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Transcriptomic analysis of two
Chinese wheat landraces with
contrasting Fusarium head blight
resistance reveals miRNA-
mediated defense mechanisms
Lijuan Wu1,2, Junqiang Wang1, Shian Shen1, Zaijun Yang3

and Xinkun Hu1*

1Institute of Ecology, China West Normal University, Nanchong, Sichuan, China, 2College of
Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China, 3College of Life Science, China
West Normal University, Nanchong, Sichuan, China
Introduction: Fusarium head blight (FHB), caused primarily by Fusarium

graminearum (Fg), poses a significant threat to wheat production. It is

necessary to deeply understand the molecular mechanisms underlying FHB

resistance in wheat breeding.

Methods: In this study, the transcriptomic responses of two Chinese wheat

landraces—Wuyangmai (WY, resistant) and Chinese Spring (CS, susceptible)—to

F. graminearum infection were examined using RNA sequencing (RNA-seq).

Differential expression of mRNAs, long non-coding RNAs (lncRNAs), circular

RNAs (circRNAs), and microRNAs (miRNAs) was analyzed at 3 and 5 days post-Fg

inoculation (dpi).

Results: The results showed that WY exhibited a targeted miRNA response,

primarily modulating defense-related pathways such as glutathione metabolism

and phenylpropanoid biosynthesis, which are crucial for oxidative stress regulation

and pathogen defense response. In contrast, CS displayed a broader transcriptional

response, largely linked to general metabolic processes rather than immune

activation. Notably, the up-regulation of genes involved in oxidative stress and

immune defense in WY confirmed its enhanced resistance to FHB. The integrated

analysis of miRNA-mRNA interactions highlighted miRNAs as central regulators of

defense mechanisms in WY, particularly at later stages of infection. These miRNAs

targeted genes involved in immune responses, while lncRNAs and circRNAs played

a more limited role in the regulation of defense responses. The GO and KEGG

pathway enrichment analyses further revealed that WY enriched for plant-

pathogen interaction and secondary metabolite biosynthesis pathways, which

are crucial for pathogen resistance. In contrast, CS prioritized metabolic

homeostasis, suggesting a less effective defense strategy.
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Discussion: Overall, this study underscores the critical role of miRNA-mediated

regulation in FHB resistance in WY. These insights into miRNA-mediated

regulatory mechanisms provide a molecular basis for breeding FHB-resistant

wheat varieties and highlight miRNA-mRNA interactions as promising targets for

enhancing disease resilience.
KEYWORDS

Sichuan wheat landraces, Fusarium head blight, lncRNAs, circRNAs, miRNAs,
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1 Introduction

As one of the vital food crops, wheat (Triticum aestivum L.)

supplies approximately 20% of the caloric intake for the global

population (Ma et al., 2020). Wheat Fusarium head blight (FHB),

destructive fungal disease primarily caused by F. graminearum (Fg),

leads to a significant yield losses and quality deteriorates during

epidemic years (Zhu et al., 2019). Additionally, FHB contaminates

grain with harmful mycotoxins, including nivalenol and deoxynivalenol

(DON), which seriously endanger the health of humans and livestock

(Chen et al., 2019; Hu et al., 2023). Recent climate changes and wheat

farming practices have increased the frequency and severity of FHB

outbreaks (Ma et al., 2020). Identification and utilization of resistant

germplasms in breeding programs are one of the most sustainable and

economical approach to manage FHB.

FHB resistance is a complex quantitative trait governed by

multiple genes and influenced by genotype-environment

interactions (Zhang et al., 2021). Approximately 500 quantitative

trait loci (QTLs) related to FHB resistance were identified from

wheat and its relatives, and distributed across all 21 wheat

chromosomes (Buerstmayr et al., 2009, Buerstmayr et al., 2020).

However, most of these QTLs have minor effects and limited

breeding value in addition to seven widely recognized major

resistance genes (Fhb1 to Fhb7). Recently, two additional major

QTLs, Fhb8 and Fhb9, were identified and associated with specific

resistance types (Wang et al., 2024a; Zhang et al., 2024).

Despite these advances, only Fhb1 and Fhb7 have been cloned

using map-based techniques and have shown significant resistance.

Fhb1 confers resistance through a histidine-rich calcium-binding

protein (His or TaHRC), while the exact mechanism remains

unclear (Su et al., 2019; Li et al., 2019a). Fhb7, derived from

Thinopyrum species, encodes a glutathione-S-transferase (GST)

that detoxifies trichothecene toxins (Wang et al., 2020a).

However, wheat varieties incorporated with Fhb7 are not yet

widely available, and those with Fhb1 displayed a moderate

resistance, likely due to interactions with parent genotype (Li

et al., 2019b). FHB resistance is generally inherited quantitatively

and affected by multiple minor genes (Bai and Shaner, 2004). Other

resistance genes, such as TaFROG and TaABCC3, have been
02
identified and characterized for their roles in response to DON

and F. graminearum (Perochon et al., 2015; Walter et al., 2015). To

effectively combat FHB in wheat effectively, more effort is still

needed to identify new resistant genes.

Transcriptome analysis is a powerful tool for studying FHB

resistance mechanisms, offering insights into wheat-pathogen

interactions. Previous studies utilized microarray techniques to

analyze transcriptomic responses (Bernardo et al., 2007), while

recent ones have applied RNA-seq to reveal new pathways and

defense-related genes (Xiao et al., 2013; Brauer et al., 2019; Pan

et al., 2018). Small RNAs, particularly miRNAs, have been found to

regulate the response of wheat to F. graminearum, either by

silencing fungal genes or modulating host defense pathways

(MaChado et al., 2018; Jin et al., 2020; Biselli et al., 2018).

However, little is known about the role of other non-coding

RNAs, such as long non-coding RNAs (lncRNAs) and circular

RNAs (circRNAs), in response to FHB resistance.

Chinese wheat landraces are gene pools for FHB-resistant.

Some of the well-known resistant resources including

Wangshuibai, Sanyuehuang, Shuilizhan, and Wuyangmai (WY),

originated in China (Wan et al., 1997). WY, in particular, is an

FHB-resistant landrace from Yibin city in Sichuan, China.

However, the loci against FHB in WY have not yet been

genetically identified, and the mechanisms underlying FHB

resistance remain unknown. In this study, RNA-seq analysis was

performed on WY (an FHB-resistant genotype) and Chinese Spring

(CS, an FHB-susceptible genotype) in response to F. graminearum

at 3 and 5 dpi to identify lncRNAs, circRNAs, miRNAs, and

mRNAs involved in host-pathogen interactions. Differentially

expressed miRNAs and mRNAs were used as central elements to

target other differentially expressed RNAs, including lncRNAs and

host genes associated with circRNAs. Additionally, differential

expression analysis, along with Gene Ontology (GO) term and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses, was conducted on significantly up-regulated

genes in CS and WY at different time points. Finally, the regulatory

relationships between differentially expressed miRNAs and mRNAs

were characterized, leading to the construction of a miRNA-mRNA

targeting network map. The results provide valuable information
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for gaining a deeper understanding the FHB resistance differences

of the two Sichuan wheat landraces, WY and CS.
2 Materials and methods

2.1 Plant materials and
cultivation conditions

The two Sichuan wheat landraces, WY and CS, which exhibit

high resistance (HR) and high susceptibility (HS) to FHB,

respectively (Wan et al., 1997), were used in this study. The two

landraces were provided by the Triticeae research Institute of

Sichuan Agricultural University of China, and showed similar

plant heights, spikes, heading and flowering dates, minimizing the

potential discrepancies due to variations in plant architecture and

development periods. The experiment was conducted at the

breeding field of China West Normal University (Nanchong,

Sichuan Province, China; 30°48′N, 106°05′E) during the 2022-

2023 growing season. A randomized block design was

implemented, with each genotype sown in a plot containing ten

rows. Each row was 1.5 meters long, with 20 seedlings spaced 0.3

meters apart. Field cultivation and fertilization practice were the

same as local wheat cultivation standards, and no fungicide

was applied.
2.2 Macroconidia preparation and
F. graminearum inoculation

A highly virulent and 15-acetyldeoxynivalenol (15ADON)

producing isolate of F. graminearum, F0609, supplied by the

Jiangsu Academy of Agricultural Science (Nanjing, Jiangsu

Province, China), was used to infect the wheat plants. To prepare

the macroconidia, isolate F0609 was first cultured on potato

dextrose agar (PDA) medium at room temperature for 10 days

under fluorescent-UV lights. A small piece of mycelium was then

transferred to a mung bean medium and shaken at 180 rpm at 28°C

for 4 days. The mycelia were filtered with double-layered medical

gauze, and the macroconidia concentration was measured by a

blood cell counting plate under a microscope. The macroconidia

suspension was then diluted to a concentration of 1 × 105

spores/mL.

