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Gray leaf spot (GLS) disease is caused by two fungal pathogens, Cercospora zeae-

maydis and Cercospora zeina. The current study evaluated 427 elite tropical/

subtropical lines for their responses to GLS under artificial inoculation in

Kakamega in western Kenya for 4 years. Furthermore, a subset of 140 lines was

used for a high-resolution genome-wide association study (GWAS) for GLS

resistance. Among the 427 lines evaluated, 14 were identified as resistant on the

basis of a <4 (on a scale of 1–9) GLS disease severity score. Among these 14 lines,

three lines, namely CML540, CML559, and CML566, are also known for resistance to

MSV, tolerance to drought, and resistance to MLN, respectively. The phenotypic

evaluation revealed significant (P < 0.01) genotypic and genotype x environment

interaction variances and moderate to high heritability for GLS disease severity, area

under disease progress curve (AUDPC), and other agronomic traits. GLS disease

severity traits were negatively and significantly correlated (P < 0.01) with anthesis

date, silking date, plant height, and ear height. A subset of 140 lines was genotyped

with 33,740 DART-GBS SNPmarkers. Population structure and principal component

analysis grouped the lines into two major clusters with moderate structure in the

population. GWAS revealed 13 and 11 SNPs significantly associated with GLS disease

severity and AUDPC values. Six among the 13 SNPs detected for GLS resistance are

overlapped with earlier studies, which can be used for fine mapping and

improvement of GLS resistance through marker-assisted selection. However, SNPs

on chromosomes 9 and 10 were unique to the present study. Genomic prediction

on GLS traits revealed moderate to high prediction correlations, suggesting its

usefulness in the selection of desirable candidates with favorable alleles for GLS

resistance. Overall, 14 GLS resistance lines identified in this study can be used as

donor lines in both genetic studies and resistance breeding programs.
KEYWORDS
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Introduction

Maize is the most important cereal crop in sub-Saharan Africa

(SSA), growing over 35 million hectares, with an average

production of over 70 million metric tons of grain (FAOSTAT,

2021). The crop is mainly grown by several million smallholder

farmers for their food security, income, and livelihoods across SSA

(Prasanna et al., 2020, 2021). The average maize yield in SSA is very

low (∼1.7 tons/hectare) compared to the world average (∼5 tons/

hectare) due to various abiotic and biotic stresses (Erenstein et al.,

2022). Maize in eastern and southern Africa, specifically in

highlands, is affected by many fungal diseases, mainly Turcicum

leaf blight (TLB), gray leaf spot (GLS), and Fusarium ear rot (Shi

et al., 2007; Kibe et al., 2020a; Nyaga et al., 2020; Omondi et al.,

2023; Ndlovu et al., 2024). GLS caused by Cercospora zea maydis

(Ward et al., 1999) and C. zeina,maydis (Crous et al., 2006; Liu and

Xu, 2013) are major threats to maize production in the world (Ward

et al., 1999; Katwal et al., 2013; Omondi et al., 2023);. During the

1960s and ‘70s, the disease was first reported in the USA and later

spread worldwide and became a key concern for maize production

(Liu et al., 2016) with significant economic yield loss. In SSA, the

average yield loss exceeds 70% implicating a significant economic

and food security concerns (Vivek et al., 2010; Kinyua et al., 2011;

Yigrem and Yohannes, 2019).

Pathogens causing GLS are favored by environmental

conditions such as high humidity, moderately high temperature,

and extended leaf wetness. Initial symptoms of GLS appear on the

lower leaves and are progressively observed in the upper leaves later

during the season. The characteristic symptoms of mature GLS

lesions are gray to tan in color, sharply rectangular, long and

narrow, and run parallel to the leaf veins (Latterell, 1983; Katwal

et al., 2013). The GLS damage has been linked to loss of

photosynthetic capability and premature plant death (Latterell,

1983; Dodd and McGee, 1989). Due to the widespread impact of

the disease in eastern and southern Africa and globally, there is a

critical need to adopt effective disease management strategies. The

main disease management approaches include the application of

fungicides, cultural practices, and, most importantly, host resistance

mechanisms (Katwal et al., 2013). Many maize breeding

improvement programs in eastern and southern Africa resorted

to develop and deploy GLS resistant maize germplasm, as other

methods such as the application of fungicides are neither affordable

and economical nor environment friendly (Menkir and Ayodele,

2005; Nzuve, 2013; Shi et al., 2014). Hence, breeding for resistant

germplasm through conventional methods and integrating

advanced molecular tools is the most effective method to control

diseases and ensure maize-based food security in SSA.

Finding the resistance source of germplasm and understanding

the genetic basis of resistance is critical in managing plant diseases.

However, this process is still in progress for GLS resistance. Earlier

studies indicated that GLS resistance is a complex trait controlled by

multiple genes with small to moderate additive effects (Berger et al.,

2014; Benson et al., 2015; Kibe et al., 2020a; Omondi et al., 2023)

and strongly influenced by the environment (Clements et al., 2000).

Quantitative trait loci (QTL) mapping is an effective tool to
Frontiers in Plant Science 02
understand the genetic basis of complex traits like GLS resistance.

Previous QTL mapping studies identified several genomic regions

that confer resistance to GLS, which helped to understand its

genetic architecture (Zhang et al., 2012, 2017; Berger et al., 2014;

Xu et al., 2014; Mammadov et al., 2015; Du et al., 2020; Qiu et al.,

2021). QTLs on chromosome bin 5.04 and 5.06–07 were

consistently detected in different mapping studies and are of

interest to improve GLS resistance (Martins et al., 2019). Meta-

QTL analysis revealed that bin 8.08 on chromosome 8 possesses a

cluster of QTLs and significant consensus QTLs for GLS, TLB, and

southern leaf blight (SLB) with less than 5 cM of confidence interval

and also found to be associated with two nucleotide-binding site

(NBS) family of R genes (Ali et al., 2013). QTL studies with different

populations also revealed QTLs on chromosome bin 8.05/8.06 has

been detected for GLS as well as for other foliar diseases like

common rust and common smut (Bubeck et al., 1993; Kerns

et al., 1999). The consistent genomic regions identified in these

studies are needed to focus on improving GLS resistance. However,

not many studies were done on eastern and southern African-

adapted germplasm.

However, QTL mapping has its limitations, like low mapping

resolution due to few recombinations in population development,

and each mapping population represents only two alleles. In

addition, low relatedness between mapping populations and

breeding populations also hampers the translation of the

identified QTL into breeding targets. On the contrary, the linkage

disequilibrium-based genome-wide association study (GWAS) in a

set of mapping panels that represents a broad diversity of the

germplasm in breeding programs is a powerful tool for dissecting

oligogenic and polygenic traits. GWAS panels with genetically

unrelated individuals are expected to accumulate a large number

of historical recombination events from the past, which can help to

overcome the problems related to the lack of recombination events

(Mammadov et al., 2015). In maize, GWAS has been widely used to

identify the allelic variants that contribute to improve resistance to

many of the maize diseases like maize lethal necrosis (Gowda et al.,

2015; Sitonik et al., 2019; Nyaga et al., 2020), GLS (Shi et al., 2014;

Kuki et al., 2018; Kibe et al., 2020a; Omondi et al., 2023), sugarcane

mosaic virus (Tao et al., 2013), maize streak virus (Nair et al., 2015),

common rust (Zheng et al., 2018; Kibe et al., 2020b, Nyaga et al.,

2020), Tar spot complex (Mahuku et al., 2016), Fusarium ear rot

(Liu et al., 2021), head smut (Wang et al., 2012), and TLB (Poland

et al., 2011; Rashid et al., 2020; Ndlovu et al., 2024). Even though

several research groups reported GWAS on GLS resistance, the

studies on screening a large number of lines to identify the best

donor lines and conducting GWAS on lines adapted to SSA are

seldom. Therefore, the present research was designed to screen a

large number of locally adapted, widely used elite lines and conduct

GWAS for GLS resistance in SSA.

