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Wheat (Triticum aestivum L.) is one of the significant food crops in the world, and

the number of wheat ears serves as a critical indicator of wheat yield. Accurate

quantification of wheat ear counts is crucial for effective scientific management

of wheat fields. To address the challenges of missed detections, false detections,

and diminished detection accuracy arising from the dense distribution, small size,

and high overlap of wheat ears in Unmanned Aerial Vehicle (UAV) imagery, we

propose a lightweight model, PSDS-YOLOv8 (P2-SPD-DySample-SCAM-

YOLOv8), on the basis of the improved YOLOv8 framework, for the accurate

detection of wheat ears in UAV images. First, the high resolution micro-scale

detection layer (P2) is introduced to enhance themodel’s ability to recognize and

localize small targets, while the large-scale detection layer (P5) is eliminated to

minimize computational redundancy. Then, the Spatial Pyramid Dilated

Convolution (SPD-Conv) module is employed to improve the ability of the

network to learn features, thereby enhancing the representation of weak

features of small targets and preventing information loss caused by low image

resolution or small target sizes. Additionally, a lightweight dynamic upsampler,

Dynamic Sample (DySample), is introduced to decrease computational

complexity of the upsampling process by dynamically adjusting interpolation

positions. Finally, the lightweight module Spatial Context-Aware Module (SCAM)

is utilized to accurately map the connection between small targets and global

features, enhancing the discrimination of small targets from the background.

Experimental results demonstrate that the improved PSDS-YOLOv8 model

achieves Mean Average Precision(mAP) 50 and mAP50:95 scores of 96.5% and

55.2%, which increases by 2.8% and 4.4%, while the number of parameters is

reduced by 40.6% in comparison with the baseline YOLOv8 model. Compared to

YOLOv5, YOLOv7, YOLOv9, YOLOv10, YOLOv11, Faster RCNN, SSD, and

RetinaNet, the improved model demonstrates superior accuracy and fewer

parameters, exhibiting the best overall performance. The methodology
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proposed in this study enhances model accuracy while concurrently reducing

resource consumption and effectively addressing the issues of missed and

false detections of wheat ears, thereby providing technical support and

theoretical guidance for intelligent counting of wheat ears in UAV imagery.
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1 Introduction

As a major agricultural nation, China recognizes wheat

(Triticum aestivum L.) as not only the second largest grain crop

domestically but also one of the three principal cereal crops globally,

holding a significant position in agricultural production; its yield is

a critical index for assessing agricultural productivity (Zhao et al.,

2019; Bao et al., 2020). The density of wheat ears per unit area is a

key indicator of winter wheat yield; therefore, rapid and accurate

identification of wheat ears and quantification of ear density are

of significant importance for predicting wheat yield, optimizing

breeding strategies, and conducting plant phenotyping analysis

(Xu et al., 2020; Zhang et al., 2019; Xiong et al., 2019).

Traditional ear of wheat counting methods typically necessitate

manual field operations, which are time-consuming, labor-

intensive, and inefficient, rendering them unsuitable for large-

scale implementation (Tan et al., 2020; Alkhudaydi et al., 2022).

In recent years, with continuous advancements in computer

vision, automated wheat ear detection techniques have begun to

replace manual detection, achieving a leapfrog development from

traditional image processing to machine learning and subsequently

to deep learning.

In early research on wheat ear recognition, the majority of

studies achieved segmentation, detection, and counting of wheat

ears by analyzing their texture features and performance in a mixed

color space, in conjunction with traditional image processing

methods such as multi-feature fusion of color, grayscale, and

texture (Fan et al., 2015; Huang et al., 2021). Zhou et al. (2018)

developed a feature training model, TWSVM-Seg, which is

advantageous for wheat ear recognition through feature fusion,

thereby enhancing performance of wheat ear segmentation; Li et al.

(2018) extracted the saturation component of the image by

transforming color space and employed image preprocessing

techniques, including the removal of attachments and concave

point detection matching segmentation, to achieve segmentation

and counting of wheat ears; Fernandez-Allego et al. (2020)

eliminated low-frequency elements in the image using a Laplace

frequency filter and employed a median filter to reduce high-

frequency noise, and finally applied the Find Maxima

Segmentation technique to accomplish segmentation and

detection of wheat ear images. However, accuracy of traditional

image processing techniques is constrained by the quality of images
02
themselves. In the complex and variable field environments, factors

such as lighting conditions, crop density, and occlusion significantly

affect image quality, thereby diminishing accuracy of wheat ear

recognition. Consequently, traditional image processing methods

struggle to be effectively applied to the task of wheat ear detection

across various scenarios, resulting in limited generalizability.

In contrast to traditional image processing techniques, machine

learning methods exhibit greater flexibility and efficiency within the

domain of image analysis. When confronted with problems such as

limited data volume, low data dimensionality, and linear

relationships, machine learning techniques can fully leverage

algorithmic advantages, thereby significantly enhancing image

processing performance. Liu et al. (2019) employed color feature

clustering as a foundation to establish a direct mapping relationship

between low-level features of the image and the number of wheat

ears, calculating the wheat ear count by refining K-means method;

Olgun et al. (2016) employed DSIFT(Dense Scale Invariant Feature

Transform) for feature extraction and subsequently applied support

vector machine classification algorithm to identify and detect wheat

ears. However, due to machine learning model construction

process, selection of target features needs to be determined by

human beings, resulting in the model not effectively capturing key

information in the data, leading to unstable detection results.

The rapid advancement of crop phenomics research has led to

widespread application of target detectionmethods on the basis of deep

learning in agriculture, attributed to advantages, including efficient

feature extraction capabilities and adaptability to complex agricultural

scenarios. These methods have significantly progressed in detecting

counts of wheat ears per unit area (Bar-Hillel, 2021; Mohanty et al.,

2016; Wang et al., 2021). Wang et al. (2019) combined the Fully

Convolutional Network (FCN) with Harris corner detection to identify

wheat in the field, enhancing detection generalizability; Guan et al.