At mid-anthesis, 10 µL of the F. graminearum macroconidial

spore suspension (1 × 105 spores/mL) was point-inoculated into the

two basal florets of fully developed spikelet between the lemma and

palea using a micropipette (Hu et al., 2019). Each wheat genotype

was inoculated with three biological replicates, each consisting of 18

spikes. The inoculated spikes were then covered with a transparent

plastic bag to maintain humidity and sprayed with sterile water

twice daily until harvest. Spikelets were harvested at 0 (sterile water

mock inoculation control), 3, and 5 dpi, with three biological

replicates for each time point. Those samples collected from CS

andWY at 0, 3 and 5 dpi were designated as CS-0, CS-3, CS-5, WY-

0, WY-3, and WY-5, respectively. A total of nine samples were

collected for each genotype.
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2.3 RNA extraction, library construction
and sequencing

Total RNA of each sample was extracted with the TRIzol

reagent (Invitrogen, CA, USA), and the residual DNA was

removed using RNase-free DNase I (Invitrogen, CA, USA)

following the manufacturer’s instructions. The integrity and

quality of the RNA were preliminarily assessed with 1.5%

formaldehyde denaturing agarose gel electrophoresis. The

concentration and purity of RNA were measured by a NanoDrop

2000 Spectrophotometer (Thermo Fisher Scientific, MA, USA). The

RNA integrity was further determined by using the RNA 6000 Nano

Assay Kit on the Agilent Bioanalyzer 2100 System (Agilent,

CA, USA).

For cDNA library construction, 1.5 mg of RNA per sample was

used for rRNA removal with the Ribo-Zero rRNA Removal Kit

(Epicentre, Madison, WI, USA). Sequencing libraries were then

prepared with the NEBNext® Ultra™ Directional RNA Library

Prep Kit for Illumina® (NEB, MA, USA) following the

manufacturer’s guidelines, with index codes included for sample

identification. For small RNA (sRNA) library construction, 2.5 mg
of RNA per sample was used. Sequencing libraries were generated

with the NEBNext® Multiplex Small RNA Library Prep Set for

Illumina® (NEB, MA, USA) based on the manufacturer’s

instructions, and index codes were also added for sample

identification (Zhang et al., 2020). The quality of all libraries was

assessed using the Agilent Bioanalyzer 2100. Paired-end sequencing

(PE150-bp) was performed on the Illumina NovaSeq 6000 platform

(Illumina, San Diego, CA, USA) by Biomarker Technologies

(Qingdao, China).
2.4 Data processing

The raw data (raw reads) were filtered with in-house Perl

scripts to remove low-quality reads and sequences containing

adapters or poly-N reads. Clean data (clean reads) were collected,

and analyzed for the Q20, Q30, GC content, and sequence

duplication levels. For sRNA-seq data, sequences ranging from

15 to 35 nucleotides (nt) in length were retained after trimming.

All downstream analyses were conducted with high-quality clean

data. The clean reads were then mapped to the CS reference

genome IWGSC_RefSeq_v2.1 (IWGSC; Alaux et al., 2023) using

HISAT2 software version 2.2.1 (Kim et al., 2019). Only reads with

a perfect match or a single mismatch were further analyzed and

annotated based on the reference genome.
2.5 Identification of mRNA, lncRNA,
circRNA, and miRNA

For mRNA and lncRNA identification, the transcriptome was

assembled using StringTie (v2.2.0) (Kovaka et al., 2019) based on

the reads mapped to the wheat CS reference genome

(IWGSC_RefSeq_v2.1). The GffCompare program (v0.12.6)
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(Pertea and Pertea, 2020) was used to annotate the assembled

transcripts. Unknown transcripts were screened as potential

lncRNAs. Four computational tools—CPC, CNCI, Pfam, and

CPAT—were combined to distinguish non-protein-coding RNA

(ncRNA) candidates from the unknown transcripts. Putative

protein-coding RNAs were filtered out using thresholds for

minimum transcript length and exon number. LncRNA

candidates were selected based on transcript lengths greater than

200 nucleotides (nt) and more than 2 exons, and further validated

with the four computational tools mentioned above. Those tools

effectively differentiate protein-coding genes from non-coding ones

and classify various lncRNA types, such as lincRNAs, intronic

lncRNAs, antisense, and sense lncRNAs (Zhang et al., 2020).

The circRNA identification tool “CIRI” (CircRNA Identifier)

(Gao et al., 2015) was used to detect circRNAs from the

transcriptome data. To collect sufficient information for circRNA

identification and characterization, the SAM files were scanned

twice with CIRI. The identified circRNAs were then output with

annotation information. Target miRNAs of the circRNAs and the

target genes of miRNAs were predicted using miRanda (Doron

et al., 2008) and RNAhybrid for animals (Rehmsmeier et al., 2004),

and TargetFinder for plants (Bo and Wang, 2005). During the

predictions, FASTA sequences of these circRNAs and miRNAs were

used as input files.

The clean reads were aligned against four bioinformatic

databases, Silva, GtRNAdb, Rfam, and Repbase with Bowtie

software (Langmead and Salzberg, 2012) to identify candidate

miRNA. The alignments allowed for length variations at both the

5′ and 3′ ends, as well as one internal mismatch. Common RNA

families, including rRNA, tRNA, snRNA, snoRNA, and other

ncRNAs, along with repeats, were filtered out. The remaining

reads were then subject to miRNA identification through

comparison with the wheat reference genome. The known and

novel miRNAs were detected with the miRBase v22 database

(Kozomara et al., 2019) and miRDeep2 module (Friedländer

et al., 2012), respectively.
2.6 Differential expression analysis

The expression levels of coding genes and lncRNAs in each sample

were estimated with fragments per kilobase of transcript per million

fragments mapped (FPKM) values (Trapnell et al., 2010). The

expression of circRNAs was determined based on the number of

junction reads identified by the CIRI tool. For miRNAs, expression

levels of each sample were estimated through the following steps: (1)

sRNAs were mapped back to the precursor sequence, and (2) the read

count for each miRNA was obtained from the mapping results. The

expression levels of miRNAs and circRNAs in each sample were

calculated using transcripts per million (TPM) (Fahlgren et al.,

2007). Differential expression analysis among three time points (0, 3,

and 5 dpi) of two genotypes (WY and CS) was conducted with DESeq2

R package (v1.10.1) (Love et al., 2014). Differentially expressed genes

(DEGs) were identified using an adjusted p-value (calculated using the

Benjamini and Hochberg method) ≤ 0.01 to control the false discovery

rate (FDR) and a |log2 (Fold change (FC))| > 1. Venny 2.1 (Oliveros,
Frontiers in Plant Science 04
2015) was then used for Venn diagram analysis, and SRplot web server

(Tang et al., 2023; available at http://www.bioinformatics.com.cn/

SRplot) was used for heatmap drawing.
2.7 Analysis of competing
endogenous RNA

Candidate ceRNA relationship pairs were identified based on

miRNA targeting relationships. Using the predicted miRNA-

mRNA, lncRNA-miRNA, and circRNA-miRNA interaction pairs,

groups of lncRNA-miRNA-mRNA or circRNA-miRNA-mRNA

that shared the same miRNAs were collected. The screening

criteria for ceRNAs were as follows: (1) The number of shared

miRNAs among ceRNAs must be greater than or equal to 5; (2) The

hypergeometric test p-value must be < 0.01, and the corrected FDR

value must be < 0.01; (3) mRNAs and lncRNA/circRNA interaction

pairs with a co-expression correlation (r > 0.9) were further selected

for ceRNA network construction.
2.8 Gene functional annotation and GO
and KEGG enrichment analysis

Gene function annotation was performed using multiple

databases, including Nr (Non-redundant protein), Nt (Non-

redundant nucleotide), Pfam (Protein family), KOG/COG

(Clusters of Orthologous Groups of proteins), Swiss-Prot (a

manually annotated and non-redundant protein sequence

database), KEGG, and GO. GO enrichment analysis of DEGs was

conducted with the GOseq R package, based on Wallenius’ non-

central hypergeometric distribution (Young et al., 2010), which

adjusts for gene length bias in DEGs. The enrichment analysis of

DEGs in KEGG pathways was performed using KOBAS software

(version 2.0) (Xie et al., 2011).
2.9 Real-time quantitative PCR validation

For RT-qPCR analysis, cDNA of all RNA samples (those used

for Illumina RNA-sequencing) was synthesized with the

PrimeScript RT reagent Kit (TaKaRa, Dalian, China) according to

the manufacturer’s protocol. The reaction volume was 20 mL
including random hexamers and 1 mg of each RNA sample. Two

wheat genes—glyceraldehyde-3-phosphate dehydrogenase

(GAPDH, TraesCS7A02G313100) and indole-3 acetaldehyde

oxidase (IAAOx, TraesCS2A02G246300) (Hu et al., 2019)—were

used as reference genes to normalize gene expression in the two

wheat genotypes. Primers (Dataset S1) were designed using the

PrimerQuest™ Tool from Integrated DNA Technologies (IDT) and

synthesized by Sangon Biotech (Shanghai, China). For each

reaction, 1 mL of 10×-diluted cDNA was added to a 10 mL
reaction volume using the SYBR Green PCR kit (TaKaRa, Dalian,

China). RT-qPCR was carried out in an ABI7500 Real-Time PCR

System (Applied Biosystems, CA, USA). The cycling conditions

were 5 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C,
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30 seconds at the melting temperature (as indicated in Dataset S1),

and 30 seconds at 72°C. The melting curve analysis was conducted

from 55°C to 95°C, with readings taken every 1°C and held for 5

seconds. Four technical replicates were performed for each sample.

