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Information, Xijing University, Xian, China
Introduction: Image instance segmentation is essential for plant phenotyping in

vertical farms, yet the diversity of plant types and limited annotated image data

constrain the performance of traditional supervised techniques. These

challenges necessitate a zero-shot approach to enable segmentation without

relying on specific training data for each plant type.

Methods: We present a zero-shot instance segmentation framework combining

Grounding DINO and the Segment Anything Model (SAM). To enhance box

prompts, Vegetation Cover Aware Non-Maximum Suppression (VC-NMS)

incorporating the Normalized Cover Green Index (NCGI) is used to refine

object localization by leveraging vegetation spectral features. For point

prompts, similarity maps with a max distance criterion are integrated to

improve spatial coherence in sparse annotations, addressing the ambiguity of

generic point prompts in agricultural contexts.

Results: Experimental validation on two test datasets shows that our enhanced

box and point prompts outperform SAM’s everything mode and Grounded SAM

in zero-shot segmentation tasks. Compared to the supervised method YOLOv11,

our framework demonstrates superior zero-shot generalization, achieving

the best segmentation performance on both datasets without target-

specific annotations.

Discussion: This study addresses the critical issue of scarce annotated data in

vertical farming by developing a zero-shot segmentation framework. The

integration of domain-specific indices (NCGI) and prompt optimization

techniques provides an effective solution for plant phenotyping, highlighting

the potential of weakly supervised models in agricultural computer vision where

extensive manual annotation is impractical.
KEYWORDS

segment anything, zero-shot, instance segmentation, prompt augmentation,
foundation models
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1 Introduction

Vertical farming, a type of indoor agriculture, has gained

significant attention in recent years due to its potential for

efficient and sustainable plant production (Benke and Tomkins,

2017). In vertical farms, plants are grown in stacked layers or

vertically inclined structures, utilizing controlled environments and

artificial lighting systems (Al-Kodmany, 2018). Each agricultural

unit functions as an independent ecosystem that creates an optimal

environment for plant growth. By manipulating the spectrum of

light, temperature, humidity, pH, and nutrient levels, researchers

can ensure that each plant exhibits optimal taste, color, and

nutritional quality (Franchetti et al . , 2019). Accurate

measurement of plant traits is essential for optimized resource

utilization and maximized yield in closed and controlled

environments. Plant phenotyping is critical for accurately

measuring plant traits. The majority of currently used

phenotyping techniques are destructive and time-consuming.

Recently, the development of various sensors and imaging

platforms for rapid and efficient quantitative measurement of

plant traits has become the mainstream approach in plant

phenotyping studies (Abebe et al., 2023).

The first step in extracting image-based plant growth

phenotypes involves applying an image segmentation algorithm

to separate plant leaves from the background in RGB images (Guo

et al., 2023). Geometric features, including leaf projection area,

volume, and plant height, can then be derived. Among

segmentation techniques, the thresholding method is considered

the simplest approach. Its core principle is to classify image pixels

based on their grayscale values and one or more predefined

thresholds. This approach works well for plant images against

simple backgrounds. Li et al. (2020) proposed a non-invasive

approach to measure plant growth characteristics using

smartphone-based image analysis. By employing the Otsu

thresholding method (Otsu, 1979) to extract plant leaf area, the

researchers achieved non-destructive monitoring of relative growth

rates. Chang et al. (2021) converted RGB images to the HSV color

space and defined threshold ranges to distinguish target objects

from the background. They further applied noise filtering and edge

detection to delineate lettuce outlines and extract leaf areas for

growth rate evaluation. Although the thresholding method is simple

and fast, it requires predefined or adaptively determined optimal

thresholds. Consequently, its performance degrades in complex

scenes or under varying lighting conditions. In contrast to

thresholding, traditional machine learning (ML) techniques like

Random Forest, Support Vector Machines (SVMs), and clustering

algorithms better handle complex scenes. Lee et al. (2018) applied

the Random Forest to extract growth phenotypic traits such as plant

height, width, area, and leaf area. Zhou et al. (2017) used a k-means-

based color clustering algorithm to segment plant images and

extract growth phenotypes such as projected leaf area, leaf

circumference, compactness, leaf count, and daily relative growth

rate. Guo et al. (2021) developed KAT4IA, a self-supervised

pipeline. This method uses k-means clustering on greenhouse

images to generate training data, enabling maize plant height
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extraction in image-based phenotyping systems. Despite their

adaptability, traditional ML methods often require manual feature

extraction and preprocessing, which limit model scalability and

significantly increase both the complexity and time required for

analysis (Zhang et al., 2020).

Deep learning (DL) approaches automatically learn feature

representations through neural networks, eliminating manual

feature design and enabling complex plant phenotype extraction.

In recent years, DL techniques have been increasingly utilized for

plant growth phenotype analysis. Reyes-Yanes et al. (2020)

employed the MASK R-CNN image segmentation method to

extract features such as side-view area, height, width, side-view

centroid, and top-view area of lettuce, facilitating real-time

monitoring of plant growth rates. Trivedi and Gupta (2021)

introduced a U-Net architecture based on deep learning for the

automatic segmentation of plant images, calculating the leaf area

percentage as a growth index to monitor plant growth. This

approach efficiently processes plant images, delivers precise leaf

segmentation results, and evaluates plant growth status through leaf

area percentage calculations. Similarly, Lin et al. (2022) and

Cardenas-Gallegos et al. (2024) implemented U-Net to achieve

automatic segmentation of plant leaves and background. Khan

and Jensen (2025) trained YOLOv11 on a combined multi-crop

dataset to extract crop phenotypes, demonstrating that a unified

model trained on a combined multi-crop dataset can outperform

crop-specific models.

In indoor vertical farms utilizing hydroponics, plant images

with relatively simple backgrounds can be effectively processed

using the thresholding method to separate plants from the

background (Zhang et al., 2020). However, for plant images

involving growth media such as clay particles, perlite, or rock

wool (Wong et al., 2020), the background becomes more

complex. In such cases, the thresholding method is insufficient to

accurately separate plants from the background, making deep

learning methods a more suitable and effective alternative (Reyes-

Yanes et al., 2020). Vertical farms optimize space utilization

through vertically stacked planting systems, enabling more plants

to grow in limited areas while supporting diverse plant varieties.

However, during image segmentation, high plant densities, complex

lighting conditions, and the simultaneous cultivation of diverse

plant types in vertical farms pose significant challenges to deep

learning methods (Hwang et al., 2022). Consequently, vertical farms

require models with robust generalization capabilities that can

adapt to various plant varieties, lighting conditions, and planting

methods in a zero-shot manner.

