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Mianyang, China, 2College of Grassland Science and Technology, Sichuan Agricultural University,
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Elymus sibiricus L., an excellent forage and ecological restoration grass, plays a

key role in grassland ecological construction and the sustainable development of

animal husbandry. In China, the wild germplasm resources of E. sibiricus are

abundant, and they are shaped by similar and contrasting climatic conditions to

form distinct populations, which enrich the genetic diversity of E. sibiricus. To

more comprehensively aggregate E. sibiricus germplasm resources at a lower

cost and to more accurately utilize its genetic variation, this study conducted a

preliminary exploration of core germplasm collections and fingerprinting of E.

sibiricus using single nucleotide polymorphism (SNP) markers. By combining

multiple evaluation measures with weighted processing, we successfully

identified 36 materials from 90 wild E. sibiricus samples to serve as a core

collection. Genetic diversity assessments, allele evaluations, and principal

component analyses of the 36 core germplasm samples all indicate that these

36 samples accurately and comprehensively represent the genetic diversity of all

90 E. sibiricus germplasm accessions. Additionally, we identified 290 SNP loci

from among the high-quality SNP loci generated by whole-genome sequencing

of the 90 E. sibiricus samples as candidate markers. Of these, 52 SNP loci were

selected as core markers for DNA fingerprinting of E. sibiricus. Using kompetitive

allele-specific PCR (KASP) technology, we also performed population origin

identification for 60 wild E. sibiricus germplasm accessions based on these

core markers. The core SNP markers screened in this study were able to

accurately distinguish between E. sibiricus germplasms from the Qinghai–Tibet

Plateau and those from elsewhere. This study not only provides a reference for

the continued collection and identification of E. sibiricus germplasm resources

but also offers a scientific basis for their conservation and utilization.
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1 Introduction

Elymus sibiricus L., the Elymus L. genus type species, is a

perennial, self-pollinating, and allotetraploid grass widely

distributed across Eurasia that plays a crucial role in meadow

steppe and meadow communities, often as a dominant species

(Yan et al., 2007b; Li et al., 2021). Elymus sibiricus has strong

adaptability, and high forage quality. It naturally occurs across

various habitats, including alpine meadows at elevations ranging

from 1,500 to 4,900 meters, forest clearings, shrublands, slopes, and

gravel beds along river valleys (Peng et al., 2022; Yen and Yang,

2022; Chen et al., 2023). Elymus sibiricus has abundant wild

resources within China, where it mainly occurs in Northeast

China, North China, Northwest China, and the Qinghai–Tibet

Plateau (Li et al., 2021). E. sibiricus exhibits excellent cold

resistance, with its seedlings able to withstand temperatures as

low as -4°C, and it can safely overwinter under extreme low

temperatures ranging from -40°C to -30°C (Yan et al., 2010).

Chen and He (2004) found that even at an altitude of 3200 m in

the Qinghai Lake region, E. sibiricus cv.duoye maintains high yields

of forage and seeds. In North China, E. sibiricus typically returns to

green in April, and in the Northwest region, it starts to germinate

when the daily average temperature reaches above 0°C, and enters

the greening period when the daily average temperature rises above

4°C (Li et al., 2000; Abulaiti et al., 2008). As a meso-xerophytic

plant, E. sibiricus exhibits strong drought resistance during the

germination and seedling stages, outperforming Agropyron

cristatum (L.) Gaertn, and other congeneric species such as E.

dahuricus Turcz., E. nutans Griseb., E. excelsus Turcz., and E.

tangutorum (Nevski) Hand.-Maz in terms of drought tolerance

(Yu et al., 2011; Chen et al., 2016; He et al., 2023). Liu et al. (2022)

found that under drought stress, apoplastic barrier in the

endodermis could maintain the balanced growth of E. sibiricus,

which contributes to drought tolerance of E. sibiricus. The

antioxidant defense system, key metabolic substances, specific

transcription factor families, and genes related to signal

transduction are also considered important factors in E. sibiricus’

strong drought resistance (Li et al., 2020; Yang et al., 2020; Yu et al.,

2022; An et al., 2024). Additionally, E. sibiricus has a certain

tolerance to salt stress, which makes it suitable for the restoration

and improvement of saline-alkali lands (Yang et al., 2015). Based on

these characteristics, E. sibiricus is extensively used for the

revegetation of degraded grasslands, soil stabilization, and forage

production in the Qinghai–Tibet Plateau and other high-altitude

areas of western China (Xie et al., 2015; Bai and Yan, 2020). Thus

far, E. sibiricus is among the few native grass species that have

achieved large-scale seed production and commercial utilization in

the Qinghai–Tibet Plateau region owing to its high seed yield

potential (Yan et al., 2024). Previously, research on the

germplasm resources of E. sibiricus has primarily focused on

resource evaluation and genetic diversity assessment based on

phenotypic characteristics and second-generation molecular

markers such as simple sequence repeats (SSRs) and sequence-

related amplified polymorphisms (SRAPs) (Ma et al., 2008; Yan

et al., 2008; Zeng et al., 2022; Zhang et al., 2024). In contrast, Guo

et al. (2016) used morphological traits and SSR markers to identify
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four E. sibiricus cultivars from the Northwest Plateau of Sichuan,

China. Additionally, Xie et al. (2015) utilized start codon targeted

polymorphisms (SCoT) markers to identify 69 different cultivars

and wild accessions of E. sibiricus. However, there have been no

reports identifying the population origins for wild E. sibiricus

germplasm accessions. E. sibiricus germplasm from different

habitats have experienced varying climate types, leading to

significant phenotypic and genetic differences among wild eco-

geographic populations, which provides rich genetic resources

and diverse selection bases for E. sibiricus germplasm

improvement (Zhang et al., 2022; Xiong et al., 2024b; Yan et al.,

2024). Characterizing and analyzing wild E. sibiricus germplasm

greatly facilitates the preservation and utilization of these resources.