(2024) proposed the CTWheatNet model, which integrates local

features with global contextual information to enhance feature

representation capabilities for accurate detection of wheat ears in the

field; Yang et al. (2024) introduced a lightweight density estimation

network for calculating the number of wheat ears. The network is based

on a ghost network for multi-scale feature extraction, combined with

the FIDMT network, and adds dense upsampling modules to improve

image resolution. A maximum value detection strategy is also designed

to reduce background noise and interference, achieving automatic

counting of wheat ears; Misra et al. (2020) integrated two innovative
frontiersin.org

https://doi.org/10.3389/fpls.2025.1536017
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1536017
feature networks, the Local Patch Extraction Network (LPNet) and the

Global Mask Refinement Network (GMRNet), to achieve accurate

counting of pot-grown wheat plants; Gao et al. (2022) used the

YOLOv3 algorithm to achieve automatic recognition of wheat ears

and developed a standardized real-time estimation method for the

number of wheat ears per unit area. However, the YOLOv3 model has

a slower computational speed; Yang et al. (2022) developed a unit area

wheat ear detection method based on improved YOLOX, which solves

the problems of dense and occluded targets through Content-Aware

ReAssembly Feature Extraction(CARAFE) upsampling and iAFF

iterative attention feature fusion. YOLOX is based on YOLOv3 SPP

and combines anchor free detection mechanism, but this model has a

high missed detection rate for small targets; Gong et al. (2020) used

YOLOv4, which achieved a balance between speed and accuracy, as the

base network, and incorporated dual-space pyramid pooling (SPP) to

improve feature learning capabilities, thereby achieving accurate

detection of wheat ears; Zhao et al. (2021) improved YOLOv5 model

by establishing a priori anchor frames and adjusting the confidence loss

function of the detection layer on the basis of IoU, optimizing feature

extraction for small-sized wheat ears and improving detection accuracy

and precision under occlusion conditions. Yolov5 further improves the

detection accuracy and speed of the model, and also has lightweight

features; Meng et al. (2023) proposed the YOLOv7-MA model to

accurately identify wheat ears in complex field backgrounds, enhancing

the model’s ability to detect wheat ears in complex backgrounds. Both

the publicly available GWHD dataset and the wheat ear dataset

collected in the field can maintain good counting performance.

YOLOv7 is suitable for detecting complex backgrounds and high-

density targets, but the demand for computing resources also increases

accordingly; Fang and Yang (2025) proposed a lightweight

improvement method based on YOLOv8n. Improvements such as

removing large object detection heads, replacing FPNs, and simplifying

SPPF modules have reduced memory usage and increased detection

speed; YOLOv8 adopts a more efficient structure, further reducing

computational costs and making it suitable for edge devices and low-

power devices; Guan et al. (2024) Guan significantly improves feature

extraction and detection capabilities based on the YOLOv10 algorithm

by introducing a bidirectional feature pyramid network (BiFPN), a

separation enhanced attention module (SEAM), and a global context

network (GCNet). YOLOv10 further improves performance and

efficiency compared to YOLOv8.

While ground-based image analysis remains an important

aspect of wheat counting research, in recent years, with

maturation and widespread application of drone technology,

utilization of drones for data collection offers advantages of

convenience, efficiency, and extensive coverage, facilitating rapid

acquisition of large-scale images of wheat ears (Araus and Cairns,

2014). However, UAV images typically exhibit lower resolution

compared to ground-collected images and are characterized by

small wheat ear sizes, dense distributions, and significant overlap,

which can lead to issues such as occlusion, missed detections, and

false detections. Additionally, the complex backgrounds of field

images and morphological differences among various wheat ears

further complicate detection efforts. This is particularly true in

resource-constrained real-time processing scenarios, where

demands for model performance are heightened. In summary,
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application of UAV imagery in the field of wheat ear counting

still faces numerous challenges, necessitating in-depth exploration

and refined research. Zhao et al. (2022) proposed the OSWSDet

method, based on the YOLOv5 architecture, to address challenges

posed by small, densely distributed, and heavily overlapping wheat

ears in UAV images. By employing CSL (rotating target detection)

to mitigate background interference, this method effectively resolves

issues of occlusion and overlap. The final model achieved an average

accuracy of 90.5% for wheat ear detection. Ma et al. (2022)

introduced the cross-platform wheat ear counting model,

EarDensityNet, which transforms wheat canopy images into ear

density maps by integrating filtered pyramid blocks and extended

convolution. The wheat ear count is derived by summing the pixel

values of the density map. Leveraging transfer learning, the ground-

based model was retrained using UAV images, resulting in the

EarDensityNet_TL model. The final ground-based count error was

significantly lower than the UAV-based count error, highlighting

that ground resolution plays a critical role in the accuracy of UAV-

based wheat spike counting.

In this study, we present a UAV wheat ear counting model,

PSDS-YOLOv8, on the basis of an improved version of YOLOv8s.

To tackle the challenge posed by small wheat ear sizes, we

incorporate a new high-resolution P2 micro-scale detection layer

while removing P5 large-scale detection layer. This adjustment

improves precision by capturing high-resolution feature maps,

thereby enhancing the model’s ability to recognize small targets

and reducing missed detection rate of dense wheat targets. To tackle

the issue of occlusion caused by background confusion in field

environments, we employed spatial pyramid dilated convolution

(SPD-Conv) to replace traditional subsampling methods, thereby

minimizing feature loss and extracting multi-scale features related

to wheat ears more efficiently, while mitigating interference from

background factors such as wheat straw and leaves. To address the

increase in model parameters and computational volume resulting

from enhancements, we introduce lightweight dynamic upsampler,

DySample, and spatial context-aware module, SCAM. These

components aim to reduce computational complexity during

upsampling process and enhance global correlation across space,

thereby achieving model lightweighting.
2 Materials and methods

2.1 Data acquisition and processing

2.1.1 Data sources
The experimental site for this study is located in the

experimental fields of Hebei Agricultural University in Baoding

City, Hebei Province (38°48’N, 115°25’E), with geographical

location depicted in Figure 1A and the actual wheat field

scenarios illustrated in Figures 1B, C. Data collection was

conducted from May 8, 2024, to June 11, 2024, during which

various time periods and weather conditions were selected for

data acquisition. A total of 17 wheat varieties were captured in

images during the filling stage, the maturity stage, and the full ripe

stage, effectively enhancing diversity of the dataset. The imaging
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equipment is the DJI Mavic 3M drone, which is equipped with a 20

megapixel camera with a focal length of 24 mm and an imaging

angle of -90° to 35°. To ensure the accuracy of image acquisition, we

compared the image acquisition effects at different heights. The

results showed that if the drone flies at a high altitude, the image

clarity will be reduced, while when flying below 3 m, the disturbance

of the wheat canopy caused by airflow will interfere with image

acquisition and affect image quality. Therefore, the final imaging

angle of the drone lens was determined to be -90°, and 441 wheat

ear images were collected by hovering at a fixed point 3m above the

wheat canopy, aiming to obtain clear wheat ear images from the

best perspective. An example of the wheat ear images obtained by

the drone is shown in Figure 1D.