To address training data scarcity, future research directions

should encompass data augmentation techniques, self-supervised

learning methods, and the generation of synthetic training data

(Liu and Xu, 2023). The Segmentation Anything Model (SAM)

(Kirillov et al., 2023) is a powerful and flexible large image

segmentation model trained on a dataset containing 11 million

images and over 1 billion masks, enabling general segmentation

capabilities. SAM can automatically segment new images and

leverages point, box, and mask prompts to enhance segmentation

performance, making it a viable solution for zero-shot image
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segmentation tasks in vertical farming. However, recent studies have

shown that SAM exhibits limited performance in domain-specific

tasks (Chen et al., 2023), such as medical image segmentation (Ma

and Wang, 2023; Wu et al., 2023), where segmentation performance

largely depends on the quantity and quality of prompts (Deng et al.,

2023a). SAM’s training dataset primarily comprises natural images,

which typically exhibit clear edge information and strong

distinctions. In contrast, agricultural images are often captured in

complex field environments with low contrast between targets and

backgrounds, diverse agricultural backgrounds, and uneven lighting

conditions with shadows. As a result, SAM underperforms in

agricultural image segmentation tasks involving such challenging

scenarios (Li et al., 2023). To validate this limitation, we tested

SAM on plant images with complex backgrounds and uneven

lighting in vertical farms. The results confirmed that SAM cannot

perfectly “segment anything”. Improving the performance of large

models for downstream tasks often involves fine-tuning SAM by

retraining the parameters of its Mask-Decoder using new datasets

(Zhang et al., 2023d). However, this approach is unsuitable for zero-

shot image segmentation required in vertical farming scenarios.

Adapters offer an efficient method for fine-tuning large models. By

introducing a small number of trainable parameters, adapters allow

models to quickly adapt to new tasks while keeping most parameters

unchanged (Li et al., 2023). To address SAM’s limitations in

agricultural image segmentation, the Agricultural SAM Adapter

(ASA) was proposed. ASA incorporates agricultural expertise into

the segmentation model by training a small subset of parameters,

significantly improving segmentation performance in complex

agricultural scenes and offering a novel approach for zero-shot

image segmentation in agriculture. Nevertheless, ASA still requires

a small amount of training data and does not fully satisfy the need for

zero-shot segmentation across diverse plant species in vertical farms.

Prompts play a crucial role in SAM’s segmentation performance,

acting as an attention mechanism (Zhang et al., 2023c). Enhancing

prompts provides additional information to improve SAM’s

accuracy. Deng et al. (2023b) proposed a Multi-box prompt

augmentation strategy to enhance SAM’s performance in medical

image segmentation. Similarly, Dai et al. (2023) compared random

sampling, the max entropy criterion, and the max distance criterion,

concluding that their proposed Saliency point prompt method

enhanced SAM’s segmentation performance across multiple

datasets. Ren et al. (2024) integrated GroundingDINO with SAM,

naming it “Grounded SAM”, and explored its potential across

different tasks. However, Ren et al. only applied box_threshold to

filter redundant bounding boxes generated by GroundingDINO

without utilizing point prompts, leaving room for further

improvement. To systematically evaluate these approaches, we

reviewed the relevant literature in recent years and tabulated the

results (Table 1).

Compared with traditional agriculture, vertical farming provides

more constrained space between plants while accommodating a

wider variety of plant species, which poses significant challenges for

image segmentation. Different plant types display substantial

variations in shape, size, and other traits, making traditional image

segmentation methods insufficient. Moreover, in commercial
Frontiers in Plant Science 03
agriculture, high planting density leads to occlusion between

adjacent plants. This issue is particularly pronounced in leafy green

production, where canopies often merge into nearly continuous

structures, significantly increasing the complexity of segmentation

tasks (Buxbaum et al., 2022). Additional factors, including uneven

lighting and complex backgrounds, further exacerbate the difficulties

of image segmentation in vertical farms. While SAM has

demonstrated strong zero-shot segmentation capabilities across

various plant varieties, its performance degrades when processing

images with uneven lighting, diverse planting methods, and complex

backgrounds commonly found in vertical farms. To address these

challenges, this study leverages SAM as the core image segmentation

model and proposes a prompt generation method tailored for vertical

farm images. The objective is to effectively overcome the challenges in

vertical farm image segmentation and achieve zero-shot instance

segmentation for multiple plant varieties using SAM.

This study makes the following key contributions:
1. A zero-shot plant image instance segmentation framework

integrating Grounding DINO and Segment Anything

Model (SAM) is proposed. This framework tackles visual

challenges such as plant diversity, complex lighting, and

dense planting. By using text prompts as input, it achieves

fully automated plant instance segmentation without

requiring image annotations.

2. Vegetation Cover-Aware Non-Maximum Suppression

(VC-NMS) algorithm based on the Normalized Cover
TABLE 1 Recent advances in agricultural image
segmentation techniques.

Core Method Publication Year Reference

Machine Learning

random forest 2017 (Lee et al., 2018)

k-means 2018 (Zhou et al., 2017)

Otsu 2020 (Li et al., 2020)

HSV 2021 (Chang et al., 2021)

KAT4IA (k-means) 2021 (Guo et al., 2021)

Deep Learning

MASK R-CNN 2020 (Reyes-Yanes et al., 2020)

U-Net 2021,2022,2024

(Trivedi and Gupta, 2021)
(Lin et al., 2022)

(Cardenas-Gallegos
et al., 2024)

SAM (fine-tuning) 2023 (Zhang et al., 2023d)

ASA
(SAM Adapter)

2023 (Li et al., 2023)

SAM (Multi-box) 2023 (Deng et al., 2023b)

SAM (Saliency) 2023 (Dai et al., 2023)

Grounded SAM 2024 (Ren et al., 2024)

YOLOv11 2025 (Khan and Jensen, 2025)
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Fron
Green Index (NCGI) is introduced. This algorithm

effectively addresses the limitations of traditional NMS in

plant image processing and significantly enhances the

Average Precision of processed bounding boxes.

3. Our framework employs Grounding DINO combined with

VC-NMS to generate bounding box prompts. These

prompts are further refined by generating precise positive

and negative point prompts within the bounding boxes

using the similarity maps and max distance criterion, while

determining the optimal number of positive and negative

point prompts. Finally, both the refined box prompts and

point prompts are input into SAM to enable automated

instance segmentation.
2 Materials and methods

2.1 Data acquisition and DateSet

We utilized a multi-layer hydroponic planting machine

consisting of four layers, each with 12 holes designed to hold

planting baskets. A water circulation system was integrated to

ensure consistent water flow from the tank across all layers. Based

on this planting system, we developed an intelligent vertical farming

system (Figure 1) comprising hardware components such as a

Raspberry Pi, relays, plant LED lights, sensors, and industrial

cameras. A Raspberry Pi-based control and data acquisition

software was implemented to enable automated monitoring and
tiers in Plant Science 04
control of the vertical farm. Each layer was equipped with either two

5 megapixel (MP) 90° diagonal field of view (FOV) industrial RGB

cameras or one 12 MP 130° diagonal FOV industrial RGB camera.

Notably, the imaging system operated with auto-white-balance

under controlled mixed illumination conditions, including

programmable LED photoperiods (16h light/8h dark cycles) and

regulated daylight exposure through laboratory windows. This

illumination variability triggered continuous white-balance

recalibrations, causing observable shifts between red and purple

color effects despite stable LED illumination. Sensors collected

environmental parameters, including air temperature, air

humidity, water temperature, pH, total dissolved solids (TDS),

and electrical conductivity (EC). The Raspberry Pi controlled the

industrial cameras for scheduled image capture, taking one image

every 30 minutes and automatically uploading it to the cloud. Each

camera captured approximately 20 images daily. Simultaneously,

the Raspberry Pi gathered sensor data at the moment of image

capture and uploaded it to the cloud, ensuring precise alignment

between images and corresponding environmental data.

Lightweight expanded clay aggregate (LECA) was used as the

substrate in planting baskets, with one plant planted per basket.