However, methods based on morphological traits and the use of

second-generation molecular markers to identify the origins of wild

E. sibiricus germplasm are both time-consuming and inefficient.

Moreover, the morphological variation in wild E. sibiricus

germplasm is extensive, and its traits are often influenced by

environmental changes, dramatically increasing the difficulty of

source identification and hindering the collection and utilization

of these germplasm resources (Yan et al., 2007a; Li et al., 2023a).

Therefore, establishing an economical, efficient, and accurate

method for identifying the population source of E. sibiricus

germplasm is crucial for advancing the research and conservation

of its genetic resources, origin identification, and sustainable

development of the E. sibiricus industry.

Recently, a high-quality E. sibiricus reference genome (6.53 GB)

of ‘Chuancao No. 2’, a nationally approved variety in China, has

been released, which provides a foundation for population

genomics studies of E. sibiricus. Yan et al. (2024) performed

whole-genome resequencing of 90 wild E. sibiricus germplasm

samples from various habitat types and thus identified 80,148,422

high-quality SNP loci by alignment and comparison with the

‘Chuancao No. 2’ E. sibiricus reference genome. Based on these

SNP loci, the study not only highlighted the rich genetic diversity of

wild E. sibiricus germplasm but also was able to divide the 90 wild E.

sibiricus germplasm samples into four distinct groups, Qinghai–

Tibet Plateau (QTP), Northwest China (NW), North China (NC),

and Northeast China (NE) groups, providing important genetic

evidence for the population classification of E. sibiricus resources.

Compared with molecular markers such as SSRs, inter-simple

sequence repeat (ISSRs), and SRAPs, SNP markers are distributed

more evenly across the entire genome, and they are characterized by

higher density, greater polymorphism, and more stable inheritance

(Rafalski, 2002; Varshney et al., 2009; Li et al., 2023c). SNPs can be

readily adapted to automated genotyping methods and can be

identified via high-throughput automated detection (Zhang et al.,

2020). The KBiosciences Kompetitive allele-specific PCR (KASPar)

system is one of the most ideal high-throughput SNP genotyping

platforms given its high accuracy and low cost (Semagn et al., 2014),

and it has been widely utilized in studies on wheat (Grewal et al.,

2020), rice (Steele et al., 2024), cotton (Islam et al., 2015), cucumber

(Kahveci et al., 2021), and broccoli (Shen et al., 2020, 2021). Thus,

constructing a core collection based on SNP markers is more

accurate and effective (Van Inghelandt et al., 2010; Dou et al.,

2023). A core collection is characterized by its heterogeneity,
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diversity, representativeness, and practicality, as it is not merely a

simple molecular genetic snapshot of an entire species but rather a

representative subset that retains most of the genetic information of

the original broader germplasm (Brown, 1989; Gu et al., 2023). The

construction of a core collection not only provides strong support

for genetic breeding, conservation biology, and systematic studies,

but also has high academic and practical value in promoting

germplasm resource exchange and utilization as well as gene bank

management more generally (Gautam et al., 2004; Gu et al., 2023;

Aribi, 2024). Lee et al. (2020) selected 67 pumpkin accessions as a

core collection from among 610 pumpkin (Cucurbita moschata)

germplasm accessions based on 2,071 high-quality SNPs. Similarly,

Ketema et al. (2020) identified 94 accessions as a core collection

from among 357 Ethiopian cowpea (Vigna unguiculata [L.] Walp.)

germplasm samples based on genetic diversity analysis using SNP

markers. These core accessions captured the full genetic diversity of

the 357 Ethiopian cowpea germplasm samples, providing an

empirical foundation for the collection, conservation, and

utilization of Ethiopian cowpea germplasm. Girma et al. (2020)

selected 387 sorghum (Sorghum bicolor L.) accessions as a core

collection from 1,628 sorghum germplasms based on SNP markers,

providing important resources for subsequent sorghum breeding,

genomic research, and genetic studies.

Additionally, SNP markers are one of the marker types

recommended by the International Union for the Protection of

New Varieties of Plants (UPOV) in the BMT Molecular Testing

Guidelines for constructing DNA fingerprint databases (Button,

2008). DNA fingerprint markers consist of a small number of highly

representative markers that can be used to distinguish between

different individuals or groups within the same species, and because

of their advantages of being convenient and enabling rapid

identification, as well as their accurate and stable results, they are

widely used in the study of crop germplasm resource diversity and

in variety identification (Karihaloo, 2015; Luo et al., 2023). Fan et al.

(2021) selected 24 SNP loci with high polymorphism information

content and strong sequence conservation to construct a DNA

fingerprint map for tea plant (Camellia sinensis [L.] O. Kuntze)

varieties, and it was used to accurately distinguish all 103 tested tea

plant germplasm samples. Tian et al. (2021) constructed an SNP-

DNA fingerprint database containing more than 20,000 maize (Zea

mays L.) samples based on 200 core SNP loci; this database can thus

be used in variety authentication, purity determination, and the

protection of plant variety rights. Wang et al. (2021a) used SNP

markers to construct a DNA fingerprint map for 216 cigar tobacco

(Nicotiana tabacum L.) germplasm resources, providing a scientific

basis for the selection and identification of high-quality cigar

tobacco germplasm resources. However, the application of SNPs

in the study of E. sibiricus has primarily focused on molecular

marker-assisted breeding and inferring the demographic history of

populations. For instance, Zhang et al. (2019) employed specific-

locus amplified fragment sequencing (SLAF-seq) technology to

successfully construct a high-density genetic linkage map for E.

sibiricus and identify QTLs and candidate genes associated with

seed traits. Moreover, they successfully identified genes related to

the adaptation of E. sibiricus to high-altitude climatic conditions
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Genome-Wide Association Analysis (GWAS) (Zhang et al., 2022).