In order to comprehensively capture the various growth

conditions of wheat ears in real environments, the UAV wheat

ears image database consists of wheat images under different

densities, light intensities, shading levels, and other complex

situations. In addition, two publicly available wheat datasets are

used in this paper to enrich the composition of the data so as to

validate the generalization performance of the model. The GWHD

dataset contains wheat data from multiple countries and different
Frontiers in Plant Science 04
growth stages, covering a wide range of genotypes (Madec et al.,

2019); The WEDD dataset consists of high-resolution wheat sheaf

images from different regions and seasons (David et al., 2020). Some

sample images from the different datasets are shown in Figure 2,

where Figure 2A represents a sample of wheat spikelet data

captured by a drone, Figure 2B represents a partial sample from

the GWHD dataset, and Figure 2C represents a sample example

from the WEDD dataset, which reflects the diversity of the wheat

spikelets in the present study. These diverse image data can be used

to train the model more effectively, evaluate the performance of the

model in different scenarios, improve the model’s ability to

recognize and analyze different growth conditions of wheat, and

enhance the practical applicability of the model.

2.1.2 Data enhancements
In complex field environments, variations in illumination

intensity and background interference significantly affect model’s

accuracy in detecting wheat ears. To mitigate the impacts of uneven

lighting and intricate backgrounds on image quality, this study

employs the Adaptive Contrast Enhancement (ACE) algorithm

(Mahmood et al., 2019) to enhance brightness and contrast of
FIGURE 1

Experimental location and UAV wheat ear images: (A) Experimental site; (B, C) Actual wheat field scenarios; (D) UAV images of wheat ears.
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wheat ear images acquired by UAV. This algorithm utilizes a local

enhancement strategy, dividing the image into low-frequency and

high-frequency components. The low-frequency component is

extracted through mean filtering, and the high-frequency

component, which captures detail features of the wheat ears, is

obtained by subtracting the low-frequency component from the

original image. An enhancement factor is then applied to amplify

the high-frequency component, combined with an unsharp mask.

Finally, the enhanced high-frequency image is integrated with the
Frontiers in Plant Science 05
original low-frequency image to produce the final enhanced result

(Deng et al., 2022), as illustrated in Figure 3. The ACE algorithm

effectively suppresses low-frequency background interference,

thereby enhancing visual distinction between wheat ears and the

background, enabling the model to better extract target features.

This process consists of the following two steps:
1. Let x(k, l) represent the gray value of a point in the image.

The low-frequency component is obtained using the local
FIGURE 3

Schematic diagram of the ACE principle.
FIGURE 2

Example of wheat ear samples: (A) UAV wheat data image; (B) Global wheat head detection; (C) Wheat ear detection dataset.
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averaging method. The mean value of the window of size

(2n+1) × (2n+1) of the image mx(i, j)   can be calculated by

Equation 1, where, (i, j)   are the coordinates of the center

point of the local region, and n is taken as an integer.
mx(i, j) =
1

(2n + 1)2 o
i+n
k=i−n o

n

l=j−n

x(k, l) (1)

The average variance within the template can be ascertained

using Equation 2. sx(i, j) is the standard deviation of a window of

size (2 n + 1) × (2 n + 1).

s 2
x (i, j) =oi+n

k=i−n o
j+n

l=j−n

½x(k, l) −mx(i, j)�2 (2)
2. To enhance the high-frequency component, the standard

deviation serves as the gain value, while the mean is

approximated to represent the background, correlating

with high-frequency details. The enhancement of the

high-frequency component is determined by Equation 3,

where D is a constant representing the gain function.
To enhance the high-frequency component, standard deviation

serves as the gain value, with the mean mx approximated to

represent background, while ½x(k, l) −mx(i, j)�   corresponds to

high-frequency details. The gain product for the high-frequency

component is calculated using the following Equation 3, where D is

a constant, f (i, j) is the enhanced gain value, and the gain function is

given sx(i, j)

f (i, j) = mx(i, j) +
D

sx(i, j)
½x(k, l) −mx(i, j)� (3)

The enhancement effects achieved through application of the

adaptive contrast enhancement algorithm to wheat ear images

(Figure 3). This algorithm significantly improves distinction

between the target wheat ears and the background, reduces the

impact of illumination on image quality, and enhances the model’s

ability to capture detailed features of the wheat ears, thereby

enabling more accurate recognition.

2.1.3 Dataset construction
To reduce data processing time and meet the demand for data

diversity in subsequent model training, 441 drone wheat images

with original resolutions of 5280 pixels × 3956 pixels were cropped

into 91, 200, and 150 images with 750 pixels × 750 pixels, 600 pixels

× 600 pixels, and 450 pixels × 450 pixels, respectively. Then, the

wheat ears in the images were labeled using the labeling tool
tiers in Plant Science 06
LabelImg. After image rotation, the 441 images with different

resolutions were enlarged by three times to 1323 images. The

training set, validation set, and test set were constructed in an

8:1:1 ratio to complete the drone wheat dataset. Afterwards, 2200

and 200 clear wheat images were selected from two public datasets,

GWHD and WEDD, respectively. The dataset details for this study

is shown in Table 1.
2.2 Baseline model YOLOv8

YOLOv8 is a target detection methodology released as open-

source by Ultralytics on January 10, 2023. This architecture builds

upon the foundation established by YOLOv5 and supports a diverse

array of complex tasks, including instance segmentation, keypoint

detection, object detection, and classification. The network

architecture comprises three primary components: Backbone,

Neck, and Head (Terven et al., 2023).

The Backbone primarily processes input images and generates

feature maps required for object detection (Redmon and Farhadi,

2018). Drawing inspiration from the CSP module concept in YOLOv5,

C3module has been replaced with a more lightweight C2f module. The

Neck utilizes an FPN-PANet structure to enhance capabilities of feature

representation (Lin et al., 2017). In the Head, a decoupled head

approach is implemented, effectively separating classification and

detection heads while eliminating the object branch, thereby enabling

the model to learn category and spatial features with greater efficiency

(Ge, 2021). Meanwhile, YOLOv8 realizes anchor free detection, which

simplifies the model training process.

Furthermore, YOLOv8 refines loss function and training

strategy by employing a Task-Aligned Assigner for matching of

positive and negative samples, thereby addressing class imbalance

scenarios and enhancing the model’s detection capabilities for

minority class samples. The selected loss functions include

classification loss (VFL Loss) and regression loss (CIOU Loss +

DFL), thereby improving the accuracy of bounding box

predictions amidst substantial variations in object shapes and

sizes. In terms of training strategy, YOLOv8 disables Mosaic

augmentation in later stages of training to further enhance

model accuracy (Wei et al., 2021).
2.3 Improved YOLOv8 model

To enhance performance of wheat ear detection in UAV

images, this paper presents a lightweight and efficient wheat sheaf

detection model PSDS-YOLOv8 based on improved YOLOv8s. The
TABLE 1 Dataset details for this study.