The relative expression levels were calculated using the 2−DDCt

method (Livak and Schmittgen, 2001).
3 Results

3.1 Sequencing and identification of RNAs

After sequencing of the 18 samples, the raw data were filtered to

obtain clean data, resulting in a total of 1,035,915,752 reads and

309.95 Gb of clean data. Each sample yielded approximately 15.95 Gb

of clean data, with Q20 and Q30 base percentages exceeding 97.02%

and 92.05%, respectively. The GC content ranged from 47.39% to

50.51% (Dataset S2). These metrics indicate that the quality of RNA

sequencing in this study was high and suitable for further analysis.

The clean reads were mapped to the reference wheat genome

sequences (IWGSC_RefSeq_v2.1) of Chinese Spring (Alaux et al.,

2023). After identification of RNAs, a total of 15,765 lncRNAs,

286,397 genes, 621 circRNAs, and 3,063 miRNAs were detected.
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3.2 Differential expression analysis of
mRNA, lncRNA, circRNA, and miRNA

To identify differentially expressed RNAs, pairwise comparisons

were conducted between time points for the two wheat genotypes.

In CS, the numbers of differentially expressed mRNAs, lncRNAs,

circRNAs, and miRNAs for 0 vs. 3-dpi, 0 vs. 5-dpi, and 3 vs. 5-dpi,

were 5,713, 174, 8, and 29; 20,596, 331, 7, and 172; and 16,028, 229,

10, and 69, respectively. In WY, the numbers of differentially

expressed mRNAs, lncRNAs, circRNAs, and miRNAs for 0 vs. 3-

dpi, 0 vs. 5-dpi, and 3 vs. 5-dpi were 2,196, 150, 5, and 30; 9,793, 288,

11, and 179; and 6,769, 188, 5, and 239, respectively (Figure 1). The

expression profiles of those differentially expressed RNAs were

visualized using circos maps, with the height of the profiles

representing significance (-log10 (FDR)). The results showed that

the F. graminearum invasion had a significant impact on the

expression of mRNA and miRNA, and had moderate to low

effects on the expression of lncRNAs and circRNAs, respectively

(Figure 2) (Supplementary Figure 1).

Analysis of the differentially expressed RNAs showed that the

numbers of differentially expressed genes in CS were 2.60, 2.10, and

2.37 times greater than those in WY for the comparison time points

of 0 vs. 3-dpi, 0 vs. 5-dpi, and 3 vs. 5-dpi, respectively. The
FIGURE 1

Statistics of differentially expressed RNAs across various comparisons. The 0, 3, and 5-dpi represent samples collected at 0, 3, and 5 days post F.
graminearum inoculation (dpi), respectively. CS and WY refer to Chinese Spring and Wuyangmai, respectively. LncRNA, long non-coding RNA;
miRNA, microRNA; circRNA, circular RNA.
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differentially expressed lncRNAs in CS were slightly higher than

those in WY, with fold changes of 1.16, 1.15, and 1.22 for the above-

mentioned time points. However, the numbers of differentially

expressed circRNAs were very low in both CS and WY, ranging

from 5 to 11. Interestingly, the number of differentially expressed

miRNAs in WY was slightly higher than that in CS for the

comparison time points of 0 vs. 3 dpi and 0 vs. 5 dpi, and 3.46

times higher for the comparison time points of 3 vs. 5 dpi (Table 1).
3.3 Integrated analysis of differentially
expressed RNA targeting relationships

Differentially expressed lncRNAs, circRNAs, miRNAs, and

mRNAs were analyzed by taking each RNA type as the center and

examining the targeted relationships involving other differentially

expressed RNAs (including host genes corresponding to circRNAs).

First, an integrated analysis was conducted using differentially

expressed lncRNAs (DE_lncRNAs) as the center. In the

comparisons of 0 vs. 3-dpi, 0 vs. 5-dpi, and 3 vs. 5-dpi of CS, the

Venn diagram revealed that 0 (1), 11 (14), and 2 (4) lncRNAs,

respectively, were located at the intersection of the three data sets:
Frontiers in Plant Science 06
DE_ l n c RNA , DE _C i s .mRNA_T a r g e t l n c RNA ( o r

DE_Trans.mRNA_Target lncRNA), and DE_miRNA_Target

lncRNA. Similarly, for the pairwise comparisons of the three time

points in WY, the Venn diagram indicated that 0 (0), 1 (7), and 1 (4)

lncRNAs were located at the intersection of the same three data sets,

respectively (Supplementary Figures 2A, B). When circRNAs were

taken as the center for the targeting relationship analysis, no

circRNAs were found at the intersection of the three data sets:

DE_circRNA, DE_Hostgene_circRNA, and DE_miRNA_Target

circRNA, for any of the pairwise comparisons among the three

time points in CS or WY (Supplementary Figure 3).

Subsequently, an integrated analysis of targeting relationships

was conducted using differentially expressed miRNAs (DE_miRNA)

as the center. In the pairwise comparisons of the three time points in

CS, the Venn diagram indicated that 0 (3), 4 (9), and 1 (4) miRNA

were present at the intersection of the three data sets: DE_miRNA,

DE_circRNA_Target miRNA (or DE_lncRNA_Target miRNA), and

DE_mRNA_Target miRNA, respectively. Similarly, for the pairwise

comparisons of the three time points in WY, the Venn

diagram showed that 0 (0), 1 (28), and 0 (28) miRNAs were

located at the intersections of the same data sets, respectively

(Figure 3). Additionally, the analysis revealed that the primary
TABLE 1 Comparative analysis of differentially expressed RNAs between Chinese Spring (CS) and Wuyangmai (WY).

RNA
0 vs. 3-dpi 0 vs. 5-dpi 3 vs. 5-dpi

CS WY CS/WY CS WY CS/WY CS WY CS/WY

mRNA 5713 2196 2.60 20596 9793 2.10 16028 6769 2.37

lncRNA 174 150 1.16 331 288 1.15 229 188 1.22

circRNA 8 5 1.6 7 11 0.66 10 5 2.00

miRNA 29 30 0.97 172 179 0.96 69 239 0.29
FIGURE 2

Expression profiles of differentially expressed RNAs at 5 dpi with F. graminearum. The outermost ring shows chromosome information, followed by
mRNA (gene), lncRNA, circRNA, and miRNA. For each group of differentially expressed RNAs, red, blue, and the height indicate up-regulation, down-
regulation, and significance [-log10 (FDR)], respectively.
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targeting relationships existed between the DE_miRNA and

DE_mRNA_Target miRNA data sets. Specifically, 24 (18), 150

(182), and 61 (172) miRNAs were identified at their intersection in

the pairwise comparisons of the three CS (or WY) time points,

respectively (Figure 3).

Finally, differentially expressed mRNAs (DE_mRNA) were used

as the center for analyzing targeting relationships. The Venn diagram

showed that the primary targeting relationships occurred between the

DE_mRNA data set and either DE_lncRNA_Target mRNA or

DE_miRNA_Target mRNA. In the pairwise comparisons of the

three CS time points, 39 (1,241), 283 (7,027), and 166 (5,608)

mRNAs were detected at the intersection of DE_mRNA

with DE_lncRNA_Target Cis.mRNA (or DE_lncRNA_Target

Trans.mRNA), respectively. Similarly, for the pairwise comparisons

of the three WY time points, 12 (167), 42 (1,551), and 36 (1,358)

mRNAs were found at the corresponding intersections of the above

two data sets (Supplementary Figures 4A, B). When considering the

targeting relationships between DE_mRNA and DE_miRNA_Target

mRNA, 72 (23), 2,152 (1,239), and 1,179 (783) mRNAs were

identified at their intersections in the pairwise comparisons of the

three CS (or WY) time points, respectively (Supplementary

Figures 4A, B).
3.4 Identification of ceRNA

mRNAs, lncRNAs, and circRNAs can function as competing

endogenous RNAs (ceRNAs) in a ceRNA network, where they

regulate expression levels of each other by competitively binding to
Frontiers in Plant Science 07
the same miRNA response elements (MREs) (Salmena et al., 2011).

