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specifc parameters using
multienvironment trial
breeding data
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Gerrit Hoogenboom 5,6 and Jean-Luc Jannink 1,7*
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Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 3Plant and Soil Sciences, College of Agriculture
Food and Environment, University of Kentucky, Lexington, KY, United States, 4Crops for Nutrition and
Health, Alliance Bioversity and International Center for Tropical Agriculture (CIAT), Nairobi, Kenya,
5Global Food Systems Institute, University of Florida, Gainesville, FL, United States, 6Department of
Agricultural and Biological Engineering, University of Florida, Gainesville, FL, United States, 7Robert W.
Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural
Research Service (USDA-ARS), Ithaca, NY, United States
Cassava (Manihot esculenta Crantz) is a critical food security crop for sub-

Saharan Africa. Efforts to improve cassava through breeding have expanded over

the past decade. Crop growth models (CGM) are becoming common place in

breeding efforts to expand the inference of evaluations of breeding germplasm to

environments that have not been tested and to prepare for breeding for

adaptation to future climates. We parameterized a CGM, the CROPGRO-

MANIHOT-Cassava model in the DSSAT family of models, using data on 67

clones from the International Institute of Tropical Agriculture cassava breeding

program evaluated from 2017 to 2020 and over eight locations in Nigeria using

trial and error parameter adjustments and the General Likelihood Uncertainty

Estimation method. Our objectives were to assess the feasibility of this large-

scale calibration in the context of a cassava breeding program and to identify

systematic biases of the model. For each cultivar we calculated the Pearson

correlation between model prediction and observation across the environments,

as well as root mean squared error and d statistics. As a result of calibration, the

correlation coefficient increased from –0.03 to +0.08, the RMSE dropped from

21 t ha-1 to 5 t ha-1 while d increased from 0.23 to 0.44. We found that the model

underestimated root yield in dry environments (low precipitation and high

temperature) and overestimated root yield in wet environments (high

precipitation and low temperature). Our experience suggests both that CGM

calibration could become a routine component of the cassava breeding data

analysis cycle and that there are opportunities for model improvement.
KEYWORDS

cassava, crop growth model , Niger ia , cal ibrat ion, general l ikel ihood

uncertainty estimation
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Introduction

Crop Growth Models (CGMs) now have a long history in the

study of agronomic management practices (1) (Jones et al., 2003;

Holzworth et al., 2018; Jones et al., 2017; Tsuji et al., 1998). CGMs

simulate plant phenology and growth by integrat ing

ecophysiological functions with weather data, usually on a daily

time step, tracking photosynthesis and partitioning as well as

resource extraction from the environment. Once calibrated, a

CGM can be used to study such questions as planting dates or

fertilizer application (Banterng et al., 2009), conservation

tillage (Corbeels et al., 2016), crop rotations (Mohanty et al.,

2012), or even intercropping (Berghuijs et al., 2021). An

advantage of studying such issues with a model is that the system

response can be predicted over a long timeframe or for many

different location conditions representing a breadth of

environments that would be impossible to evaluate empirically.

Even for well-calibrated models, results cannot be taken at face

value but should suggest the important factors to explore with

field experiments.

Expanding the use of CGMs from agronomic questions to plant

breeding has been more recent (Baenziger et al., 2004; Technow

et al., 2015; Messina et al., 2018; White and Hoogenboom, 1996).

Plant breeders base selection decisions on predictions of future

performance of breeding lines, whether those predictions come

from prior observations of the lines themselves or of close relatives

whose genetic relatedness can be inferred from DNA variants. In

either case, the predictions cannot be extrapolated to environments

or management practices that have not been observed. Thus, a

motivation to parameterize CGMs for breeding lines would be to

enable predictions in environments where they have not been tested.

Applications of such predictions could be estimating the stability of a

line’s performance by modeling outcomes over many years or

locations (for example, aiding such efforts as Lozada and Carter

2020; Olivoto et al., 2021), identifying specific environments that

may be most promising for specific breeding lines (as Chai et al.,

2022 have suggested occurs in modern breeding, for example,

Phoncharoen, et al., 2021a) or for identifying optimal locations for

a multi-location trial evaluation network (Putto et al., 2008). In the

context of climate change, the promise of CGMs is to enable

performance prediction under future weather scenarios to

recommend “climate-smart” varieties. These models may therefore

contribute to the development of efficient breeding strategies

through decision support in breeding programs. A number of

these applications are reviewed in the context of breeding to adapt

to climate change in (Ramirez-Villegas et al., 2020).

As for many developments in breeding, attempts to integrate

CGMs into breeding have been spurred on by the plummeting cost

of DNA markers that has made it possible to associate traits with

alleles or haplotypes at specific genomic segments. A challenge to

the use of CGMs in breeding is the effort and cost to estimate many

CGM parameters for individual breeding lines, as exemplified by

early efforts (e.g., White and Hoogenboom, 1996; Hoogenboom and

White, 2003). In particular, CGMs require many parameters that

are not routinely measured in breeding programs so that they come
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at an extra cost to the program, which is prohibitive. A work around

to this problem is to seek to estimate parameter values from data

that are routinely collected in breeding programs. Estimation

procedures essentially fit parameter values so that CGM

predictions match as closely as possible to observed breeding

data. One such method is General Likelihood Uncertainty

Estimation (GLUE) that has been incorporated in the Decision

Support System for Agrotechnology Transfer (DSSAT) (He et al.,

2010; Hoogenboom et al., 2021; Berton Ferreira et al., 2024). To

extend this methodology to cassava (Manihot esculenta Crantz), the

initial step involves the development of a robust growth model.