Data set Number of images Training set validation set Test set Total number of wheat ears

UAV_wheat 1323 1058 132 133 132495

GWHD 2200 1760 220 220 118494

WEDD 200 160 20 20 29621
frontiersin.org

https://doi.org/10.3389/fpls.2025.1536017
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1536017
architecture of the improved model is illustrated in Figure 4, where

key improvement points are indicated by asterisks within the red

dashed box, specifically encompassing the following four aspects

of improvement:
Fron
1. To address the challenge of small target sizes of wheat ears

in UAV images, a high-resolution P2 microscale detection

layer has been incorporated. This layer captures more

underlying feature details, thereby facilitating more

effective identification of small wheat ear targets, while P5

large-scale detection layer has been eliminated to further

reduce computational burden on the model.

2. In backbone feature extraction network, SPD-Conv

convolution module for processing low-resolution images

and small targets is introduced to replace traditional
tiers in Plant Science 07
subsampling operation, helping to increase depth of

feature map, enhance feature extraction capability of the

model, focus its attention on dense small targets, and

reduce interference from background information.

3. The upsampling method of the original model is replaced

with lightweight dynamic upsampler DySample, which

enhances clarity of feature edges and optimizes feature

details, avoids reliance on high-resolution feature maps,

and reduces computational complexity of the upsampling

process, making it more suitable for real-time and resource-

constrained applications.

4. Given that feature maps already provide a satisfactory

representation of small-scale target features, a lightweight

spatial context-aware module SCAM is adopted on this

basis, aiming to construct a global contextual relationship
FIGURE 4

PSDS-YOLOv8 model structure. Yellow stars represent improved modules, including P2 microscale detection layer, SPD-Conv, DySample,
and SCAM.
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to strengthen the association between small targets and

global features, enhance differentiation between small

targets and background while effectively reducing model’s

computational complexity, thereby further improving

detection performance.
2.3.1 Enhanced microscale detection layer
YOLOv8 performs detection at three scales, subsampling the

original image to 1/32, 1/16, and 1/8 of its size to accommodate

detection needs of targets of different sizes. In UAV-captured

wheat ear image dataset, due to small size and dense distribution

of wheat ears, there are tiny targets smaller than 10 pixels. After

multiple subsampling operations, these targets occupy only 1-2

pixels in feature map, resulting in severe feature information loss

and an increased risk of missed detections. Additionally, baseline

model’s large-scale detection layer shows no significant

advantage in detecting dense wheat ears and has a longer

training time. Therefore, this study removes P5 large-scale

detection layer sized at 20 × 20 to reduce computational load

and improve inference speed, while adding P2 microscale

detection layer sized at 160 × 160, enabling the model to focus

more on small wheat ear targets.

The structure of the improved detection layer is illustrated in

Figure 5. First, 80 × 80 scale feature map generated by the second

layer of the backbone network is stacked with the upsampled feature

layer from the Neck. Subsequently, through DPC and upsampling

processes, representation capability of small target information

within feature map is enhanced, which is then concatenated with

160 × 160 feature map output from the first layer of the backbone

network. The microscale detection layer maximally preserves pixel

information of small wheat ears, facilitating transmission of small

target features through subsampling path of detection layer. This

enables the model to capture small target features within deeper

layers of network, effectively reducing instances of false positives

and missed detections for wheat targets of varying sizes and

enhancing model’s detection capability for small wheat ear targets

in aerial images.
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2.3.2 Spatial pyramid dilated convolution
YOLOv8 employs traditional strided convolutions and pooling

layers for subsampling, which can result in loss of fine-grained

information. In the context of high-resolution and large-scale object

detection, loss of information has limited impact on model

performance due to presence of sufficient redundant information.

However, in detection tasks involving low-resolution images or

smaller targets, absence offine-grained information undermines the

model’s ability to learn effective features, thereby significantly

reducing detection accuracy.

Raja et al. introduced a novel convolutional neural network in

2022 known as SPD-Conv (Sunkara and Luo, 2022), consisting of a

space-to-depth layer and a non-strided convolution layer.

Assuming the input feature map size is S × S × C1, as illustrated

in Figure 6A, non-strided convolution is employed to extract

feature information from input feature map in greater detail while

maintaining intermediate feature map dimensions at S × S × C1, as

depicted in Figure 6B. Subsequently, the SPD layer performs

subsampling operation, as shown in Figure 6C. This process slices

the input feature map of size S × S × C1 according to a specified

depth factor to obtain four sub-feature maps, each with dimensions

of (S/2) × (S/2) × C1. The module then rearranges the pixels within

each group of feature maps into depth dimension of a new tensor,

concatenating the four sub-maps along the channel dimension to

form final output feature map with dimensions of (S/2) × (S/2) ×

4C1, as shown in Figure 6D. After processing through the space-to-

depth layer, feature map is further processed by the non-strided

convolution layer to yield a feature map of size S/2 × S/2 × C2, as

illustrated in Figure 6E. The output is then convolved via Conv layer

on each pixel or feature map, thereby preventing excessive

subsampling loss and effectively retaining critical spatial

feature information.

The SPD-Conv module transforms the spatial information of

the image into depth information, reducing spatial dimension size

while retaining effective information in the spatial dimension. This

enables convolutional neural networks (CNNs) to learn image

features more effectively and addresses issues of low image

resolution and small target detection in field scenarios. In the
FIGURE 5

Optimization of object detection layer.
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densely UAV wheat ear dataset, proportion of small targets is

significant. If traditional subsampling methods are employed, the

defects of small targets are easily lost during the processes of strided

convolution and pooling. Therefore, this paper introduces SPD-

Conv structure to replace traditional subsampling methods, thereby

reducing information loss to a certain extent and enhancing model’s

capability to process small targets and low-resolution images.
2.3.3 Dynamic upsampler dySample
DySample (Dynamic Sample) is an ultra-lightweight and

efficient dynamic upsampling operator proposed by Mango team

(Liu et al., 2023). Compared to static upsampling operators (such as

bilinear interpolation and nearest neighbor interpolation),

DySample better preserves feature details and fully utilizes rich

semantic information within the feature map, exhibiting fewer

limitations. DySample reconstructs the upsampling process

through point sampling, dynamically selecting sampling points

directly on feature map rather than generating dynamic

convolution kernels to reorganize the feature map, significantly

reducing computational complexity. In contrast to traditional

kernel-based dynamic upsampling methods, such as CARAFE

(Wang et al., 2020), FADE (Lu et al., 2022a) and SAPA (Lu et al.,

2022b), DySample has fewer parameters and lower computational

requirements, which can decrease model’s inference time and

memory usage, while also reducing computational costs.