Xiong et al. (2024b) based on SNP data from the pan-chloroplast

genome, inferred that the ancestors of E. sibiricus originated from

the Qinghai-Tibet Plateau and underwent a complex migration

history. Han et al. (2022) explored the factors influencing the

geographic distribution pattern and genetic spatial structure of E.

sibiricus on the Qinghai-Tibet Plateau using SNP markers. To date,

there have been no reports on the construction of a core germplasm

collection and DNA fingerprinting map for E. sibiricus based on

SNP markers.

In this study, we thus constructed a core collection of E. sibiricus

based on high-quality SNP markers generated from whole-genome

resequencing of 90 wild E. sibiricus accessions (Yan et al., 2024). We

further conducted genetic diversity analyses on these core

accessions to evaluate their representativeness. Additionally, to

accurately distinguish among different E. sibiricus germplasm

sources and identify the population sources of wild germplasm

accessions, we explored the construction of an E. sibiricus DNA

fingerprint map based on SNP markers. Ultimately, a set of 52 core

SNP markers was selected for the construction of the DNA

fingerprint map. Subsequently, we utilized the KASPar platform

to genotype 60 representative wild E. sibiricus accessions in order to

differentiate them and identify their population sources, thereby

validating the accuracy and effectiveness of the characterized core

SNP markers. These findings not only enhance the conservation

and utilization of E. sibiricus germplasm resources but also provide

scientific evidence and data references for their continued collection

and identification.
2 Materials and methods

2.1 Plant materials and DNA extraction

Nine E. sibiricus samples (Supplementary Table 1) were selected

for Sanger sequencing to validate the accuracy of the core SNP loci.

Sixty wild E. sibiricus samples (Supplementary Table 2) were also

selected for KASP genotyping to evaluate the effectiveness of the 31

KASP markers. All plant materials were provided by the Sichuan

Academy of Grassland Sciences (SAG). The seeds of these E.

sibiricus samples were germinated in nutrient bowls (16 cm in

diameter and 16 cm in height) filled with mixed soil (soil:nutrient

soil:vermiculite, 3:4:1.5 [V:V:V]). The nutrient bowls were then

placed in a growth chamber under controlled conditions (day/night

cycle 16/8 h, 20/15°C; 60 ± 5% relative humidity; 400 µE·m−2 ·s −1

PPFD). For each germplasm accession, when the plants reached the

seedling stage, young leaves were collected from each plant and

stored at -80°C for subsequent DNA extraction.

The leaf samples were ground with approximately 4-mm-

diameter steel beads in a Sceintz-48 tissue grinder (SCIENTZ,

Ningbo, China) after sufficient chilling in liquid nitrogen.

Genomic DNA was extracted from the plant samples using the

TIANGEN Kit (TIANGEN BIOTECH, Co., Ltd., Beijing, China)

according to the manufacturer’s instructions. The concentration
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and purity of the DNA were measured using a NanoDrop2000 UV

spectrophotometer (Thermo Scientific, Waltham, MA, USA).
2.2 Data collection

The genomic data of E. sibiricus ‘Chuancao No. 2’ and the whole-

genome sequencing data of 90 wild E. sibiricus samples

(Supplementary Table 1) were downloaded from the National

Genomics Data Center (NGDC) (BioProject accession number

PRJCA029280). All SNP markers used in this analysis were derived

from 80,148,422 high-quality SNP loci identified in the resequencing

data of these 90 E. sibiricus germplasm samples (Yan et al., 2024).
2.3 Core collection development

To establish a core germplasm collection of E. sibiricus

accessions, Core Hunter II software (Thachuk et al., 2009) was

used to analyze and evaluate the representativeness of 90 E. sibiricus

accessions. Using Core Hunter II software, we applied a weighted

approach combining multiple evaluation measures (modified

Roger’s distance and Shannon’s Diversity Index) to screen the

number of core accessions for proportions of 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, and 0.9 of the total germplasm collection, which was

based on the parameters recommended on the Core Hunter website

(https://github.com/cropinformatics/CoreHunter). The final core

collection size was determined by evaluating allele coverage (CV)

and comparing the expected heterozygosity (He), Shannon–Weaver

index, Nei’s gene diversity index, and polymorphism information

content (PIC) between the core collection and the entire

germplasm collection.
2.4 SNP selection

To select SNP markers with high marker quality, strong

representativeness, high discriminative power, a uniform

distribution across the genome, and high specificity for

fingerprinting analysis, we followed five criteria (outlined below),

based on the research of Sun (2017) and Wang et al. (2021a): (1)

specificity, (2) uniform marker distribution and high marker

quality, (3) substantial PIC values, (4) Hardy–Weinberg

equilibrium, (5) uniqueness. (1) To ensure that the selected SNP

markers have high specificity, we extracted 200 bp sequences

upstream and downstream of each SNP, totaling 401 bp. We then

performed BLAST alignments and retained only those SNPs that

uniquely aligned to the reference genome. (2) Based on the premise

that the SNP markers were uniformly distributed across the 14

chromosomes of E. sibiricus, we retained SNPs with no missing

genotype data and discarded those with a minor allele frequency

(MAF) below 20%. (3) The PIC values of SNP loci were calculated

by a Perl script, and loci with PIC values less than 0.35 were

discarded. (4) Hardy–Weinberg equilibrium was tested using

VCFtools software (v.0.1.13) (Danecek et al., 2011) with the
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parameters –max-missing 1 –maf 0.2 –hwe 0.01, and the loci with

a p-values greater than 0.01 were retained. (5) A Perl script was used

to identify SNP loci that did not have mutations in other loci within

100 bp before and after labeling. Thus, we ultimately selected high-

quality SNP markers for subsequent fingerprinting analysis.
2.5 Fingerprint construction and
generation of 2D barcodes

The screened SNP loci were used to construct a DNA

fingerprint map using RStudio (R version 4.4.0). To facilitate the

viewing of genotype information for each germplasm accession, 2D

barcodes were generated for each accession using the online

software Caoliaoerweima (http://cli.im/), which can provide the

genotype of each germplasm accession after the barcode is scanned.
2.6 Verification of SNP locus authenticity
by sanger sequencing