Based on the screening criteria for ceRNAs, co-expression analysis

identified 98 circRNA-miRNA-mRNA relationship pairs and 49

lncRNA-miRNA-mRNA pairs (Dataset S3). However, no

differentially expressed ceRNA relationship pairs were identified

using a one-step nearest-neighbor network analysis, when each

group of differentially expressed RNAs was extracted from the

ceRNA relationship pairs.
3.5 Differential expression analysis for up-
regulated genes

Differential gene expression analysis revealed that in CS, there

were 3,989, 13,141, and 10,521 up-regulated DEGs, and 1,724,

7,455, and 5,507 down-regulated DEGs for 0 vs. 3-dpi, 0 vs. 5-dpi,

and 3 vs. 5-dpi comparisons, respectively. The number of up-

regulated DEGs was consistently much greater than that of down-

regulated DEGs across all three comparisons. In WY, there were

1,060, 5,099, and 4,608 up-regulated DEGs, and 1,136, 4,694, and

2,161 down-regulated DEGs for the same comparisons. The

number of up-regulated DEGs was higher than down-regulated

DEGs only in the 3 vs. 5-dpi comparison, while for the 0 vs. 3-dpi

and 0 vs. 5-dpi comparisons, the up-regulated DEGs were slightly

fewer or greater than the down-regulated ones, respectively

(Figure 4A). Additionally, the expression levels and significance of

up-regulated DEGs in CS were consistently much higher than those

in WY across all three comparisons (Figure 4B) (Supplementary

Figures 5A, 6A).
FIGURE 3

Interaction of differentially expressed miRNAs with all miRNAs targeted by differentially expressed mRNAs, lncRNAs, and circRNAs. Here, DE_miRNA
represents differentially expressed miRNAs; DE_mRNA_Target miRNA, DE_lncRNA_Target miRNA, and DE_circRNA_Target miRNA represent miRNAs
targeted by differentially expressed genes, lncRNAs, and circRNAs, respectively.
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GO enrichment analysis of up-regulated DEGs revealed distinct

defense responses between the FHB-resistant wheat CS and the

susceptible wheat WY. For the 0 vs. 3-dpi comparison, two of the

top five GO terms differed between CS and WY. In CS, the top terms

were “phenylalanine ammonia-lyase activity” and “heme binding”,

while in WY, they were “hydrolase activity, hydrolyzing O-glycosyl

compounds” and “polysaccharide binding” (Supplementary

Figure 5B). In the 0 vs. 5-dpi comparison, CS showed enrichment

for “glutathione transferase activity” and “iron ion binding”, while WY

had “ATPase-coupled transmembrane transporter activity” and

“ATPase activity” (Supplementary Figure 6B). In the 3 vs. 5-dpi

comparison, three of the top five GO terms were different: CS

showed “protein kinase activity”, “protein serine/threonine kinase

activity”, and “phenylalanine ammonia-lyase activity”, while WY

showed “glutathione transferase activity”, “heme binding”, and

“UDP-glycosyltransferase activity” (Figure 4C).
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KEGG pathway enrichment of up-regulated DEGs also

highlighted distinct defense responses between CS and WY. In

the 0 vs. 3-dpi comparison, only one of the top five KEGG pathways

was different: “biosynthesis of amino acids” (ko01230) in CS,

compared to “plant hormone signal transduction” (ko04075) in

WY, although the enrichment of the top five pathways in WY was

not significant. In the 0 vs. 5-dpi comparison, two of the top five

pathways differed: “phenylpropanoid biosynthesis” (ko00940) and

“carbon metabolism” (ko02010) in CS, and “glutathione

metabolism” (ko00480) and “ABC transporters” (ko02010) in

WY. For the 3 vs. 5-dpi comparison, four of the top five pathways

were different between CS and WY: “plant-pathogen interaction”

(ko04626), “biosynthesis of amino acids” (ko01230), “starch and

sucrose metabolism” (ko00500), and “carbon metabolism”

(ko01200) in CS, compared to “glutathione metabolism”

(ko00480), “ABC transporters” (ko02010), “flavonoid
FIGURE 4

Differential expression analysis for up-regulated genes. (A) Statistical analysis for all genes. (B) Volcano plot of DEGs obtained in the comparison of 3
vs. 5-dpi. (C) GO term and (D) KEGG pathway enrichment analysis for significantly up-regulated DEGs. (E) Gene expression heatmap of glutathione
metabolism pathway.
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biosynthesis” (ko00941), and “phenylalanine metabolism”

(ko00360) in WY (Figure 4D) (Supplementary Figures 5C, 6C).

Additionally, a log2 (FC) > 2 threshold was applied to filter

up-regulated genes enriched in the “glutathione metabolism”

pathway in the 3 vs. 5-dpi comparison of WY, resulting in the

identification of 93 DEGs. The expression heatmap of these up-

regulated DEGs showed that 80 DEGs were shared between CS

and WY. Among these, two DEGs (TraesCS2B03G1525600 and

TraesCS6B03G0425000) in CS had expression levels more than

two times higher than in WY. Furthermore, the heatmap also

showed that 13 DEGs were differentially expressed only in

WY (Figure 4E).
3.6 Integrated analysis of the targeting
relationship between miRNA and mRNA

Using small RNA and transcriptome sequencing data,

DE_miRNAs and DEGs were identified in the two sample groups.

The regulatory relationships between miRNAs and mRNAs were

then explored, focusing on the negative regulatory effects of

miRNAs on mRNAs. First, DE_miRNAs were used as screening

criteria to identify the mRNAs regulated by these miRNAs, followed

by an analysis of the pairs of DE_miRNAs and mRNAs with
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negative regulatory relationships (Dataset S4). Similarly, DEGs

were used as screening criteria to identify miRNAs that regulate

these DEGs, and DEG-miRNA pairs with negative regulatory

relationships were analyzed (Dataset S5). The targeting

relationships between miRNAs and mRNAs were visualized using

Cytoscape software (v3.10.2). The top 20 DE_miRNAs (or top 18

for 0 vs. 3-dpi comparison in WY) most relevant to target gene

regulation were selected to construct the miRNA-mRNA targeting

relationship network map (Dataset S6).

The results showed that only twomiRNAswere shared between CS

and WY in the 0 vs. 3-dpi comparison, whereas 16 and 15 miRNAs

were shared in the 0 vs. 5-dpi and 3 vs. 5-dpi comparisons, respectively

(Figure 5A) (Supplementary Figure 7A). In the 0 vs. 3-dpi comparison,

ten DE_miRNAs in CS and eight in WY specifically targeted DEGs

with negative regulatory relationships, with each DE_miRNA targeting

one to four DEGs (Supplementary Figure 7B). In the 0 vs. 5-dpi and 3

vs. 5-dpi comparisons, all DE_miRNAs specifically expressed in CS and

WY targeted DEGs with negative regulatory relationships, with each

DE_miRNA targeting 14 to 30 DEGs. Notably, novel_miR_228, which

was up-regulated in CS, and tae-miR1122a, which was down-regulated

in WY, were present in both comparisons. Novel_miR_228

down-regulated 28 and 23 DEGs in CS, while tae-miR1122a up-

regulated 27 and 23 DEGs in WY, respectively (Figure 5B)

(Supplementary Figure 7B).
FIGURE 5

Targeting relationships between DE_miRNAs and DEGs. (A) Comparison of the top 20 DE_miRNAs most relevant to target gene regulation in CS and
WY. (B) Targeting relationships between the DE_miRNAs specifically expressed in CS and WY and DEGs. (C) Expression heatmap of genes
significantly down-regulated by novel_miR_228 and significantly up-regulated by tae-miR1122a with molecular function (MF) GO term. Heatmap
represents log2 (FC) between F. graminearum infected and control.
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GO analysis of these DEGs revealed that seven DEGs down-

regulated by novel_miR_228 in CS had molecular function (MF)

terms in the 0 vs. 5-dpi comparison, and nine DEGs in the 3 vs. 5-

dpi comparison. Significant GO term enrichment analysis (using a

q-value < 0.05 as the threshold) showed two DEGs,

TraesCS1A03G0367900 (histone acetyltransferase activity; q =

1.52e-02) and TraesCS6B03G0592100 (double-stranded DNA

binding; q = 1.67e-43), were significantly enriched in the 0 vs. 5-

dpi comparison of CS, while six DEGs—TraesCS2A03G0587000

(protein kinase activity; q = 9.31e-06), TraesCS2D03G0569400

(protein kinase activity; q = 9.31e-06), TraesCS3D03G0550100

(hydrolase activity; q = 1.61e-02), TraesCS5A03G0080300

(microtubule binding; q = 1.12e-02), TraesCS7A03G0224800

(s ing l e - s t randed DNA bind ing ; q = 4 .39e-04) , and

TraesCS7A03G0450300 (GTP binding; q = 4.47e-08)—were

significantly enriched in the 3 vs. 5-dpi comparison of CS. The

expression of these DEGs in CS was lower than in WY (Figure 5C)

(Supplementary Figure 7C).