GWAS is widely used to find trait-linked markers. The

application of trait-linked markers in breeding is limited to large

effect QTLs or markers. On the contrary, genomic selection (GS)

uses genome-wide markers and captures variations explained by

both large-effect and small-effect QTLs or markers, which is

effective for complex traits like grain yield and moderately
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complex traits like GLS and TLB (Kibe et al., 2020a). In GS, the

training population has genotypes with both phenotypic and

marker data and is used to establish prediction models. From the

marker effects estimated from the training population, the genomic-

estimated breeding values (GEBVs) are predicted in a testing

population that has only marker data but no phenotypic data

(Meuwissen et al., 2001). By doing this, we can phenotype only

selected lines under controlled environments to produce reliable

data. Empirical research has shown the advantage of GS for

accelerating the genetic gains per unit of time over phenotypic

selection. In maize, GS has been widely applied for many traits for

inbred line prediction (Zhao et al., 2012; Technow et al., 2013;

Beyene et al., 2019, 2021; Ndlovu et al., 2022, 2024; Sadessa et al.,

2022) and hybrid performance prediction (Guo et al., 2019; Schrag

et al., 2019; Li et al., 2020). These findings demonstrate the potential

of GS to help in the selection of elite lines for disease resistance. The

objectives of the present study are (i) to evaluate 427 elite lines for 4

years under artificially inoculated conditions and identify the best

GLS resistance donor lines, (ii) to identify the genomic regions

associated with GLS resistance through GWAS, and (iii) to examine

the potential of GS in predicting GLS resistance and other

agronomical traits.
Materials and methods

A collection of 427 elite inbred lines widely used in eastern and

southern Africa subtropical maize breeding programs was

assembled. These inbred lines have potential resistance sources to

various foliar diseases, including GLS. The information on the

pedigree and other details is provided in Supplementary Table S1.

All these lines have been planted to test for their response to GLS

under field conditions with artificial inoculation at the KALRO

(Kenya Agricultural and Livestock Research Organization)

Research Station, Kakamega, Kenya (0°16′N and 34°49′E, 1406
masl) for 4 years (2016, 2017, 2018, and 2019). The monthly average

rainfall and temperature (minimum and maximum) in this disease

screening period are provided in Figure 1. The disease screening

location is a hot spot for foliar diseases, including GLS. However,

climate change has affected temperature and rainfall patterns in the

region, leading to inconsistent disease infection and expression. To

have accurate disease severity data, each trial was artificially

inoculated to ensure uniform disease expression.

Four hundred and twenty-seven (427) entries were planted in a

5 × 86 alpha (a)–lattice design, randomized and replicated two

times each year, by using CIMMYT’s field book (Vivek et al., 2010).

These inbred lines were planted in one row of four-meter plots with

15 plants per row. The trial was conducted in the main rainy season

(April–September). For these trials, two seeds were planted per hill

and later thinned to a single plant per hill three weeks after

emergence. This was done to ensure a uniform plant density. All

standard agronomic practices were applied during the disease

screening period.
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Samples collection for pathogen isolation
and inoculation

Leaves from five to ten maize plants with representative GLS

lesions were sampled from 20 to 25 fields in western Kenya. The

pathogen Cercospora zeina was isolated from infected leaves using

the single spore isolation method (Meisel et al., 2009; Kinyua et al.,

2011). The infected leaves were chopped into smaller pieces (2–5

mm2) and surface-sterilized in 5.25% sodium hypochlorite (NaOCl,

pure chemical) solution for approximately 30 seconds. The samples

were rinsed in sterile distilled water, dried, and plated on potato

dextrose agar (PDA) media supplemented with streptomycin sulfate

(0.03 g/liter) and incubated at 30°C for five days to allow the

pathogen to sporulate in a growth cabinet under a 12h fluorescent

light/dark regime. The sporulating fungi were observed under a

light microscope, and the hyphal tips of the correct fungi advancing

from the colony margins were sub-cultured onto fresh PDA media

as part of the culture purification process. A pure culture was stored

at −20°C in the KALRO Kakamega Laboratory.

The pathogen from the mother culture was inoculated and

multiplied on a susceptible maize host (hybrid PAN4M-19). The

conidia were dislodged with a brush and rinsed with 0.01% Tween

20 and the spore concentration was adjusted to a standardized

concentration of 4 × 104 spores/ml using a microscope and

hemocytometer and applied to all the leaves (V3 stage) of the

maize plants with a small brush, and the inoculation was repeated

after seven days. During the inoculation period, we walked along

the inter-row valley and ensured a uniform inoculum density across

the testing population.
Phenotypic evaluation and data analyses

The inbred lines were evaluated for their responses to GLS in

four environments. GLS disease severity is typically at its peak

between tasseling and physiological maturity; therefore, disease

severity data were recorded at the mid-silking, 77 days after

planting (1st scoring called GLS 1) and at the hard dough stage,

105 days after planting (second score called GLS 2). Disease severity

was rated plot-wise on the ordinal scale of 1 (highly resistant,

without any disease symptoms) to 9 (highly susceptible, with

necrosis and completely dead plants). Based on the scoring of 1

to 9 scale disease severity data, we divided the genotypes response as

a resistant, moderately resistant, moderately susceptible, and

completely susceptible group when the scores were 1 to 4, 4.1 to

5, 5.1 to 7, and 7.1 to 9, respectively. The area under the disease

progress curve (AUDPC), a quantitative measure of disease

intensity with time, was calculated for each plot to provide a

measure of the progression of GLS severity. The AUDPC was

computed according to the following equation (Shaner and

Finney, 1977):

AUDPC =on
i=1½

yi + yi+1
2

�(ti+1 − ti)
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where yi = diseased leaf area estimated on the ith disease

assessment date, ti = time (days) from disease onset (i.e.,

inoculation) to the ith disease assessment date, and n = total

number of disease assessments during the experiment evaluation.

Data were also collected for other relevant agronomic traits, namely

anthesis date (AD), silking date (SD), anthesis-silking interval

(ASI), plant height (PH), and ear height (EH).

GLS disease severity scoring was based on an ordinal scale;

therefore, data were checked for conformity with the assumptions

of statistical model fitting, that is, normally distributed, constant

variance, and independent (Wisniewski and Rawlings, 1990). A plot

of residuals against fitted values has shown that the residuals were

symmetrically distributed with constant variance for GLS disease

severity data and AUDPC values; thus, the data were not
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transformed. Further data were assessed for homogeneity of

variance using Levene’s test before ANOVA, and variances were

found to be homogeneous. The phenotypic traits were analyzed,

and variance components were estimated with the restricted

maximum likelihood (REML) in the ASREML-R (Gilmour et al.,

2009) and multi-environment trial analysis (META) R software

developed in CIMMYT (Alvarado et al., 2020). The following

statistical model was used to estimate variance components:

Yijkl =  m +  Gi +  Ej +  (GE)ij +  R(E)kj +  B(RE)ljk + eijkl  

where Yijkl is the phenotypic observation at the ith inbred line,

jth environment in kth replication of the lth incomplete block, m is

overall means, Gi is the genetic effect of the ith inbred line, Ej is the

effect of the jth environment, (GE)ij is genotype by environment
FIGURE 1

Minimum and maximum temperatures and monthly average rainfall data during the crop seasons at Kakamega for the 4 years (2016–2019)
of evaluation.
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interaction, R(E)kj is the effect of the kth replication at the jth

environment, B(RE)ljk is the effect of the lth incomplete block in the

kth replication at the jth environment, and eijkl is the residual error.