The worldwide importance of cassava is undeniable, especially

in sub-Saharan Africa where cassava roots are a valuable source of

calories (Adebayo, 2023; Chiaka et al., 2022). Numerous efforts to

improve cassava breeding to deliver greater genetic gain are

underway. Such efforts span a wide range of technologies from on

farm testing (Nanyonjo et al., 2024), to genomic selection (Wolfe

et al., 2016; Ceballos et al., 2021), to developing cassava hybrids

(Zhang et al., 2024). Integrating crop growth models into these

efforts could prove beneficial for optimizing field evaluations,

matching variety candidates to target environments, as well as for

experimenting with new management options. A number of cassava

CGMs have been reviewed (Phoncharoen et al., 2021b; Moreno-

Cadena et al., 2021). An advantage of the CSM-MANIHOT-

Cassava model described there is that is has been integrated

within the DSSAT Crop Modeling Ecosystem in DSSAT v. 4.8

(Hoogenboom et al., 2019) for which there is also an R interface

(Alderman, 2020). The DSSAT system in turn incorporates model

calibration functionality, including GLUE.

The MANIHOT-Cassava model was developed from the CSM-

CROPSIM model, itself a development of the GUMCAS model

(Moreno-Cadena et al., 2020). While (Moreno-Cadena et al., 2020)

only verbally describes the model updates, comprehensive details

including equations are available in (Moreno-Cadena, 2021). Plant

development is a function of accumulated thermal time with

different cardinal temperatures for the processes of forking and

leaf growth. Daily photosynthetic assimilates are obtained by

mul t ip ly ing the so la r rad ia t ion in te rcep ted by the

photosynthetically active radiation use efficiency (PARUE). The

model uses a spill-over strategy for biomass allocation: assimilates

are allocated by prioritizing the growth of aboveground biomass

and fibrous roots according to their demand and the remainder is

assigned to the storage roots. Drought stress dynamics are

influenced by soil moisture content, impacting germination,

branching, leaf appearance, and photosynthesis. Nitrogen

limitations are also factored in, though they necessitate further

refinement. The current model version requires an array of

parameters at the species, ecotype, and cultivar levels, which

define stress thresholds, senescence processes, Vapor Pressure

Deficit (VPD) effects, root water uptake, and other physiological

traits like leaf morphology and growth characteristics. As a DSSAT

crop growth model, MANIHOT-Cassava requires minimum data

sets including daily weather data, soil surface and profile

characteristics, crop management, initial conditions, and crop

measurements (Hoogenboom et al., 2012, 2019).
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The model performed well in simulating cassava development

and growth, including forking dates, leaves and stem biomass, and

the yield and yield components (Moreno-Cadena et al., 2020;

Phoncharoen, et al., 2021b). A previous study assessed the

MANIHOT-Cassava model as a breeding tool for identifying the

most suitable production environments for potential varieties in

Thailand (Phoncharoen, et al., 2021b). Nevertheless, any model is a

work in progress with the potential to better track responses of

many growth processes to external conditions and attempting to use

more parsimonious parameterizations. Our objectives were to 1)

assess the feasibility of calibrating the model based on observations

made by the International Institute of Tropical Agriculture (IITA)

breeding program using GLUE and across a range of elite Nigerian

cassava germplasm and growing environments and 2) to identify

any systematic biases in model predictions after that calibration, to

suggest further improvements to the model. The experimental data

included 67 clones evaluated across 11 locations in three years, thus

representing a large dataset for model assessment. This report

presents the first calibration of the CSM-MANIHOT-Cassava

model in Nigeria, a country with a wide range of environmental

conditions for cassava cultivation.
Materials and methods

Model calibration

Experimental design and field management
Phenotypic data were collected for 67 clones from the Uniform

Yield Trials of IITA, which are the most advanced evaluation stage

of the cassava breeding program prior to variety release decisions.

The clones were derived from crosses within IITA’s elite population

as part of the genomic recurrent breeding program. They

underwent four stages of screening for diseases, vigor, agronomic,

and quality traits in earlier trials of the breeding program, showing

resistance to diseases and potential for high yield and dry matter

content. To standardize the model terminology, we call clone

a “cultivar”.

The trials were targeted across 11 IITA testing stations in

Nigeria (Figure 1) over three growing seasons (2017-2018, 2018-

2019, and 2019-2020). We considered each year by location

combination to represent one environment. The fields selected for

the trials had been fallow, with no crops grown in the previous three

years. Before planting, the selected field were mowed, ploughed,

harrowed, and ridged. The planting date varied from April to

August depending on the rainy season in each location. Cultivars

were planted in a randomized complete block design with 3

replications. Each plot consisted of 6 rows of 5.6 m (seven plants)

with an inter-row spacing of 1 m and intra-row spacing of 0.8 m

(plot size = 28 m2). The trials were managed without pesticides,

irrigation, or fertilizer.

Preliminary analysis of each trial was conducted to determine

the relative strength of the genetic signal its data. The analysis was

done as described by (Bakare et al., 2022) who worked on the same

data. The model formula was:
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y = m + bH + R + G + e

Where y is the phenotype, either fresh storage root weight or

fresh above ground, m is the trial mean,H is the proportion of plants

harvested per plot, fitted as a continuous fixed effect, and b is a

regression coefficient for that factor, R is the replication effect, fitted

as random, G is the cultivar effect, fitted as random, and e is the

residual. The model was fitted using the lmer function from the

lme4 package in R 4.1.0 (R Core Team 2023) using the statement:

Trait∼PropHar + (1 jRep) + (1 j germplasmName)

The reliability of the model was extracted using the

r.squaredGLMM function from MuMIn package in R. The broad-

sense heritability and the reliability for both traits (fresh storage

root weight or fresh above ground biomass) were calculated by trial.

Trials were filtered to retain those with H2 over 0.25 and reliability

over 40% for at least one trait (Supplementary Figure S1). A total of

28 trials out of 38 trials were retained after filtering, including eight

out of the original 11 locations and all three years. These trials

spanned 16 environments.

Soil and weather

For each location, specific soil and weather data were used. Soil

profile characteristics were obtained from the Harvard Dataverse

soils data Repository for crops (Han et al., 2019) according to the

GPS coordinates for each location. The soil ID code and properties

are given in Supplementary Table S1. The considered parameters

included: Soil Lower limit of plant extractable soil water (SLLL), Soil

Drained upper limit (SDUL), Saturated upper limit (SSAT), Soil

root growth factor (SRGF), Saturated hydraulic conductivity

(SSKS), Soil bulk density (SBDM g/cm3), Soil organic carbon

(SLOC), Soil clay (SLCL), Soil silt (SLSI), Soil total nitrogen

(SLNI), Soil pH in water (SLHW) and Soil cation exchange

capacity (SCEC).