Two leafy vegetables, lettuce (Lactuca sativa var. ramosa Hort.) and

pakchoi (Brassica chinensis L.), were grown on different layers. A

two-year continuous monitoring experiment was conducted using

this system in the laboratory at Dali University(25°40’22”N, 100°

9’13”E), under controlled conditions: air temperature 15-25°C,

hydroponic solution EC 1000 mS/cm (mean), and pH 7.6 (mean),

resulting in a collection of over 45,000 images. From these, 203

time-series images representing the main phenological stages of
FIGURE 1

Intelligent vertical farm system. The Raspberry Pi functions as the central control unit, scheduling the switching of LED plant tissue culture lights via
relays. It also manages industrial cameras for periodic image capture while synchronously recording sensor data, with all data automatically
uploaded to the cloud.
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leafy vegetables (germination, seedling, rosette, and heading stages)

were selected. These images presented challenges such as complex

backgrounds, uneven lighting, and small targets. Image

augmentation techniques, including scaling, rotation, and

translation, were applied to expand the dataset to 812 images. For

segmentation evaluation, all images were manually annotated with

leaf boundaries to create a hydroponic plant image dataset (HP

Dataset) encompassing the four main phenological stages. The

experimental setup consisted of two identical hydroponic racks,

each equipped with five cameras (10 cameras total). Following

manual screening to eliminate spatial redundancies (e.g., left-right

camera pairs within the same tier), five cameras with distinct

observational perspectives were selected for time-series data

collection—Cameras 1 & 2 (12 MP resolution, 130° diagonal

FOV) and Cameras 3–5 (5 MP resolution, 90° diagonal FOV).

The numerical designations (1–5) serve as dataset identifiers and do

not reflect physical camera placement. Representative images of the

two leafy vegetable species are presented in Figure 2, with dataset

distribution metrics detailed in Table 2.
2.2 Segmentation with SAM

2.2.1 Overview
This study introduces a zero-shot plant instance segmentation

framework based on a vision foundation model (Figure 3). The

framework integrates multimodal input, including text and image

data, and employs the Segment Anything Model (SAM) for

hydroponic plant instance segmentation. To address the prevalent

challenge of complex lighting conditions in vertical farms, the
Frontiers in Plant Science 05
images underwent automatic preprocessing to enhance green

features. To further improve SAM’s segmentation accuracy for

unseen plants, an enhanced box and point prompting strategy

was developed to generate effective box and point prompts

automatically. Grounding DINO (Liu et al., 2023), a text-prompt-

based model, was first used to produce initial candidate bounding

boxes for plant instances. These bounding boxes were refined using

Vegetation Cover-Aware Non-Maximum Suppression (VC-NMS)

to eliminate redundancies and obtain the final bounding boxes,

which encapsulate rich semantic information and accurately

localize plant instances. Within the final bounding boxes,

reference points were extracted using similarity maps, while

enhanced points were identified based on a max distance

criterion. This refinement process strengthened local feature

extraction, improving the quality of point prompts. Finally, the

refined bounding boxes and point prompts, serving as spatial

structure cues, were integrated into SAM’s segmentation pipeline

to direct the model’s attention toward potential plant target regions.

By leveraging this synergistic multimodal prompting strategy, the

framework significantly enhances SAM’s performance, enabling

precise plant instance segmentation in zero-shot scenarios.

2.2.2 Segment anything using SAM
Our core instance segmentation model employs the Segment

Anything Model (SAM), which comprises three principal

components: image encoder, prompt encoder, and mask decoder.

The image encoder transforms input images into high-dimensional

feature representations using pre-trained Vision Transformers

(ViTs), with available variants including ViT-H (2.4 GB), ViT-L

(1.2 GB), and ViT-B (357 MB), where the model size corresponds to
FIGURE 2

Sample images from HP Dataset.
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pre-training dataset scale. The prompt encoder processes diverse

prompt types into image-embedding-compatible features:

positional encoding for points/boxes, CLIP text encoder for text

prompts, and lightweight convolutional networks for mask inputs.

The mask decoder integrates image and prompt embeddings

through transformer architecture to generate segmentation

masks, typically producing three candidate masks ranked by

confidence (only the highest-confidence mask was retained in

this study).

Numerous SAM variants have been developed, including

MobileSAMv2 (Zhang et al., 2023b), FastSAM (Zhang et al.,

2023a), and Lite-SAM (Fu et al., 2024). These implementations

employ model compression techniques to enhance inference speed

at the cost of segmentation accuracy reduction relative to the

original SAM. Another category of domain-specific variants

(Zhang et al., 2023c; Li et al., 2023) requires either fine-tuning

with annotated datasets or insertion of domain-specific adapters—

both of which are incompatible with our zero-shot segmentation

objectives. Therefore, we employed the original SAM architecture

(Kirillov et al., 2023) with ViT-H image encoder to validate our

framework. Our modular implementation maintains low

coupling with SAM’s core architecture, enabling seamless

integration with future variants while preserving the current

pipeline’s functionality.
Frontiers in Plant Science 06
2.2.3 Box prompt generation using Grounding
DINO and VC-NMS

We use an open-set object detector, called Grounding DINO, by

marrying Transformer-based detector DINO with grounded pre-

training, which can detect arbitrary objects with human inputs such

as category names or referring expressions (Liu et al., 2023). For the

backbone network, we select Swin-B due to its larger pretraining

dataset and greater parameter capacity. Given an (Image, Text)

input pair, Grounding DINO generates multiple detection

candidates, each consisting of a bounding box with its

corresponding confidence score and associated text phrase. When

using Grounding DINO for plant detection, selecting appropriate

text prompts can effectively identify plant instances. However, the

model frequently generates multiple overlapping bounding boxes

(Figure 4). This issue becomes particularly evident in complex

agricultural images with densely planted plants. In such scenarios,

some bounding boxes are nested, where a single object is enclosed

by multiple predicted boxes or partially overlapped (Figure 4a).

Moreover, multiple plants may erroneously be detected as a single

instance (Figure 4b). We then apply box_threshold filtering to

remove all detection boxes whose confidence scores fall below this

predetermined threshold value. Increasing the box_threshold values

can help filter out low-confidence boxes or those less relevant to the

text prompts. However, this approach introduces a tradeoff:
FIGURE 3

Overview of the automatic segmentation framework. The framework integrates Grounding DINO with VC-NMS to produce box prompts. Point
prompts are then generated using the similarity maps and max distance criterion within the boxes. Finally, both box and point prompts are input into
SAM’s prompt encoder to guide the segmentation process.
TABLE 2 Data distribution of HP Dataset.

DataSet Lettuce Camera 1 Lettuce Camera 2 Lettuce Camera 3 Lettuce Camera 4 Pakchoi Camera 5 Total

image count 104 196 116 260 136 812

plant count 1040 2352 396 1820 544 6152
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reducing these thresholds may lead to missed detections of true

targets. Specifically, bounding boxes with confidence scores slightly

below the thresholds—despite accurately representing plant

locations—might also be excluded.

In object detection tasks, standard Non-Maximum Suppression

(NMS) (Neubeck and Van Gool, 2006) and its improved variant,

Soft-NMS (Bodla et al., 2017), are widely adopted to reduce

redundancy in predicted bounding boxes (Jiang et al., 2023).