The specific primers for 52 core SNP loci were designed using

Primer Premier5 software (Lalitha, 2000). Parameters for primer

design were as follows: GC content, 44%–72%, melting temperature

(Tm), 56-68°C, and length, 19-25 bp, and the primers were

synthesized by Sangon Bioengineering Co., Ltd. (Shanghai,

China) (Supplementary Table 3). DNA from nine E. sibiricus

samples, selected from the 90 materials, was used as the template

for PCR amplification. The total volume of the PCR mixture was 20

ml, containing 1 ml Phanta Max Super-Fidelity DNA polymerase

(Vazyme, Nanjing, China), 10 ml 2X Phanta Max buffer, 1 ml dNTP
(10 mM each), 2 mL of genomic DNA, 0.8 ml of primer mix

(containing 10 mM of primer F and 10 mM of primer R), and 5.2

mL of ddH2O. The PCR reaction conditions were as follows: initial

denaturation at 94°C for 3 min, followed by 35 cycles of

denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and

extension at 72°C for 1 min, with a final extension at 72°C for 5 min.

All PCR-amplified products were separated by agarose gel

electrophoresis, and the target fragments were extracted and

recovered under a Tanon-3500 Gel Imaging System (Tanon

Science & Technology Co., Ltd., Shanghai, China). The specific

procedure is as follows: 5 ml of PCR product were subjected to 1%

agarose gel electrophoresis at 150 V and 100 mA. After observing

for 10-20 minutes, the target PCR band was excised from the gel,

recovered. Subsequently, the target fragments were sequenced using

the 3730XL sequencer (Thermo Fisher Scientific), and the

sequencing data were analyzed using SnapGene (V6.0.2) (Li et al.,

2023b) and SeqMan (v7) software (Swindell and Plasterer, 1997).
2.7 Kompetitive allele-specific
PCR genotyping

For each SNP locus retained after screening, 200 bp sequences

upstream and downstream of the SNP were extracted, and KASP
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primers were designed and developed by Genepioneer

Biotechnologies (Nanjing, China). The online platform

Primer3Plus (https://www.primer3plus.com/) was utilized for the

design of KASP markers, wherein for each KASP target site, one

common reverse primer and two allele-specific forward primers

were designed based on the flanking sequences around the variant

position (SNP). The primer design parameters are as follows: GC

content between 30% and 60%, with an optimal GC content of 45%,

Tm value between 55 and 61°C, and the size of the PCR product not

larger than 120 bp. Primers were appended with tails compatible

with the standard FAM or VIC labels (FAM tail : 5′-
GAAGGTGACCAAGTTCATGCT-3′; VIC tail: 5′-GAAGG

TCGGAGTCAACGGATT-3′), with a targeted SNP positioned at

the 3′ end. Kompetitive Allele-Specific PCR (KASP) assays were

performed using the CFX Connect™ Real-Time System (Bio-Rad,

Hercules, CA, USA). The newly synthesized primers were diluted to

10 mM using TE buffer (pH 8.0) and mixed according to a ratio of

forward genotyping primer 1:forward genotyping primer 2:reverse

universal primer of 1:1:3 (V:V:V) to serve as the primer mix. DNA

samples were diluted to match the concentration of the lowest

concentration sample in the batch, and each 5-mL reaction mixture

contained 1.25 mL of the diluted DNA sample. Finally, the total

amplification reaction volume was 5 µL in each well of a 96-well

plate and consisted of 2.5 µL of 2× KASP Master mix (JasonGen

Biological Technology Co., Ltd, Beijing, China), 1.25 µL of primer

mix, and 1.25 µL of DNA sample as described previously. The 96-

well PCR reaction plates are subjected to sealing, shaking, and

centrifugation to ensure thorough and even mixing of the reaction

system. After centrifugation, the PCR reaction is carried out using

the following cycling program: activation at 95°C for 10 min, 10

touchdown cycles of 95°C for 20 s and 61–55°C for 60 s (decreasing

by 0.6°C each cycle), and then 27 cycles of denaturation and

annealing/elongation at 95°C for 20 s and 55°C for 60 s.

Fluorescent signals of the reactions were detected and genotyping

data were analyzed using the Omega Fluorostar scanner (BMG

Labtech, Ortenberg, Germany) and KlusterCaller (v2.22.0.5)

software (Bansal et al., 2021).
2.8 Data analysis

Based on the population VCF file, we organized the genotyping

information of selected SNP loci in 90 samples using the Notepad–

(version 2.2) (https://gitee.com/cxasm/notepad–) text editor.

Subsequently, the organized results were imported into

PowerMarker (version 3.25) software to calculate genetic diversity

indices, including Polymorphic Information Content (PIC),

heterozygosity rate, Minor Allele Frequency (MAF), and Nei’s

gene diversity index (Liu and Muse, 2005). Principal component

analysis (PCA) was performed using Tassel (v5.1) (Bradbury et al.,

2007), and based on the clustering results of the samples, the

graphical representations were created using R language and

ggplot2 package (Pryszcz and Gabaldón, 2016). The distance

matrix between individuals was calculated based on SNPs using
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MEGA X (v10.2.6) (Kumar et al., 2018). The phylogenetic tree was

constructed using IQ-TREE2 software (v2.2.0) based on the

neighbor-joining method, with 1,000 bootstrap replicates (Minh

et al., 2020). The specific parameter settings were as follows: -s

*.phy –seqtype DNA -T 10 -B 1000 -mNJ –boot-trees. Based on the

filtered SNPs, population structure was analyzed using Admixture

software (v1.3.0) with the parameters -C 0.01 -s time –cv -j4

(Alexander et al., 2009). The number of subpopulations (K value)

was pre-set to range from 1 to 10 for clustering, and cross-validation

was performed on the clustering results. The optimal number of

clusters was determined based on the minimum cross-validation

error rate.
3 Result

3.1 Screening of core
germplasm collection

In this study, a comprehensive evaluation and screening of 90

accessions of E. sibiricus germplasm resources were conducted

according to weighted values of modified Roger’s distance

(weight 0.7) and Shannon’s diversity index (weight 0.3).