Daily weather data were collected from the National

Aeronautics and Space Administration Prediction of Worldwide

Energy Resource project (https://power.larc.nasa.gov/data-access-

viewer/). For the eight location retained after filtering we

summarized minimum temperature (TMIN), maximum

temperature (TMAX), precipitation (RAIN), relative humidity

(RH2M) , s o l a r r ad i a t i on (SRAD) and w ind speed

(WIND) (Table 1).

The DSSAT Weatherman tool was used to create input weather

data files in the model format (Hoogenboom et al., 2019). The initial

soil water conditions for each layer were defined by setting available

soil water at 100%, the incorporation depth for surface residue at 20

cm and the simulation was done under non-nitrogen-limited and

non-phosphorus-limited production conditions.
Plant phenology

Plant phenological and leaf area index (LAI) data were collected

only Ibadan in 2021. Five plants per plot, with two plots per cultivar,

were assessed at 5 and 6 months after planting as follows. From the
frontiersin.org
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first branching level to the top of the plant, one branch was selected

to be monitored at each branching point. Plant height at first

branching, full plant height (from the bottom to the last leaf),

length, and the number of internodes of each section between 2

forking points were measured. Three weeks later, the height and the

number of internodes of new growth were measured. From these

measurements, the phyllochron or time for node development was

calculated. The forking time was estimated as a function of the

section height and internode number. In the event of a genotype not

showing forks during data collection, the default values provided by

the model were used (Moreno-Cadena et al., 2020). The details of

these default values can be found at: https://github.com/DSSAT/

dssat-csm-os/tree/develop/Data/Genotype.
Leaf area index

We established a predictor model to estimate leaf area. We

collected fully expanded, photosynthetically active, and undamaged

leaves from the top, middle, and bottom of a plant not used for

phenology. Thirty leaves were sampled per cultivar. The number of

lobes, length, and width of the central lobe were measured for

each leaf. The leaf was scanned to calculate its area with

ImageJ software version 1.54k bundled with Java 8 on 2/24/2025

4:06:00 PM (Schneider et al., 2012). With these data, we established

a model (Equation 1) that used the length and width of the central
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lobe and the number of lobes to estimate the leaf area of

cassava (Figure 2).

From the targeted plant (5 plants per plot), three leaves per

plant (from top to bottom) were evaluated by the number of lobes,

the length, and the width of the central lobe. The leaf area was

estimated with the established equation (Equation 1). Then LAI was

calculated as the total number of green leaves per plant multiplied

by the mean per plant of leaf area and divided by the area occupied

of each plant (Equation 2).

Leaf Area = 24þ 0:39 ∗ Lobe length
∗ Lobe width ∗Number of Lobes

(1)

Leaf Area Index = Number of Leaves

∗ Leaf Area=Plant Occupied Area
(2)
Yield and yield components

Yield and yield components were collected from 2017 to 2020 in

11 locations (Table 1). At harvest, fresh storage root yield and

aboveground biomass (stem + leaves) were weighed separately. A

net plot of 20 plants was harvested, excluding all plants on the

border of a plot to avoid border effects. The storage root dry weight

was calculated as a function of the fresh storage root yield and the

dry matter content (Equation 3).
FIGURE 1

Map of Nigeria showing the locations of multi-environment trials in the IITA cassava breeding program. The agrometeorological zones and the
number of tests carried out specified by the colors and the size of the point respectively.
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Dry matter content (DMC) in Ibadan was determined from 100

g of fresh roots of each plot grated and oven-dried at 65°C for 72

hours to constant weight. After the samples were cooled, their dry

weights were recorded, and their respective DMC values were
Frontiers in Plant Science 05
determined. For the other locations, the specific gravity method

(Wholey and Booth, 1979) was used to estimate the DMC per plot.

The dry aboveground biomass was calculated as 1/3 of the fresh

aboveground biomass one (Streck et al., 2014).
FIGURE 2

Linear regression between the product of leaf lobe length, leaf lobe width, leaf lobes number width and leaf area for 67 cassava cultivars.
TABLE 1 Description of experimental sites in Nigeria retained after trial quality filtering.

Location Lat/Long Soil YEAR Name
Planting
Date

TMIN
(°C)

TMAX
(°C)

RAIN
(mm)

RH2M
(%)

SRAD
(MJ/
m2/day)

WIND
(m/s)

ABUJA 9.07°N, 7.47°E SCL 2019-2020 Abuja19 June 2019 20.8 30.4 2238 73.2 18.6 1.6

AGO-OWU 7.26°N, 4.32°E SCL 2017-2018 Ago17 August 2017 21.8 29.2 1479 85.9 16.7 1

AGO-OWU 7.26°N, 4.32°E SCL 2018-2019 Ago18 June 2018 22.0 28.9 2842 87.1 16.6 0.9

AGO-OWU 7.26°N, 4.32°E SCL 2019-2020 Ago19 June 2019 21.7 29.1 3152 85.6 16.7 1

IBADAN 7.47°N, 3.93°E SL 2017-2018 Ibadan17
September
2017

22.0 29.1 2179 86.4 16.5 1.5

IBADAN 7.47°N, 3.93°E SL 2018-2019 Ibadan18 July 2018 22.2 29.3 2316 86.5 16.9 1.4

IBADAN 7.47°N, 3.93°E SL 2019-2020 Ibadan19 May 2019 21.8 29.4 2397 85 16.6 1.5

IKENNE 6.87°N, 3.71°E CL 2017-2018 Ikenne17 August 2017 22.8 29.2 2075 88.2 16.3 1.1

IKENNE 6.87°N, 3.71°E CL 2018-2019 Ikenne18 June 2018 23.0 29.3 2533 88.4 16.5 1.1