Likewise, GO analysis showed that 14 DEGs up-regulated by tae-

miR1122a inWY hadMF terms in both the 0 vs. 5-dpi and 3 vs. 5-dpi

comparisons. Nine DEGs up-regulated by tae-miR1122a in WY were

not differentially expressed in CS in the 0 vs. 5-dpi comparison, and

three (TraesCS2B03G0537600, TraesCS2D03G0425900,

and TraesCS6A03G0855700) were significantly enriched in

the MF term for metal ion binding (q = 2.14e-03). In the

3 vs. 5-dpi comparison, nine DEGs up-regulated by tae-

miR1122a in WY were not differentially expressed in CS, and four

( T r a e s C S 2B 0 3G0 5 3 7 6 0 0 , T r a e s C S 2D 0 3G0 4 2 5 9 0 0 ,

TraesCS6A03G0855700, and TraesCS7D03G0982200) were

significantly enriched in the MF term for metal ion binding (q =

2.94e-02). The expression of these DEGs in WY was higher than in

CS (Figure 5C) (Supplementary Figure 7C).
3.7 KOG functional classification of DEGs
regulated by miRNA

After analyzing the targeting relationships between miRNAs and

mRNAs, functional classification analysis was performed on the DEGs

identified. The KOG functional classification of DE_miRNA-regulated

DEGs was conducted. Focusing on the top five functional classes, four

classes—T (signal transduction mechanisms), R (general function

prediction only), O (posttranslational modification, protein turnover,

chaperones), and J (translation, ribosomal structure, and biogenesis)—

were shared by CS and WY in the comparison of 0 vs. 3-dpi. The fifth

class differed, with class S (function unknown) identified in CS and

class A (RNA processing and modification) identified in WY.

However, in the 0 vs. 5-dpi and 3 vs. 5-dpi comparisons, the top five

functional classes for both CS and WY were identical: T, R, O, G

(carbohydrate transport and metabolism), and K (transcription)

(Supplementary Figure 8). Similarly, the KOG functional

classification of miRNA-regulated DEGs was performed. The results

showed that the top five functional classes—T, R, O, G, and Q

(secondary metabolites biosynthesis, transport, and catabolism)—

were consistent across all three comparisons for both CS and WY

(Supplementary Figure 9).
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3.8 GO analysis of DEGs regulated
by miRNA

GO analysis of DE_miRNA-regulated DEGs revealed 22, 18,

and 17 functional classifications in the biological process (BP),

cellular component (CC), and molecular function (MF) categories,

respectively, for both CS and WY. Among these, the percentage of

genes in 16 BP, 15 CC, and 12 MF classifications exceeded 0.1%.

The results showed that most DEGs in the BP category were

associated with metabolic processes, cellular processes, and single-

organism processes. In the CC category, the majority of DEGs were

located in the membrane, cell, cell part, membrane part, and

organelle. In the MF category, most DEGs were related to

catalytic activity and binding functions (Supplementary

Figure 10). Similar findings were obtained from the GO analysis

of miRNA-regulated DEGs (Supplementary Figure 11).

GO enrichment analysis was conducted on the identified DEGs

(Dataset S7, Dataset S8), with the top 20 terms for each comparison

selected for display, using a q-value < 0.05 as the significance

threshold. GO enrichment based on DE_miRNA-regulated DEGs

revealed the most significant BP terms in CS were phenylalanyl-

tRNA aminoacylation, RNA modification, and leucyl-tRNA

aminoacylation for the 0 vs. 3-dpi, 0 vs. 5-dpi, and 3 vs. 5-dpi

comparisons, respectively, whereas those in WY were phenylalanyl-

tRNA aminoacylation, defense response, and mitochondrial RNA

modification. The BP terms with the highest number of genes in CS

included gene silencing by RNA, defense response, and protein

folding, while those in WY were gene silencing by RNA, defense

response, and nucleic acid phosphodiester bond hydrolysis. For the

CC category, the most significant terms in CS were the THO

complex (part of the transcription export complex), microtubule,

and Ino80 complex, while those in WY were the ROC complex,

Golgi membrane, and cell plate. The CC terms with the most genes

in CS were cytoplasm (for the first two comparisons) and

microtubule (for the third one), while in WY, the terms with the

most genes were cytoplasm (for the first comparison) and Golgi

membrane (for the subsequent two). In the MF category, the most

significant terms in CS were phenylalanine-tRNA ligase activity,

double-stranded DNA binding, and carbohydrate binding, while in

WY they were calcium transmembrane transporter activity,

phosphorylative mechanism, and double-stranded DNA binding.

The terms with the most genes in CS were protein binding, catalytic

activity, and protein kinase activity, whereas in WY, they were RNA

binding, protein kinase activity, and RNA binding (Figure 6).

GO enrichment analysis based on miRNA-regulated DEGs

revealed that the most significant BP terms in CS were protein-

chromophore linkage, trehalose biosynthetic process, and leucyl-

tRNA aminoacylation in the 0 vs. 3-dpi, 0 vs. 5-dpi, and 3 vs. 5-dpi

comparisons, respectively. In WY, the most significant BP terms

were protein-chromophore linkage in both 0 vs. 3-dpi and 0 vs. 5-

dpi, and trehalose biosynthetic process for 3 vs. 5-dpi. The BP terms

with the most genes in CS included defense response, carbohydrate

metabolic process, and recognition of pollen, while in WY, they

were defense response, photosynthesis, and response to oxidative

stress. In the CC category, significant terms were observed only in

two comparisons of WY (0 vs. 3-dpi and 0 vs. 5-dpi), with the most
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significant CC term being photosystem I in both cases. The CC

terms with the most genes were the chloroplast thylakoid

membrane for both comparisons, though this term was not

statistically significant in the second comparison. In the MF

category, the most significant MF term in the comparison of 0 vs.

3-dpi in CS was calmodulin binding, with the term having the most

genes being protein kinase activity. In the other two comparisons (0

vs. 5-dpi and 3 vs. 5-dpi), the most significant MF term and the term
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with the most genes in CS were both protein kinase activity. For

WY, the most significant MF terms in the 0 vs. 3-dpi and 0 vs. 5-dpi

comparisons were chlorophyll binding and protein serine/threonine

kinase activity, respectively. In both cases, the MF term with the

most genes was protein kinase activity. In the 3 vs. 5-dpi

comparison in WY, both the most significant MF term and the

MF term with the most genes were protein serine/threonine kinase

activity (Supplementary Figure 12).
FIGURE 6

GO term enrichment analysis for DE_miRNA-regulated DEGs. GeneNum denotes the gene number.
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3.9 KEGG analysis of DEGs regulated
by miRNA

KEGG analysis based on DE_miRNA-regulated DEGs indicated

that most metabolic pathways were within the metabolism category,

with the pathway containing the most DEGs being the plant-pathogen

interaction pathway (Supplementary Figure 13). Similar results were

obtained from the KEGG analysis based on miRNA-regulated DEGs

(Supplementary Figure 14). KEGG enrichment analysis was conducted

on these DEGs (Dataset S9, Dataset S10), and the top 20 pathways for

each comparison were selected for display, using q-value < 0.05 as the

significance threshold. KEGG enrichment of DE_miRNA-regulated

DEGs showed that the most significantly enriched pathway with the

highest number of DEGs was the plant-pathogen interaction pathway

across all comparisons, except for 3 vs. 5-dpi in CS, where the starch

and sucrose metabolism pathway was the most significantly enriched

(Figure 7). Similarly, KEGG enrichment based on miRNA-regulated

DEGs also identified the plant-pathogen interaction pathway as the

most significantly enriched pathway (Supplementary Figure 15).

To compare KEGG pathway enrichment between CS andWY at

different time points, the top five pathways from each comparison

were selected for further analysis. First, the top five KEGG pathways

enriched based on DE_miRNA-regulated DEGs were examined.

Results showed that only two pathways were identical between CS

and WY in the 0 vs. 3-dpi comparison: plant-pathogen interaction

(ko04626) and RNA transport (ko03013). However, these pathways

were not significant in WY. The three specific pathways in CS were

ubiquitin-mediated proteolysis (ko04120), spliceosome (ko03040;

not significant), and ABC transporters (ko02010). In contrast, the

three specific pathways in WY were phenylpropanoid biosynthesis

(ko00940), aminoacyl-tRNA biosynthesis (ko00970), and RNA

polymerase (ko03020), and none of them were significant.

Additionally, both CS and WY had the same top five pathways

for the 0 vs. 5-dpi comparison. For the 3 vs. 5-dpi comparison, four
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of the top five pathways were shared by CS and WY. The only

differing pathway in CS was other glycan degradation (ko00511),

while inWY, it was plant-pathogen interaction (ko04626) (Table 2).