Therefore, this paper proposes integrating the DySample module

into YOLOv8 to replace traditional static upsampling, aiding in the

reduction of computational complexity during upsampling process

and ensuring the efficiency and effect iveness of the

upsampling procedure.

The specific workflow of DySample is illustrated in Figure 7,

given a feature mapping of size C × H1 × W1 and a point sampling
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set of size 2g × H2 ×W2, where 2g in the first dimension represents

x and y coordinates. The feature mapping is resampled to size C ×

H2 × W2 by the grid_sample function using the positions in the

point sampling set as shown in Equation 4.

c＇ =   grid _ sample(c, d ) (4)

The generation of point sampling set based on the dynamic

range factor is shown in Figure 8. First, the DySample module

receives input low-resolution feature maps and employs a linear

layer to generate offsets for each point. Given upsampling scale

factor s and the feature mapping c of low-resolution feature map of

size C × H × W, a linear layer with input and output channel

numbers C and 2gs2 respectively generates offsets O of size 2gs2 × H

× W, as shown in Equation 5:

O = linear(c) (5)

It is then reshaped into a high-resolution raw sampling network

G of size 2g × sH × sW by pixel shuffle, and the generated offset O is

added to the raw sampling network G to form the final set of point

samples d as shown in Equation 6:

d = O + G (6)

Through the aforementioned steps, DySample dynamically

determines generation and positional adjustment of sampling

points based on content of input feature map, achieving dynamic

upsampling from low-resolution feature maps to high-resolution

feature maps.

2.3.4 Lightweight construction SCAM
The Spatial Context-Aware Module (SCAM) comprises three

distinct branches, as depicted in Figure 9. First branch extracts

global context information from feature map through Global
FIGURE 6

Processing of feature naps by SPD-Conv module.
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Average Pooling (GAP) and Global Max Pooling (GMP)

operations. Second branch employs a 1×1 convolutional layer to

generate linear transformation result, denoted as “value,” from

feature map. The third branch, referred to as QK, utilizes a 1×1

convolution to simplify multiplication of query and key.

Consequently, first and third branches are respectively

multiplied by second branch, generating two branches that

represent contextual information across channels and spatial

dimensions. The outputs of these two branches are combined

using a broadcast Hadamard product to form output of SCAM.

SCAM effectively enhances global contextual awareness of feature

map, leveraging global information to strengthen spatial and

channel relationships within feature map, facilitating cross-

channel and spatial feature fusion, thereby improving model’s

accuracy in object recognition.

Following enhancement of detection layer and integration of

SPD-Conv and DySample modules, representation of small target

features within feature map has been significantly enhanced.

Building upon this, introduction of SCAM structure strengthens

connection between small targets and global features by

constructing global contextual relationships (Zhang et al., 2024).

By utilizing global feature information, SCAM enables interaction

of contextual features across channels and spatial dimensions,

allowing model to accurately distinguish small targets from the

background. Furthermore, this module possesses lightweight

characteristics, providing robust support for high-precision real-

time detection of dense wheat ears.
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2.4 Experimental environment and
training parameters

The environmental configuration for this experiment is

presented in Table 2. All models in this study will employ the

same evaluation methods and parameters for comparison,

facilitating the verification of their effectiveness. The parameter

optimizer selected for the training process is SGD; The input size for

model training is 640 × 640; the patience for early stopping is set to

100 epochs; the batch size is configured to 16; the training is

conducted on a GPU; the number of worker threads for data

loading is set to 4; the initial learning rate (lr0) is set to 0.01, the

cosine annealing parameter (lrf) is set to 0.01, the weight decay is set

to 0.0005, and the learning rate momentum (momentum) is set to

0.937. Based on multiple experiments, number of epochs is set to

200 to prevent model overfitting.
2.5 Evaluation metrics

In this study, Precision (P), recall (R), mean average precision

(mAP), parameters, floating-point operations (FLOPs), mean

absolute error (MAE), mean square error (MSE), Coefficient of

Determination (R2) and Accuracy are chosen as evaluation metrics.

The mean average precision is related to the precision (P) and

recall (R), calculated using the following Equations, where TP

represents number of true positive detections, FP denotes the
FIGURE 8

Point sampling based on dynamic range factor.
FIGURE 7

Dynamic upsampling of dySample module.
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number of false positive detections, and FN indicates the number of

false negatives.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

Average Precision (AP) is defined as area under the Precision-

Recall (P-R) curve, which is formed by the combinations of different

Precision and Recall values. A larger area under the PR curve

corresponds to a higher AP value, indicating improved average

precision of the model and better detection performance for wheat

ears. The calculation Equation is as follows:

AP =
Z 1

0
P(R)dR (9)

Mean Average Precision (mAP) is a commonly used metric for

evaluating object detection models, with this study focusing on

mAP50 and mAP50-95. mAP50 refers to average detection

precision at an Intersection over Union (IoU) threshold of 0.5

across all classes in the dataset, while mAP50-95 indicates average

detection precision across all classes at IoU thresholds ranging from
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0.5 to 0.95. A higher mAP value signifies superior detection

performance of model for dense wheat ears in UAV imagery. The

calculation Equation is as follows, where m denotes the number of

categories of target in the dataset.

mAP = o
​AP

m
(10)

Mean Absolute Error (MAE) is a common loss function used in

regression modeling loss function that reflects the distance between

the estimated and true values, where n is the number of test

samples; ei is the number of targets in the i-th image estimated by

the model; and ai is the actual number of targets from the i-th image

that was labeled. as shown in Equation 11:

MAE =
1
no

n

i=1
ei − aij j (11)

Mean Squared Error (MSE) represents the stability of

estimating the number of targets, The larger the MSE, the more

likely it is that the estimated results exist Outliers. The definition of

MSE is as follows:

MSE =
1
no

n

i=1
(ei + ai)

2 (12)

Coefficient of Determination (R2) is used tomeasure the fit between

themodel and predicted data. The value range is 0 to 1, with values close

to 1 indicating good model fit and values close to 0 indicating poor fit.

The calculation formula is as follows, where SSresidual is the sum of

squared residuals, and SStotal is the sum of squared residuals.

R2 = 1 −
SSresidual
SStotal

(13)
FIGURE 9

Structure of GCBlock, SCP and SCAM.
TABLE 2 Configuration parameters of the experimental environment.

Hardware CPU: Intel(R) Core(TM) i9-13900K RAM:128GB
GPU: NVIDIA GeForce RTX 3090

Environment Windows10 64bit Python:3.8

Software Pytorch-gpu:1.10.0 CUDA:12.2
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Accuracy is one of the most intuitive performance metrics,

measuring the percentage of predictions that the model gets right.