These algorithms work by selecting the bounding box with the

highest confidence score as the reference and suppressing all other

boxes with an Intersection over Union (IoU) exceeding a predefined

threshold. Their primary objective is to suppress low-confidence

bounding boxes that overlap significantly with the reference box.

Nevertheless, Grounding DINO’s plant detection often generates a

considerable number of redundant nested boxes with similar

confidence scores (Figure 4). As a result, methods that rely solely

on confidence scores and IoU, such as standard NMS and Soft-

NMS, are insufficient to effectively remove these redundant

bounding boxes.

To overcome the limitations of traditional NMS in Grounding

DINO’s plant detection, this study introduces an improved NMS

algorithm, Vegetation Cover-Aware NMS (VC-NMS), which is

specifically designed to accurately select bounding boxes that

encapsulate a single, complete plant instance. VC-NMS prioritizes

bounding boxes with higher vegetation cover indices and fewer

overlapping boxes, thereby enhancing the precision and reliability
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of plant detection in complex agricultural scenarios. The algorithm

employs the following strategies:
1. Prioritizing bounding boxes with the largest aggregated

vegetation cover: We employ a Gaussian decay function

based on comprehensive Normalized Cover Green Index

(NCGI) values to penalize overlapping boxes, the algorithm

prioritizes the box with the highest NCGI. This strategy

ensures that the selected bounding box retains the maximal

completeness of the enclosed plant instance.

2. Overlapping box suppression mechanism: For large

bounding boxes enclosing multiple plants, the algorithm

compares the overlap counts of the large box and its nested

smaller boxes. If the large box has more overlapping boxes

than the smaller one, a linearly decaying penalty function,

inversely proportional to the overlap count, is applied to

reduce its weight. This mechanism penalizes large boxes with

high vegetation cover indices that enclose multiple plants,

ensuring accurate retention of individual plant instances.
As shown in Figure 5, our algorithm starts with a list of bounding

boxes B with scores S from Grounding DINO, and calculates

corresponding NCGI N and overlap counts O for B. The algorithm

has two stages: the first stage updates bounding box scores by

calculating comprehensive NCGI and using the overlapping box

suppression method, and the second stage selects the detection with
FIGURE 4

Bounding box generation results from Grounding DINO. Densely overlapping boxes denote candidate regions for the “single vegetable” text prompt.
The numbers on these boxes represent confidence scores, which indicate the model's certainty that the box contains a relevant object. However,
although a box_threshold of 0.1 is set to filter out low-confidence detections (scores < 0.1), it still leaves a large number of redundant boxes. (a) A
single plant is enclosed by multiple predicted boxes or partially overlapped. (b) Multiple plants are erroneously detected as a single plant.
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maximum score M, removes it from set B and appends it to final

detections D. Then it applies the RIoU-based Gaussian penalty

function to remaining bounding boxes. Implementation details follow.

The standard Intersection over Union (IoU) metric is insufficient

for effectively detecting nested smaller boxes within larger ones,

especially when the area of the larger box is significantly greater

than that of the smaller box. In such cases, the IoU value may fall

below the threshold, failing to capture the nested relationship. In this

study, we adopt the Relative IoU (RIoU), which calculates the ratio of

the intersection area between two bounding boxes to the total area of

the smaller bounding box. Compared to standard IoU, RIoU

emphasizes the extent to which the smaller box is covered by the

larger box, making it particularly suitable for applications where

preserving small targets is critical. This approach helps prevent

smaller targets from being overlooked or erroneously suppressed

due to the presence of larger targets, as expressed in Equation 1.

RIoU =
A ∩ B

min(A,B)
(1)

The confidence scores of plant bounding boxes detected by

Grounding DINO are influenced by factors such as plant type, size,

lighting, and background, resulting in uncertainty and complicating the

selection of the optimal bounding box based solely on confidence. To

address this issue, we propose the Normalized Cover Green Index

(NCGI) as a confidence metric for plant detection boxes. The NCGI is

derived from the Excess Green (EXG) index and is computed by first

applying Otsu’s thresholding to binarize the image, followed by

calculating the total green pixel count within each bounding box

(denoted as NCGI_raw). These raw green pixel counts are then

normalized across all overlapping bounding boxes. The NCGI for

the i-th bounding box is defined in Equation 2.
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NCGI(boxi) =
NCGIraw(boxi)

maxk∈overlap(boxi)(NCGIraw(boxk))
(2)

Here, boxi represents the i-th bounding box for which the NCGI

value is being calculated, and k∈overlap(boxi) denotes the set of

bounding boxes overlapping with boxi.

Standard NMS uses the confidence score of bounding boxes as

the basis for suppression. Considering the specific characteristics of

plant detection, this study combines the Normalized Cover Green

Index (NCGI) with the confidence score to compute a composite

NCGI value, which serves as the bounding box score, as defined in

Equation 3. However, Grounding DINO’s plant detection often

generates a large number of bounding boxes that enclose multiple

plants, resulting in excessively high composite scores for these

boxes. To address this issue, bounding boxes with high composite

scores and a large number of overlapping boxes are penalized by

reducing their scores. This suppression mechanism effectively

reduces the influence of large boxes enclosing multiple plants.

To balance the dual objectives of prioritizing bounding boxes with

the highest composite NCGI values and suppressing boxes with a large

number of overlaps, VC-NMS employs a two-stage algorithm. In the

first stage, the composite NCGI values, derived from the NCGI value

and the confidence score, is assigned as the score for each box.

Additionally, boxes with a high number of overlaps are penalized by

reducing their scores, with larger penalties applied to boxes enclosing

multiple overlapping instances. Let B represent the set of N bounding

boxes detected by Grounding DINO. These boxes are sorted in non-

ascending order based on their composite index values. The score si for

each box bi in B is calculated as shown in Equation 4.

si = b · NCGIi + (1 − b) · si (3)

si =
si, RIoU(bi, bj) < Nt, i ∈ ½1,N� and j ∈ (i,N�

(1 − oveni=maxoven) · si, RIoU(bi, bj)   ≥  Nt  and oveni   ≥  ove

(

(4)

Here, NCGIi represents the cover green index of box bi, and

RIoU(bi,bj) denotes the relative Intersection over Union (RIoU)

between bi and bj. Overlap threshold Nt=0.7 ensures that only

highly overlapping boxes receive overlap penalty during the first

processing stage. The parameter b serves as the weight of the NCGI

component, with 0 ≤ b ≤ 1. This parameter can be adjusted in

practical applications based on the degree of plant density and

occlusion. During fully automated batch testing, b is set to 0.7 to

balance the vegetation cover index and confidence score. The

overlap index, oveni, represents the number of overlapping boxes

for box bi, while max_oven denotes the highest overlap index

among all boxes. A linear attenuation function is applied to

penalize si, where a higher overlap index results in a greater penalty.

The second stage of VC-NMS is similar to Soft-NMS, with the

objective of suppressing the scores of overlapping bounding boxes

and removing redundant boxes. Unlike Soft-NMS, VC-NMS

replaces the standard Intersection over Union (IoU) with the

Relative Intersection over Union (RIoU). Let M represent the

bounding box with the highest score, and let B={bi|1≤i≤N} denote

boxes not in the final set D, the score of bi is reduced using a decay
FIGURE 5

The pseudo code of VC-NMS. Our algorithm consists of two stages:
the first stage calculates the integrated NCGI and applies the
overlapping box suppression method, while the second stage
implements the RIoU-based Gaussian penalty function.
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function f. The decay function is defined in Equation 5.

si = si · f (RIOU(M, bi),∀ bi ∉ D (5)

Here, f(RIoU(M,Bi)) represents a weight-based decay function

designed to reduce the scores of overlapping bounding boxes. In

Grounding DINO, multiple nested boxes are often detected for the

same plant, resulting in very high RIoU values between these boxes.