Through an assessment of coverage, 36 accessions (representing

40% of the germplasm resources) were ultimately identified as

representative core germplasm accessions for E. sibiricus

(Figure 1A; Supplementary Table 4, Supplementary Data 1).

Further, we analyzed the genetic diversity of these 36 core

accessions. The observed heterozygosity (Ho) ranged from

0.028 to 1 .000 (mean = 0.044) , whi le the expected

heterozygosity (He) ranged from 0.095 to 0.500 (mean = 0.293).

The Nei diversity index ranged from 0.097 to 0.509. Additionally,

the average values of the Shannon–Wiener index and PIC were

0.459 and 0.243, respectively. These genetic diversity metrics of

the core germplasm collection were found to be similar to those of

the original full set of 90 accessions of E. sibiricus germplasm

accessions (P < 0.05), indicating that the core germplasm

collection effectively represents the overall genetic diversity

(Supplementary Table 5). The allele frequency assessment

revealed that the ten potential genotypes derived from the four

nucleotides A, C, G, and T (as well as their dinucleotide

combinations) were consistently distributed across all

germplasm and the core germplasm (Figure 1B; Supplementary

Table 6). Furthermore, the comparison of MAF values between

the 36 core accessions and the entire germplasm pool indicated

that the highest proportion of MAF values fell within the range of

0.05–0.10. The distribution of MAF values in the range of 0.20–

0.50 was consistent between the core germplasm collection and

the original full germplasm collection (Supplementary Figure 1).

Finally, PCA of all germplasm materials and the core germplasm

indicated that the core germplasm collection aligned well with the

distribution plot of all E. sibiricus materials (Figure 1C). These

results demonstrate that the 36 core accessions accurately capture

the genetic diversity of all 90 E. sibiricus germplasm accessions.
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3.2 SNP fingerprint construction

3.2.1 The screening and evaluation of
SNP markers

Based on resequencing data from 90 E. sibiricus germplasm

accessions derived from four populations (NW, NE, NC, and QTP),

with an average sequencing depth of approximately 11×, a total of

80,148,422 high-quality SNPs were identified for fingerprint

profiling marker screening (Yan et al., 2024). Considering the

subsequent application of the selected SNP loci for KASP

genotyping, the primary screening criterion was set to ensure

specificity by requiring each SNP marker to align uniquely to the

reference genome within a sequence window of 200 bp upstream

and downstream (totaling 401 bp). Furthermore, based on other key

criteria, such as the distribution of SNP markers across the genome,

the missing base call rate of 0, the MAF greater than 0.2, and the

PIC values greater than 0.35, a total of 290 SNP loci were ultimately

selected as candidate markers (Supplementary Table 7).

The genetic diversity analysis of the 290 candidate markers

revealed that Ho ranged from 0.333 to 0.633, with an average value

of 0.495; the MAF ranged from 0.340 to 0.50, with an average
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value of 0.415. Additionally, the average values for Nei’s genetic

diversity index, the Shannon–Wiener index, and PIC were 0.485,

0.675, and 0.366, respectively (Figures 2A–D; Supplementary

Table 8). These results indicated that the 290 candidate markers

exhibited high levels of polymorphism. The accuracy and

effectiveness of the candidate markers were assessed through

population structure analysis of the 90 wild E. sibiricus

germplasms using the 290 candidate markers. Through the

construction of a phylogenetic tree, it was found that the 290

candidate loci could effectively distinguish E. sibiricus germplasms

from the QTP population from those of non-QTP populations

(including MW, NC, and NE populations) (Figure 3A). However,

there was a certain degree of error in identifying E. sibiricus

germplasms from the NW, NC, and NE populations. For

example, although 15 E. sibiricus germplasms from the NW

population clustered together, 11 E. sibiricus germplasms from

the NW population were scattered among the NE and NC

populations. Furthermore, some E. sibiricus germplasms from

the NC and NE populations were also clustered together. PCA

also indicated a clear overlap among the E. sibiricus accessions

from the NC, NE, and NW populations (Figure 3B).
FIGURE 1

Screening and evaluation of the Elymus sibiricus core collection. (A) The evaluation of allele coverage for 90 E. sibiricus samples. The red dot in the
graph represents the E. sibiricus core collection of 36 accessions. (B) The frequency distribution of genotypes in all 90 E. sibiricus samples and the
core collection of 36 accessions. The ten potential genotypes are shown along the x-axis, and the y-axis shows the proportion of each genotype.
The red dashed line indicates the genotype distribution of all germplasm resources, while the blue dashed line indicates the genotype distribution of
the selected core germplasm accessions. The red solid line represents the fitted curve based on the genotype distribution of all germplasm
resources, and the blue solid line represents the fitted curve based on the genotype distribution of the selected core germplasm. The upper right
corner of the graph shows the linear equation fit to the data, and R2 is the coefficient of determination. (C) The principal component analysis (PCA)
plot of 90 E. sibiricus samples and the selected core collection. Each dot represents a sample, the red dots represent all 90 E. sibiricus samples, and
the blue dots represent the core collection of 36 accessions.
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Given that the classification of the NE, NW, and NC populations

of E. sibiricus germplasms is based on whole-genome SNP data and

that there is geographic overlap among these three populations, some

materials from the NE and NC populations and NW and NE

populations were obtained from locations that are geographically

extremely close to each other (Supplementary Figure 2). Therefore,

we hypothesize that it is challenging to completely and accurately

distinguish accessions from the NE, NC, and NW populations from

each other using a simple set of SNP loci combinations alone. To test

this hypothesis, we abandoned the specificity criteria for SNP locus

selection and constructed a set of candidate markers comprising 338

SNPs (FP338) with higher genetic diversity (Figures 2E–H;