Accuracy =
TP + TN

TP + TN + FP + FN
(14)
3 Results

3.1 The impact of data augmentation on
detection results

Considering that wheat images collected in field environments

can be adversely affected by uneven illumination, this study

employs Adaptive Contrast Enhancement (ACE) algorithm to

enhance the images. By comparing experimental results of

training the PSDS-YOLOv8 model on both ACE-processed and

unprocessed images, the study aims to verify the impact of image

enhancement on detection outcomes, as presented in Table 3. The

mAP50 of the original model on unenhanced dataset is 93.7%, while

the mAP50 on the enhanced dataset is 94.6%, thereby confirming

the necessity and effectiveness of data augmentation.
3.2 Comparison of ablation
experiment results

To validate the effectiveness of proposed method, ablation

experiments were conducted on the PSDS-YOLOv8 model.

Results of ablation experiments, as presented in Table 4, indicate

that after incorporating P2 microscale detection layer and removing
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large-scale detection layer, model achieves a reduction in the

number of parameters while effectively enhancing detection

accuracy. Specifically, mAP50 and mAP50:95 metrics improve by

1.3% and 3.9%, respectively, compared to baseline model,

confirming its efficacy in capturing small targets. Following the

addition of the SPD-Conv subsampling structure within network’s

backbone, mAP50 and mAP50:95 metrics increase by 1.5% and

4.2%, respectively, further reinforcing the model’s detection

capabilities in complex field scenarios. After integrating

lightweight dynamic upsampler DySample in the neck of the

network, the model’s adaptability to targets of varying scales and

shapes is enhanced by leveraging the rich semantic information in

feature map, while simultaneously simplifying computational

complexity of upsampling process. This results in improvements

of 1.5% and 4.3% in mAP50 and mAP50:95, respectively, along with

a reduction in both model parameters and computational load.

Additionally, adoption of the lightweight SCAM structure enables

the model to decrease the number of parameters and computational

volume, effectively enhancing detection accuracy. The experimental

results demonstrate that when these four methods are

simultaneously optimized, the model achieves optimal accuracy,

with mAP50 and mAP50:95 values of 96.5% and 55.2%, respectively

an increase of 2.8% and 4.4% over the baseline model. Although the

floating-point computation slightly increases, the number of model

parameters decreases by 40.6%, effectively balancing detection

accuracy with resource consumption. Consequently, the model

proposed in this paper significantly improves both the accuracy

and efficiency of wheat ear detection.

In addition, In order to evaluate the effectiveness of the

DySample upsampling method proposed in this paper in

replacing traditional upsampling modules in model feature

fusion, we designed three different feature fusion strategies:

introducing a lightweight cross scale feature fusion module

CCFM (Cross-Scale Feature Fusion Module), using CARAFE

(Content-Aware ReAssembly Feature Embedding) method

for upsampling, and using a multi-level feature fusion module

SDI (Selective Dual Integration) to reconstruct the feature fusion

layer. The experimental results are shown in Table 5 while keeping
TABLE 3 Comparison of data enhancement effects.

Data processing P (%) R (%) mAP50 (%)

Unenhanced 87.5 89.4 93.7

Enhanced 88.9 90.2 94.6
TABLE 4 Results of ablation experiments.

P2 SPD-Conv DySample SCAM mAP50 (%) mAP50:95 (%) Parameters (M) FLOPs (G)

– – – – 93.7 50.8 1.1 29.5

√ – – – 95.0 54.7 7.6 35.4

– √ – – 95.2 55.0 10.3 26.5

– – √ – 95.2 55.1 11.2 28.6

– – – √ 95.2 52.7 10.8 27.5

– √ √ √ 95.4 53.5 11.0 27.5

√ – √ √ 95.6 54.7 8.1 37.2

√ √ – √ 94.6 54.1 6.9 34.1

√ √ √ – 94.4 54.6 7.2 35.1

√ √ √ √ 96.5 55.2 6.8 33.4
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TABLE 5 Effectiveness of different feature fusion methods for model improvement.

Different feature fusion methods mAP50 (%) mAP50:95 (%) Parameters (M) FLOPs (G)

CARAFE upsampling method 94.3 54.8 1.32 30.8

Multilevel feature fusion module SDI 93.5 54.6 1.68 29.7

Feature fusion module CCFM 92.9 53.7 1.39 29.2

DySample upsampling method 95.2 55.1 1.12 28.6
F
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FIGURE 10

Comparison of detection effects of different models.
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the model training parameters consistent. The data in Table 5

shows that compared to traditional kernel based CARAFE

upsampling methods, DySample has fewer parameters and lower

computational complexity. When the model uses the Dysample

upsampling method, the improved accuracy and efficiency of

the model are optimal. The DySample method effectively

achieves dynamic upsampling from low resolution feature maps

to high-resolution feature maps, thereby improving image

resolution and significantly enhancing the model’s ability to

identify wheat ears.
3.3 Comparison of performance among
different detection models

To further validate effectiveness of the proposed PSDS-

YOLOv8 model for wheat ear detection in UAV images, this

study conducts comparative experiments against mainstream

object detection models, including YOLOv5, YOLOv7, YOLOv8,

YOLOv9, YOLOv10, YOLOv11, Faster RCNN, SSD, and

RetinaNet. As illustrated in Figure 10, the comparative

recognition results clearly indicate that when processing small-

scale targets with low resolution, the incompleteness of wheat ear

features near image boundaries results in insufficient feature

information for the model. Consequently, YOLOv5, YOLOv7,

YOLOv9, YOLOv10, YOLOv11, Faster RCNN, SSD, and

RetinaNet exhibit missed detections when identifying boundary

targets or erroneously classify overlapping targets as a single

entity. In contrast, YOLOv8 demonstrates relatively accurate

recognition of wheat ears, although its performance in detecting

overlapping targets remains suboptimal. The improved PSDS-

YOLOv8 model exhibits superior recognition capabilities for

wheat ears located near image edges, as well as for densely

distributed occluded ears. Therefore, this model effectively

mitigates interference of complex backgrounds on object

detection and demonstrates improved learning outcomes for

densely packed small targets, highlighting its superiority in

complex field environments.
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Table 6 shows the comparison of performance indexes of

different target detection models, from the comparison of

performance indexes, RetinaNet has the worst results in all

performance indexes, not only the recognition accuracy of the

model is low, but also the number of model parameters and

floating-point arithmetic is too high, which makes the model

detection speed slower. the accuracy of Faster RCNN, SSD, and

YOLOv9n is lower than 90%, and the number of model parameters

and YOLOv5n and YOLOv11n have the smallest number of

parameters and operations compared to the other models, but

their recognition accuracies are low. The YOLOv7n model has a

higher number of parameters and floating-point operations, but has

no significant advantage over the improved PSDS-YOLOv8 model,

while the YOLOv10n model has a lower number of parameters and

floating-point operations, but its recognition accuracy is not

optimal. The mAP50% of the improved PSDS-YOLOv8 model is

96.5%, which compares with YOLOv5n, YOLOv7n, YOLOv8s,

YOLOv9n, YOLOv10n, YOLOv11n, Faster RCNN, SSD, and

RetinaNet, respectively, and improves the model by 4.9%, 4.5%,

2.8%, 6.7%, 3.5%, 6.5%, 12.8%, 9.0%, 19.1%, the number of model

parameters is reduced by 40.6% compared to the original YOLOv8s,

and the floating-point operation volume is slightly increased, but

the model has better performance in the four metrics of P, R,

mAP50, and mAP50:95 by 3.9%, 3.5%, 2.8%, and 3.9%, respectively,

establishing it as most effective model on the basis of comprehensive

performance indicators.
3.4 Comparison of the effects of different
wheat datasets