Such boxes should receive a significant penalty. Conversely,

overlapping boxes corresponding to adjacent plants typically

have lower RIoU values and should receive lighter penalties.

Considering these factors, we adopt the Gaussian penalty

function from Soft-NMS. The decay function is defined in

Equation 6. Unlike traditional NMS with hard thresholds, the

Gaussian function provides smooth suppression, avoiding abrupt

score discontinuities. The continuous penalty function has no penalty

when there is no overlap and very high penalty at a high overlap.

f (RIoU(M, bi)) = e−  
RIoU(M,bi )

2

s (6)
2.2.4 Point prompt generation using similarity
maps and max distance criterion

The point prompt augmentation method consists of two steps.

First, base points are generated using similarity maps. Then,

enhanced points are determined using the max distance

criterion (Figure 6).
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1. Generation of Base Points Using Similarity Maps.

First, each bounding box region obtained by Grounding DINO

and VC-NMS is assigned a composite NCGI value (yn). The

bounding box with the highest yn is selected as the reference box,

and its image is cropped to serve as the reference image for

generating point prompts. To enhance the green features of the

plant, the Excess Green (EXG) algorithm is applied to the reference

image, followed by the OTSU method to segment the enhanced

image into foreground and background regions. The foreground

region is then used to generate a reference mask. After obtaining the

reference image and reference mask, the SAM image encoder is

used to extract features from both. Subsequently, features are

extracted from all bounding box region images. The image

embedding of the reference image is then compared with the

embeddings of all bounding box regions by calculating the cosine

similarity, generating a similarity map, as shown in Figure 7. In the

similarity map, the point with the highest similarity value is selected

as the positive base point, while the point with the lowest similarity

value is selected as the negative base point for each bounding

box region.

(2) Generation of Enhanced Points Based on Base Points Using

the Maximum Distance Criterion.

We referred to the study by Dai et al. (2023) on SAM point

prompt augmentation. For each target region, the EXG algorithm

was applied to enhance green features, followed by the OTSU

method to segment the image into preliminary foreground and

background regions. Enhanced points were then generated within
FIGURE 6

Point prompt augmentation flowchart. (a) Base points are generated using a similarity map, where yn represents the composite NCGI value of each
bounding box region. The points with the highest and lowest similarity values in each similarity map are selected as the base positive and negative
points, respectively. (b) Enhanced points are generated using the max distance criterion within the foreground and background regions initially
identified by the EXG and OTSU method.
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these regions using the base positive and negative points obtained in

the first step. Specifically, the Euclidean distance was calculated, and

the farthest point from the base point was selected as the

enhanced point.
2.3 Evaluation metrics

To comprehensively evaluate the performance of bounding box

detection and instance segmentation, we employed several widely

used metrics from object detection and image segmentation. These

metrics include Intersection over Union (IoU), Precision (P), Recall

(R), Average Precision (AP), Dice Similarity Coefficient (Dice),

Expected Calibration Error (ECE) (Guo et al., 2017), Structure

Measure (Sm) (Fan et al., 2017), and Weighted F-measure (wFm)

(Margolin et al., 2014). The definitions and formulations of these

metrics are provided in Equations 7-13.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

AP =
Z 1

0
PdR (9)

Dice =
2 · jA ∩ B j
jA j+ jB j (10)

ECE =oM
m=1

jBm j
n

j acc(Bm) − conf (Bm) j (11)

Sm = a · Sobject + (1 − a) · Sregion (12)
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Fw
b = (1 + b2)

Precisionw · Recallw

b2 · Precisionw + Recallw
(13)

Intersection over Union (IoU) quantifies the overlap between

predicted and ground truth segmentation masks, with higher values

indicating better alignment. True Positive (TP) refers to the number of

correctly predicted bounding boxes or masks where the Intersection

over Union (IoU) between the predicted and ground truth boxes or

masks meets or exceeds the IoU threshold. Predictions falling below

this threshold are classified as False Positives (FP), while False

Negatives (FN) represent the number of ground truth bounding

boxes or masks missed by the predictions. Precision (P) (Equation

7) quantifies the proportion of true positive predictions among all

positive predictions. Higher precision indicates that the model makes

fewer false positive predictions, meaning that when it predicts an

object, it is more likely to be correct. Recall (R) (Equation 8) measures

the proportion of true positive predictions among all ground truth

instances. Higher recall indicates that the model is able to identify

most of the true positive instances, meaning fewer false negatives. In

Equation 9, Average Precision (AP) is defined as the area under the

Precision-Recall (P-R) curve computed at different IoU thresholds.

This study employs AP@0.5 and AP@0.5:0.95, where AP@0.5

represents the average precision at an IoU threshold of 0.5, and

AP@0.5:0.95 represents the mean average precision calculated across

IoU thresholds ranging from 0.5 to 0.95, with intervals of 0.05. The

Dice Similarity Coefficient (Dice) (Equation 10) measures the degree

of overlap between predicted and ground truth regions. It ranges from

0 to 1, with values closer to 1 indicating better segmentation

performance. Expected Calibration Error (ECE) (Equation 11)

evaluates the consistency between predicted probabilities and

observed outcomes, providing a measure of calibration quality in

probabilistic models. Structure Measure (Sm) (Equation 12) assesses

the structural similarity or quality between two images. Unlike pixel-

level metrics, Sm emphasizes structural information such as edges,

textures, and shapes. Setting a=0.5 balances the weights between

object-aware and region-aware similarities. Weighted F-measure

(wFm) (Equation 13) extends the traditional F-measure by

incorporating the varying importance of different regions or objects

within an image. This modification aligns the evaluation results with

the requirements of specific application scenarios.
3 Experimental results

3.1 Performance evaluation of bounding
box prompts

Experiments on zero-shot single-plant detection using

Grounding DINO were conducted on the hydroponic plant

dataset (HP Dataset). The text_prompt for Grounding DINO was

set as “single vegetable” with the Box Threshold values set to 0.1. To

remove redundant boxes, the proposed VC-NMS algorithm was

applied. Examples of detected single plants are shown in Figure 8.

The model successfully identified individual plants across various

scenarios, including significant variations in plant scale and viewing
FIGURE 7

Similarity map. The figure illustrates the matching relationship
between the target plant regions and the reference plant region.
Different colors represent varying levels of similarity, with brighter
colors indicating higher similarity.
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angles (Figure 8e), plant types (Figure 8f), planting methods

(Figure 8a), and lighting conditions (Figure 8b).

To validate the performance of our proposed VC-NMS in

removing redundant bounding boxes generated by Grounding

DINO, we compared its detection accuracy with that of Greedy-

NMS (G-NMS), Soft-NMS with a linear penalty function (S-NMS

(L)), and Soft-NMS with a Gaussian penalty function (S-NMS(G)).

