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Analyses of crop yield dynamics
and the development of a
multimodal neural network
prediction model with
G×E×M interactions
Saiara Samira Sajid1*, Zahra Khalilzadeh1, Lizhi Wang2

and Guiping Hu2

1Iowa State University, Industrial Manufacturing & Systems Engineering, Ames, IA, United States,
2Oklahoma State University, Industrial Engineering & Management, Stillwater, OK, United States
This study investigated how genotype, environment, and management (G×E×M)

interactions influence yield and highlight the importance of accurate, early yield

predictions for effective farm management and enhancing food security. We

developed a yield prediction model capable of determining field-level outputs

based on comprehensive data inputs, including genotype, spatial, temporal,

environmental, and management factors. Among tested models—LASSO,

Random Forest, XGBoost, single-modal CNN-DNN, and multimodal CNN-DNN—

the multimodal CNN-DNN ensembled with XGBoost demonstrated superior

performance. Applied to the G2F dataset covering 21 states from 2014 to 2021

across various treatments (i.e., standard, drought, irrigation, disease trials), the

model excelled particularly in stable historical yield settings (RMSE 2.36 Mg/ha for

standard treatment) with an overall RMSE of 2.45 Mg/ha. Additionally, we

introduced an empirical tool for identifying high-yield hybrids suitable for

standard and challenging conditions. Exploratory analysis confirmed that crop

yields vary greatly by hybrid and location interaction and that late planting

generally yields less than standard timing. Customized management strategies

based on specific local and hybrid conditions are crucial for optimal yield outcomes.
KEYWORDS

genotype, planting date, high-yield hybrid classification, precision farming, multimodal
CNN-DNN
1 Introduction

To ensure global food security, establishing a sustainable food supply chain is essential.

A major factor in achieving this sustainability is enhancing crop productivity and

developing precise crop prediction models. Crop yields are shaped by multiple

influences, such as environmental conditions, crop hybrids, and farming practices.
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Gaining a deeper understanding of these factors is key to improving

decision-making and improving productivity. Moreover, precise

yield predictions can aid informed management decisions

throughout the growing season, guiding resource allocation and

ultimately helping secure a reliable future food supply.

The timing of planting is an important farm management

decision that greatly influences crop yield (Swanson and Wilhelm,

1996; Lauer et al., 1999; Darby and Lauer, 2002; Anapalli et al., 2005;

Williams, 2006; Van Roekel and Coulter, 2011), while the optimal

planting date varies based on crop hybrid (Masud Rana et al., 2024).

The effect of the planting date also changes by location due to

environmental factors, with some areas experiencing a more

significant impact on yield due to planting decisions (Mrubata

et al., 2024). Additionally, the planting date interacts with soil

properties (Bollero et al., 1996) and fertilizer application

(Hankinson et al., 2015; Kaiser et al., 2016), influencing yield

response. Compared to early or planting at the right time, late

planting results in higher yield reduction (Moseley et al., 2024).

Hence, planting time recommendations should be customized to

location and crop hybrid. In this study, we examined the influence

of planting dates on yield across various geographic regions and

weather conditions to develop a more comprehensive

understanding of their impact on crop productivity.

Selecting crop hybrids that are resilient to diverse weather

conditions and soil properties is essential, particularly for areas

susceptible to extreme weather events like drought or disease

outbreaks. Using available tools to understand genetic variation

and support crop improvement can be complex and challenging

(Heffner et al., 2009; Scheben et al., 2017; Nuccio et al., 2018).

Dobermann et al. (2003) empirically classified yield and discovered

that yield clusters account for 60-66% of the yield variability.

Additionally, Maestrini and Basso (2018) demonstrated that

historical yield distributions from locations with stable data can

provide accurate yield predictions. Combining these concepts, our

work developed an empirical hybrid classification method to

identify hybrids that are well-suited for varying weather

conditions and are straightforward to use for making

management decisions.

The complex interaction among meteorology, soi l

characteristics, management decisions, and genomic traits of

hybrids with crop yield makes the prediction task challenging.

Recent advances in crop genomics have paved ways to access

genotype data that provides insights into how these genetic

factors shape crop characteristics (Mir et al., 2019). However,

incorporating genotype data, among other factors, adds to the

complexity of the task, primarily due to the high dimensionality

of the data.

Machine learning (ML) models have demonstrated noteworthy

success in handling high-dimensional data. These models are

trained based on historical data to establish the mapping function

that links the input variable to the output (Medsker and Jain, 2001).

Their effectiveness in predicting crop yield has been substantiated

by various studies (Everingham et al., 2016; Cunha et al., 2018;

Kouadio et al., 2018; Filippi et al., 2019; Shahhosseini et al., 2020,

2021a; Bali and Singla, 2021; Paudel et al., 2022; Sajid et al., 2022).
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These investigations highlight the ML model’s ability to

comprehend intricate relationships between yield, environment,

and management.