Supplementary Tables 8, 9). Using the FP338 loci, a phylogenetic

tree and PCA were conducted for all 90 E. sibiricus germplasm

accessions (Figures 3C, D). Using this subset of SNPs, it was still

not possible to completely distinguish the materials from the NE, NC,

and NW populations, with seven accessions from the NW population,

six from the NE population, and two from the NC population still

failing to be accurately classified. Notably, in the classification results

using the FP338 candidate markers, seven germplasms from the QTP

population (SAG-XZ18018, SAG-XZ18002, SAG-XZ18004, SAG-

XZ18014, SAG-XZ18006, SAG-XZ18007, and SAG-XZ18012) were

clustered together. Additionally, the genetic distances among these

seven germplasms were also closer in the clustering results based on

the 290 SNP loci, which was consistent with the results of the

delineation of QTP populations accessions based on genome-wide

SNPs, indicating that these candidate loci effectively reflect the genetic

similarities among these germplasms.
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3.2.2 Screening of core SNP markers and
construction of DNA fingerprints

Despite the limitations of the 290 candidate SNPs for use in

identifying the population location of some E. sibiricus germplasm

accessions from NE, NC, and NW populations, they could still be

used to accurately predict the source of germplasm from the QTP

population, as well as distinguish differences among individual

germplasm accessions. In order to rapidly and economically

distinguish E. sibiricus germplasm sources, 52 core SNPs were

ultimately selected after screening for loci with high PIC and

MAF values from a pool of 290 candidate markers, and ensuring

that these SNP loci were evenly distributed across the 14

chromosomes of E. sibiricus, with the genotypes C/C, A/A, T/T,

and G/G represented by yellow, green, blue, and purple,

respectively; additionally, missing sites are represented in gray,

and heterozygous sites are shown in white (Figure 4A;

Supplementary Data 2). Using this set of core SNP loci, pairwise

comparisons were conducted for the 90 E. sibiricus samples, and the

results successfully distinguished each E. sibiricus germplasm

accession (Figure 4B). Furthermore, through the analysis of the

population structure of the 90 E. sibiricus samples, it was possible to

accurately differentiate germplasms from the QTP population from

those obtained from non-QTP populations, which indicated that

the 52 core loci indeed effectively represent the 290 candidate SNPs

(Figure 5). Genotyping data for the 52 core SNPs of the 90 E.

sibiricus germplasms were encoded using the online software

Caoliaoerweima (http://cli.im/), and 2D barcode fingerprints were

generated for each germplasm (Supplementary Data 3).
FIGURE 2

Population genetic analysis of Elymus sibiricus accessions based on SNP loci. (A) Observed heterozygosity (Ho), (B) minor allele frequency (MAF),
(C) Nei’s diversity index, and (D) polymorphism information content (PIC) values of 90 E. sibiricus samples based on a set of 290 candidate SNP
markers. (E) Ho, (F) MAF, (G) Nei’s diversity index, and (H) PIC values of 90 E. sibiricus samples based on a set of 338 candidate SNP markers (FP338).
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3.2.3 Design of KASP primers and identification of
E. sibiricus germplasm resources

The accuracy of analysis based on the 52 core SNP loci was

further evaluated via PCR and Sanger sequencing for nine samples

(SAG-NM18033, SAG-HB18004, SAG-XJ18028, SAG-XJ18013,

SAG-NM18050, SAG-SC18007, SAG-GS18003, SAG-XZ18007,

and PI598784) that were randomly selected from among the 90

samples. We found that the verification results for some SNP loci

deviated from those obtained by next-generation sequencing,

leading to reduced accuracy and reduced specificity of the loci.

Ultimately, only 31 out of the 52 core SNPs could be successfully

converted into KASP markers (Supplementary Table 10).

To evaluate the effectiveness of these 31 KASP markers in

classifying E. sibiricus germplasms, 16 samples were randomly

selected from among the 90 germplasm accessions and subjected

to KASP analysis along with 44 other E. sibiricus germplasm

accessions from the NC, NW, NE, and QTP populations

(Supplementary Table 2). We observed that 27 KASP markers

demonstrated a high discriminatory power, which were able to

achieve distinct genotyping results in 60 samples (Supplementary

Data 4). However, there were four KASP markers (KASP-SNP14,

KASP-SNP20, KASP-SNP28, KASP-SNP18) with relatively poor
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typing results. In some samples, the homozygous or heterozygous

status of the corresponding SNP sites could not be accurately

identified, which might be related to the specificity of these loci in

different samples. A genetic distance matrix and a phylogenetic tree

were constructed based on the genotyping results (Supplementary

Table 11). Thus, accessions from the QTP population were

separated by smaller genetic distances and were clearly clustered

together in the phylogenetic tree (Supplementary Figure 3).

However, three samples from outside the QTP population (NC-

test12, NC-test9, and NE-test6) were mixed into this cluster, such

that the genetic distance between NC-test9 and QTP-test4 was

0.0556, that between NE-test6 and QTP-test5 was 0.1429, and that

between NC-test12 and QTP-test8 was 0. This unexpected

clustering may be related to the failure of some SNP loci to serve

as functional KASP markers. Furthermore, there remained a lack of

clarity in the population source identification of germplasms from

the NW, NC, and NE populations. For example, two samples from

the NC population (NC-test4 and SAG-NM18037) and four

samples from the NE population (NE-test9, NE-test10, NE-test5,

and PI598775) clustered with most of the samples from the NW

population. Additionally, three samples from the NE population

(NE-test11, NE-test8, and NE-test1) were also clustered with eight
FIGURE 3

Population structure analysis of 90 E. sibiricus samples based on the selected SNP loci. (A, B) The phylogenetic tree and principal component
analysis (PCA), respectively, of 90 E. sibiricus samples based on a set of 290 candidate SNP markers. (C, D) The phylogenetic tree and PCA,
respectively, of 90 E. sibiricus samples based on a set of 338 candidate SNP markers (FP338).
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FIGURE 5