The experimental results, shown in Table 3, demonstrate that our

algorithm achieves significant performance improvements,

outperforming the others across all four metrics. Specifically, VC-

NMS achieved the highest AP@0.5 (0.699) and the highest Recall@

10 (0.659). These results indicate that VC-NMS effectively leverages

the color information of hydroponic plants, allowing it to better

remove redundant bounding boxes generated by Grounding DINO

in complex environments. Quantitative analysis of AP across

varying target scales reveals that the Grounding DINO with NMS

framework exhibits a fundamental limitation in detecting small

objects (defined as targets with diagonal lengths <32 pixels). This

performance constraint primarily originates from the box

confidence threshold (box_threshold =0.1 in our implementation)
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– small objects inherently generate low-confidence predictions

(typically below the 0.1 threshold), resulting in their systematic

exclusion during the initial filtering phase. However, arbitrarily

reducing this parameter is impractical, as it would produce

excessive non-overlapping candidate bounding boxes that exceed

the suppression capacity of conventional NMS algorithms due to

their spatially dispersed distribution.

Figure 9 presents a qualitative comparison of redundant

bounding box removal using Greedy-NMS (G-NMS) and VC-

NMS. Larger boxes detected by Grounding DINO often exhibit

higher confidence scores due to its detection mechanism

(Figure 9a). However, these larger boxes often include significant

redundant areas. G-NMS tends to prioritize these high-confidence

large boxes by default (Figure 9b), which are suboptimal as prompts

for SAM. Oversized boxes can substantially reduce the instance

segmentation performance of SAM. In contrast, VC-NMS considers

both the composite NCGI value and the number of overlapping

boxes. By suppressing large boxes with significant overlaps

and prioritizing those with higher composite NCGI values,

VC-NMS effectively selects bounding boxes that are complete and
TABLE 3 Performance evaluation of grounding DINO with VC-NMS.

Method AP@0.5 AP@0.75 AP@0.9 AP 0.5:0.95 Recall 10 Recall 100 AP Small AP Medium AP Large

G-NMS 0.522 0.338 0.230 0.350 0.515 0.537 0.091 0.446 0.723

S-NMS (L) 0.581 0.379 0.261 0.393 0.537 0.563 0.091 0.497 0.782

S-NMS (G) 0.542 0.345 0.233 0.360 0.494 0.506 0.100 0.480 0.732

VC-NMS 0.699 0.559 0.407 0.541 0.659 0.675 0.091 0.658 0.770
f

S-NMS (L) indicates that Soft-NMS uses a linear penalty function, while S-NMS (G) indicates that Soft-NMS uses a Gaussian penalty function.
The optimal performance metrics are shown in bold.
FIGURE 8

Results of individual plant detection using Grounding DINO combined with VC-NMS.
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free of redundancy (Figure 9c). This approach generates more

effective prompts for SAM, leading to improved instance

segmentation accuracy.
3.2 Performance evaluation of point
prompts

To validate the effectiveness of the proposed point prompt

augmentation strategy based on the similarity maps and max

distance criterion, comparative experiments were conducted using

max entropy criterion (Kapur, 1989) and similarity maps with

random sampling as baseline methods. In the max entropy

criterion, the entropy value of every pixel in the image is

calculated, and high-entropy regions are separated using a

predefined threshold to generate a green entropy map. Positive

prompt points are then randomly sampled from the green entropy

maps within the bounding boxes generated by Grounding DINO
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and VC-NMS, while negative points are randomly selected outside

the green entropy map. For similarity maps with random sampling,

base positive and negative points are first determined by calculating

similarity values. Then, additional points are randomly sampled

from the foreground and background regions preliminarily

segmented using EXG and OTSU. Figure 10 shows a comparison

of prompt points generated using different augmentation strategies.

The max entropy criterion suffers from discontinuous entropy

values, leading to the selection of negative points within low-

entropy regions of the plant, which can severely degrade

segmentation performance. On the other hand, similarity maps

with random sampling, due to their inherent randomness, may

generate overly dense distributions of prompt points, reducing the

amount of effective information provided to SAM and slightly

underperforming the max distance criterion. Its instability further

limits its practical applicability. In contrast, the proposed similarity

maps with max distance criterion generate stable and effective

prompts, enabling SAM to better focus on the entire plant region.
FIGURE 9

Qualitative results of redundant bounding box removal using Greedy-NMS (G-NMS) and VC-NMS in Grounding DINO. (a) Initial candidate boxes
generated by Grounding DINO (confidence scores shown at top-left), where boxes below text_threshold = 0.1 are filtered. (b) Results after G-NMS
processing. (c) Results after VC-NMS processing, demonstrating superior box selection.
FIGURE 10

Comparison of the effects of different point augmentation strategies. (a) Max Entropy Criterion: The bottom-right corner shows the binarized
entropy map. Negative points located within plant regions lead to significant negative impacts on segmentation performance. (b) Similarity Maps
with Random Sampling: Randomly generated enhanced points tend to cluster within a specific area, reducing the effectiveness of the prompts.
(c) Similarity Maps with Max Distance: This method effectively utilizes spatial information from the image and generates accurate point prompts.
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This results in superior segmentation performance compared to the

baseline methods.

To assess how the number of positive and negative prompt

points influences SAM’s instance segmentation performance, we

conducted a series of comprehensive experiments. Experimental

results presented in Table 4 show that the highest Dice score is

achieved when the number of positive and negative prompt points

is set to two. Both excessive and insufficient prompt points lead to a

decline in SAM’s instance segmentation performance. Hence,

determining the optimal number of prompt points is essential for

maximizing SAM’s instance segmentation performance.
3.3 Performance evaluation in the zero-
shot instance segmentation task

3.3.1 Comparison with the baseline approaches
3.3.1.1 Quantitative results on the HP dataset

The proposed method was quantitatively evaluated against zero-

shot baseline methods based on SAM, including SAM’s everything

mode and Grounded SAM (box_threshold = 0.3), on the HP Dataset.

The results are presented in Table 5. Across three different backbones,

neither SAM’s everything mode nor Grounded SAM showed

significant improvements in instance segmentation performance as

the parameter size of the image encoder increased. This limitation

may stem from their inability to precisely localize plant regions. In

contrast, the proposed method achieves superior performance across
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all evaluated metrics, obtaining an IoU of 0.593, a Dice of 0.712, a Sm

of 0.771, a wFm of 0.769, and the lowest ECE of 0.009. Compared to

SAM’s everything mode and Grounded SAM, the proposed method

achieves significant improvements in instance segmentation

performance while retaining the zero-shot framework.

3.3.1.2 Qualitative visual comparisons

To demonstrate the effectiveness of the proposed prompt

augmentation strategy, qualitative comparisons were conducted

between our method, SAM’s Everything Mode, and Grounded SAM,

as shown in Figure 11. Within the same zero-shot segmentation

framework, SAM’s Everything Mode generates overly fine-grained

segmentation results, frequently splitting a single plant into separate

leaves. Additionally, without prompts, it struggles to accurately localize

plants and often includes background regions in the segmentation

results (Figure 11a). Grounded SAM, in contrast, depends solely on the

box_threshold and text_threshold parameters from Grounding DINO

to filter bounding boxes. When the thresholds are set too low,

numerous redundant boxes are generated; when set too high, many

plant targets are missed (Figure 11b). By contrast, our method achieves

the highest IoU of 0.593 and Dice of 0.712 with the ViT-H backbone.