META-R software (Alvarado et al., 2020) was used to obtain best

linear unbiased estimates (BLUEs) and best linear unbiased

predictions (BLUPs) for all traits. BLUPs were used for GWAS

and BLUEs were used for GS analyses. Comparisons of variability

between entries were made using the least squared differences (LSD)

at a 5% significance level. Broad-sense heritability (H2) for the

different traits was calculated as the ratio of the estimated genotypic

variance to the estimated phenotypic variance (Knapp et al., 1985;

Liu et al., 2016).
Genotypic data analyses

From 427 lines phenotyped, we had genotypic data for 140 lines.

Maize leaf tissue samples were collected from 3 to 4 weeks old young,

healthy seedlings at the V3 stage. High-quality genomic DNA was

isolated from freeze-dried tissues. The Diversity Array Technology

(DArT) marker platform was used, and obtained 37,915 single

nucleotide polymorphic (SNP) markers. TASSEL ver5.2 (Bradbury

et al., 2007) was used to summarize SNP data by site, determine the

allele frequencies, and implement quality screening. SNP variants that

were monomorphic, called at repeat loci, had a heterozygosity of

>0.05 and had a minor allele frequency of <0.05, were filtered, and

19,091 high-quality SNPs were retained for GWAS analysis.
Population structure and
linkage disequilibrium

The population structure of 140 elite lines, which had both

phenotypic and genotypic data, was analyzed and sub-grouped

using Structure Software 2.3.4 version (Pritchard et al. 2000). The

number of discontinuous population structure clusters (K) was

predicted from one to five with ten iterations. The true number of

population structure clusters (delta K value) was harvested online

using an available structure harvester software (Earl and vonHoldt,

2012) based on the highest Ln P (D). The unique population genetic

subcluster was represented by each color bar at a p = 0.001. The period

of length of burn-in was set to 10,000, andMarkov ChainMonte Carlo

(MCMC) values were set to 100,000 cycles (Evanno et al., 2005).

The kinship matrix was estimated in TASSEL to measure the

genetic relatedness among individuals in the association panel. The

neighbor-joining tree was developed using the phylogenetic tree

analysis in TASSEL software v5.2. Linkage disequilibrium (LD) was

calculated using TASSEL software version 5.2. The squared allele

frequency correlations (r2) between all pairs of SNPs were

estimated to determine the extent of LD. The LD decay rate was

calculated by using the nonlinear regression model developed by

Hill and Weir (1988), with modifications by Remington et al.

(2001), was used to fit the LD decay curve into the scatterplot

using the LOESS function in R.
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Genome-wide association study

For GWAS, BLUPs across environments were used as

phenotypes. Principal components analysis (PCA) was performed

using TASSEL ver5.2 (Bradbury et al., 2007). The principal

components were used to correct population structure and to

create a two-dimensional plot to enable visualization of the

probable population structure. A mixed linear model (MLM) that

computes both PCs and a kinship matrix (K) was applied for GWAS

to correct for population structure (Yu and Buckler, 2006). The R

package “FarmCPU—Fixed and random model Circulating

Probability Unification” was used for GWAS analysis (Liu et al.,

2016). With the GAPIT package, the “hapmap” format of the

markers was converted to numeric (0, 1, 2) (Wang and Zhang,

2021). The FarmCPU analysis was performed with a maxLoop of

five, where the maxLoop refers to the total number of iterations

used. The p threshold of 0.01 was used in the model for the

first iteration, a quantitative trait nucleotide (QTN) threshold of

0.01 was used in the model from the second iteration, and a

minimum MAF threshold of 0.05 was used in the analyses. To

determine the significance threshold, multiple testing correction

was conducted with the false discovery rate method. The significant

associations were declared when p-values in independent tests were

less than 3 × 10−4 (Cui et al., 2016). All the candidate genes

for GLS and other agronomic traits located within regions from

5 kb upstream to 5 kb downstream associated with significant

QTNs were identified and annotated using the B73 maize reference

genome (B73 RefGen_V2) (Schnable et al., 2009; Slaten et al., 2020).

The candidate gene annotation information was retrieved from the

MaizeGDB database (http://www.maizegdb.org).
Genomic-wide prediction

Genomic prediction model, ridge-regression BLUP (RR-BLUP),

was used to carry out predictions using a fivefold cross-validation

(Zhao et al., 2012). BLUEs across environments were used for the

analysis. A set of high-quality uniformly distributed 4,983 SNPs

with no missing values and MAF > 0.05 was used. We applied a

fivefold cross-validation “within population’ approach, where both

training and estimation sets were derived from within the

association panel. The prediction accuracy was calculated as the

correlation between genomic estimated breeding values (GEBVs)

and the observed phenotypes. A sampling of the training and

validation sets was repeated 100 times for each trait.
Results

Weather and disease incidence across the
trial years

The amount of rainfall received and ambient temperatures at

Kakamega varied during the crop season in all 4 years from 2016 to
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2019 (Figure 1). The Kakamega region, as expected, consistently

experienced high rainfall during the months of April and May,

followed by a decline in precipitation during the subsequent

months. However, compared to all the other three years, high

rainfall and lower temperatures were observed in the months of

April and May in 2018. Individual year analyses of experiments

revealed significant genotypic variances (Supplementary Table S2,

Supplementary Figure S1) and moderate to high repeatability for all

the traits in all 4 years except for GLS1 (77 DAP) in 2017

(Supplementary Table S2). The performance of lines against GLS

disease severity showed a similar distribution in the years 2016 and

2019, whereas the year 2017 was more divergent (Supplementary

Figure S1). The correlation between years was positive and

significant for GLS disease severity and AUDPC values

(Supplementary Table S3), which supports combined analyses of

the data across years.
Analysis of variance and heritability

The frequency distribution of GLS disease severity and other

agronomic traits showed normal distribution (Figure 2). ANOVA

across years revealed there were significant variances for genotypic

and genotype x environment (GXE) interactions (P < 0.05) for GLS

disease severity scores and agronomic traits (Table 1). The broad-

sense heritability estimate for GLS1 (77 DAP) was high (H2 = 0.85)

compared to the GLS2 (105 DAP) score (H2 = 0.57). Broad-sense

heritability for agronomic traits was high for AD, SD, and PH, but
Frontiers in Plant Science 06
moderate for EH and ASI. Three susceptible checks, namely

CKL150122, CKL150079, and CKL150132 had disease severity

scores of >7.3 on a 1–9 scale for GLS2. This high disease severity

score on susceptible checks indicates good disease expression in the

field (Table 2; Supplementary Table S4). The first GLS severity score

[GLS1 (77 DAP)] varied from 1.9 to 7.0 with a mean of 4.5, while

the second score [GLS2 (105 DAP)] varied from 2.5 to 7.6 with an

average score of 5.7. The AUDPC ranged from 34.9 to 99.8 with a

mean of 71.95. The mean performance of the lines for AD, SD, and

ASI was 80, 80.4, and 0.44 days, respectively, and for PH and EH,

they were 129.2 and 61.4 cm, respectively (Table 1; Figure 2).