Moreover, neural networks (NN) have also proven their efficacy

in capturing the intricate relationship between weather, soil,

management decisions, and yield (Wang et al., 2018; Nevavuori

et al., 2019; Elavarasan and Durairaj Vincent, 2020; Haque et al.,

2020; Khaki et al., 2020; Shahhosseini et al., 2021b; Oikonomidis

et al., 2022). For example, Shahhosseini et al. (2021b) developed an

ensemble convolutional neural network (CNN)-deep neural

network (DNN) architecture to predict corn yield for the US corn

belt using weather, soil, and management inputs. Kolipaka and

Namburu (2024) proposed a heuristic approach integrating CNN-

DNN and long-short-term memory (LSTM) for yield prediction

across various datasets. However, these studies have primarily

focused on crop yield’s interaction with environmental and

management aspects, often overlooking the incorporation of

genotype data into their prediction models.

In addition to environmental (E) and management decisions

(M), genotype (G) plays a pivotal role in crop yield (Beres et al.,

2020; Lopez-Cruz et al., 2023; Fernandes et al., 2024). Gambin et al.

(2016) discovered that G �E interactions significantly impact crop

yield in a study conducted in Argentina. However, complexities

arise, as genetic selection can result in traits unique to new varieties

even under the same environmental conditions. The complexity

further escalates when considering a wide range of environmental

and management conditions (Oakey et al., 2016). Additionally, the

high dimensionality of genotype data adds another layer of

complexity to predicting G �E interactions.

Some studies have utilized ML and NN models alongside plant

genetics to predict plant phenotype traits (Ma et al., 2018;

Montesinos-López et al., 2018a; b; Crossa et al., 2019; Grinberg

et al., 2020; Shook et al., 2021). Notably, Khaki and Wang (2019)

employed a DNN architecture to predict yield from G �E

interactions for new hybrids. A recent study by Dhaliwal and

Williams (2024) demonstrated that Random Forest (RF) could

predict yield for sweet corn at the field level using weather,

spatial , temporal , and genetic data. ML models have

demonstrated superior prediction accuracy compared to the

genomic prediction tool, genomic best linear unbiased prediction

(GBLUP). GBLUP lacks consideration for non-linear relations and

exhibits limitations compared to ML models (Danilevicz et al.,

2022). Sarzaeim and Muñoz-Arriola (2024) further combined

genetic prediction models with global sensitivity analysis and

highlighted weather as a key factor in yield forecasting. Moreover,

Washburn et al. (2024) highlighted that diverse modeling

approaches enhance predictabi l i ty when consider ing

G×E×M interactions.

In the context of using genotype data for phenotype predictions,

NN have shown potential; however, their full capabilities remain

largely unexplored (Danilevicz et al., 2022). Multimodal model

architectures designed for multi-source data have shown

improved predictability for high dimensional data (Baltrusaitis

et al., 2019; Maimaitijiang et al., 2020; Shahhosseini et al., 2021b;

Mia et al., 2023; Yu et al., 2024). In this study, we built a multimodal
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NN model to predict crop yield given weather, soil, environment,

genotype, and location information.

This research utilizes the dataset provided in the G2F

competition (Lima et al., 2023) and aims to examine the factors

influencing agricultural productivity and predict yield by

incorporating G×E×M interactions. The study includes a

statistical analysis of factors impacting crop yield and the

development of a prediction model. The analysis of hybrid maize

yield across different environments in the first part is to understand

qualitatively and quantitatively the G×E×M interactions, which

motivated the design of our prediction model in the second part.

The proposed multimodal NN architecture considers various

elements such as weather, soil, environment, genotype, temporal

and spatial factors to make field-level predictions. Additionally, this

research seeks to understand the influence of these factors and to

develop effective methodologies for enhancing decision-making to

improve agricultural results. This research has three objectives: a) to

explore historical data and identify factors influencing productivity;

b) to create a hybrid selection tool for normal and extreme

conditions (e.g., drought, disease outbreaks); and c) to develop a

predictive model for different hybrids based on G �E �
M interactions.
2 Materials and methods

This study aims to identify the prevailing factors impacting crop

yield and assist decision-makers in agricultural production. To

determine the factors influencing crop yield, an exploratory

analysis was first conducted to gauge the effect of place, hybrid

varieties, and approaches to management. Subsequently, to aid in

hybrid selection, a tool was developed to identify hybrids that

perform well even in extreme scenarios. Finally, a yield prediction

model was constructed using genotype, meteorological data, soil

data, and management practices to provide a reliable estimate of

crop yield.
2.1 Data sources and preprocessing

The data used in this study were adapted from the G2F initiative

(Lima et al., 2023; The Genomes To Fields Initiative, 2023),

encompassing over 180,000 cornfield plots in 217 different

environments. A detailed description of the data used in this

study is provided in Genomes to Fields (2023). The dataset

comprises six distinct files, providing trait data, metadata, soil

data, weather data, genotype data, and environmental data. The

primary key employed for joining across the data sources, excluding

genotype data, is “Env,” a combination of location and evaluation

year. The genotype data was integrated with trait data using

“Hybrid” as the key index.