Despite the limitations of Grounding DINO’s thresholds in

detecting small targets, the incorporation of VC-NMS for removing

redundant boxes, along with enhanced positive and negative point

prompts, ensures accurate localization of most plant targets.

Consequently, our method achieves precise instance segmentation

performance (Figure 11c).
TABLE 5 Performance comparison with zero-shot baseline methods based on SAM.

Method Backbone IoU↑ Dice↑ ECE↓ Sm↑ wFm↑

SAM
Everything

ViT-B 0.194 0.286 0.326 0.573 0.330

ViT-L 0.156 0.239 0.600 0.574 0.277

ViT-H 0.148 0.228 0.667 0.570 0.265

Grounded
SAM

ViT-B 0.464 0.584 0.027 0.700 0.634

ViT-L 0.470 0.578 0.024 0.676 0.625

ViT-H 0.453 0.565 0.027 0.666 0.614

Ours

ViT-B 0.576 0.697 0.011 0.758 0.755

ViT-L 0.585 0.706 0.010 0.769 0.762

ViT-H 0.593 0.712 0.009 0.771 0.769
Optimal results per backbone are shown in bold. The '↑' symbol indicates that higher values are better for this metric, while the '↓' symbol indicates that lower values are better for this metric.
TABLE 4 Comparison of the performance impact of different numbers of point prompts (unit: Dice score).

1Positive 2Positive 3Positive 4Positive 5Positive

1Negative 0.697 0.709 0.704 0.695 0.697

2Negative 0.699 0.712 0.709 0.703 0.697

3Negative 0.698 0.708 0.705 0.698 0.689

4Negative 0.695 0.704 0.701 0.692 0.684

5Negative 0.693 0.700 0.692 0.677 0.680
The optimal performance metric is shown in bold.
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3.3.2 Ablation study
In this section, we perform ablation studies to verify the

effectiveness of the model design. Specifically, we evaluate the

performance of using point prompts and box prompts

individually and compare their results with the complete model
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using both prompts, with the ViT-H backbone. As shown in

Table 6, while both point prompts and box prompts

independently achieve good results, it is evident that combining

both prompts yields the best performance.

3.3.3 Sensitivity analysis
In the first stage, VC-NMS introduces hyperparameter b to

balance the weights between NCGI and confidence score in the

composite NCGI calculation, as shown in Equation 3. In practice, b
can be adjusted according to plant growth stages: set lower in early

growth phases to emphasize confidence scores, and higher in later

phases to enhance NCGI contribution for better segmentation. For

batch experiments requiring a fixed b value, we conducted

sensitivity analysis on the HP dataset, with results shown in
TABLE 6 Ablations for our model.

Model IoU Dice

SAM + Point 0.584 0.695

SAM + Box 0.561 0.687

SAM + Box + Point 0.593 0.712
The optimal performance metrics are shown in bold.
FIGURE 11

Qualitative segmentation results. Our method is compared with baseline methods. Even under challenging lighting conditions (fifth row), our model
exhibits robust instance segmentation performance.
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Table 7. The segmentation performance remained stable with b
values between 0.4-0.9, achieving optimal results at b = 0.7.

Therefore, we set b=0.7 for all experiments without further

dataset-specific tuning.

3.3.4 Zero-shot generalization ability
To evaluate the zero-shot generalization capability of our model in

instance segmentation across different plants and environmental

conditions, we conducted comparative experiments using our
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method (with the ViT-H backbone) and conventional supervised

segmentation techniques. Specifically, lettuce images from Camera 3

(104 images) were utilized as the training dataset to train SOLOv2

(Wang et al., 2020) and YOLOv11 models. Two independent test sets

were used for validation: lettuce images from Cameras 1, 2, and 4(572

images), along with pakchoi images fromCamera 5(136 images). These

tests assessed the generalization ability of our model and supervised

methods across diverse conditions, including variations in lighting,

planting methods, scales, viewing angles, and plant types. Figure 12

shows sample images from the training and test sets, highlighting

significant differences in lighting, planting methods, scales, viewing

angles, and plant types. Table 8 provides a performance comparison

between our zero-shot model and the supervised segmentation models

across each dataset. On the training set, SOLOv2 and YOLOv11 show

superior performance, with YOLOv11 achieving the highest IoU

(0.768) and the highest Dice (0.862). Notably, our model also

performs well on the training set, achieving an IoU (0.714) and an

Dice (0.810). However, on the two test sets, the supervised models

exhibit significant drops in IoU and Dice, likely caused by substantial

differences between the test and training datasets. In contrast, our zero-

shot model achieves the best performance on both test sets,

demonstrating strong generalization ability and robustness under

zero-shot conditions. This capability stems from the fact that both

Grounding DINO and SAM were pre-trained on large-scale, diverse

datasets, enabling exceptional zero-shot performance in plant

localization and precise botanical segmentation. The advantage

extends beyond hydroponic systems and can be readily transferred

to other green plants through simple text_prompt adaptation.
TABLE 7 Parameter sensitivity analysis for b values with ViT-B image
encoder architecture.

b IoU↑ Dice↑ ECE↓ Sm↑ wFm↑

0.1 0.576 0.694 0.016 0.762 0.751

0.2 0.580 0.697 0.015 0.764 0.755

0.3 0.585 0.703 0.013 0.767 0.761

0.4 0.590 0.709 0.010 0.770 0.766

0.5 0.590 0.709 0.010 0.770 0.766

0.6 0.592 0.711 0.010 0.770 0.768

0.7 0.593 0.712 0.009 0.771 0.769

0.8 0.591 0.710 0.009 0.769 0.768

0.9 0.590 0.710 0.009 0.769 0.768
The optimal segmentation performance metrics are shown in bold.
The '↑' symbol indicates that higher values are better for this metric, while the '↓' symbol
indicates that lower values are better for this metric.
FIGURE 12

Sample images from the training and test datasets. The test datasets show significant differences from the training dataset in lighting, planting
methods, scale, viewing angles, and plant types. (a, e) Spaced planting. (b, d) Natural lighting effects. (c, f–h) Red and purple lighting effects. (c, f, g)
Larger field of view and scale. (d, h) Pakchoi.
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4 Discussion

SAM is an interactive instance segmentation model that

provides multiple prompting methods, including point, box,

mask, and text prompts. Among these, point and box prompts

are the most frequently used. Generating and effectively utilizing

high-quality point and box prompts are essential for achieving

optimal instance segmentation results.
4.1 How box prompts influence
segmentation performance

Box prompts significantly influence SAM ’s instance

segmentation performance, including factors such as box position,

size, and plant completeness. Among these, box position is crucial.

Grounding DINO’s strong object detection capabilities enable

accurate plant localization. However, the large number of

redundant boxes it generates creates challenges in determining the

optimal box size and ensuring the plant’s completeness.
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Excessive redundant space in the box can cause SAM to mistake

background areas for the target region, resulting in oversized

segmentation masks (Figure 13b) or misidentifying the background

as the target (Figure 13a). Such errors can severely impact plant

phenotyping. After removing redundant large boxes, ensuring the

completeness of the target plant remains critical. If the box contains

only part of the plant, SAM may fail to detect the remaining area

(Figure 13d). To address these challenges, we propose the VC-NMS

algorithm, which adopts a two-stage approach. In the first stage,

NCGI values and confidence scores are combined (Equation 3), with

higher penalties applied to boxes containing multiple nested boxes

(Equation 4). This stage effectively leverages the green pixel

information of hydroponic plants, preserving plant completeness

while penalizing redundant large boxes. The second stage is similar

to Soft-NMS but uses a Gaussian penalty function (Equation 6).