In scoring disease severity on a 1–9 scale, scores with <4 are

considered as resistant, 4–5 are moderately resistant, 5–7 are

moderately susceptible, and 7–9 as completely susceptible

genotypes. Among 427 lines evaluated, 125, 178, 124, and 1 line

were resistant, moderately resistant, moderately susceptible, and

susceptible, respectively, for GLS1 (77 DAP) disease severity score

(Figure 3). For GLS2 (105 DAP), 14 lines were resistant while 69,

315, and 30 lines fell into moderately resistant, moderately

susceptible, and susceptible categories (Figure 3). The 14 GLS-

resistant lines also showed a wide range of diversity in their

performance for agronomic traits (Table 2). The lines CML536

and CKL14501 were not only resistant to GLS but also known to be

resistant to TLB (data not shown). Whereas CML566 is also known

to be tolerant to drought and CML572 is tolerant to MLN. The

results of the correlation analysis between the eight traits including

GLS disease severity traits for the maize inbred lines are shown in

Figure 4. GLS disease severity for both GLS1 (77 DAP) and GLS2
FIGURE 2

Frequency distribution of GLS disease severity and other agronomic traits. GLS1 and GLS2 = gray leaf spot disease severity data recorded at 77 and
105 days after planting, respectively.
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(105 DAP) were significantly and negatively correlated with AD,

SD, PH, and EH; however, the magnitude of correlation values was

higher at the early stage of the disease severity. AUDPC values were

also consistently significant and negatively correlated with AD, SD,

PH, and EH. The correlation between GLS traits and ASI was

non-significant. The correlation between flowering traits and PH

was not significant, whereas EH was positive and significant.
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Marker distribution, population structure,
phylogenetic tree, and kinship

From 33,740 DART-GBS SNPs used, only 56% (19,091 SNPs)

were retained after filtering with the twin criteria of >5% MAF and

<10% missing per marker. The number of markers remained

ranged from 1,341 on chromosome 10 to 2,876 on chromosome
TABLE 2 Disease severity scores for the best 14 lines and three susceptible checks to GLS and agronomic traits across 4 years (2016–2019).

Genotype
GLS1

(1–9 scale)
GLS2

(1–9 scale)
AUDPC

AD
(days)

SD
(days)

ASI
(days)

PH
(cm)

EH
(cm)

CKDHL142989 2.5 2.6 34.9 84.0 83.4 −0.8 144.6 76.7

CKL14500 2.1 2.9 35.5 86.8 89.0 2.3 125.9 61.6

CML559 2.1 3.0 38.4 79.7 79.8 0.2 153.4 83.2

CML566 3.0 3.1 48.8 83.5 83.1 −0.2 144.6 67.7

CKL14501 3.2 3.2 45.5 85.0 85.0 −0.1 128.2 63.2

((BRAZIL1546) DH4/CML395)-B-1-2-1 2.8 3.4 49.9 90.5 91.9 1.4 126.8 71.2

CKL155 2.6 3.5 44.6 85.2 84.4 −0.7 145.3 67.8

CKDHL120423 3.0 3.6 43.2 83.0 81.8 −2.2 145.8 73.1

CKLMARS1C3S50196 3.4 3.7 49.4 79.5 81.5 2.1 125.7 61.0

CML540 3.4 3.7 49.7 75.5 75.5 0.1 137.3 49.2

CML536 3.2 3.8 59.9 85.5 85.9 1.0 136.8 61.7

CML574 2.3 3.9 45.5 83.4 82.6 −1.1 138.7 64.9

CKL14529 3.9 4.7 45.3 84.5 82.8 −1.5 142.3 68.1

CML172 4.0 4.8 45.1 74.5 78.0 3.6 118.0 53.1

CKL150079 (Suc. Check) 6.5 7.4 94.8 77.7 79.6 2.0 136.4 63.5

CKL150122 (Suc. Check) 6.2 7.4 90.0 78.2 79.9 2.8 123.7 51.3

CKL150132 (Suc. Check) 5.7 7.4 83.9 78.9 79.0 0.3 131.8 63.0

Mean 4.5 5.7 72.3 79.9 80.4 0.42 129.8 61.9

SE 0.05 0.04 0.56 0.17 0.19 0.10 0.75 0.49

LSD5% 1.50 1.29 17.78 4.72 5.02 2.20 20.41 13.42

CV (%) 16.92 11.49 12.52 3.00 3.18 66.17 8.00 11.04
fro
GLS1 and GLS2 correspond to disease severity data collected for GLS at 77 and 105 days after planting, respectively; AUDPC, area under disease progress curve; AD, anthesis date; SD, silking
date; ASI, anthesis silking interval; PH, plant height; EH, ear height; SE, standard error; LSD, least significant difference; CV, coefficient of variation.
TABLE 1 Estimation of variance components for GLS disease severity, AUDPC, and agronomic traits evaluated across 4 years (2016–2019) under
artificial inoculation.

Genotype GLS1 (1–9 scale) GLS2 (1–9 scale) AUDPC AD (days) SD (days) ASI (days) PH (cm) EH (cm)

Mean 4.49 5.67 71.95 79.97 80.44 0.44 129.24 61.40

s2G 1.77** 0.40** 72.03** 8.53** 9.80** 0.88** 110.33** 40.18**

s2GxE 0.40** 0.60** 101.64** 2.26** 2.01** 1.25* 42.81** 31.14**

s2e 1.13 1.25 185.92 8.18 8.61 4.90 278.57 126.35

H2 0.85 0.57 0.60 0.84 0.86 0.49 0.71 0.63
*, ** significance at p = 0.05 and 0.01 level, respectively. GLS1, GLS2, correspond to disease severity data collected at 77 and 105 days after planting, respectively; AUDPC, area under disease
progress curve; AD, anthesis date; SD, silking date; ASI, anthesis silking interval; PH, plant height; EH, ear height.
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1. For the final set of markers, the minimum MAF ranged between

0.05 and 0.50. The percentage of missing markers per individual

varied from 0 to 10% and the overall average was 4.6%. The

proportion of heterozygosity of SNPs (number of taxa that are

heterozygous for a given SNP divided by the total number of

individuals) ranged from 0 to 0.70, with an overall average of

0.03. The heterozygosity of inbred lines (number of heterozygous

markers per inbred line divided by the total number of

markers) ranged from 0.008 to 0.27 with an overall average of

0.09. The final set of 19,091 high-quality SNP markers distribution

was graphically presented in Supplementary Figure S2. The

relatedness among the inbred lines used for GWAS analyses was

shown with the kinship matrix (Supplementary Figure S3). The

population structure of 140 diverse maize lines was determined by

Bayesian based model in STRUCTURE and PCA (Figure 5). The

optimum number of K was obtained by plotting the number of

clusters (K) against delta K which revealed delta K probability value

with two and five clusters based on the highest Ln P(D) values

(Figure 4A). Evanno table was constructed in the structure

harvester with the highest values of 13714.1.45 Ln P(K), 127.46

standard deviations ln P(K), and 107.61 delta K. Delta K

value-based line plot had suggested that the population could be

structured into two and/or five groups (Figures 5B, C). The

population structure was also examined by PCA which grouped

all lines into two broader groups (Figure 5D). An optimal number

(K) of three PCs was retained for GWAS.

The neighbor-joining method-based phylogenetic tree shown in

Figure 6A revealed that the 140 diverse maize lines can be clustered

into three main groups (I = 40, II = 56, and III = 44) differentiated

by the different colors (Figure 6A, Supplementary Table S5). Groups

I and II can also be treated as one large cluster with two sub-groups.

The genome-wide LD was plotted as LD (r2) between adjacent pairs

of markers versus the distance between adjacent markers in Kb

(Figure 6B). The average genome-wide LD-decay in this set of lines
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is 1.44 Kb at r2 = 0.2. LD plots for each chromosome revealed the

fastest LD-decay in chromosome 7 (0.47 Kb at r2 = 0.2) and

chromosome 1 displayed the slowest LD-decay (4.75 Kb at r2 = 0.2).

GWAS analyses revealed 69 significant SNPs for eight traits and

these results for all traits are summarized using Manhattan plots

(Figure 7; Tables 3, 4) and QQ plots (Supplementary Figure S4).

The Q–Q plot of the FarmCPU model showed a sharp deviation

from the expected P value distribution in the tail area, indicating

that false positives and negatives were adequately controlled

(Supplementary Figure S4). Association analyses for GLS disease

severity for GLS1 (77 DAP) revealed nine significant SNPs

(Table 3). The allelic effect (difference in mean performance for

GLS disease severity between inbred lines with major allele and

minor allele) for these significant SNPs ranged from 0.45 to 0.39,

−0.70 to 0.70, and −3.67 to 5.59 for GLS1 (77 DAP), GLS2 (105

DAP), and AUDPC, respectively under artificial inoculation of GLS.