2.1.1 Metadata
The metadata includes details on the location, irrigation,

planting date, specific issues encountered during the season, and
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agronomic management treatments, with the primary key being

“Env.” The data covers locations from 21 states with various

treatment types: standard, drought, irrigated, disease trial, early

planting, late planting, late stressed, and dryland. Missing values for

treatment were imputed using the mode of the column (standard

treatment). Issues were manually classified into six categories based

on raw comments: animal attack, data issues, drought, storm, no

issues, and miscellaneous. The planting date, originally in date

format, was converted to the day of the year format.

2.1.2 Weather data
Daily records of 16 distinct weather features were available from

2014 to 2021. Initially formatted longitudinally with the primary

keys “Env” and date, the dataset was subsequently transformed into

a wide format for modeling purposes. In this format, the primary

key became “Env,” and the feature values for each day were

t r ansposed in to co lumns , ident ified by names l ik e

“FeatureName_DayOfYear.” Furthermore, this wide dataset was

subjected to additional preprocessing to aggregate the daily weather

features into a weekly format.

2.1.3 Soil data
The soil data contained 23 fundamental soil information, with

an absence of data for the year 2014. To tackle this issue, missing

values for the respective features were imputed using the mean

value from other years at the same location. Despite this

imputation, certain locations still lacked soil features. To resolve

this, a secondary imputation was performed, replacing missing soil

values with the mean value of the corresponding state.

2.1.4 Environmental data
The variables in the environmental data are simulated outputs

from crop simulation software named Agricultural Production

Systems sIMulator (APSIM) developed by Lopez-Cruz et al.

(2023). The data set included various simulated soil features such

as the water supply-demand ratio, extractable soil water ratio, water

movement (upwards and downwards), nitrogen leaching as NO3,

soil water content, and plant-available water. These features were

recorded at 10 different depths and 9 phenological stages of

the crop.

The data also included simulated phenological features such as

grain yield, above-ground biomass, water table, and leaf area index

at 9 phenological stages of the crop. However, some simulated

variables had missing values for certain location-year combinations.

These missing values were imputed using the mean value of the

respective feature for the same location.
2.1.5 Genotype data
The initial genotype data encompassed information for 434,893

loci for 4928 hybrids. This data was preprocessed to structure the

first column as the hybrid ID, while the following columns

contained details on various loci. Out of these loci, the loci with

missing values were dropped, which reduced the number to 45,846.

It was observed that for those loci, more than 80% of hybrids had
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missing values. Hence, those loci were disregarded in future steps.

The genotype data had values “0/0”, “0/1”, “1/0”, and “1/1” for the

majority of the data. However, less than 5% of the entire data had

some different values such as: “2/0”, “0/2”, “2/1”, “1/2”, “2/2”, “3/0”.

A data encoding logic was applied where “0/0” was encoded as 0, “0/

1” or “1/0” was encoded as 0.5, and “1/1” was encoded as 1, while

any other values were encoded as 0.15. Encoding categorical values

as numeric values is a well-established technique for representing

DNA sequence data (Ma et al., 2018; Montesinos-López et al.,

2018a; b; Khaki and Wang, 2019; Grinberg et al., 2020).

To reduce the dimensionality of genotype data, one strategy

involves selecting loci with unique variations (Monroe et al., 2020).

An empirical rule was applied to choose loci with diverse

information. After encoding, loci where less than 4000 hybrids

have a value of 0 and at least 1000 hybrids have a value of 0.5 and do

not have 0.15 were selected. This selection reduced the number of

loci to 4,227 while ensuring that loci do not have only zeros for all

hybrids and identify loci where hybrids have different values. From

these, 4,227 loci randomly, 300 were selected and used in the

following analysis steps. Interestingly, the models indicated that

performance remained consistent when using any randomly

selected 300 loci from the full set of 4,227.
2.2 Data exploration

Data exploration was conducted to understand yield variations

across different locations, such as states, by examining yield

distribution and mean yield response. The dataset included yield

values for various treatment types, including drought, irrigation,

and late planting disease trials. The impact of these different

treatment types on yield was analyzed and found that planting

date had a significant impact on yield. Hence, the study investigated

yield variations based on different planting dates.

Yield distribution across states: To understand yield distribution

across states, the yield distribution for each state was visually inspected

and compared. Additionally, new features were created to determine

the mean yield for each hybrid and state combination, which were

then used in building the yield prediction model.