In order to improve the effectiveness and generalizability of the

wheat counting method proposed in this study, we use the UAV-

collected wheat dataset (UAV_wheat), the GWHD dataset and the

WEDD dataset to train and validate our wheat detection model.

Table 7 shows the effectiveness of the model with different

experimental data. Among them, the improved model works best on

UAV_wheat and improves mAP50% and mAP50:95% by 2.8% and
TABLE 6 Effectiveness of different models in assessing indicators.

Models Input size mAP50 (%) mAP50:95 (%) Parameters (M) FLOPs (G)

YOLOv5n 640 × 640 91.6 40.4 7.0 15.8

YOLOv7n 640 × 640 92.0 41 37.2 105.1

YOLOv8s 640 × 640 93.7 50.8 11.4 29.5

YOLOv9n 640 × 640 89.8 43.7 60.5 263.9

YOLOv10n 640 × 640 93.0 52.4 8.04 24.8

YOLOv11n 640 × 640 90.0 40.2 2.3 6.3

Faster RCNN 800 × 1333 83.7 37.9 41.8 134.4

SSD 512 × 152 87.5 40.8 26.1 91.4

RetinaNet 800 × 1333 77.4 31.5 35.4 234.6

PSDS-YOLOv8 640 × 640 96.5 55.2 6.8 33.4
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4.4%, respectively. The results were slightly worse on the WEDD

dataset, probably due to the denser distribution of wheat ears in the

WEDD dataset and the higher overlap with the background

information. However, the improved PSDS-YOLOv8 model achieves

more than 90% precision in all three datasets, confirming the strong

generalization performance of the model proposed in this study.

To further demonstrate the model ’s wheat counting

performance, the improved PSDS-YOLOv8 model was used to

test different wheat dataset samples. From the wheat counting

results in Figure 11, it can be seen that the improved PSDS-
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YOLOv8 model has improved counting ability for different wheat

datasets. As a result, the model has some generalization ability.
3.5 Comparison of effects across different
growth stage

To evaluate proposed model’s capability in detecting wheat ears

at different growth stages, this study was tested using a dataset

containing images of wheat at the filling stage, maturity stage and

the full ripe stage. The experimental results are illustrated in
FIGURE 11

Effectiveness of wheat ear counting in different data sets.
TABLE 7 Comparison of the effects of different wheat datasets.

Data set Number of images
Original model Improved model

mAP50 (%) mAP50:95 (%) mAP50 (%) mAP50:95 (%)

UAV_wheat 1323 93.7 50.8 96.5 55.2

GWHD 2200 92.5 42.1 93.9 51.2

WEDD 200 90.4 39.8 92.3 41.6
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Figure 12, where the model achieved an MAE of 5.02%, an MSE of

6.27%, and an R2 of 0.87 on the overall dataset. In the individual

tests for different fertility stages of wheat, the model counts were

able to achieve an R2 of 0.80 or more, and the counts were especially

best on the maturity stage wheat images, where the network’s R2

reached 0.93, which is a high degree of fit. This confirms that the

model proposed in this paper possesses strong generalization

capabilities and can adapt to the various growth stages of wheat.
3.6 Field wheat ears instance detection

This study evaluates detection performance of the PSDS-

YOLOv8 model for wheat ear images across diverse wheat field

scenarios, including complex conditions such as clear state,

intense illumination, shaded environments, dense distributions,

and overlapping occlusions, to validate its performance

improvements (Figure 13).
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Table 8 records the model before and after the improvement is

recognizing the wheat images of different scenes. In instances where

wheat ear images exhibit high clarity, the original model

experiences leakage and misdetections during the recognition

process, whereas the PSDS-YOLOv8 maintains superior

recognition accuracy; Under highlight conditions induced by

intense illumination, the original model experiences significant

missed detection due to effects of lighting, whereas the PSDS-

YOLOv8 model substantially reduces the missed detection rate

through enhanced feature extraction and improved background

interference suppression; In shaded environments, both original

and improved models demonstrate good detection capabilities, with

no significant differences observed; In scenarios with densely

packed wheat ears, the PSDS-YOLOv8 model effectively reduces

missed detections due to occlusion; In cases of both slight and

severe occlusion, the enhanced PSDS-YOLOv8 model significantly

improves the recognition capability of wheat ears, yielding a

substantially higher detection count compared to the original
FIGURE 12

Comparison of experiments at different reproductive period of wheat: (A) Filling stage; (B) Maturity stage; (C) Full ripe stage; (D) Total.
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model. Thus, the PSDS-YOLOv8 model exhibits strong wheat ear

detection capabilities across various complex field scenarios,

meeting demands for adaptability in real agricultural production.
4 Discussion

4.1 Advantages of ACE algorithm

In this study, Adaptive Contrast Enhancement (ACE) algorithm

was employed to optimize the quality of the UAV aerial wheat

dataset (Figure 14). The results indicate that ACEmethod effectively

enhances the contrast between the target and the background while

mitigating the impact of illumination on image analysis.

Furthermore, the algorithm demonstrates significant effects in

enhancing the performance of target detection models (Table 3).

Cheng et al. (2024) confirmed the ACE algorithm’s capability to

enhance visual quality while preserving essential details through
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comparisons of various image enhancement techniques, thereby

playing a crucial role in improving accuracy and reliability of image

analysis. Consequently, ACE algorithm serves as an effective tool for

optimizing image quality.
4.2 Potentials and limitations of the work

Existing research indicates that models trained on a single

sample dataset experience a significant decline in detection

accuracy when appl ied to other wheat ear datasets ,

highlighting certain limitations (Dandrifosse et al., 2022). To

address the issue of insufficient generalization performance, this

study enhances model’s generalization capability by increasing

the diversity of training samples, with a total of three different

wheat datasets containing wheat ears of different varieties,

growth stages and morphologies (Figure 2). Factors such as

small wheat ear sizes and occlusion limit the feature
FIGURE 13

Example of wheat ear samples in the field: (A) Clear; (B) Strong light; (C) Darkness; (D) Dense; (E) Slight obstruction; (F) Serious obstruction.
TABLE 8 Example of wheat ear detection in the field effectiveness.