A negative value indicates that the minor allele was the favorable

allele associated with increase in GLS resistance by decreasing the

GLS severity. For GLS2 (105 DAP), that is, GLS disease severity at a

late stage, four significant SNPs were detected. For AUDPC, 11

significant SNPs were identified. The significant SNPs for GLS

disease severity were found on all chromosomes with the most

significant one being located on chromosome 3 (p = 1.37 × 10−8).

Information on all the significant SNPs, their corresponding MAF,

and allelic effects are listed in Table 3.

For AD, a total of 13 significant SNPs were detected on

chromosomes 3, 5, 6, 7, 8, and 9. One SNP on chromosome 5

(DT5_80046482; p = 5.09 × 10−06) was common between AD and

GLS disease severity at a late stage. The allelic effect for these

significant SNPs for AD ranged from −2.45 to 1.21. The largest

number of significant SNPs as well as the most significant SNPs in

the current GWAS study was identified for SD followed by AD. For

SD, 14 significant SNPs distributed across all chromosomes except

on chromosome 10 were identified. The SNP on chromosome 5 was
FIGURE 3

Frequency of the inbred lines with resistant (R), moderately resistant (MR), moderately susceptible (MS), and susceptible (S) reactions to GLS scouted
at 77 (GLS1) and 105 (GLS2) days after planting.
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FIGURE 5

The two and five sub-populations of the 140 inbred lines by using DART SNP markers. (A) Best delta K estimation by Evanno method. (B) Estimated
population structure of tropical maize inbred lines as revealed by DART SNP markers for K = 2 and (C) for K = 5. Blue, green, pink, red, and yellow
color represents sub-population 1, 2, 3, 4, and 5, respectively. Distribution of inbred lines based on the first three principal components (D).
FIGURE 4

Pearson’s correlation between GLS traits and other agronomic traits evaluated in four environments under artificial infestation of GLS. The
correlation level is color-coded according to the color key scale plotted below. Correlations with >0.11 were significant at 0.05 (p) level, GLS1, GLS2,
correspond to disease severity data collected for GLS at 77 and 105 days after planting, respectively; AUDPC, area under disease progress curve; AD,
anthesis date; SD, silking date; ASI, anthesis silking interval; PH, plant height; EH, ear height.
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the most significant in the current study (p = 5.50 × 10−11). Two

SNPs on chromosome 3 (DT3_1469626 for SD and DT3_1407684

for AD) and another two SNPs on chromosome 9 (DT9_76308336

for SD and DT9_76104516 for AD) were located closely in the

region (Table 4). The allelic effect for these significant SNPs for SD

ranged from −1.89 to 1.65.

PH and EH are highly correlated agronomic traits in maize.

There were 11 significant SNPs associated with PH distributed on

chromosomes 2, 6, 8, and 10 whereas there were six significant

SNPs detected for EH that were found on chromosomes 5, 7, 9, and

10. Three SNPs on chromosome 10 (DT10_101212965,

DT10_101212899, and DT10_101213049) were common between

PH and EH. The allelic effect of significant SNPs for PH ranged

from −12.44 to 11.87, for EH, the range varied from −7.02 to

7.18 (Table 4).

Candidate genes analysis was conducted for significant QTNs

identified in this study. A total of 20 candidate genes were

discovered and annotated, among them 3 and 4 candidate genes

were identified for GLS1 (77 DAP) and AUDPC values, respectively

(Table 4). One candidate gene, Zm00001d015224 is closely

associated with both GLS2 (105 DAP) and AD (Table 5). Nine

candidate genes potentially associated with flowering traits (AD and

SD). Similarly, three and one candidate genes were found to be

associated with PH and EH, respectively.

In most large advanced maize breeding programs, GS is

routinely applied. Among the several GS models, G-BLUP and

RR-BLUP are computationally less intensive and able to capture

both major and minor effect trait variations, so they are well suited

for routine application in breeding trials. Therefore, we used the

RR-BLUP model to estimate the prediction accuracies in the panel

for GLS and other agronomic traits. Prediction accuracies were

moderate to high for all eight traits (Figure 8). The observed

prediction accuracies for GLS1 (77 DAP), GLS2 (105 DAP),

AUDPC value, AD, SD, ASI, PH, and EH were 0.62, 0.47, 0.50,

0.65, 0.61, 0.31, 0.34, and 0.36, respectively.
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Discussion

GLS is one of the serious foliar diseases in maize (Kibe et al.,

2020a; Omondi et al., 2023) and is caused by Cercospora zeae-

maydis and C. zeina, in Africa C. zeina is more prevalent (Crous

et al., 2006; Meisel et al., 2009; Liu and Xu, 2013). With the

changing climate and increase in cropping the same crop over a

larger area, GLS becomes a serious threat to maize production,

particularly in smallholder farmers of SSA. To understand the

genetics of GLS resistance, in this study, we selected a set of 427

elite lines from tropical and sub-tropical breeding pipelines adapted

to eastern and southern Africa and screened them over 4 years in

Kakamega under artificial inoculation of C. zeina.

Among the 427 lines screened for GLS, 14 were identified as

resistant lines with a score of <4 on a 1–9 scale (Table 2). These lines

represent both the intermediate and late maturity groups, which

occupies the major market share in eastern and southern Africa.

Among the 14 lines, CKDHL142989 was the best-performing line

with a disease severity score of 2.6, followed by CKL14500, which

showed a score of 2.9, which is promising to be used as a donor line

in GLS resistance breeding. Interestingly, these lines are also

tolerant to TLB, which makes them multiple disease-resistant

lines. Among the selected 14 lines, CML536, CKDHL120423,

CKL14500, CKL14529, and CML540 also showed resistance to

TLB (data not shown), suggesting the possibility of using them as

donors for resistance to both diseases. CML 536 is also known to be

tolerant to drought and low soil nitrogen stress. CML 540 is

resistant to MSV, TLB, common rust, early maturing, and

tolerance to drought, which provide additional benefits to use

these as elite lines in breeding programs. Furthermore, some of

these lines may be useful as parents in abiotic stress-tolerant

hybrids. For example, line CKL14500, known for GLS resistance,

also carries favorable alleles for drought tolerance; it is evident as it

derived from two known drought-tolerant lines (CML444 and

CML395). The single cross tester (CML444 x CML395) is
FIGURE 6

Grouping of 140 inbred lines through phylogenetic tree based on neighbor-joining method (A) and linkage disequilibrium (LD) plot (B) illustrating
the average chromosome-wise and genome-wide LD decay in 140 inbred lines panel using SNPs with call rate 0.9 and minor allele frequency 0.1.
The values on the Y-axis represent the squared correlation coefficient r2 and the X-axis represents the genetic distance in kilobases (Kb).
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frequently used as one of the parents for many commercially

released drought-tolerant hybrids. Although line CKL14500 has

some good trait combinations, it may not be a suitable parent in bi-

parental crosses because of its susceptibility to common rust

(Sserumaga et al., 2020). Another good line for GLS resistance

(CML559) was derived from source germplasm Population 500

(P500), which is resistant to common rust, MSV, and stem borers as

well as tolerant to TLB. Another line, CML566 is tolerant to drought

with moderate resistance to TLB and MSV. CML574 is a yellow line

and is tolerant to MLN, tar spot complex, and fall armyworm and

can be used as a donor for multiple diseases and pests. Overall, the

identified GLS-resistant lines not only contribute to disease

resistance but also carry useful alleles for several economically

important traits, including drought tolerance, which makes them

multi-trait elite donors.