Yield distribution across treatment types: Another focus was on

understanding how yield varies across different treatment types. For

example, to examine how yield distribution changes from standard

conditions to drought conditions, the yield distributions for various

treatment types were compared, along with the mean yield for each

treatment type.

Impact of planting date on yield: The planting date is one of the

vital decisions in plant management (Dobor et al., 2016). While

optimum planting dates vary based on spatial location (Thorburn

et al., 2017), and in some locations, late planting can reduce crop

yield (Tsimba et al., 2013). In this research the impact of planting

date was analyzed across 20 states and considering more than 4000

crop hybrids. The impact of planting date on yield was analyzed by

the following five-step:
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Step 1: Compare the yield distribution for different planting

dates across states.

Step 2: Identify planting date and state combinations

corresponding to lower or higher yield.

Step 3: Identify hybrids with lower or higher yields.

Step 4: Compare those hybrids’ standard planting time with

planting time in other treatments.

Step 5: Compare those hybrids’ yield distribution in standard

planting time versus different planting time (early or late).
First, yield distributions for different planting dates were

visualized and compared in terms of mean and standard

deviation. The second step of the analysis revealed that the “late

planting” treatment resulted in lower yields in Texas. In the third

step, hybrids planted during the late-planting period were

identified, and their planting dates in standard, drought, and

irrigation treatments were compared in the later step. Finally,

yield distributions at the hybrid level were compared for standard

and late planting treatments to understand the impact of planting

date on hybrids.
2.3 High-yield hybrid identification

We developed a tool to identify hybrids with higher yields across

various treatment types. The tool aids in selecting high-yield hybrids

for specific scenarios. To build this tool, the yield distribution of each

hybrid was analyzed in the first step. In the next step, an empirical

classification logic was established using the maximum, minimum,

median, and mean yields of each hybrid (Figure 1). In the last step,

these classification rules were used to create a heatmap, where each

box and its color represent a hybrid’s yield performance for a

treatment type. High-yield hybrids can be identified by visually

locating those in the high-yield group across all treatments.
2.4 Predictive modeling

A yield prediction model was developed by integrating

genotype, environment, and management data. Various modeling

approaches were explored, including linear models, tree-based

models, and neural networks. To enhance model performance,

new features were created before building the prediction model.

After evaluating the performance of different models, an ensemble

of tree-based models and neural networks demonstrated the best

performance. The model was trained on data from the year 2014 to

2020, and 2021 served as an independent testing set.

This section outlines the methodology for the proposed

prediction model across three subsections. Subsection 2.4.1

introduces additional features engineered to enhance model

performance, derived from patterns and insights identified during

the earlier exploratory analysis. Subsection 2.4.2 details the baseline

models used for performance benchmarking. Subsection 2.4.3
frontiersin.org
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provides a detailed explanation of the hybrid CNN-DNN +

XGBoost model, describing how heterogeneous data sources

(genotype, environment, and management) are processed and

integrated through separate input channels to effectively capture

complex interactions. The section systematically covers all steps

leading up to prediction, including data processing, feature

engineering, and model comparison.
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2.4.1 Feature engineering
2.4.1.1 State and hybrid-level features

To account for how yield may vary by hybrid and state, features

were generated for each hybrid-state combination by calculating the

mean, maximum, and minimum yields using data up to 2020, the

final year of the training set. For the test year 2021, there were many

new hybrid-state combinations. Since this data was unavailable in
FIGURE 1

Empirical hybrid classification rule based on yield distribution.
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the training set, missing values were imputed by averaging the mean

and mode of the column grouped by state. These features were then

incorporated into the prediction model.

2.4.1.2 Hybrid level features

A set of features was created at the hybrid level to help the

model understand yield distribution variations by hybrid. For each

hybrid, the mean, maximum, and minimum yields during training

were calculated and used as features. Since some hybrids appeared

only once or twice in the training data, their mean, maximum, and

minimum yields did not adequately represent their yield

distribution. To address this, two additional features were created

to represent the mean yield of both hybrid parents.

2.4.1.3 Yield trend feature

The yield trend feature was generated at the state level due to

incomplete yearly yield data for individual fields. A univariate linear

regression model was applied to each state’s yield values from the

training years. The yield trend for year n was then calculated using

the regression coefficients (Equation 1).

yield   trendsn = aso + as1(n) (1)

Where,

yield trendsn = yield trend for state s in year n.

aso = intercept for state s.

as1 = slope for state s.

2.4.2 Base learning models
2.4.2.1 LASSO

Lasso is a linear regression variant with an L1 regularization feature

in the model’s loss function, which helps to build a model with only

important features by assigning zero to less important ones, thus

avoiding overfitting (Tibshiranit, 1996; James et al., 2013). In this

research, Lasso was implemented using the scikit-learn package

(Buitinck et al., 2013) in Python to make yield predictions. The

optimal L1 regularization penalty was set to 0.05 based on a grid search.

