depth

maps are also very close in color compared to the labels,

and the error maps are also close to white overall,

indicating that the predicted depth values are close to the
TABLE 3 The performance of Model-D457 under different transformations of an image in the validation set.

ABS-REL↓ RMSE↓ Silog↓ d1↑ d2↑ d3↑ RMSElog↓ SQ-REL↓

Original 5.3% 0.369 0.030 0.997 0.999 0.999 0.030 0.017

0.5×Crop 5.0% 0.442 0.025 0.999 0.999 0.999 0.026 0.020

0.5×Crop
+2×Resize

39.6% 2.427 0.049 0.003 0.289 0.957 0.227 0.786

0.5×Resize 90.6% 3.522 0.059 0.035 0.059 0.515 0.282 2.674
FIGURE 8

Visualization of Model-D457 output results under four transformations on one image of the validation set. Original: the result of the original image;
0.5×Crop: the result of the original image after 0.5×central cropping; 0.5×Crop+2×Resize: the result of the original image after 0.5×central cropping
and 2×magnification; 0.5×Resize: the result after 0.5x reduction of the original image. (A) Input images, (B) Full predicted depth map, (C) Predicted
depth map at label position, indicates the portion of the predicted depth map that corresponds to valid values at the label position, (D) Label depth
map, acquired by the D457 camera, (E) Error map, is calculated as the valid depth value in the label depth map minus the predicted value pixel by
pixel, The color bar of the error map is shown in Figure 7. The color bar of depth map is shown in Figure 3.
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Fron
labels. The depth range of the labels used in the above

experiment is 0-5m, because in practical use only need to

obtain the distance information of the near target, plus the

depth of the camera in the long distance when the accuracy

is poor, this time the calculated accuracy is meaningless.
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The above experimental results show that it is easy to improve

the depth prediction performance of Model-D457 after migrating to

the ZED camera by simply resizing the input image or scaling the

model output depth overall, and its final results are even close to the

model’s performance on the validation set.
FIGURE 9

Visual comparison of Model-D457's performance on the ZED test set in three conditions. The three conditions are the original result without any
manipulation, the result of resizing the input image, and the result of rescaling the output. (A) Input images, (B) Full predicted depth map,
(C) Predicted depth map at label position, indicates the portion of the predicted depth map that corresponds to valid values at the label position,
(D) Label depth map, acquired by the ZED camera, (E) Error map, is calculated as the valid depth value in the label depth map minus the predicted
value pixel by pixel, (F) Color bar for depth map, m. The color bar for the error map is shown in Figure 7.
TABLE 4 Performance of Model-D457 migrated to the ZED test set under three conditions.

ABS-REL↓ RMSE↓ Silog↓ d1↑ d2↑ d3↑ RMSElog↓ SQ-REL↓

Original 91.9% 3.270 0.045 0.004 0.038 0.637 0.283 2.722

2.14×Resize 8.8% 0.397 0.047 0.945 0.990 0.996 0.051 0.072

Output/1.94 8.8% 0.314 0.041 0.933 0.991 0.996 0.050 0.050
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3.4 Model fusion-based rolled rice stubble
row recognition and
localization experiment

We used SMR-RS (Li et al., 2023) as the instance segmentation

model and Model-D457 as the depth prediction model, and

randomly selected 1000 RGB images from the ZED test set for

model fusion test, of which the experimental results of three images

are shown in Figure 10:
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As shown in panels A, B and C, the images inputs to the two

models output the mask of the recognized instances of the rolled rice

stubble rows and the depth map, respectively, and the different color

masks represent different instances, the depth maps in the figure are

obtained after using the adjusted input optimization in section 3.3.

As shown in panel E, we divided the mask horizontally of the

instances into 14 rows, and calculated the average horizontal and

average vertical coordinates of each instance mask in each row in the

image coordinate system to obtain the image coordinates of the
FIGURE 10

Visualization of model fusion experiment results. (A) Input ZED images, (B)Instance segmentation, the red dot in the instance mask indicates the
center of the bounding box, (C) Predicted depth map at label position, (D) Label depth map, acquired by the ZED camera, (E) Navigation points in
rgb image, only the positions of the navigation points in the mask area that are within 5m of the depth of the label are calculated, (F)Navigation
points in camera coordinate system, including predicted and label, corresponds to the navigation point in (E). (G) Color bar for depth map, m.
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navigation point. Then based on these image coordinates we took out

the depth value at the corresponding position from the predicted

depth map and the label depth map, next, based on the equation in

Section 2.1, we got the 3D coordinates of the navigation point in the

camera coordinate system, Table 1 of the Supplementary Material

(ZED-770*1369) demonstrates the intrinsics used therein. As shown

in panel F, we refer to the 3D navigation points calculated from the

predicted depth and label depth as ‘predicted’ and ‘label’, respectively,

and we compare the label navigation points and predicted navigation

points of these three images in the 3D camera coordinate system

(from left to right corresponding to the rolled stubble rows in the

input image), and it can be observed that their positions are very close

to each other in 3D space.