Population structure analysis of 90 Elymus sibiricus samples based on the 52 core SNP markers. From top to bottom, the figure shows a
phylogenetic tree of 90 E. sibiricus samples based on 52 core SNP markers, the sample names, and the population structure of 90 E. sibiricus
germplasm resources for different numbers of subpopulations K.
FIGURE 4

Fingerprint analysis of 90 Elymus sibiricus samples. (A) The distribution of 52 core SNP markers on 14 E. sibiricus chromosomes. (B) DNA fingerprint
composed of 52 core SNP markers. Each row corresponds to a SNP marker, and each column corresponds to a E. sibiricus sample. The genotypes
C/C, A/A, T/T, and G/G are represented in yellow, green, blue, and purple, respectively. Missing sites are represented in gray, and heterozygous sites
are shown in white.
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germplasms from the NC population. These results again highlight

the limitations of using a small number of SNP locus combinations

to differentiate E. sibiricus germplasm accessions with similar

genetic backgrounds.
4 Discussion

As a widely distributed species across the Eurasian continent,

the wild germplasm resources of E. sibiricus are extremely rich and

abundant (Ma et al., 2012). Influenced by climatic factors in

different habitats, the genetic variation among E. sibiricus

accessions exhibits distinct regional characteristics (Li et al.,

2023e); for instance, the phenology of heading and the presence

of small spines at the base of the stems and leaf sheaths in wild E.

sibiricus are significantly associated with high altitude (Li et al.,

2023a). The phenotype characterized by the appearance of downy

hair on the basal leaf sheaths during the seedling stage is found to

have an extremely significant positive correlation with both

longitude and latitude, while it demonstrates an extremely

significant negative correlation with altitude, annual mean

temperature, and annual average rainfall (Li et al., 2023d).

Genetic variation in these traits, which manifest clear regional

characteristics, may represent adaptations of E. sibiricus

germplasm under different environmental conditions, not only

enriching the genetic diversity of E. sibiricus but also promoting

population differentiation and providing an important genetic

resource foundation for the development and breeding of new E.

sibiricus varieties with superior traits (Zhang et al., 2022; Xiong

et al., 2024a). Furthermore, determining how to scientifically

identify, preserve, and protect these wild E. sibiricus germplasm

resources is a prerequisite for their effective utilization. The genetic

diversity of multiple important crops, including sorghum (Cuevas

et al., 2017), sweet potato (Su et al., 2017), pumpkin (Lee et al.,

2020), cowpea (Ketema et al., 2020), radish (Xing et al., 2024), and

wheat (Soleimani et al., 2020), has been preserved as much as

possible through the construction of a core germplasm collection

based on SNP markers. However, in the construction of a core

germplasm collection for E. sibiricus, the focus has primarily

remained on phenotypic traits and the use of SSRs as markers.

Yan et al. (2017) used SSR markers to identify 47 accessions as the

core germplasm collection from among 148 samples of E. sibiricus.

Zeng et al. (2022) identified five accessions as the core germplasm

collection for breeding by evaluating nine agronomic traits of 76 E.

sibiricus germplasm accessions. The observation of plant

phenotypic traits is one of the more traditional and intuitive

methods of core germplasm identification. However, most of the

phenotypic traits in plants are quantitative traits affected by

multiple minor-effect genes and are therefore often susceptible to

environmental influences (Wang et al., 2021a; Mackay and Anholt,

2024). Based on literature reports and field observations, we found

that even the same E. sibiricus germplasm accession could exhibit

significant phenotypic differences under different environmental

conditions (Zhang, 2020; Jia, 2021). Additionally, there is

substantial variation in the phenotypes of E. sibiricus across

different growth years. Specifically, the agronomic traits of E.
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sibiricus are generally optimal during the second and third years

of growth after plants are established, showing considerable

differences from those in the first year, indicating the need for a

longer period for phenotypic characterization of E. sibiricus

germplasm accessions (Zhou et al., 2000; Chen, 2013; Qi et al.,

2023). These factors present a substantial hindrance in the

construction of a core germplasm bank for E. sibiricus using

phenotypic traits. Additionally, although SSR markers are widely

used in the construction of plant core germplasm collections, SNP

markers offer several advantages: they are more abundant, have

higher density, exhibit greater levels of polymorphism, and are

more stable (Rafalski, 2002; Mammadov et al., 2012). Moreover, the

identification and statistical analysis of SNP markers are even easier

and more convenient through the utilization of the high-

throughput automatic detection capabilities of the KASP

genotyping platform (Smith and Maughan, 2015; Dipta et al.,

2024). Therefore, we identified 36 E. sibiricus accessions as the

core germplasm collection based on SNP markers, which can

accurately represent the genetic diversity of the original 90 E.

sibiricus germplasm accessions. This study represents the initial

exploration of constructing a core germplasm resource for E.

sibiricus based on a large number of SNP markers, providing a

valuable reference for future collection and preservation of E.

sibiricus germplasm resources. Concurrently, this core collection

not only effectively protect the genetic diversity of E. sibiricus

germplasm and prevent the loss of resources, but also serve as the

basic material for breeding, providing important genetic resources

for the breeding of new varieties.