2.4.2.2 Random Forest regressor

Random Forest (RF) is an ensemble tree-based model that

creates multiple uncorrelated trees using a bootstrap resampling

method (Breiman, 2001; Cutler et al., 2007). Each tree is constructed

on a subsample of data and a subset of input features (Brown, 2017),

continuing this process until all trees are formed (Cutler et al.,

2007). For regression, the final prediction is the average of these

trees. This research implemented the RF model using the

RandomForestRegressor from the scikit-learn package (Buitinck

et al., 2013). Hyperparameters were selected through a grid search,

while default values were used for other parameters (Table 1).

2.4.2.3 XGBoost regressor

The gradient-boosting tree-based model, XGBoost, was

employed for yield prediction. This model learns sequentially from

weak learners, with trees generated using the “exact” method (Chen

and Guestrin, 2016). The final prediction is made by aggregating all
Frontiers in Plant Science 06
weak base learners. Optimal hyperparameters for the best-performing

model were found using a grid search method (Table 2).

2.4.2.4 Single modal CNN-DNN

A single-modal CNN-DNN model was designed to predict

yield, combining all numerical data sources and encoding

categorical features (Figure 2). These inputs were passed through

an 8-layer CNN-DNN model. The input layer was followed by two

1D CNN layers with 32 and 16 filters, respectively, both having a

kernel size of 5 and an average pooling layer. This was connected to

two more 1D CNN layers, followed by a flattening layer and three

fully connected layers. The final fully connected layer served as the

output layer for yield prediction (Table 3).

2.4.3 Proposed CNN-DNN with XGBoost model
The proposed CNN-DNN with the XGBoost model is an

ensemble model that combines CNN-DNN and XGBoost models.

The XGBoost model was trained on metadata and features

representing mean yield at the state level, hybrid level, and

hybrid-state yield combinations. Meanwhile, the CNN-DNN

model was trained on weather, soil, environmental (from

APSIM), genotype data, and metadata.

For the weather block, the 16 district weather features from

weeks 1 to 48 were converted into a 3D array. The input layer for

the weather block had a shape of (n×48×16) to maintain the time

sequence, which then passed through two 2D CNN layers, followed

by average pooling, flattening, and dense layers (Figure 3).

The 23 soil features and 300 genotype features lacked any specific

order, so the soil and genotype blocks used 1D-CNN layers. The

metadata included categorical features, such as “field location” and

“crop rotation,” which were incorporated into the CNN-DNNmodel

and processed through two embedding layers. These embedding

layers, along with other numerical features, were then passed

through two 1D-CNN layers followed by a flattening layer (Figure 4).
TABLE 1 Optimum hyperparater values used for RF Regressor.

Hyperparameter Value

Maximum depth: 15

Maximum number of features: Square-root of total number of features

Minimum sample required to split: 15

Number of trees: 400
TABLE 2 Optimum hyperparater values used for XGBoost Regressor.

Hyperparameter Value

Maximum depth: 5

Eta (step size shrinkage): 0.05

Sub sample: 0.75

Number of trees: 4000
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Environmental features included soil-related data at 10 depths and

9 phenological stages, except for the Flow feature, which had values at 9

depths and 9 phenological stages. These soil features were reshaped to

(n×10×9), while the Flow feature values were reshaped to (n×9×9).

Each feature passed through two 2D CNN layers, followed by average

pooling, flattening, and dense layers. The environmental soil block

comprised 7 separate CNN blocks, which were concatenated to form

the output of the environmental soil block (Figure 5).

The CNN-DNN model includes six separate CNN blocks for

different types of input data, with five blocks having similar

architectures. Each block contains two CNN layers followed by

average pooling, flattening, and dense layers (Figure 3). Depending

on the input features, some blocks used 1D CNN layers, while

others used 2D CNN layers (Figure 6).

The output of all six blocks was concatenated and passed

through two fully connected layers with L1-regularization to

avoid over-fitting on training data (Figure 6). The number of

kernels, filters, and activation functions used in each layer is

detailed in Table 1 of Supplementary Material

The proposed architecture employed the exponential linear unit

(ELU) activation function for all layers except the output layer. The

choice of ELU over the rectified linear unit (ReLU) was based on its

advantage in allowing negative values, thereby causing the unit

activations to approach zero with reduced computational

complexity (Clevert et al., 2015). Following is the mathematical

formula used in ELU activation

ELU with a > 0,

g(x) = x                                       if   x > 0

g(x) =  a( exp (x) − 1)         if   x ≤ 0
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XGBoost with oversampling: To improve predictability for

drought, disease trials, or late planting time, oversampling was

applied to the training set because there were fewer observations for

these treatments compared to the standard treatment. For each

treatment type, excluding standard and late planting, 4,000 samples

were randomly selected with replacement. As the training data had

no treatment corresponding to the late planting scenario, an

additional 1,000 samples were selected from each treatment type,

renaming the treatment type to late planting, resulting in an

additional 25,000 observations along with the real data. This

oversampled data was used to build the prediction model, using

only metadata, hybrid-level, and state-hybrid-level yield features

(Figure 6). The XGBoost model was employed for prediction with

hyperparameters selected from a grid search approach.