GLS resistance breeding is influenced by several factors,

including genotype, environment, and their interactions. Across

environment, analyses revealed significant genotypic and genotype

x environment interaction effects for GLS disease severity and

AUDPC values (Table 1). The magnitude of variance components
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for genotype x environment interaction variance was approximately

1.5 times of genotypic variance which indicates the role of both

additive and non-additive effects. On the contrary, the magnitude of

genotypic variance is more than twice that of genotype x

environment interaction variance for flowering time traits like

AD and SD, and for PH and EH suggesting the major role of

additive effects over non-additive effects. A high magnitude of

genotype x environment interaction effect was also observed in an

earlier study with the IMAS association panel (Kibe et al., 2020a).

The heritability estimates for these traits are also on similar

expectations with moderate heritability for GLS disease traits and

high heritability for flowering traits. Kibe et al. (2020a) also reported

moderate heritability for GLS disease severity traits in biparental

populations. GLS disease severity and AUDPC values are negatively

and significantly correlated with AD, SD, PH, and EH (Figure 3).

This indicates the selection of lines with early flowering and low to

medium height has better resistance to GLS over lines with tall and

late flowering plants. These correlations are consistent with earlier

studies in association panels evaluated in SSA (Kibe et al., 2020a;

Omondi et al., 2023).
FIGURE 7

Farm CPU Manhattan plots of GWAS on GLS disease severity and other agronomic traits measured under GLS artificial inoculation. The X-axis shows
the SNP position on the chromosome and Y-axis shows the negative log base 10 of the P-values; for ease of discrimination, each chromosome was
colored differently. The horizontal line portrays the significance threshold (marker P-value < 3 × 10−4). GLS1, gray leaf spot disease severity data
scored 77 days after planting; GLS2, gray leaf spot disease severity data scored 105 days after planting; AUDPC, area under disease progress curve;
AD, anthesis date; SD, silking date; ASI, anthesis silking interval; PH, plant height; EH, ear height.
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GWAS results are influenced by population structure, as it

influences marker-trait associations, including the false positives in

an association mapping panel. We observed low to moderate

population structure with PC1 and PC2 explaining 6.53% and

5.56% of variation, respectively. The association panel lines are

broadly grouped into two clusters. This was also supported by

phylogenetic tree grouping, though three groups were formed, a

closer look shows groups 1 and 2 form one major cluster

(Figure 6A). Similar findings were also observed by Kibe et al.

(2020a) in an association panel and Zhao et al. (2012) in a large set

of DH lines which comprised tropical and subtropical lines. Further

to understand the structure of the panel used in this study,

STRUCTURE software was used, where the ad hoc statistics DK
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were used to determine the optimum number of subgroups based

on the output log likelihood of data [LnP (D)]. The peaks of the line

plot (Figure 5A) suggest that the GWAS panel could be broadly

divided into two groups or five subgroups. The kinship matrix also

suggests moderate structure among the lines used for GWAS

(Supplementary Figure S3). The moderate structure observed in

the panel with no clear differentiation of major adaptation groups is

in anticipation of earlier studies where CIMMYT maize germplasm

was not found to have a strong population structure (Wu et al.,

2016; Rashid et al., 2020). Several researchers have also reported

moderate structure in the tropical maize germplasm (Kibe et al.,

2020a; Nyaga et al., 2020; Sadessa et al., 2022). CIMMYT’s

germplasm pools and populations are known for high genetic
TABLE 3 List of significant SNPs associated with GLS disease severity traits evaluated in four environments under artificial inoculation of
Cercospora zeina.

SNP Chr Position (bp) Bin name MLM-P value MAF Effect

Gray leaf spot 1

DT2_153752700 2 153752700 2.06 1.78 × 10−5 0.33 −0.24

DT3_18370709 3 18370709 3.04 1.37 × 10−8 0.29 −0.35

DT3_129473727 3 129473727 3.05 2.77 × 10−4 0.33 0.20

DT4_236484294 4 236484294 4.09 5.49 × 10−7 0.08 −0.45

DT5_77120507 5 77120507 5.03 4.39 × 10−6 0.39 −0.27

DT9_45478343 9 45478343 9.03 1.67 × 10−4 0.24 0.14

DT9_131016039 9 131016039 9.05 9.52 × 10−6 0.50 −0.20

DT10_9375453 10 9375453 10.02 1.47 × 10−5 0.46 0.20

DT10_124625318 10 124625318 10.04 6.96 × 10−7 0.08 0.39

Gray leaf spot 2

DT3_8260307 3 8260307 3.03 8.30 × 10−5 0.10 0.70

DT5_80046482 5 80046482 5.03 2.04 × 10−4 0.30 −0.70

DT6_118742764 6 118742764 6.04 1.50 × 10−4 0.32 0.40

DT10_7310310 10 7310310 10.02 2.13 × 10−4 0.24 −0.45

AUDPC value

DT1_209722581 1 209722581 1.07 2.18 × 10−4 0.36 −2.32

DT1_257413254 1 257413254 1.09 4.11 × 10−5 0.12 5.01

DT2_55324276 2 55324276 2.04 1.41 × 10−4 0.31 −2.93

DT3_226339092 3 226339092 3.09 8.44 × 10−7 0.44 −3.67

DT5_24851058 5 24851058 5.03 1.43 × 10−5 0.15 5.59

DT6_1389517 6 1389517 6.00 1.47 × 10−5 0.22 −3.46

DT6_91304345 6 91304345 6.02 1.32 × 10−4 0.25 −2.81

DT6_165363652 6 165363652 6.08 2.06 × 10−4 0.12 3.44

DT7_100370211 7 100370211 7.02 4.39 × 10−5 0.42 −2.57

DT8_15011837 8 15011837 8.02 9.07 × 10−6 0.23 3.83

DT9_138867161 9 138867161 9.05 1.24 × 10−5 0.50 −2.83
MAF, Minor Allele Frequency, effect- Allele Effect, MLM P-value- probability value for the mixed linear model, GLS disease severity, and AUDPC- area under disease progress curve values under
artificial inoculation of GLS conditions; Position - The physical position of the SNP (Ref Gen_v3 of B73).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1536981
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Suresh et al. 10.3389/fpls.2025.1536981
TABLE 4 List of significant SNPs associated with agronomic traits evaluated in four environments under artificial inoculation of Cercospora zeina.