IKENNE 6.87°N, 3.71°E CL 2019-2020 Ikenne19 June 2019 22.9 29.3 3038 88 16.5 1.1

MOKWA 9.31°N, 5.07°E SCL 2017-2018 Mokwa17 August 2017 22.2 32.6 1594 67.8 18.3 1.7

MOKWA 9.31°N, 5.07°E SCL 2018-2019 Mokwa18
January
2018

22.1 32.4 1351 68.5 18.6 1.7

MOKWA 9.31°N, 5.07°E SCL 2019-2020 Mokwa19 June 19 21.8 32.5 1385 69.1 18.8 1.8

ONNE 4.79°N, 7.17°E SCL 2018-2019 Onne18 April 2018 23.3 29.6 3319 88.1 14.9 0.9

UBIAJA 6.67°N, 6.39°E SCL 2019-2020 Ubiaja19 June 2019 22.1 29.3 2725 84.1 16.7 1.6

UMUDIKE 5.47°N, 7.55°E SCL 2018-2019 Umudike18 July 2018 22.9 29.4 1966 86.3 16.2 1.4
fron
*Geo Loc, geographical location; SCL, Sandy Clay Loam, SL, Sandy Loam; CL, Clay Loam; Name, Location/year; TMAX, Daily temperature maximum; TMIN, Daily temperature minimum;
RAIN, Sum precipitation/year; RH2M, Relative Humidity at 2 m; SRAD, Daily solar radiation; PAR, Daily photosynthetic radiation; WIND, Wind Speed at 2 m. The meteorological data
corresponds to the growing season.
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Storage root dry weight

= Storage root fresh weight ∗Dry matter content (3)
Estimating genotype specific parameters
The DSSAT crop model contains genetic parameters at the

levels of species, ecotype, and cultivar (Hoogenboom et al., 2019).

For model evaluation, coefficients at the level of cultivars, referred as

Genotype-Specific Parameters (GSPs), need to be calibrated. We

also adjusted two ecotype coefficients directly involved in yield

(Moreno-Cadena et al., 2020; Rankine et al., 2021).

The GSPs define differences among cultivars within a crop

species (Hoogenboom et al., 2019). The 15 cultivar and 2 ecotype

parameters incorporated within CSM-MANIHOT-Cassava that we

calibrated for each cultivar are defined in Table 2. The prior

distribution of each GSP was provided by Moreno-Cadena et al.

(2020). Crop growth models simulate the processes of plant growth.

They typically have phenology stages driven by thermal time. In

CSM-MANIHOT-Cassava, stages determine branching. Growth is

determined by the processes of sunlight being intercepted and

converted to photosynthates which are partitioned to different

plant organs: leaves, stems, and roots. In the CSM-MANIHOT-

Cassava case, photosynthate demand is determined by node, leaf,

and fibrous root growth, after which excess photosynthate goes to

storage root growth. A full description of the model is given in
Frontiers in Plant Science 06
Chapter 4 of (Moreno-Cadena, 2021) where a visualization of the

model is also given (Figure 4-1 of Moreno-Cadena, 2021).

Two methods were used to estimate GSPs. The first group of GSPs,

including the phenological parameters and some growth parameters,

were hand-calibrated following the trial and error procedure

recommended by Hoogenboom et al. (2019) and used by

Phoncharoen et al. (2021b). Simulations were repeated until we could

not increase the agreement evaluated by the correlation (r) and the Root

Mean Square Error values (RMSE) between the simulated and observed

values. That method was adopted because the target variables were

measured only in Ibadan 2021. The calibration procedure was as follows:
- Parameters defining plant phenology were calibrated in the

respective order of their progress during growth. They

included thermal time to first forking (B01ND), second

forking (B12ND), third forking (B23ND), and fourth

forking (B34ND). The target variables were the time of

these events from planting (days after planting).

- The growth parameters measuring the number of branches

per fork (BR1FX, BR2FX, BR3FX, and BR4FX) were

directly measured. In case of a lack of data, the default

value from the model GSPs file was applied.

- Leaf parameters, including the maximum leaf area (LAXS)

and leaf life (LLIFA) were calibrated. The target variable

was leaf area index (LAI) as computed in Equation 2.
TABLE 2 Definition of the CSM- MANIHOT-Cassava genotype parameters in DSSAT.

Level Parameter Description Function

Cultivar

B01ND Duration from planting to first forking (°Cd) Phenology

B12ND Duration from first to second forking (°Cd) Phenology

B23ND Duration from second to third forking (°Cd) Phenology

B34ND Duration from second to third forking (°Cd) Phenology

BR1FX Branch number per fork at fork 1 (no.) Growth

BR2FX Branch number per fork at fork 2 (no.) Growth

BR3FX Branch number per fork at fork 3 (no.) Growth

BR4FX Branch number per fork at fork 4 (no.) Growth

LAXS Maximum leaf area when growing without stress (cm2) Growth

SLAS Specific leaf lamina area when growing without stress (cm2 g-1) Growth

LLIFA Leaf life from full expansion to start senescence (°Cd) Growth

LPEFR Leaf-petiole fraction (fraction of lamina petiole) Growth

LNSLP Slope for leaf production Growth

NODWT
Node weight for the first stem of the shoot before branching at

3400°Cd (g)
Growth

NODLT
Mean internode length (cm) for the first stem of the shoot before

branching when is lignified (cm)
Growth

Ecotype
PARUE

Photosynthetically active radiation (PAR) conversion factor
standard (g dry matter MJ-1)

Ecotype

KCAN Photosynthetically active radiation extinction parameter (no.) Ecotype
f
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The second step of the calibration was done by the Generalized

Likelihood Uncertainty Estimation (GLUE) method. The calibrated

parameters were the specific leaf lamina area (SLAS), leaf petiole

fraction (LPEFR), a slope for leaf production (LNSLP), node weight

(NODWT) and internode length (NODLT). The GLUE method is

one of the first methods to represent prediction uncertainty within

the context of Monte Carlo analysis coupled with Bayesian

estimation and propagation of uncertainty. The technique uses a

likelihood function to measure the closeness-of-fit of modeled and

observed data (He et al., 2010). The goal was to minimize the RMSE

between simulated and observed values. The target variables were

the aboveground biomass dry weight. The GLUE method was used

because of its flexibility, ease of implementation as an R program,

and its suitability for parallel implementation on distributed

computer systems. It has previously been used to estimate GSPs

for DSSAT crop models (Hoogenboom et al., 2019) such as wheat

(Ibrahim et al., 2016; Li et al., 2018), maize (Mereu et al., 2019), and

rice (Buddhaboon et al., 2018) as examples. The main steps of the

GLUE program as described by Beven and Binley (1992); He et al.