The predictions from the XGBoost model and the CNN-DNN

model were combined using a weighted average. To determine the

optimal weights for combining CNN-DNN and XGBoost, we

performed a grid search by varying the weights in 0.1 increments.

The optimal weights were assigned as 0.1 to the XGBoost model

predictions and 0.9 to the CNN-DNN model predictions.

All models, baseline models, and proposed CNN-DNN with

and without XGBoost, were evaluated in terms of multiple metrics.

Those are root mean squared error (RMSE), relative root mean

squared error (RRMSE), mean absolute percentage error (MAPE)

and Pearson correlation. The model with the lowest RMSE, RRMSE,

MAPE and higher Pearson correlation was selected for prediction.

RMSE is calculated utilizing Equation 2.

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)
2

n

s
(2)

RRMSE is calculated using Equation 3.

RRMSE =  
RMSE
my

(3)

MAPE is calculated by Equation 4.

MAPE =  o
n
i=1 yi − ŷ ij j
my

(4)

Pearson correlation is calculated through Equation 5.

Correlation = o(yi −my)(ŷ i −mŷ )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(yi −my)

2o(ŷ i −mŷ )
2

q (5)
FIGURE 2

Single modal CNN-DNN architecture with four 1D CNN layers followed by two fully connected dense layers.
TABLE 3 Hyperparater values used for Single modal CNN-DNN.

Hyperparameter Value

Maximum depth: 3

Eta (step size shrinkage): 0.01

Learning rate: 0.01

Sub sample: 0.15

Colsample_bytree: 0.15

Number of trees: 400
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where,

yi is the ith obsevarion of the response variable.

ŷ i is the ith prediction of the response variable.

my  mean of the obsevred response variable.

mŷ  mean of the prediction of  response variable.
3 Results and analyses

This section presents the findings from analyzing factors

impacting crop yields, including location, hybrids, and

management decisions. Additionally, it includes the hybrid

classification results using the empirical rule-based tool for

identifying high-yield hybrids in different conditions (i.e.,

drought, disease trail). Finally, the results and performance

evaluations of the predictive models are provided.
3.1 Exploratory analysis

Exploratory analysis was conducted to assess the impact of

G×E×M factors on crop yield and identify those with the greatest

influence. The analysis specifically examined the effects of location,

management practices, and hybrid type on crop yield.

Yield distribution across states: A comparison of mean yield and

the number of unique hybrids planted at the state level revealed that

areas with lower mean yields tend to have fewer hybrid varieties.

For instance, states like Colorado, South Dakota, Arkansas, and

South Carolina have 235 to 958 hybrid varieties, with mean yield
Frontiers in Plant Science 08
ranging from 5.12 to 6.92 Mg/ha. In contrast, states such as Iowa,

Illinois, and Indiana have mean yield ranging from 10.87 to 11.30

Mg/ha, with more than 1,500 different hybrids planted. This

suggests that states with a higher number of different hybrids

tend to have higher average yield (Figure 7).

Further analysis of yield distribution at the state level revealed

significant variation among states. For instance, Iowa, Illinois,

Indiana, and Missouri have unimodal yield distributions, though

the mode varies. Conversely, other states, Arkansas and Kansas

display a bimodal distribution, indicating that yield distribution

varies based on demographic locations (Supplementary

Material Figure 1).

Further analysis compared hybrids planted across multiple

states (Figure 8). The yield distribution comparison revealed that

a hybrid with a high yield in one state might have a lower yield in

another. For example, the hybrid “2369/LH123HT” has its 25th

percentile yield above 10 Mg/ha in states like Delaware, Iowa,

Illinois, Indiana, Michigan, Ohio, Wisconsin, and Georgia.

However, in Colorado, South Carolina, and Arkansas, its 75th

percentile yield is less than 8 Mg/ha. Conversely, hybrids like

“B73/MO17” and “B73/PHN82” have higher mean yields in

Colorado compared to “2369/LH123HT.” This indicates that a

hybrid’s high yield in one location does not guarantee similar

performance elsewhere, highlighting the crucial role of hybrid-

environment interactions in crop yield.