SNP Chr Position (bp) Bin name MLM-P value MAF Effect

Anthesis date

DT3_1407684 3 1407684 3.01 2.03 × 10−6 0.34 −0.72

DT3_28537024 3 28537024 3.04 1.25 × 10−4 0.05 −1.51

DT3_159134665 3 159134665 3.05 1.33 × 10−4 0.06 −1.25

DT3_173798390 3 173798390 3.06 2.39 × 10−5 0.35 −0.74

DT5_4115653 5 4115653 5.01 2.18 × 10−6 0.15 1.04

DT5_80046482 5 80046482 5.03 5.09 × 10−6 0.30 1.21

DT5_190321766 5 190321766 5.05 1.18 × 10−5 0.35 −0.70

DT6_114255122 6 114255122 6.04 7.73 × 10−9 0.21 1.18

DT6_146530203 6 146530203 6.05 1.68 × 10−5 0.30 0.71

DT7_168724486 7 168724486 7.05 2.92 × 10−8 0.35 −1.00

DT8_148947397 8 148947397 8.06 1.14 × 10−8 0.11 −1.43

DT9_76104516 9 76104516 9.03 1.16 × 10−10 0.06 −2.45

DT9_116598435 9 116598435 9.04 1.88 × 10−4 0.42 0.64

Silking date

DT1_36755457 1 36755457 1.03 9.22 × 10−5 0.16 −0.76

DT1_160031116 1 160031116 1.05 3.41 × 10−5 0.29 −0.76

DT1_196931772 1 196931772 1.06 2.47 × 10−5 0.22 −0.84

DT2_215851764 2 215851764 2.08 2.22 × 10−6 0.07 −1.31

DT3_1469626 3 1469626 3.01 6.50 × 10−5 0.50 0.61

DT3_9577871 3 9577871 3.03 8.45 × 10−7 0.44 −0.82

DT3_132334454 3 132334454 3.05 3.16 × 10−6 0.07 −1.38

DT4_208901175 4 208901175 4.09 1.29 × 10−4 0.06 −1.22

DT5_217466828 5 217466828 5.09 5.50 × 10−11 0.16 −1.47

DT6_85907826 6 85907826 6.01 6.26 × 10−5 0.06 1.65

DT7_54538519 7 54538519 7.02 2.60 × 10−5 0.49 −0.61

DT7_174089319 7 174089319 7.05 1.95 × 10−4 0.13 −0.78

DT8_63984569 8 63984569 8.03 3.34 × 10−5 0.15 −0.93

DT9_76308336 9 76308336 9.03 4.59 × 10−6 0.08 −1.89

Anthesis-Silking interval

DT5_216421061 5 216421061 5.09 2.09 × 10−4 0.21 0.71

DT7_7541489 7 7541489 7.01 3.02 × 10−4 0.05 1.18

Plant height

DT2_11667280 2 11667280 2.02 1.28 × 10−4 0.14 7.93

DT2_27642609 2 27642609 2.03 1.45 × 10−4 0.39 5.16

DT2_27774525 2 27774525 2.03 1.40 × 10−4 0.41 5.11

DT6_168920192 6 168920192 6.08 3.31 × 10−5 0.06 −12.44

DT8_122249319 8 122249319 8.04 1.69 × 10−4 0.09 −8.72

(Continued)
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diversity and serve as the source of germplasm for many

breeding lines in the tropical and subtropical regions (George

et al., 2004; Warburton et al., 2005). This is one of the possible

reasons we did not observe any well-defined population structure in

this study.

The rate of LD decay indicates the presence of diversity in the

selected germplasm or panels. Fast LD decay suggests higher

diversity at the nucleotide base level, which might have resulted

from the historic recombination events. In temperate maize

germplasm, LD decay distance (10–100 kb) is several times higher

than that of tropical maize germplasm (5–10 kb, Lu et al., 2011).

Romay et al. (2013) found that LD decays much more rapidly in the

tropical germplasm to about 1 kb at r2 = 0.2. A rapid LD decay was

observed in each chromosome and across the genome in the panel

(1.44 Kb at r2 = 0.2). The LD decay observed in this study

corroborates earlier studies (Rashid et al., 2020; Kibe et al.,

2020a), which suggests the presence of sufficient diversity in the

selected set of lines for GWAS.

GWAS revealed 13 markers significantly associated with GLS

disease severity and 11 markers with AUDPC value (Table 3).

Interestingly, though GLS disease severity was positively and

significantly correlated with AUDPC values, no common SNPs

were detected across GLS traits in GWAS analyses. Nevertheless,

there are few regions overlapped in terms of their bin locations

(Table 3). Many studies reported QTLs for GLS resistance are

distributed in all 10 chromosomes, where most of them explained

small to moderate effects, except for a very few that had a major

effect of >10% and were used for further fine mapping studies (Du

et al., 2020; Zhu et al., 2021; Kibe et al., 2020a; Omondi et al., 2023).

For three foliar diseases including, GLS, TLB, and SLB revealed 147

multiple disease resistance mQTLs through meta-QTL analyses and
Frontiers in Plant Science 14
identified bins 3.04–08, 5.04–07, and 8.05–06 as significant regions

for resistance to these diseases (Ali et al., 2013). Summarizing the

earlier QTL studies revealed five major clusters or hot spots for GLS

resistance, namely in chromosome 1 at bin’s 1.05–1.06 (Saghai

Maroof et al., 1996; Lehmensiek et al., 2001; Balint-Kurti et al., 2008;

Pozar et al., 2009; Xu et al., 2014), on chromosome 2 at bin’s 2.03–

2.05 (Bubeck et al., 1993; Saghai Maroof et al., 1996; Zwonitzer et al.,

2010; Zhang et al., 2012; Lennon et al., 2016), in chromosome 4 at

bin’s 4.05–4.08 (Bubeck et al., 1993; Saghai Maroof et al., 1996;

Clements et al., 2000; Balint-Kurti et al., 2008; Zwonitzer et al.,

2010; Zhang et al., 2012; Benson et al., 2015; Lennon et al., 2016), in

chromosome 5 at bin’s 5.03–5.06 (Bubeck et al., 1993; Clements

et al., 2000; Lehmensiek et al., 2001; Zhang et al., 2012; Lennon

et al., 2016) and in chromosome 7 at bin’s 7.02–7.03 (Bubeck et al.,

1993; Pozar et al., 2009; Zwonitzer et al., 2010; Berger et al., 2014;

Benson et al., 2015; Mammadov et al., 2015). Comparison of these

hot spots with our results revealed two markers on chromosome 2

(DT2_55324276; DT2_153752700), three markers on chromosome

5 (DT5_77120507; DT5_80046482; DT5_24851058), one marker on

chromosome 7 (DT7_100370211) were co-located within these

regions. This supports the earlier findings and indicates their

consistent association with GLS resistance in different genetic

backgrounds. These regions are of potential interest to identify

possible potential candidate genes and use them to improve

GLS resistance.

The other SNPs, though not fallen into these hotspot regions,

are overlapped with a few reported QTLs from other studies (Du

et al., 2020; Kibe et al., 2020a; Chen et al., 2021; Qiu et al., 2021; Zhu

et al., 2021). For instance, the most significant SNP associated with

GLS disease severity in this study was DT3_18370709 at the physical

position 18.37 Mb on chromosome 3 (P = 1.37 × 10−8) was
TABLE 4 Continued

SNP Chr Position (bp) Bin name MLM-P value MAF Effect

Plant height

DT8_138595600 8 138595600 8.05 2.14 × 10−4 0.18 −6.60

DT10_56267943 10 56267943 10.03 6.73 × 10−5 0.05 11.87

DT10_101212899 10 101212899 10.04 8.59 × 10−5 0.05 −11.54

DT10_101212965 10 101212965 10.04 7.99 × 10−5 0.06 10.78

DT10_101213049 10 101213049 10.04 1.97 × 10−5 0.07 10.99

DT10_124620967 10 124620967 10.04 1.99 × 10−4 0.10 −8.19

Ear height

DT5_215513759 5 215513759 5.08 3.32 × 10−5 0.12 −5.54

DT7_5660772 7 5660772 7.01 1.61 × 10−4 0.14 4.76

DT9_127735255 9 127735255 9.05 6.61 × 10−5 0.21 4.21

DT10_101212899 10 101212899 10.04 2.20 × 10−4 0.05 −7.02

DT10_101212965 10 101212965 10.04 4.18 × 10−5 0.06 7.18

DT10_101213049 10 101213049 10.04 7.69 × 10−5 0.07 6.60
MAF, minor allele frequency, effect = allele effect; MLM P-value = probability value for the mixed linear model; GLS, disease severity, and AUDPC, area under disease progress curve values under
artificial inoculation of GLS conditions; position = the physical position of the SNP (Ref Gen_v3 of B73).
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overlapped with “consensus QTL” on bin 3.04 in the IBM2005 map

(Shi et al., 2007), and the QTL (qYCM-DS3-1) reported in the RIL

population (Chen et al., 2021). Another SNP (DT3_129473727) at

bin 3.04 is overlapped with an earlier reported SNP through GWAS

(Kuki et al., 2018) and QTL mapping (Du et al., 2020). All three

SNPs detected in this study were also overlapped with an earlier

study by (Kibe et al., 2020) in the GWAS panel and biparental

populations. The remaining markers, especially on chromosomes 9

and 10, appeared to be specific for the current study and new

additional sources for GLS resistance.