CD (Chamfer Distance) (Hajdu et al., 2012) is a metric for

assessing the similarity between different point clouds and is

commonly used in 3D reconstruction, in this paper, the CD values

between label and predicted navigation points are calculated, which is

implemented using the code provided in (Christian, 2023). The average

CD values of the above 1000 images obtained with (Resize Input) and

without (Original) the optimization method are shown in Table 5

(Navigation 3D Points). When the optimization method is not used,

the CD value is as high as 4.70, and when the optimization method is
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used, the CD value is only 0.09, which is caused by the fact that the

optimization method reduces the gap between the predicted depth

values and the label depth values, and the gap between the 3D points

obtained by depth conversion is also reduced accordingly.

We also obtained the label depths and corresponding predicted

depths within 5 m of the instance mask location of the rolled rice

stubble rows in the three images of Figure 10, then, used the above

method, their 3D coordinates in the camera coordinate system were

computed. They were plotted in Figure 11 (the left-to-right point

clouds in the single plot correspond to the left-to-right rolled rice

stubble rows in the rgb image.), the first row is predicted point clouds

and the second row is label, and it can be observed that they are very

similar to each other. The average value of CD (Crop Row 3D Points)

between the predicted and label point clouds in all 1000 test images

mentioned above is calculated in Table 5, and the CD value is as high as

1.35 without using the optimization method. After using the

optimization method in 3.4, the CD value is only 0.017.

The above results show that the model fusion-based recognition

and localization method for rolled stubble rows of ratoon rice proposed

in this paper can achieve high-precision spatial localization of the

navigation line, and only monocular RGB images were used. In

addition, the 3D point cloud of rolled stubble rows demonstrates the

application of the method in 3D reconstruction.
4 Conclusions

In this paper, we propose a novel spatial localization method, in

which we fuse the outputs of an instance segmentation model and a

monocular depth prediction model and successfully achieve
TABLE 5 Average chamfer distance between predicted and label
3D points.

Original Resize Input

Navigation 3D Points 4.7033 0.0990

Crop Row 3D Points 1.3542 0.0174
FIGURE 11

Three-dimensional point cloud of rolled rice stubble rows. The first row is the predicted point cloud and the second row is the label. The title of each plot
corresponds to the image name in Figure 10. The color of the point cloud varies with the value of the Z coordinate and the color bar is shown in Figure 9.
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monocular vision-based spatial localization of ratoon rice rolled

stubble rows. To realize the depth prediction, we trained Model-

D457, and the ABS-REL on the validation set is only 7.2%, and the

RMSE is only 0.383, demonstrating the depth prediction performance

of the proximity sensor. Through experiments, we obtained the pattern

of the influence of the change of the input image on the output of

Model-D457: enlarging the resolution of the input image makes the

model prediction result smaller, and reducing makes the model

prediction result larger, accordingly, we proposed two optimization

methods of adjusting the input and adjusting the output, which made

the ABS-REL of the model migrated to other cameras decrease from

91.9% to 8.8%. Once the depth prediction model was ready, we

conducted model fusion experiment, and the CD value between the

predicted 3D coordinates of the navigation points and the labels was

only 0.0990. The CD value between the predicted and label point cloud

of the rolled rice stubble rows was only 0.0174. The above results show

that the Model-D457 can predict depth well in ratoon rice field scene

and its accuracy is even close to that of a depth sensor, applying the

method of fusing the depth prediction model with the instance

segmentation model we achieved localization performance close to

sensor fusion (rgb fusion depth sensor), but our method is much

cheaper and easier to be deployed on existing devices.

Nevertheless, our method still has some limitations. Limited by

the depth measurement accuracy of the depth camera, the accuracy

of the predicted depth by the depth prediction model trained in this

paper at a long distance (more than 5m) needs to be improved. In

addition, the inference speed of the depth prediction model is slow,

and the inference time for a single image is about twice as long as

that of the instance segmentation model. Based on these

deficiencies, in the future, we will focus on making depth datasets

with higher accuracy and at longer distances, and researching

lightweight depth prediction models or end-to-end models that

integrate both depth prediction and instance segmentation, and

ultimately applying this method to automate rice stubble

righting machines.
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