The KEGG pathways were enriched based on miRNA-regulated

DEGs. In the 0 vs. 3-dpi comparison, four of the top five pathways

were identical between CS and WY. However, the carbon

metabolism pathway (ko02010) in CS and the starch and sucrose

metabolism pathway (ko00500) in WY were not significant. The

only differing pathway in CS was phenylpropanoid biosynthesis

(ko00940), while in WY, it was photosynthesis (ko00195). For the

other two comparisons (0 vs. 5-dpi, and 3 vs. 5-dpi), two of the top

five pathways were different between CS and WY in each case,

although the other three pathways—plant-pathogen interaction

(ko04626), starch and sucrose metabolism (ko00500), and ABC

transporters (ko02010)—were identical. In the 0 vs. 5-dpi

comparison, the two different pathways in CS were flavonoid

biosynthesis (ko00941) and glyoxylate and dicarboxylate

metabolism (ko00630). In WY, the different pathways were

carbon metabolism (ko01200) and photosynthesis (ko00195; not

significant). In the 3 vs. 5-dpi comparison, the two different

pathways in CS were flavonoid biosynthesis (ko00941) and

cyanoamino acid metabolism (ko00460). In WY, the different

pathways were phenylpropanoid biosynthesis (ko00940; not

significant) and phenylalanine metabolism (ko00360) (Table 3).
3.10 RT−qPCR validation of DEGs regulated
by miRNA

Based on the integrated analysis of the targeting relationships

between miRNA and mRNA, two DE_miRNAs—tae-miR1122a and

novel_miR_228—were identified from the top 20 DE_miRNAs and

were specifically expressed in WY and CS at 5-dpi. Six DEGs, three

with a negative regulatory relationship with tae-miR1122a and the
FIGURE 7

KEGG pathway enrichment analysis for DE_miRNA-regulated DEGs. GeneRatio indicates the gene ratio.
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other three with novel_miR_228, were selected for RT-qPCR validation

of their expression levels. The DEGs targeted by tae-miR1122a were

TraesCS1B03G0240900 , TraesCS2D03G0425900 , and

TraesCS3A03G0573700, associated with the KEGG pathway of

glutathione metabolism (ko00480), phagosome pathway (ko04145),

and autophagy-other (ko04136), respectively. The DEGs

targeted by novel_miR_228 were TraesCS2A03G0587000,

TraesCS2D03G0569400, and TraesCS4B03G1000000, and both of

the first two were associated with the plant-pathogen interaction

pathway (ko04626), and the third one had no KEGG pathway

annotation. The relative expression data from RT-qPCR for the

selected genes were compared with the RNA-seq analysis data, and
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the results revealed that the expression patterns were largely consistent

between the twomethods, confirming that the RNA-seq analysis in this

study was reliable and suitable for further research (Figure 8).
4 Discussion

4.1 Transcriptomic study for
FHB resistance

Fusarium head blight (FHB) significantly threatens wheat

production globally, leading to yield loss and grain contamination by
TABLE 2 KEGG pathway enrichment analysis of DE_miRNA-regulated DEGs in CS and WY (top 5 pathways).

Comparison Pathway ID Description q-value Gene DEG Total DEG DEG ratio

CS
0 vs. 3-dpi

ko04626 Plant-pathogen interaction 0.00375 6392 47

275

17.09%

ko03013 RNA transport 0.00511 1979 20 7.27%

ko04120 Ubiquitin mediated proteolysis 0.00511 1659 18 6.55%

ko03040 Spliceosome 0.54038 2797 16 5.82%

ko02010 ABC transporters 0.00375 776 12 4.36%

WY
0 vs. 3-dpi

ko04626 Plant-pathogen interaction 0.21824 6392 28

199

14.07%

ko00940 Phenylpropanoid biosynthesis 0.21824 2419 13 6.53%

ko03013 RNA transport 0.36091 1979 10 5.03%

ko00970 Aminoacyl-tRNA biosynthesis 0.17576 1175 9 4.52%

ko03020 RNA polymerase 0.20704 1267 9 4.52%

CS
0 vs. 5-dpi

ko04626 Plant-pathogen interaction 1.04e-25 6392 375

2127

17.63%

ko00500 Starch and sucrose metabolism 2.21e-05 1910 105 4.94%

ko00230 Purine metabolism 0.00073 754 47 2.21%

ko00562 Inositol phosphate metabolism 0.00046 526 37 1.74%

ko00600 Sphingolipid metabolism 0.04071 676 35 1.65%

WY
0 vs. 5-dpi

ko04626 Plant-pathogen interaction 1.17e-24 6392 415

2458

16.88%

ko00500 Starch and sucrose metabolism 1.72e-05 1910 117 4.76%

ko00230 Purine metabolism 2.64e-05 754 57 2.32%

ko00600 Sphingolipid metabolism 0.00045 676 48 1.95%

ko00562 Inositol phosphate metabolism 0.00022 526 41 1.67%

CS
3 vs. 5-dpi

ko00500 Starch and sucrose metabolism 7.38e-07 1910 83

1411

5.88%

ko00230 Purine metabolism 0.00011 754 38 2.69%

ko00600 Sphingolipid metabolism 0.01862 676 27 1.91%

ko00511 Other glycan degradation 0.00232 440 20 1.63%

ko00562 Inositol phosphate metabolism 0.02406 526 22 1.56%

WY
3 vs. 5-dpi

ko04626 Plant-pathogen interaction 7.72e-06 6392 297

2232

13.31%

ko00500 Starch and sucrose metabolism 5.67e-06 1910 112 5.02%

ko00230 Purine metabolism 0.00018 754 50 2.24%

ko00600 Sphingolipid metabolism 5.44e-05 676 48 2.15%

ko00562 Inositol phosphate metabolism 0.00024 526 38 1.70%
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mycotoxins. Breeding and utilizing FHB-resistant wheat cultivars

provide effective and eco-friendly solutions to mitigate these effects.

A comprehensive understanding of the molecular mechanisms

underlying wheat-pathogen interactions has laid the genetic

foundation for wheat breeding programs aimed at combating FHB.

Recent transcriptomic studies advanced our knowledge of key

molecular pathways associated with FHB resistance and susceptibility

(Kazan and Gardiner, 2018), and will aid in identifying key genes and

mechanisms involved in the plant’s defense response. For example,

previous studies have shown that hormone biosynthesis and signal

transduction pathways actively respond to FHB infection, and
Frontiers in Plant Science 14
contribute to plant defense reaction (Biselli et al., 2018). Specifically,

salicylic acid (SA) and jasmonic acid (JA) positively affect FHB

resistance, while auxin and abscisic acid (ABA) are linked to

susceptibility of FHB. Ethylene has dual roles in the interaction with

F. graminearum (Wang et al., 2018). Additionally, resistant genotypes

exhibit early and intense expression of defense-related genes, including

those involved in redox homeostasis and secondary metabolite

biosynthesis (Xiao et al., 2013). Differentially expressed miRNAs and

lncRNAs play roles in regulating gene expression related to biotic and

abiotic stress responses, respectively (Biselli et al., 2018; Soresi et al.,

2023). Here, a comprehensive transcriptomic analysis of two Sichuan
TABLE 3 KEGG pathway enrichment analysis of miRNA-regulated DEGs in CS and WY (top 5 pathways).

Comparison Pathway ID Description q-value Gene DEG Total DEG DEG ratio

CS
0 vs. 3-dpi

ko04626 Plant-pathogen interaction 8.29e-10 6392 108

550

19.64%

ko00500 Starch and sucrose metabolism 9.02e-08 1910 45 8.18%

ko00940 Phenylpropanoid biosynthesis 0.01981 2419 35 6.36%

ko02010 Carbon metabolism 0.06503 1853 26 4.73%

ko00941 Flavonoid biosynthesis 0.00015 763 18 3.27%

WY
0 vs. 3-dpi

ko04626 Plant-pathogen interaction 6.48e-10 6392 57

218

26.15%

ko00941 Flavonoid biosynthesis 3.80e-07 763 16 7.34%

ko00195 Photosynthesis 0.01866 1642 14 6.42%

ko01200 Carbon metabolism 0.04673 1853 14 6.42%

ko00500 Starch and sucrose metabolism 0.05285 1910 14 6.42%

CS
0 vs. 5-dpi

ko04626 Plant-pathogen interaction 1.49e-12 6392 270

1705

15.84%

ko00500 Starch and sucrose metabolism 1.10e-15 1910 120 7.04%

ko02010 ABC transporters 0.00101 776 40 2.35%

ko00941 Flavonoid biosynthesis 0.00746 763 36 2.11%

ko00630 Glyoxylate and
dicarboxylate metabolism

0.00054 546 33 1.94%

WY
0 vs. 5-dpi

ko04626 Plant-pathogen interaction 3.65e-08 6392 150

900

16.67%

ko00500 Starch and sucrose metabolism 3.65e-08 1910 63 7.00%

ko01200 Carbon metabolism 0.00021 1853 50 5.56%

ko00195 Photosynthesis 0.05300 1642 35 3.89%

ko02010 ABC transporters 0.00015 776 28 3.11%

CS
3 vs. 5-dpi

ko04626 Plant-pathogen interaction 1.04e-11 6392 226

1378

16.40%

ko00500 Starch and sucrose metabolism 2.56e-08 1910 85 6.17%

ko02010 ABC transporters 7.54e-06 776 41 2.98%

ko00941 Flavonoid biosynthesis 0.00166 763 33 2.39%

ko00460 Cyanoamino acid metabolism 0.01322 700 28 2.03%

WY
3 vs. 5-dpi

ko04626 Plant-pathogen interaction 0.00223 6392 88

593

14.84%

ko00500 Starch and sucrose metabolism 0.00032 1910 38 6.41%

ko00940 Phenylpropanoid biosynthesis 0.07981 2419 34 5.73%

ko00360 Phenylalanine metabolism 3.92e-05 635 21 3.54%

ko02010 ABC transporters 0.00034 776 21 3.54%
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wheat landraces with contrasting FHB resistance (WY was resistant,