Various scenarios Clear Strong light Darkness Dense Slight obstruction Serious obstruction

Original model count accuracy (%) 92.0 71.1 92 80.4 57.0 57.3

Improved model counts accuracy (%) 98.3 90.1 98.0 97.0 96.3 92.0
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information obtainable by the model, thereby posing challenges

to wheat ear detection (Almoujahed et al., 2022), while overlap

and occlusion among dense wheat ears represent the primary

difficulties in this detection task. The OSWSDET method

proposed by Zhao et al. (2022) effectively fuses lower spatial

features with deeper semantic features through the application of

a microscale detection layer, thereby providing a more accurate

representation of the location and size of wheat ears. This

approach is particularly effective for detecting small and

densely packed wheat ears in UAV images. Yu et al. (2024)

introduced SPD-Conv structure, which significantly enhances

model’s ability to detect small targets, as demonstrated by

increases of 2.3% and 3.4% in mAP50 and mAP50:95,

respectively. This study adds a new P2 microscale detection

layer to the YOLOv8 baseline model and incorporates a spatial

depth-transformed convolutional SPD-Conv suitable for small

target detection, thereby improving detection accuracy of tiny

wheat targets in UAV images. However, high-precision

recognition necessitates deeper model structure, which

inevitably involves an increased number of parameters. Wu

et al. (2024) employed ultra-lightweight upsampling operator

DySample to reduce network’s parameter count, resulting in a

0.76% improvement in model detection speed. Yang et al. (2024)

proposed a lightweight wheat ear detection method on the basis

of enhancements to YOLOv8, achieving a reduction of 1.6M in

model parameters while attaining an accuracy of 86.3%.

However, this method lacks sufficient accuracy in counting

overlapping wheat ears and is prone to recognition errors for

objects sharing similar shapes and colors with background. In
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this study, introduction of lightweight structures DySample and

SCAM enabled improved the PSDS-YOLOv8 model to achieve

an accuracy of 96.5% while reducing parameter count by 4.6M.

Additionally, the model demonstrates exceptional performance

in minimizing missed detections of irregular wheat ear targets at

image edges (Figure 10) and accurately detects small, dense, and

overlapping wheat ears despite challenges such as light

variations, morphological differences, and overlapping

occlusions (Table 8). Comparative experiments with different

target detection models further validate superiority of the

proposed model in terms of both accuracy and efficiency in

wheat ear detection (Table 6).

Overall, despite the excellent performance of the proposed

model in terms of detection accuracy and efficiency. However, the

study still possesses some limitations. First, the high uniformity of

data collection limits the model’s adaptability and robustness under

different shooting angles. Moreover, the performance of the model

needs to be optimized to cope with complex light changes and

significant morphological differences of wheat ears. In addition, in

the face of increasing growth stages, environmental conditions and

plant variability in wheat fields, the existing methods may suffer

from a lack of accuracy when dealing with different growth stages or

individual differences within the same plot. Future studies may

consider adopting richer data acquisition strategies, such as multi-

angle and multi-height image acquisition, and combining video

streaming techniques to enhance the generalization ability and

accuracy of the model in complex environments, and to more

effectively address the challenges of large-scale wheat

field monitoring.
FIGURE 14

Original images and the images enhanced using the ACE algorithm: (A) Original image; (B) Images enhanced using the ACE algorithm.
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4.3 Different growth stages identification
of wheat ear

This study also analyzed impact of various growth stages on

recognition of wheat ears, revealing that wheat is most effectively

recognized at the maturity stage (Figure 12), consistent with

findings of Hasan et al. (2018). Meng et al. (2023) elucidated

underlying cause of this phenomenon, attributing it to fuller

leaves present during the filling stage, which may lead to wheat

being misidentified as wheat ears. To further investigate this

phenomenon, we conducted an in-depth analysis of the image

characteristics of wheat ears at different growth stages. The

morphology of wheat wheats at the maturity stage tends to be

stabilized, the contrast between the wheats and the background is

enhanced, and the features of the wheats are more obvious. This

facilitates model’s ability to capture and accurately recognize ear

information. In contrast, wheat ear features during the filling stage

and earlier stages are more ambiguous and variable, lacking a stable

morphology. During the full ripe stage, boundary between wheat

ears and background becomes blurred, making clear distinction

difficult and increasing detection challenge for model. Therefore, it

is advisable to prioritize images of wheat at the maturity stage in

training and application of the target detection model to enhance

both accuracy and efficiency in recognition.
5 Conclusions and future work

In this study, a lightweight wheat counting method based on

PSDS-YOLOv8 is proposed to address the problems of small size,

dense distribution, and serious overlapping of wheat ears in UAV

wheat images in complex field environments. Firstly, we optimize

the structure of the model detection layer to improve the

recognition ability of the model for small targets and introduce

the SPD-Conv structure to effectively suppress the interference of

confusing background, and finally integrate two lightweight

modules, DySample and SCAM, to reduce the computational

complexity. The experimental results show that the PSDS-

YOLOv8 model improves the mAP50 and mAP50:95 of

YOLOv8s by 2.8% and 4.4%, respectively, while the number of

model parameters is reduced by 40.6%, which balances the

detection accuracy and resource consumption of the model.

In order to improve the generalization ability of the model, three

wheat datasets, UAV_wheat, GWHD, and WEDD, are applied for

training and testing to enhance the model’s adaptability to different

scenes. To verify the generalization performance of themodel, the PSDS-

YOLOv8 model was used to test wheat images with different fertility

periods and different natural scenes. The results show that the model can

accurately detect wheat spikes at different growth stages, especially the

counting performance is optimized at the wheatmaturity stage. The high

performance can still be maintained when applying it to wheat spikelet

data in different scenes, which proves that the PSDS-YOLOv8 model

proposed in this paper has good generalization performance.

In future research work, we will focus on the lightweight design

of the wheat counting method, aiming to facilitate the easy

deployment of the model. In order to improve the counting
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performance, more appropriate density estimation methods will

be used, especially when facing the task of counting wheat ears with

complex background and dense targets. In addition, more diverse

data types, such as dynamic data like video streams, will be

introduced to realize the real-time wheat counting function. The

ultimate goal is to improve the performance and utility of wheat

counting technology to provide accurate and efficient support for

agricultural production.
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