Currently, the identification of wild germplasm resources of E.

sibiricus mainly focuses on distinguishing E. sibiricus germplasm

from congeneric E. nutans germplasm. Owing to the rich phenotypic

variation in the wild germplasm of these two forage grasses, some of

the wild germplasm of the two species are morphologically very

similar, and the regions of their geographic distributions overlap. Li

et al. (2023d) identified 990 E. sibiricus accessions and 246 E. nutans

accessions from 1,723 wild Elymus germplasm resources by

combining phenotypic trait analysis with flow cytometry. However,

the population source identification of wild E. sibiricus germplasms

has not been reported. The construction of fingerprints based on

SNPs and the combination of KASP for typing identification can be

utilized to accurately and efficiently differentiate among various

germplasm sources within a species. This approach has been widely

applied in the identification of varieties and population structure

analysis in many species (Yang et al., 2019; Wang et al., 2021b, 2022;

Yang et al., 2022). Therefore, in this study, based on the SNP markers

obtained from the whole-genome sequencing data of 90 wild E.

sibiricus accessions from the QTP, NC, NE and NW populations, we

initially explored the feasibility of identifying the population origins

of wild E. sibiricus germplasm accessions using SNP fingerprints

combined with KASP genotyping. Unlike diploid species such as

maize and cigar tobacco that have already established SNP

fingerprints (Tian et al., 2021; Wang et al., 2021a), E. sibiricus, as

an allotetraploid species, presents challenges in precise SNP

genotyping due to the presence of homologous chromosomes

between sub-genomes and a large number of repetitive sequences

on the chromosomes, which result in many markers showing
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multiple copy phenomena (Yan et al., 2024). Therefore, we prioritized

the specificity of SNPs as the primary criterion for selecting candidate

SNP sites for fingerprint construction, in order to screen SNP sites

with single-copy characteristics, thus simplifying the complex

polyploid genotyping to a diploid-like genotyping, and facilitating

KASP detection. However, similar to findings in the construction of

SNP fingerprints for allotetraploid upland cotton (Gossypium

hirsutum L.), this screening criterion limits the number of available

SNPs and genetic diversity (Sun, 2017). In this study, the selected core

SNP markers were able to accurately discriminate germplasm from

QTP and non-QTP populations, but there were obvious errors in

discriminating germplasm from NC, NE and NW populations. Some

of the accessions from these three populations were clustered together

based on the genotyping results, which indicated that the selected

SNP markers lacked sufficient discriminatory power for

differentiating the germplasm from these three populations. We

speculate that this result may be related to the similar genetic

backgrounds of individuals from these three populations. The

materials from geographically closer populations may exhibit more

genetic homogeneity owing to both environmental similarities as well

as gene flow between populations. Consequently, it is challenging to

accurately identify their population source using only a few SNP loci.

For the QTP population of E. sibiricus, there was not only a large

geographic distance from the NE, NC, and NW populations, but also

genetic differences likely shaped by the unique environmental

conditions of the QTP, such as its high altitude, which may lead to

significant genetic differentiation from the non-QTP populations.

Accordingly, even a small number of SNP loci were sufficient to

distinguish germplasms from the QTP population from those from

other populations. The similar findings have been reported in studies

on tobacco (Wang et al., 2021a) and honeysuckle (Li et al., 2023b)

fingerprint maps. Additionally, we also infer that a more

comprehensive collection and sequencing analysis of E. sibiricus

germplasm from the regions corresponding to these three

populations would obtain richer SNP information. This will not

only facilitate more detailed population differentiation of accessions

from these regions but also help construct more discriminative SNP

fingerprints, thereby playing a crucial role in identifying the

population origins of E. sibiricus accessions. It is noteworthy that

Yan et al. (2024), based on SNP datasets obtained from whole-

genome sequencing, found that even E. sibiricus germplasm with

close geographical origins were classified into different populations.

Therefore, compared to the SCoT molecular markers used in

previous study to identify the geographical origin of E. sibiricus

(Xie et al., 2015), the DNA fingerprints constructed based on SNP

markers in this study can identify the population origin of E. sibiricus

germplasm, which is more beneficial for analyzing the population

structure of E. sibiricus germplasm. Furthermore, studies have

indicated that the E. sibiricus germplasm from the QTP population

possesses higher genetic diversity, and it is inferred that the Qinghai-

Tibet Plateau is very likely the center of origin for E. sibiricus (Xiong

et al., 2024b; Yan et al., 2024). Consequently, it is of significant

importance for the conservation, rational utilization and molecular

breeding of E. sibiricus germplasm resources to rapidly discern

whether the E. sibiricus germplasm originates from the QTP

population (QTP) through fingerprints.
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In this study, we successfully constructed a core collection

comprising 36 E. sibiricus samples by integrating published

sequencing data from 90 wild E. sibiricus accessions. Additionally,

290 candidate SNP markers and 52 core SNP markers were identified

for the development of E. sibiricus DNA fingerprints, according to a

series of strict screening criteria and evaluation methods. Subsequently,

utilizing KASP technology, we genotyped 60 wild E. sibiricus accessions

using these core SNP markers. The core SNP makers were able to

accurately identify the germplasms from the QTP population, but there

were some errors in the population origin identification of E. sibiricus

germplasm from the NC, NE, and NW populations. We speculate that

this result is owing to the relatively similar genetic backgrounds of E.

sibiricus from these three populations. Therefore, we advocate for a

more comprehensive collection and sequencing analysis of E. sibiricus

germplasm resources from the regions corresponding to these three

populations, which would enrich the SNP database and facilitate more

precise analyses of population structure and gene flow in these areas, as

well as the selection of more effective DNA marker combinations. In

summary, our study preliminarily validated the feasibility of

constructing a core germplasm set and DNA fingerprint for E.

sibiricus based on SNPs. This work not only underscores the

reliability and precision of SNP markers but also lays a crucial

foundation for future efforts in the collection, conservation, and

utilization of E. sibiricus germplasm resources.
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SUPPLEMENTARY FIGURE 1

Distribution of minor allele frequency (MAF) values in the core collection and

the original full germplasm collection. Intervals of MAF values corresponding
to SNPs are shown along the x-axis; the y-axis represents the frequency of all

SNPs in each interval.

SUPPLEMENTARY FIGURE 2

Geographic distribution of 90 Elymus sibiricus samples, both at a broad scale
and locally.

SUPPLEMENTARY FIGURE 3

Clustering analysis dendrogram of 60 wild Elymus sibiricus germplasm
accessions based on genotyping results for 31 KASP markers. The bands

next to the dendrogram indicate the population origin of the samples, where

red, purple, blue, and green represent E. sibiricus samples from the QTP, NC,
NE, and NW regions, respectively.
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