(2010), and updated by He et al. (2021), are summarized in

Supplementary Methods.

After these two steps, if the storage root dry weight was

systematically underestimated or overestimated across

observations of a cultivar, the photosynthetically active radiation

conversion factor (PARUE) and PAR extinction coefficient

(KCAN) that are ecotype parameters were adjusted manually to

remove the bias. Then, the GLUE method was run again as

defined above to estimate the GSPs using new values of PARUE

and KCAN.
Statistical analysis

Model performance analysis
The performance of the calibrated CSM-MANIHOT-Cassava

model was analyzed using the correlation (r), the Root Mean Square

Error (RMSE, Wallach and Goffinet, 1987), the normalized root

mean square error (nRMSE, Loague and Green, 1991) and the index

of agreement (d, Willmott, 1982). These four statistical parameters

were analyzed separately for storage root dry weight. The

parameters r (Equation 4), RMSE (Equation 5) and nRMSE

(Equation 6) measure the deviation of the simulated from the

observed values. The nRMSE is the RMSE value divided by the

observed mean. The simulation is considered excellent with

nRMSE< 10%, good in the 10-20% range, fair in the 20-30%

range, and poor if nRMSE is > 30% (Harb et al., 2016; Rankine

et al., 2021). The index of agreement, d, (Equation 7) was added

because it incorporates both bias and variability. The d value varies

between 0 and 1. A value of 1 indicates a perfect match, and 0

indicates no agreement at all.

r = oM
i=1(Si − �S)   (Oi − �O)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oM
i=1(Si − �S)2oM  

i=1(Oi − �O)2
q (4)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

i=1(Si − Oi)
2

M

s
(5)

nRMSE =
RMSE  X   100

�O
(6)

d = 1 − oM
i=1(Si − Oi)

2

oM
i=1( Si − �Oj j + Oi − �Oj j)2

(7)

M = number of observations

Si = simulated value
�S = mean of the simulated values

Oi = observed value
�O = mean of the observed values

Model sensitivity analysis
The main objective was to identify variables explaining

deviations between model predictions and experimental data. The

hypothesis was that the differences between the simulated and the

observed values could be due either to a bad calibration of the GSPs

(leading to a genotype effect on model deviation) or to the fact that

some parameters of the environment were not well accounted for in

the model (leading to an environment effect on model deviation) or

to an interaction between these two causes (leading to a genotype by

environment interaction effect on model deviation).

We analyzed deviations using the Additive Main effect and

Multiplicative interaction (AMMI) model implemented in the

statgenGxE R package, version 4.0.1 (van Rossum et al., 2022). The

AMMI model separates additive main effects and multiplicative

interaction effects. The model analyses the additive effects with classical

analysis of variance (ANOVA) then applies principal component

analysis (PCA) to the residual interaction portion of variation

(Hongyu et al., 2014; Nowosad et al., 2016; Yan and Rajcan, 2002).

The AMMI model was:

yij = m + Gi + Ej +oM

m=1
gmidmj +   eij

where:
- M was the number of principal components included,

- yij was the deviation between observed versus simulated dry

storage root yield for genotype i in environment j. That is,

yij = Observed storage root dry weight – simulated storage

root dry weight,

- m was the general mean,

- Gi was the genotypic effect,

- Ej was the environmental effect,

- gmi was the genotypic score for principal component m and

genotype i,

- dmj was the environment loading for principal component m

and environment j,

- eij was the residual.
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For example, if after calibration, observed yields of a genotype

across environments are consistently higher than those simulated

by the CSM-MANIHOT-Cassava model, Gi will be positive.

Likewise, if observed yields across genotypes in an environment

are consistently higher than those simulated by CSM-MANIHOT-

Cassava, Ej will be positive. Conditions for gmi and dmj to be non-

zero would require that certain aspects of the genotype interact with

certain aspects of the environment to cause a bias in CSM-

MANIHOT-Cassava simulations. Explanatory variables

considered for these analyses included weather data, soil data, and

additional phenotypic data, encompassing diseases such as Cassava

Bacterial Blight incidence and severity (CB_), Cassava Green Mite

severity (CGM), Cassava Mosaic Disease incidence and severity

(CMO), as well as leaf area (LeafArea) and plant morphology, such

as Plant forking number (branchP), Stem number (stem_nu), Stem

diameter (stem_D), and Plant height (plant_H). The methods used

for obtaining additional data were consistent with those described

in Rabbi et al. (2014); Rabbi et al. (2017), and Wolfe et al. (2016).
Results

Variation among optimized GSPs

The cultivars presented variation in the optimized parameters

controlling phenological events and growth (Table 3). For the
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phenology, the first forking (B01ND) time presented the highest

coefficient of variation (CV = 62%). The second, the third, and the

fourth forking time showed substantially lower CVs. The number of

branches for the first forking was between 2 and 4, and some cultivars

had 4 branches in the second branching. Parameter variation was

observed at both the leaf and internode. The leaf production and

functioning parameters, such as LAXS and SLAS presented CV values

of 19% and 13%, respectively. Similarly, the internode weight

(NODWT) and length (NODLT) showed CVs of 32% and 27%,

respectively, which were the highest CVs among the GLUE-optimized

parameters. Finally, among the parameters affecting photosynthetic

activity, PARUE and KCAN had 21% and 15%CV values, respectively.
Model performance

Performance by cultivar
The analysis included the 67 cultivars evaluated across 16

environments. For each cultivar we calculated the Pearson

correlation r of model prediction and observation across the

environments, as well as the RMSE and d statistic. The GLUE

estimated GSPs improved the accuracy of the dry storage root yield

simulated by the model (Figure 3). The correlation coefficient

increased from –0.03 to +0.08, the RMSE dropped from 21 t ha-1

to 5 t ha-1 while d increased from 0.23 to 0.44. All these changes

were highly significant using a paired t-test.
TABLE 3 Maximum (Max), minimum (Min), mean and coefficient of variation (CV) values of genotype-specific parameters calibrated for the 67 cassava
cultivars in the MANIHOT-Cassava model.