while CS was susceptible) was conducted based on the prior research

(Wan et al., 1997). Analysis of the expression and regulatory networks

of lncRNAs, circRNAs, mRNAs, and miRNAs provides a detailed view

of the regulatory differences between resistant and susceptible

genotypes.
4.2 Differential expression of lncRNAs,
circRNAs, and mRNAs

Our findings reveal significant differences in RNA expression

profiles between WY and CS at different stages post-inoculation

(Figures 1, 2). The differential expression of lncRNAs is particularly

noteworthy. Previous studies have indicated that lncRNAs modulate

the expression of defense-related genes, such as those involved in the

JA pathway, which is crucial for plant disease resistance (Chen et al.,

2023). Specific lncRNAs, like ALEX1 in rice, enhance resistance to

bacterial blight by activating JA signaling and increasing JA content

(Yu et al., 2019). Furthermore, lncRNAs can function as ceRNAs,

decoying miRNAs to regulate the expression of target genes involved

in immune responses. For instance, lncRNAs in tomato modulate

MYB transcription factors by decoying miR159, enhancing resistance

to Phytophthora infestans (Cui et al., 2020). LncRNAs have also been

shown to regulate pathogen resistance and often peak early during

pathogen invasion (Duan et al., 2020). Our results confirm this, with

WY and CS displaying substantial lncRNA activity at 3 and 5-dpi,

suggesting that early lncRNA activity is crucial for an effective defense

against F. graminearum. Moreover, the greater number of

differentially expressed lncRNAs observed in the field conditions

compared to greenhouse settings suggests that environmental factors
Frontiers in Plant Science 15
significantly influence lncRNA-mediated responses (Soresi

et al., 2023).

In addition to lncRNAs, which are known for their regulatory

roles, the circRNAs have emerged as another crucial class of

regulatory RNAs. The role of circRNAs in responding to FHB is

still not well-defined. Our data showed limited differential

expression of circRNAs in both genotypes (Figures 1, 2), aligning

with findings that indicate a reduction in circRNA expression

following F. graminearum infection, possibly due to their

involvement in fine-tuning gene expression during initial

infection stages (Yin et al., 2022). Together, these results suggest

that lncRNAs actively mediate gene regulation during early

infection, while circRNAs may play a more subdued role,

potentially involved in more sustained immune responses.

The differentially expressed mRNAs was more pronounced in

CS than in WY (Table 1), consistent with the previous studies that

susceptible genotypes often exhibit a broader transcriptional

response. This reflects a less-targeted response, activating a wide

array of genes rather than focusing on specific defense-related

pathways (Erayman et al., 2015). In contrast, resistant genotypes

like WY likely mount a more efficient and focused response,

resulting in fewer DEGs but potentially more effective pathogen

resistance mechanisms (Walker et al., 2024).
4.3 Integrated analysis of targeting
relationships among RNAs

To further understand the regulatory roles of these RNAs, we

analyzed their interactions and targeting relationships. Focusing on

miRNAs as central regulators, we observed primary targeting
FIGURE 8

Relative expression comparison for selected genes using RNA-seq and RT-qPCR data.
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relationships with mRNAs (Figure 3), particularly at 3 and 5 dpi.

This miRNA-mRNA interaction network suggests that miRNAs

play a vital role in silencing pathogen-related genes, curbing the

spread of infection and enhancing plant resistance (Jiao and Peng,

2018; MaChado et al., 2018; Fu et al., 2023). In contrast, fewer

interactions were observed when lncRNAs or circRNAs were

analyzed as the central regulators (Supplementary Figures 2,

Supplementary Figures 3). This lack of significant ceRNA

relationships at later infection stages indicates that while lncRNAs

and circRNAs may be important during initial pathogen

recognition, their influence diminishes as the infection progresses.

This temporal division of labor highlights miRNAs as the primary

regulatory players in sustained immune responses, while lncRNAs

and circRNAs contribute more to the early stages of infection.
4.4 Differential expression of up-regulated
genes and their role in wheat
FHB resistance

The differential expression analysis showed that CS had more up-

regulated DEGs than WY across all comparisons (Figures 4A, B). In

CS, the number of up-regulated genes exceeded the down-regulated

ones at all time points, indicating a stronger overall transcriptional

response to infection. However, this response was likely non-specific

and may contribute to the higher susceptibility of CS to FHB. In

contrast, WY displayed more balanced gene expression, with up-

regulated DEGs outnumbering down-regulated ones only at 3 vs. 5

dpi. This suggests that while both genotypes mount a defense response

to F. graminearum, a broader transcriptional activation of CS may lead

to an inflammatory response that fails to efficiently control pathogen

spread (Pan et al., 2018; Erayman et al., 2015).

The GO term enrichment analysis revealed differences in the

molecular functions (MF) of the up-regulated DEGs between CS and

WY (Figure 4C). At 0 vs. 3 dpi, CS showed enrichment for

phenylalanine ammonia-lyase activity and heme binding, both of

which are important for phenylpropanoid biosynthesis and

managing oxidative stress. These pathways help protect the plant

from damage and activate secondary metabolites involved in defense

against fungal pathogens (Ramaroson et al., 2022). In contrast, WY

was enriched for hydrolase activity and polysaccharide binding,

suggesting a more localized, mechanical defense, likely related to

altering the cell wall to prevent fungal invasion. At 0 vs. 5 dpi, CS

enriched for glutathione transferase activity and iron ion binding,

both involved in detoxifying reactive oxygen species (ROS) and

maintaining redox balance. These processes are crucial during

pathogen infection (Van Breusegem et al., 2008). WY, on the other

hand, showed enrichment for ATPase-coupled transmembrane

transporter activity and ATPase activity, which are involved in ion

transport and energy metabolism, possibly indicating a different or

less efficient stress response. At 3 vs. 5 dpi, CS showed enrichment for

protein kinase activity and protein serine/threonine kinase activity,

both crucial for signalling immune responses (Pan et al., 2018; Jiang

et al., 2022). The presence of phenylalanine ammonia-lyase activity in

CS also suggests ongoing activation of pathways important for

producing lignin and antimicrobial compounds. WY, by contrast,
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was enriched for glutathione transferase activity, heme binding, and

UDP-glycosyltransferase activity, which are involved in

detoxification, ROS management, and modifying secondary

metabolites (Wang et al., 2020a; Gharabli et al., 2023; Walker et al.,

2024). These differences highlight the more specialized defense

mechanisms inWY, which may explain its greater resistance to FHB.

The KEGG pathway enrichment analysis highlighted further

differences in the defense mechanisms of CS and WY (Figure 4D).

At 0 vs. 3 dpi, CS showed enrichment in the biosynthesis of amino

acids pathway, which is important for producing amino acids

needed for protein synthesis and secondary metabolite formation.

In contrast, WY enriched for plant hormone signal transduction,

suggesting that hormonal regulation (such as JA and SA) plays a key

role in its early defense response (Pieterse et al., 2012; Pan et al.,

2018). This supports the idea that the resistance of WY to FHB may

involve a more coordinated immune response, with specific

hormones activated by fungal infection. At 0 vs. 5 dpi, CS

enriched for pathways related to phenylpropanoid biosynthesis

and carbon metabolism, both crucial for stress responses,

secondary metabolite production, and energy balance during

infection. In contrast, WY enriched for glutathione metabolism

and ABC transporters, which help detoxify oxidative stress and

remove harmful substances (Wang et al., 2020b; Gullner et al.,

2018). This suggests that the resistance of WY may depend more on

detoxification and transporting stress-related compounds. At 3 vs. 5

dpi, the differences were even more pronounced. CS enriched for

plant-pathogen interaction and amino acid biosynthesis, which are

important for immune recognition and defense protein synthesis.

WY, however, enriched for glutathione metabolism and ABC

transporters, helping maintain cellular integrity during stress

(Wang et al., 2020b; Gullner et al., 2018). Additionally, WY

showed enrichment in flavonoid biosynthesis and phenylalanine

metabolism, which suggests a shift towards producing secondary

metabolites as a defense strategy to limit pathogen growth.