Unlike Soft-NMS, we replace the traditional Intersection over Union

(IoU) with Relative IoU (RIoU) (Equation 5), which effectively

prevents small targets from being overlooked or incorrectly

suppressed due to the presence of larger targets, thereby removing

redundant boxes. VC-NMS significantly enhances the Average
TABLE 8 Performance comparison between zero-shot and supervised segmentation models.

Model
Lettuce Camera 3 Lettuce Camera 1,2,4 Pakchoi Camera 5

IoU Dice IoU Dice IoU Dice

SOLO-v2 0.741 0.845 0.412 0.485 0.101 0.145

YOLO-v11 0.768 0.862 0.500 0.616 0.210 0.300

Ours 0.714 0.810 0.593 0.711 0.486 0.631
The optimal performance metrics are shown in bold.
FIGURE 13

The impact of box prompts on SAM’s instance segmentation performance. Box prompts with excessive redundant space or those containing only
part of the plant will reduce SAM’s ability to accurately segment the target plant instances.
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Precision of the final target bounding boxes, improving AP@0.5 by

0.177 over NMS and by 0.118 over Soft-NMS-L (Table 3), providing

SAM with accurate and effective box prompts (Figure 13c).
4.2 Effect of point prompts on
segmentation performance

The number and position of point prompts play a crucial role in

the segmentation performance of SAM. To explore their impact and

determine the optimal number and strategy of prompts, we conducted

extensive comparative experiments. As shown in Table 4, SAM

requires sufficient information to perform effective instance

segmentation. A configuration of one positive and one negative

point clearly does not provide enough information for SAM.

However, SAM’s ability to process prompts is limited. When the

number of positive and negative points exceeds two, the segmentation

performance begins to degrade. This effect is particularly pronounced

when multiple plant instances are present, further challenging SAM’s

prompt processing capabilities. Based on the experimental results, we

concluded that the optimal point prompt configuration consists of two

positive points and two negative points. To determine the best

locations for point prompts, we compared three different

enhancement strategies: max entropy criterion, similarity maps with

random sampling, and similarity maps with the max distance

criterion. The max entropy method suffers from discontinuities in

the green entropymap, resulting in significant gaps between regions. If

negative points are placed in low-entropy areas of the plant, it severely

hampers instance segmentation performance (Figure 10a). Similarity

maps with random sampling can lead to point clustering, which

wastes valuable prompt information and results in unstable points that

are challenging to apply effectively (Figure 10b). In contrast, our

approach—similarity maps with the max distance criterion—first

selects high-quality base points using similarity maps and then

applies the max distance criterion. This method effectively prevents

point clustering while utilizing spatial information from the image

more efficiently. As a result, the point prompts cover the entire plant

area more effectively, yielding the best configuration (Figure 10c),

which enables SAM to focus more accurately on the plant regions.
4.3 Generalization capability of zero-shot
instance segmentation in vertical farming

In vertical farming, challenges such as varying light conditions,

planting methods, plant types, camera perspectives, and image

scales significantly complicate plant phenotyping and smart

management. While traditional supervised instance segmentation

models perform well for specific plants, they depend on costly,

labor-intensive data collection and annotation, and struggle with

new plants or complex environments. To tackle these challenges, we

propose a Zero-shot Instance Segmentation framework using

foundational models. Its key advantage is adaptability to various

plant types and environmental conditions without requiring large

annotated datasets. Our framework combines Grounding DINO
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and SAM, employing text, image, and spatial structure prompts

(box and point prompts) to guide accurate plant instance

segmentation. The open-set detection capability of Grounding

DINO (text-prompted object localization) and SAM’s zero-shot

segmentation generalization exhibit natural complementarity. This

synergistic combination overcomes the predefined category

limitation inherent in traditional instance segmentation

approaches. As it does not require separate training for each

plant, the framework quickly adapts to new plant varieties and

growth stages, showcasing strong generalization capability.

Figure 11 illustrates that our zero-shot instance segmentation

framework effectively handles segmentation tasks for various

plants (e.g., lettuce and pakchoi) and growth stages (e.g.,

germination, seedling, rosette, and heading) in vertical farms. The

framework maintains high segmentation accuracy across complex

lighting, diverse backgrounds, and high-density planting scenarios,

demonstrating adaptability to various plant species and

environmental conditions. As shown in Table 8, while our model

performs slightly lower than traditional supervised methods on the

training set, it significantly outperforms them on both test sets. This

approach addresses challenges in data collection and annotation,

lowers the cost of plant phenotyping, and enhances efficiency for

smart management in vertical farming.
5 Conclusions and future work

This study introduces a zero-shot plant instance segmentation

framework that integrates Grounding DINO with SAM. SAM

serves as the primary image segmentation model, leveraging box

prompts generated by Grounding DINO with VC-NMS. Enhanced

point prompts are created using the similarity maps combined with

the max distance criterion. Finally, both box and point prompts are

input into SAM’s prompt encoder to enable accurate instance

segmentation, forming an automated zero-shot segmentation

pipeline based on foundation models. The VC-NMS algorithm

combines NCGI values with confidence scores, effectively

eliminating redundant bounding boxes generated by Grounding

DINO. The resulting plant instance bounding boxes exhibit

significantly higher average precision compared to G-NMS and

Soft-NMS methods. The similarity maps with max distance

criterion ensure consistent prompt performance, allowing SAM to

focus more effectively on the entire plant region. An optimal

configuration of two positive and two negative points minimizes

the adverse effects of excessive or insufficient prompts on SAM.

Experimental results indicate that our model surpasses SAM-

based baseline models in segmentation performance, achieving an

impressive IoU of 0.593 on the HP Dataset. Furthermore, the

method exhibits remarkable zero-shot generalization ability,

consistently achieving stable segmentation performance across

diverse plant types, planting methods, viewing angles, and

complex lighting conditions, highlighting its robustness.

Compared to traditional supervised segmentation methods that

depend on extensive annotated datasets, our approach achieves

competitive performance while effectively extracting plant
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phenotypic features. The method effectively tackles the challenge of

data scarcity in hydroponic image segmentation, offering robust

support for intelligent detection in vertical farming.

The zero-shot capability enables our model to extend beyond

vertical farming applications. Simple adaptation of Grounding

DINO’s text_prompt allows direct deployment for phenotyping

other green plants without training. Although our zero-shot

instance segmentation framework has shown promising potential

for application in vertical farming, it still faces certain limitations,

such as real-time processing capabilities and segmentation accuracy

in complex environments. To address these challenges, we plan to

adopt a more lightweight SAM-based model (e.g., MobileSAMv2,

Lite-SAM) to improve the framework’s real-time performance. In

addition, by further optimizing the prompting strategy and

incorporating more domain-specific agricultural knowledge (e.g.,

plant morphology priors for SAM decoder tuning), we aim to

enhance the model’s segmentation accuracy in complex

agricultural settings, thereby advancing the practical application

of zero-shot instance segmentation in vertical farming.
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