Coefficient Fitted by Max Min Mean CV (%)

B01ND (°Cd) Trial & Error 1200 231 487 62

B12ND (°Cd) Trial & Error 344 80 247 19

B23ND (°Cd) Trial & Error 286 101 235 15

B34ND (°Cd) Trial & Error 250 100 243 11

BR1FX Trial & Error 3.8 2 2.5 13

BR2FX Trial & Error 4 2 2.7 17

BR3FX Trial & Error 3 1 2.1 17

BR4FX Trial & Error 2 1.4 1.5 4

LAXS (cm2) Trial & Error 920 401 754 19

LLIFA (°Cd) Trial & Error 1800 600 1282 32

SLAS (cm2 g-1) GLUE 280 149 252 13

LPEFR GLUE 0.3 0.2 0.3 17

LNSLP GLUE 1.7 0.7 0.8 19

NODWT (g) GLUE 6 1.7 3.3 32

NODLT (cm) GLUE 4 1 2.9 27

PARUE (g dry matter MJ-1) Yield Matching 2.6 1.4 1.8 21

KCAN Yield Matching 0.8 0.5 0.6 15
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Performance by environment

The r, RMSE, and d statistics could also be calculated across

cultivars within environments. In this per-environment analysis, we

also observed reasonable agreement between the simulated and the

observed storage root dry weight. A total of 69% of the environments

had an nRMSE ≤ 20% (considered excellent to good). Some

environments such as Ikenne17 and Mokwa18 were very well

simulated with nRMSE values of 9% and 10%, RMSE of 2.2 and 2.7

tha-1 and d values of 0.74 and 0.63 respectively (Table 4). Equally,
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substantial deviation of the model was observed in some

environments such as Ikenne18 and Onne18 (nRMSE ≥ 30%).

Given this observation, statistical analyses of simulation results were

performed to determine the causes of the model deviations.
Genotype and environment effects on
model prediction error

The objective of the AMMI analysis was to identify the possible

causes that could be ascribed to cultivars or environments of poor
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FIGURE 3

Comparison of the Pearson correlation coefficient (r), the root mean squared error (RMSE), and the index of agreement (d) values for the MANIHOT-
Cassava predicted storage root dry weight before and after using General Likelihood Uncertainty Estimation (GLUE) method for Genotype-Specific
Parameters (GSPs) estimation. Each point represents one cultivar.
TABLE 4 Agreement between simulated (Sim) and observed (Obs) mean storage root dry weight of the cultivars across environments for MANIHOT-
Cassava calibration.

Location Environment Obs Sim r RMSE (t ha-1) nRMSE (%) d Total cultivars

Abuja Abuja19 8.9 9.4 0.28 3.0 13 0.58 67

Ago-Owo

Ago17 11.3 9.7 0.28 2.7 14 0.51 36

Ago18 9.3 11.4 -0.1 4.5 24 0.23 36

Ago19 14.4 9.9 0.48 5.3 20 0.47 36

Ibadan

Ibadan17 14.2 11.3 0.22 4.7 13 0.51 33

Ibadan18 16 13.4 0.48 4.3 11 0.62 57

Ibadan19 8.6 8.4 0.06 3.2 14 0.41 66

Ikenne

Ikenne17 11.4 11.7 0.56 2.2 9 0.74 67

Ikenne18 5.4 14.3 0.36 9.4 57 0.25 67

Ikenne19 13.5 11.6 0.6 3.8 11 0.69 67

Mokwa

Mokwa17 12.1 3 0.35 9.7 26 0.38 63

Mokwa18 6.4 5.3 0.43 2.7 10 0.63 67

Mokwa19 6 6.4 0.25 2.4 17 0.47 36

Onne Onne18 6.1 10.9 0.38 5.8 33 0.36 67

Ubiaja Ubiaja19 5 10.1 0.44 5.7 32 0.38 67

Umudike Umudike18 11.4 8.8 0.51 3.7 13 0.61 67
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model performance in predicting root yield. The analysis was

applied to the difference between observed and simulated storage

root dry weight (observed – simulated = “O-S”). The AMMI model

evaluated 66 genotypes across 16 environments. One genotype out

of the 67 was not included because it had more than 10% missing

data. The ANOVA analysis revealed a significant effect only for the

environment explaining model error (Table 5). The effect of the

genotype and environment interaction was also highly significant

(p< 0.001). The first three interaction principal components (PCs)

explained 50% of the GEI variation.

The biplot of model prediction errors indicated that the

environment effects were strongest at Ago18 and Mokwa17 whose

effects were opposite on the component of GEI explained by

PC1 (Figure 4).
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Effects of environment characteristics on model
prediction error

To identify characteristics of environments that affected model

accuracy, we correlated weather and soil profile data with the

AMMI analysis output including the mean value of model

deviations (i.e., “O-S”) by environment (envMean) and the

environment loading values on the three PCs.

Many input weather parameters affected the model

performance (Figure 5). Indeed, the solar radiation, maximum

temperature, wind, and daily photosynthetic radiation were

positively correlated with the deviations while rainfall and relative

humidity were negatively correlated (p-values< 0.01). Root yields in

dry (low rain) environments marked by high temperatures and high

solar radiation were underestimated by the model, while yields in

wet (high rain) environments with low temperatures and low solar

radiation were overestimated (Figure 6). These weather parameters

affected estimation more in the first six months of plant growth:

parameters at 6 months after planting (parameter abbreviation with

“_6”) had the strongest correlations.