A detailed analysis of the up-regulated genes in the glutathione

metabolism pathway during the 3 vs. 5 dpi comparison in WY

identified 93 DEGs, of which 80 were shared between CS and WY

(Figure 4E). These genes are involved in detoxifying ROS and

maintaining cellular redox balance, which are essential for plant

defense against oxidative stress caused by fungal infection.

Interestingly, 13 DEGs were only differentially expressed in WY,

suggesting a unique resistance mechanism in this genotype. The

heatmap analysis showed that two genes, TraesCS2B03G1525600

and TraesCS6B03G0425000, had significantly higher expression

levels in CS compared to WY, which may indicate a larger-scale

response in CS, but this doesn’t necessarily mean a more effective

defense. The differences in gene expression highlight the distinct

defense strategies between the two genotypes, with WY showing a

more localized, focused response to oxidative stress.
4.5 Integrated analysis of miRNA-mRNA
targeting relationships

The results show a clear difference inmiRNA profiles between the

two wheat genotypes, especially at different time points after
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infection. At 0 vs. 3 dpi, only two miRNAs were common between CS

and WY, indicating that each genotype activates different miRNA

pathways early in the infection. However, by 0 vs. 5 dpi and 3 vs. 5

dpi, 16 and 15 miRNAs were shared between the genotypes,

suggesting a more similar response as the infection progresses.

Notably, novel_miR_228 and tae-miR1122a were key miRNAs with

different roles in the two genotypes. Novel_miR_228, which was up-

regulated in CS, down-regulated 28 and 23 genes related to defense in

CS at 0 vs. 5 dpi and 3 vs. 5 dpi, respectively (Figure 5B)

(Supplementary Figure 7B). This suggests that it may weaken the

defense response of host, making CSmore susceptible to FHB. On the

other hand, tae-miR1122a, which was down-regulated in WY, up-

regulated 27 and 23 defense-related genes in WY at the same time

points, suggesting that it helps enhance resistance in WY. These

findings support the idea that miRNAs play a role in regulating the

defense mechanisms of host in response to fungal stress, contributing

to FHB resistance (MaChado et al., 2018; Jin et al., 2020).

The GO analysis of the DEGs regulated by the identified

miRNAs revealed important molecular functions linked to FHB

resistance. In CS, novel_miR_228 down-regulated genes related to

key functions like histone acetyltransferase activity and DNA

binding, which are essential for transcription and DNA repair.

This down-regulation could weaken the ability of host to manage

gene expression and repair DNA, making it more vulnerable to

fungal damage. Genes like TraesCS1A03G0367900 and

TraesCS6B03G0592100 showed strong associations with these

functions, highlighting how F. graminearum might exploit these

weaknesses to infect the host. In contrast, in WY, tae-miR1122a

up-regulated genes involved in metal ion binding, such as

TraesCS2B03G0537600 , TraesCS2D03G0425900 , and

TraesCS6A03G0855700 (Figure 5C) (Supplementary Figure 7C).

These genes help maintain cellular stability under stress,

suggesting that they play a role in the defense of plants (Wang

et al., 2020b). The up-regulation of these genes in WY may

support antioxidant and detoxification pathways, helping the

plant cope with the oxidative damage caused by fungal infection

(Gullner et al., 2018). The significant enrichment of these genes in

WY points to their potential role in strengthening the ability of

host to resist fungal stress by binding toxic ions released by the

pathogen, thus helping maintain cellular integrity and defense

against FHB.

The comparison betweenWY and CS shows a clear difference in

how they respond to F. graminearum infection. In WY, the

expression of defense-related genes is stronger, with down-

regulation of miRNAs like tae-miR1122a and up-regulation of

their target genes involved in metal ion binding and stress

responses. This suggests that the resistance of WY to FHB may be

due to better regulation of metal ion balance, oxidative stress, and

immune signaling, all of which are essential for protecting cells

during infection. In CS, the up-regulation of novel_miR_228 and

the down-regulation of key defense genes indicate a weaker

response to the fungal infection. This may explain why CS, a

more susceptible genotype, struggles to mount a strong defense

against F. graminearum, making it more prone to disease.
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4.6 GO term and KEGG pathway
enrichment of DEGs regulated by miRNA

GO and KEGG pathway analyses further illustrate the

functional divergence between WY and CS in response to FHB.

In GO classification, the DEGs of WY were enriched in defense-

related categories, including gene silencing by RNA and defense

response (Figure 6). This enrichment suggests that WY is

genetically predisposed to actively respond to pathogen invasion,

prioritizing immune functions over general metabolic processes. In

the cellular component (CC) category, the DEGs of WY were

primarily localized to membrane and cytoplasmic components,

critical sites for pathogen recognition and signaling. In contrast,

CS displayed a more generalized distribution across organelles,

indicative of a less-targeted defense approach.

KEGG pathway enrichment revealed that immune pathways

were central to the response of WY, particularly the plant-pathogen

interaction pathway (Figure 7). This pathway was consistently

enriched across all time points, reflecting a robust immune

response in WY, channeling resources toward defense mechanisms

upon pathogen detection (Zaynab et al., 2018). Conversely, the

response of CS emphasized starch and sucrose metabolism

pathways (Table 2), suggesting a baseline metabolic stability rather

than a targeted immune response. This finding is consistent with

previous studies that susceptible genotypes often allocate resources to

general metabolism at the expense of pathogen-specific defenses

(Brauer et al., 2019).

Additionally, pathways like phenylpropanoid biosynthesis and

phenylalanine metabolism were enriched in WY but not in CS

(Table 3). These pathways are known to produce secondary

metabolites that strengthen structural defenses and stress

responses, underscoring the preparedness of WY for pathogen

attack (Zaynab et al., 2018). The divergence in pathway

enrichment between WY and CS highlights how WY allocates

resources more strategically, channeling efforts toward immune

functions while CS appears to prioritize metabolic maintenance.

This strategic resource allocation likely contributes to enhancing the

resistance of WY to FHB.
4.7 Role of miRNAs in regulating
defense mechanisms

This study highlighted the critical role of miRNAs in response

to FHB resistance. miRNAs are known to target specific mRNAs,

modulating gene expression in response to stressors, including

pathogens. For example, miRNAs are integral to the defense

mechanisms of plants against pathogens. They regulate the

expression of genes involved in phytohormone signaling, ROS

production, and nucleotide-binding site-leucine-rich repeat (NBS-

LRR) gene expression, which are critical for mounting an effective

defense response (Yang et al., 2021). The interaction between

miRNAs and lncRNAs complicated this regulatory network,

further fine-tuning the immune response of plants (Song et al.,
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2021). We found that WY exhibited a notably stronger miRNA

response than CS, particularly at later infection stages (Table 1).

miRNAs in WY were enriched in defense-related pathways such as

glutathione metabolism and plant-pathogen interactions, crucial for

oxidative stress regulation—an essential factor in plant defense that

limits pathogen spread (Dorion et al., 2021). The enrichment of

miRNAs in plant-pathogen interaction pathways supports their role

in enhancing immune responses, allowing WY to recognize and

respond more effectively to F. graminearum invasion. In contrast,

miRNA pathways in CS were predominantly linked to general

metabolic processes rather than defense-specific responses,

suggesting that the miRNAs of CS may not be primed for

targeted pathogen defense. This aligns with previous studies that

susceptible genotypes often prioritize maintaining metabolic

homeostasis over rapid immune activation, leaving them more

vulnerable to pathogens (Brauer et al., 2019). These differences

indicate that miRNAs in resistant genotypes like WY are more

adept at regulating specific pathways linked to pathogen defense,

facilitating a faster and more efficient immune response.

In summary, this study provides valuable insight into the

molecular mechanisms underlying FHB resistance in two Sichuan

wheat landraces WY (HR) and CS (HS). Through a comprehensive

transcriptomic analysis, we identified distinct differences in how these

two genotypes respond to F. graminearum. The resistant genotype,

WY, showed a targeted miRNA response, particularly at later

infection stages, which effectively regulated pathways important for

defense, such as glutathione metabolism and phenylpropanoid

biosynthesis. In contrast, the susceptible genotype, CS, exhibited a

broader transcriptional response focused more on general

metabolism than specific pathogen defense. Our findings

emphasize the critical role of miRNA-mRNA interactions in

enhancing the resistance of WY. Although lncRNAs and circRNAs

were also involved in resistance, their contributions were limited in

comparison with miRNAs. This research not only emphasized the

importance of miRNA-mediated defense mechanisms but also

suggested potential molecular targets to improve FHB resistance in

breeding programs. Future studies should focus on validating these

pathways and incorporating deep learning method and genomic

selection (GS) (Chen et al., 2024; Wang et al., 2024b; Ma et al.,

2024) techniques to develop more resilient wheat varieties, ensuring

sustainable wheat production amid ongoing challenges posed by

FHB disease.
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