Yield distribution across treatment types: The yield distribution

varies across different treatments (Figure 9). Standard treatment has

the highest mean yield (~10 Mg/ha) and higher values at the 25th

and 75th percentiles. Treatments such as irrigation, disease trials,
FIGURE 3

CNN block architecture. Two CNN layers are followed by an average pooling, flattening, and fully connected layer.
FIGURE 4

CNN block with embedding layers. The embedding layers and numeric metadata are concatenated, which is then followed by two 1D CNN layers
and a flattened layer.
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dry land, and late stress show lower mean yield values than standard

treatment, indicating reduced yield under these agronomic

conditions. The yield distribution for drought conditions is

bimodal, with modes at 6 Mg/ha and 12 Mg/ha, indicating that

yield in drought can be moderate or lower. While, in Texas, the late

planting treatment caused the lowest yield, highlighting the

significant impact of planting decisions on yield. This observation

prompted a detailed analysis of the planting date’s effect on

crop yield.

Impact of planting date on yield: The five steps mentioned in

section 2.2 to analyze the impact of planting date were applied to the

entire data. The analysis starts with identifying the difference in
Frontiers in Plant Science 09
yield distribution for different planting dates and expanding to yield

distribution for hybrid and planting date combinations.

Step 1- Yield distribution comparison for different planting

dates across states:

The impact of planting dates on yield varies significantly across

states (Supplementary Material Figure 2). For instance, in Georgia,

planting in mid-May (day 132 of the year) results in a higher yield

distribution mean, while in South Carolina, planting after April

(day 120) yields a lower mean. States in close geographical

proximity often have similar planting dates. For example, Iowa,

Illinois, and Nebraska typically plant from late April (day 114) to

the end of May (day 150). Conversely, in warmer states like Texas,
FIGURE 5

Environmental soil feature block, where each soil feature at different soil depths and phenological stages passes through 2D CNN layers. At the end,
outputs from the soil features are concatenated.
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FIGURE 7

Mean yield variation in different states along with different numbers of hybrids planted. Yellow circles represent mean yield, while a larger circle
corresponds to higher yield. The colors represent the number of unique hybrids planted, where sky blue is for lower hybrid variety.
FIGURE 6

Proposed CNN-DNN framework with XGBoost model. The weather data, environmental soil data (from APSIM), and environmental phenological
data (from APSIM) flow through separate 1D CNN blocks, while the soil data and genotype data pass through 1D CNN blocks. The metadata passes
through the 1D CNN layer with embedding layers. The output of all the blocks is concatenated, followed by the DNN layer and the output layer. This
yield prediction is ensembled with the yield prediction from XGBoost, trained on hybrid and state-level yield features only.
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planting dates range from early March to early May (day 60 to day

128). Therefore, what is considered early planting in colder regions

might be late for warmer locations, indicating that the impact of

planting dates on crop yield varies by location.

Steps 2 & 3- Identify planting date, state combinations, and

hybrids corresponding to lower yield:
Frontiers in Plant Science 11
In Texas, planting around mid-April (day 99) resulted in lower

yield distribution and was categorized as a late planting condition.

Further analysis was conducted at the hybrid level, selecting 21 hybrids

planted late in Texas with yield data across all treatments. These hybrid

IDs are encoded in letters and, in the rest of the paper, will be presented

using these letters as given in Table 2 of Supplementary Materials.
FIGURE 8

Variability in crop yield distribution across locations for the same hybrid.
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Step 4 – Comparing selected hybrids’ planting time in a

standard scenario with other treatments:

The standard treatment planting date distribution revealed that

these hybrids are typically planted in Texas in the third week of

March (day 80). For colder locations, the planting dates for these

hybrids ranged from mid-April to the end of May (days 107 to 150)

(Figure 10). These dates were considered standard based on the local

weather conditions. The planting periods for these hybrids were also

examined for other treatments: early May to late May (days 125 to

150) for drought treatment, the last two weeks of May (days 140 to

154) for disease trials, and mid-March to mid-May for dryland

(Supplementary Material Figure 3). These planting windows for

other treatments in various locations align with the standard

planting times. The mid-April planting date in Texas is outside the

standard planting window for these hybrids for that location.

Step 5- Compare hybrids’ yield distribution in standard

planting time versus late planting time:

Comparing these hybrids’ yield distribution in standard

treatment and late planting time revealed that yields were lower

when planting dates differed from the standard time (Figure 11). All

21 hybrids exhibit substantially lower yield distribution when

planted late in the season.
3.2 High-yield hybrid identification tool

The visual tool for identifying hybrids is color-coded based on

their yield categories: extremely low, low, moderate, wide range,

high, and extremely high. These classifications are derived from the

yield distribution rules outlined in section 2.3 that use empirical
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classification based on yield distribution (Figure 1). A prototype of

the visual tool includes 21 hybrids commonly found across various

treatment types. Red indicates hybrids with extremely low yields in

all treatment combinations, while blue represents hybrids with

extremely high yields (Figure 12).

This tool aids in selecting high-yield hybrids, particularly for

locations prone to drought, dryland, and disease. For example,

hybrids such as TX7777/LH195 (U), PHW52/PHN82 (T), F42/

OH43 (O), F42/H95 (M), CG444/CGR01 (L), B37/MO17 (H), and

B37/OH43 (G), which correspond to high yield categories in both

standard and drought conditions, are ideal choices. It helps identify

hybrids with moderate to high yields across most treatment types.