Subsoil characteristics at 15 and 100 cm were strongly

correlated, and we only present results at 15cm. Only the soil

organic carbon (SLOC), significatively affected MANIHOT-Cassava

performance showing a negative correlation with the model

deviations (Figure 7).
Discussion

Variation in cultivar GSPs

Crop Growth Models are usually calibrated in non-stress

environments (Hoogenboom et al., 2012). These environments

enable the expression of the cultivar’s inherent growth and

potential without confounding them with stress factors (Anothai

et al., 2008). Our objective here, however, was to calibrate with

breeding trial data to avoid requiring the breeding program to

allocate resources to model calibration experiments. We assume

that the lack of ideal environments can be compensated for by

having data from many environments.
TABLE 5 Analysis of variance for the model storage root dry weight (t ha-1) deviation (observed – simulated) using the AMMI model.

Source df Mean Sq F value P value % Total SS Cumulative Proportion (%)

Environment 15 1153.7 164 <0.001 70

Genotype 66 6.8 1.5 0.55 2

Interactions 990 7 28

PC1 80 19.7 4.3 <0.001 23

PC2 78 14.8 3.2 <0.001 39

PC3 76 10.1 2.2 <0.001 50

Residuals 756 4.5
With degrees of freedom (df), mean square (Mean Sq), the F value and P value and the proportion of sums of squares (% Total SS).
FIGURE 4

Biplot of genotypes and environment interaction with PC1 and PC2.
Genotypes are black points, and environments are red arrows.
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Across the 15 GSPs, we used three calibration approaches: Trial

& Error, GLUE, and Yield Matching (Table 3). For the Trial & Error

calibration we only used data from the Ibadan 2021 trial for which

we had estimates of leaf area and of branch phenology and number

of forks. These parameters were fixed in part because we found that

the GLUE approach could not handle more than the five GSPs that

were calibrated with it. Because GLUE samples from the prior

distribution of parameters it is not super-efficient at narrowing in

on values with maximum posterior density (He et al., 2010). Recent

efforts have been made to parallelize GLUE (Berton Ferreira et al.,

2024) to make it more computationally feasible. Finally, we set

PARUE and KCAN to come close to matching the average yield of

the cultivars. This approach was chosen to reduce the impact of

genotype main effects on model calibration and instead capture

sources of genotype by environment interaction. The approach is

not unlike post hoc adjustments for harvest index to match

harvested yield to model biomass simulation (as might have been

done, for example, in Wellens et al., 2022). One consequence of that

choice is that model deviations were barely affected by genotype

(Table 5) so that we were not able to explore effectively genotype
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characteristics that might affect model performance. Adjusting to

match genotype main effect, however, arithmetically could not affect

the correlation for a genotype between simulation and observation

across environments. Thus, the model improvement in that

correlation from a median across cultivars of -0.03 for the default

parameters to 0.08 was due to calibration of the other parameters.

While the optimized correlation is not high, the improvement was

statistically significant (Figure 3).

Across calibration approaches, we found evidence of variability

between the IITA cultivars. Concerning plant phenology, the CV

among cultivars was 62% for thermal time to first branching. This

parameter establishes the difference between early- and late-

branching genotypes (Moreno-Cadena et al., 2020). Similar

results were obtained on the elite cassava cultivars from the

National Crops Resource Research Institute breeding program of

Uganda (Ibrahim et al., 2020) using standard statistical analysis. For

Thai genotypes, Phoncharoen et al. (2021b) obtained a very high

variation 97%, unlike the Jamaica genotypes where Rankine et al.

(2021) found a CV of only 10%. Branching is a significant event in

the cassava’s life cycle. Phenology not only determines the rate of
FIGURE 5

Correlation between the mean value of the model deviation (“Observed – Simulated”) by environment (envMean), the environment loading values on
PC1, PC2 and PC3, and weather parameters The suffix number (“_x”) defines the months after planting, e.g., TMAX_6 is the maximum temperature at
6 MAP. ELEV, location altitude (m); LAT, location latitude; LONG, location longitude; RAIN, rainfall from planning to harvest; SRAD, solar radiation;
TMIN, minimum daily temperature; TMAX, daily maximum temperature; RH2M, relative humidity; WIND, average wind speed at 2m; PAR,
Photosynthetically active radiation.
FIGURE 6

Scatterplot of the mean model deviation (“Observed – Simulated”) against the annual total rain by environment (RAIN) and the annual mean
maximum temperature by environment (TMAX).
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production of leaves and the architecture of the plant but also

accounts for the plant’s ability to flower, because an inflorescence is

always coupled with branching (Halsey et al., 2008; Jennings and

Iglesias, 2001). Thus, the level and timing of branching influence

flower availability and fertility (Ibrahim et al., 2020). The B12ND,

B23ND and B34ND parameters and their corresponding number of

branches (BRnFX) could be interpreted because not all the cultivars

showed a fork when the data was collected between 5 and 6 months

after planting. For those cultivars, the model default values were

used (Moreno-Cadena et al., 2020).

There was also variation among the cultivars for the leaf

parameters. These results indicate that the germplasm of IITA was

characterized by high variability of leaf production, growth, as well as

leaf functioning as shown in the PARUE and KCAN parameters. The

importance of getting leaf parameters well calibrated is that the

MANIHOT-Cassava model uses a surplus of assimilate approach

to determine when to allocate to storage roots. We were only able to

measure LAI in one environment. More data on cassava LAI across

studies might improve model performance. At least two different data

collection times during the growing season are needed to calibrate the

genetic parameters (Banterng et al., 2009; Phoncharoen al. 2021b;

Rankine et al., 2021; Suriharn et al., 2007).

The individual node weight (NODWT) showed a high variation

across the target germplasm followed by node length (NODLT) and

leaf production slope (LNSLP). According to Moreno-Cadena et al.