Flowering traits, both AD and SD, also play crucial roles in

selecting GLS resistance. SNP (DT5_80046482) at chromosome 5 is

significantly associated with AD and also showed a strong

association with GLS disease severity (Tables 3, 4). Further, we

also observed eight bins, namely, bins 3.03, 3.04, 3.05, 4.09, 5.03,

6.04, 7.02, and 9.03 shared SNPs for both GLS disease severity and

flowering time traits (Tables 3, 4). Other agronomic traits like PH

and EH are also significantly and negatively correlated with GLS

resistance. A comparison of markers detected for GLS disease

severity and PH and EH revealed three bins, bins 6.08, 9.05, and
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10.04 shared the markers. These findings suggest strong linkage or

clustering of markers in certain regions of the genome and selecting

early flowering time, and medium height also indirectly helps in

improving GLS resistance.

Among the eight candidate genes identified in this study for

GLS resistance, one on chromosome 5 (Zm00001d015224) associate

with both GLS and AD encodes for Salicylate/benzoate carboxyl

methyltransferase (Table 5). Salicylate carboxyl methyltransferase

responsible for formation of methyl salicylate which plays

important role in signaling for local defense and systemic

acquired resistance of plants against pathogens invasion (Koo

et al., 2007). Another candidate gene associated with AUDPC

value on chromosome 5 (Zm00001d013920) encodes for

Phosphatidylinositol 4-phosphate 5-kinase which plays a role in

plant defense and cellular function (Zarreen et al., 2023). Another

candidate gene encodes for receptor homology region

transmembrane domain- and RING domain-containing protein

involved in transport of storage proteins to protein storage

vacuoles. Overall, the identified candidate genes in this study are

involved in plant defense and development.
TABLE 5 Candidate genes for GLS disease severity traits and other agronomic traits under artificial inoculation of GLS conditions.

Trait SNP Chr Position (bp) Gene_name Annotation

GLS1 (77 DAP) DT4_236484294 4 236484294 Zm00001d053613 RNA-binding (RRM/RBD/RNP motifs) family protein

GLS1 (77 DAP) DT9_45478343 9 45478343 Zm00001d045883 ADP/ATP carrier protein 1 mitochondrial

GLS1 (77 DAP) DT10_9375453 10 9375453 Zm00001d023539 protein_coding

GLS2 (105 DAP) DT5_80046482 5 80046482 Zm00001d015224 Salicylate/benzoate carboxyl methyltransferase

AUDPC DT5_24851058 5 24851058 Zm00001d013920 Phosphatidylinositol 4-phosphate 5-kinase 9

AUDPC DT6_1389517 6 1389517 Zm00001d034998
Receptor homology region transmembrane domain- and RING
domain-containing protein 2

AUDPC DT8_15011837 8 15011837 Zm00001d008623 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase PASTICCINO 2

AUDPC DT9_138867161 9 138867161 Zm00001d047673 DUF4378 domain protein

AD DT3_1407684 3 1407684 Zm00001d039305 RNA polymerase I-associated factor PAF67

AD DT5_80046482 5 80046482 Zm00001d015224 Salicylate/benzoate carboxyl methyltransferase

AD DT6_114255122 6 114255122 Zm00001d037159 Os05g0597150 protein

AD DT9_76104516 9 76104516 Zm00001d046243 Putative ferroportin-domain family protein

SD DT1_36755457 1 36755457 Zm00001d028486 Chemocyanin

SD DT1_160031116 1 160031116 Zm00001d030795 Plant calmodulin-binding protein-related

SD DT3_1469626 3 1469626 Zm00001d039313 protein_coding

SD DT6_85907826 6 85907826 Zm00001d036370 protein_coding

SD DT8_63984569 8 63984569 Zm00001d009426 Mov34/MPN/PAD-1 family protein

PH DT2_11667280 2 11667280 Zm00001d002390 DNA ligase 4

PH DT2_27642609 2 27642609 Zm00001d002942 Tubulin-folding cofactor B

PH DT2_27774525 2 27774525 Zm00001d002944
Dolichyl-diphosphooligosaccharide–protein glycosyltransferase
67 kDasubunit

EH DT7_5660772 7 5660772 Zm00001d018802 protein_coding
GLS1 and GLS2 correspond to disease severity data collected for GLS at 77 and 105 days after planting, respectively; AUDPC, area under disease progress curve; AD, anthesis date; SD, silking
date; PH, plant height; EH, ear height.
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GLS resistance-linked QTLs are reported across all

chromosomes. Some of the major effects of QTLs on chromosomes

1, 2, 5, and 8 were also fine-mapped (Liu et al., 2016; Zhang et al.,

2017; Du et al., 2020; Qiu et al., 2021). As the number of QTL needed

to be considered to achieve maximum resistance to GLS increases, it

complicates the success of marker-assisted selection. Unlike GWAS,

which identifies the markers linked to the trait of interest, GS

calculates the estimated breeding values of the trait/s for genotypes

in practical breeding which is used to select superior-performing

candidates. GS has a high predictive power since it uses genome-wide

markers to predict the breeding value of individuals in the testing

population (Meuwissen et al., 2001). The rapid innovation in next-

generation sequencing technology able to produce millions of

markers with reduced cost of genotyping makes GS a critical

method in breeding programs. Currently in maize, GS is used for

complex traits like grain yield and drought tolerance (Zhao et al.,

2012; Beyene et al., 2019, 2021b). Compared to abiotic stress traits

and grain yield, diseases like GLS are relatively less complex,

following this expectation, we observed a high prediction

correlation for GLS disease severity and a moderate correlation for

AUDPC values (Figure 8). These correlations are higher than

observed correlations in IMAS association panel for GLS disease

severity but on par with correlations observed in DH populations

(Kibe et al., 2020a; Omondi et al., 2023). GS on several disease traits

showed promising results with a prediction accuracy of as high as

0.70 for TLB (Technow et al., 2013) 0.86 for MLN (Sitonik et al.,

2019), and moderate accuracy of 0.46 for Fusarium ear rot resistance

(Holland et al., 2020; Kuki et al., 2020) and common rust resistance

(Kibe et al., 2020b; Nyaga, et al., 2020). By using a large, related, and

improved training population, the prediction accuracy could be

greatly elevated as shown for GLS in the previous study, GS

accuracy was low-to-moderate with a range of 0.29–0.56 for GLS

resistance with a small training population, which was elevated to

0.77 when increasing the diversity and size of the training set
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(Kibe et al., 2020). Therefore, complementing GS with phenotypic

selection is promising to achieve high genetic gain for GLS resistance

with optimal resources.
Conclusion

In this study, 427 diverse tropical maize inbred lines were

evaluated in 4 years under artificial inoculation of GLS

(Cercospora zeina) in Kakamega, Kenya. Wide variation was

observed for GLS disease severity and AUDPC values across

years, but significantly and negatively correlated with agronomic

traits such as flowering time and plant height. We identified

fourteen GLS-resistant lines that can be used as either donors or

parents in a resistance hybrid breeding program. In SSA, three-way

cross hybrids are the final commercial products. Therefore, using

lines with moderate resistance to GLS can combine the desirable

alleles from all three parents, which also adds up to higher resistant

hybrids. From 427 lines a set of 140 lines were genotyped with

DART GBS genotyping. Population structure analyses revealed

moderate structure in the panel. GWAS analyses revealed 24

SNPs significantly associated with GLS traits. Most of the

detected SNPs were also co-located with earlier studies for GLS

resistance. This indicates the consistency in the detection of the

markers across genetic backgrounds. GS prediction correlations are

moderate to high, which opens new avenues to improve breeding

for GLS disease resistance with optimum allocation of resources.
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FIGURE 8

Box-whisker plots for the accuracy of genomic predictions assessed by fivefold cross-validation within the association mapping panel. GLS1 = gray
leaf spot disease severity data scored 77 days after planting; GLS2 = gray leaf spot disease severity data scored 105 days after planting; AUDPC, area
under the disease progress curve; AD, days to anthesis; SD, days to silking; PH, plant height; EH, ear height.
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