(2020), NODWT and LNSLP are both essential GSPs affecting plant

total biomass with the latter being particularly important in warm

environments. The NODWT parameter is important because it

affects aboveground photosynthate demand which must be satisfied

before the remaining assimilates are allocated to the storage roots. A

high value for NODWT can lead to a decrease in storage root dry

weight (Moreno-Cadena et al., 2021; Phoncharoen et al., 2021b).
Comparison to other model calibrations

Model calibration across 67 cultivars with final fine calibration

using the GLUEmethod improved the prediction of the storage root

dry weight. Strong model improvements for the RMSE and d
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statistics were no doubt partially due to the yield matching

approach we used to calibrate PARUE and KCAN. The

improvement in r that we observed was due to other GSP

adjustments, however. Similar methodology was successfully used

to calibrate the CSM-CERES-Wheat and CSM-CERES-Maize

models for winter wheat and maize grain yield simulation,

achieving RMSE of 0.27 and 1.57 t ha-1, respectively, and d values

of 0.98 and 0.85, respectively (Ibrahim et al., 2016; Mereu et al.,

2019). However, RMSE values of 2.19 and 3.72 t ha-1 were obtained

for durum wheat and common wheat grain yield simulation,

respectively, which are similar to the results we obtained in some

environments (Mereu et al., 2019). The cassava storage root yield

for six locations in Nigeria was simulated with an RMSE of 4.9 t dry

matter ha−1 using the LINTUL-Cassava model (Adiele et al., 2021).

The nRMSE values obtained by environment were similar to those

reported by Phoncharoen et al. in two diferrent studies

(Phoncharoen et al., 2021a; b). Finally, Wellens et al. (2022)

achieved similar normalized RMSE in the range of 11% to 33%.

Finally, our model fit statistics could have been affected by the

fact that we did not have explicitly measured local soil and weather

data. Lack of accurate local soil profile data and specific topsoil

chemical analysis data could lead to the model prediction errors. To

assess this possibility further, we calibrated the model under both

nitrogen-limited and non-nitrogen-limited conditions; phosphorus

not being an important limiting factor in the CSM-MANIHOT-

Cassava model (Moreno-Cadena et al., 2021). Model accuracy was

better under non-nitrogen-limited conditions. The weather data we

used came from NASA sources; a local weather station would have

been preferred. In future research we will also seek to use Climate

Hazards group Infrared Precipitation with Stations rainfall data

(Funk et al., 2015).
Model variables to investigate further

To our knowledge no cassava study has separately calibrated a

model for as many cultivars as we have here. We believe that the

extensive set of cultivars we calibrated lends robustness to our

conclusions on model performance. The analysis of model
FIGURE 7

Correlation between the mean value of the model deviation (“Observed – Simulated”) by environment (envMean), the environment loading values on
PC1, PC2 and PC3, and soil profile parameters. Soil parameters abbreviations are SLLL, Lower limit of plant extractable soil water (cm3); SDUL,
Drained upper limit (cm3); SSAT, Upper limit; saturated (cm3); SSKS, Saturated hydraulic conductivity (cm/h); SBDM, Bulk density (g/cm3); SLOC,
Organic carbon (%), SLCL, Clay (%); SLSI, Silt (%); SLHW, pH in water; SCEC, Cation exchange capacity (cmol/kg).
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prediction errors showed that root yield prediction error was linked

to the input weather parameters SRAD, TMAX, wind, rain, and

RH2M (Figure 5). The fact that genotypes clustered together when

plotted by environments also reflects the importance of

environment on model prediction error (Figure 6). The

correlation between weather parameters and model prediction

error could be used to classify the environments and identify

physiological relationships to be improved in the model.

The underestimated environments were characterized by low

rain resulting in low relative humidity. The model integrates rainfall

as plant extractable soil water by subtracting surface runoff, drainage,

and soil evaporation (Hoogenboom et al., 2019). As root water

uptake decreases, stomatal conductance decreases through stomatal

closure, which reduces carbon assimilation and transpiration as well

as nutrient absorption (Moreno-Cadena et al., 2020). In addition,

prior studies with the model showed that under warm temperatures

water availability could be a limiting factor for cassava root yield

(Moreno-Cadena et al., 2021; Phoncharoen et al., 2021a; Rankine

et al., 2021). Cassava stomata are sensitive to vapor pressure deficit

(VPD) and reduce gas exchange more than other crops, which can

limit photosynthesis while also saving water (Oguntunde and

Alatise, 2007; Vongcharoen et al., 2018). The model currently

incorporates a drought stress factor that integrates a VPD factor

for photosynthesis. Our calibration study suggests that this stress

factor might need to be adjusted. The improved cultivars from the

IITA breeding program are selected for high performance including

in water stress environments in the north of Nigeria. These cultivars

could therefore be more tolerant than assumed by the model. A

drought condition assumed by the model could still allow normal

root growth for these improved genotypes. At the same time,

increased rainfall led to higher predicted storage root dry weight

but did not affect the observed values. The model requires defining

thresholds for water and nitrogen stress, leaf and root senescence,

and root water uptake (Moreno-Cadena, 2021). These are currently

species coefficients that were not modified by our study. Modifying

these settings could improve model performance in more extreme

wet or dry environments.

Finally, the IITA improved cultivars might not follow the

photosynthetic assimilate allocation strategy of CSM-MANIHOT-

Cassava model which feeds the storage root growth with the

remaining assimilate after having satisfied the aboveground sink.

The spill over model is elegant and has scientific support (Cock and

Connor, 2021) but is not a consensus (e.g., Gray, 2000). Several

studies showed that improved cassava cultivars preferentially

allocate photosynthetic assimilates to storage roots after their

initiation (Lahai et al., 1999; Turyagyenda et al., 2013). The

partitioning of the assimilate and the dynamics of the source-sink

carbon allocation during the life cycle of the plant are important

phenomena to understand to better simulate cassava’s growth. In a

study contrasting two cassava varieties, one genotype favored stem

growth while the other favored the storage roots once they were
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initiated (Chiewchankaset et al., 2022). Finally, a given cultivar need

not be limited to a single allocation strategy but that, at a stage of its

growth and according to its genotype and environmental factors,

the cultivar adopts different mixtures of strategies.
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