For instance, the hybrid TX777/LH195(A) is suitable for scenarios

involving disease attacks, drought, and standard conditions. The

tool can be modified to suggest hybrids suited for specific treatment

types for a broader selection.
3.3 Yield prediction and analysis

The prediction model was trained on data from 2014 to 2020,

including yield scenarios from 21 states. The training data had a

mean yield of 9.44 Mg/ha, with a standard deviation of 2.99 Mg/ha,

and ranged from a minimum of 0.5 Mg/ha to a maximum of 23.27

Mg/ha. This demonstrates a wide range of yield values across

different states in the training data. The prediction models were

evaluated using yield values from 2021, which had a mean of 10.04

Mg/ha. The yield distribution for the test year differed from the

training years, with a standard deviation of 2.78 Mg/ha and yields

ranging from 0.58 Mg/ha to 18.77 Mg/ha.
FIGURE 9

Yield distribution for different treatment types. The standard condition has a distribution with the highest mean, and late planting treatment has the
lowest mean.
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Figure 13 compares the yield distributions across training and

testing sets for various U.S. states, including Delaware (DE),

Georgia (GA), Iowa (IA), Illinois (IL), Indiana (IN), Nebraska

(NE), New York (NY), Texas (TX) and Wisconsin (WI). The

analysis indicated significant discrepancies between the yields in

training and testing periods at the state level. For example, in Iowa,
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the training set’s average yield was 11.5 Mg/ha, which decreased to

10.12 Mg/ha during the test year. Texas exhibited a reduction from

8.4 Mg/ha in the training set to 6.8 Mg/ha in the test year, with the

test year also showing a bimodal distribution. Conversely, in New

York and Nebraska, the test sets recorded higher mean yields (NY:

11 Mg/ha; NE: 10.4 Mg/ha) compared to the training sets (NY: 9.5
FIGURE 10

The boxplot of planting dates in different states in standard condition for 21 hybrids planted during the late planting scenario in Texas. The planting
dates vary across states.
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FIGURE 11

Comparison of yield distribution for hybrids in standard and late planting times. Late planting results in lower yield compared to standard planting time.
FIGURE 12

Empirical rule-based tool to identify hybrids with high yield for different treatments. Each column represents a different treatment, and each row
represents a hybrid. Different color corresponds to yield class.
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Mg/ha; NE: 7.8 Mg/ha), highlighting regional variations in yield

consistency between the periods under review.

All six models were trained on the training data and evaluated

using the test data in terms of RMSE, RRMSE, MAPE, and Pearson

Correlation (Figure 14; Supplementary Material Table 3).

Comparing all metrics revealed that Lasso had the lowest

performance (RMSE: 3.31 Mg/ha; RRMSE: 33%; MAPE: 22%;

Correlation: 0.28), followed by XGBoost trained on the entire

data (RMSE of 3.14 Mg/ha, RRMSE of 31%, MAPE 25%,

Correlation: 0.32), the simple CNN model (RMSE: 2.85 Mg/ha;

RRMSE: 28%; MAPE: 23%; Correlation: 0.41), and the RF model

(RMSE: 2.82 Mg/ha; RRMSE: 28%; MAPE: 22%; Correlation: 0.39),

The proposed CNN-DNN had an RMSE of 2.46 Mg/ha and the

CNN-DNN model ensembled with XGBoost (trained on yield
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features) had an RMSE of 2.45, while other matrics having similar

values ((RRMSE: 24%; MAPE: 19%; Correlation: 0.51) (Figure 14).

This indicates that the proposed CNN-DNN and CNN-DNN

ensembled with XGBoost outperform other prediction models. It

also highlights that due to the intricate relationship between

genotype, environment, and management, a simple CNN with all

these inputs fed together has lower predictability. The benefit of

using modular blocks for different types of inputs is evident.

The dataset utilized in this study originates from the 2022

Genomes to Fields (G2F) competition (Lima et al., 2023; The

Genomes To Fields Initiative, 2023). A comparative evaluation of

the proposed CNN-DNN and CNN-DNN combined with XGBoost

models against other submissions using the same dataset indicates

that our model achieved an RMSE of 2.46 Mg/ha. This result falls
FIGURE 13

Comparison of yield distribution for training (2014-2020) and test (2021) year.
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within the range of the top 10 highest-performing models

(Washburn et al., 2024), demonstrating that the proposed

approach offers competitive predictive performance while

additionally providing enhanced interpretability.
4 Discussion

Uncovering the interactions between G×E×M factors and crop

yield can enhance productivity. In this study, an exploratory analysis

was conducted to identify key factors influencing crop yield under

various scenarios, such as drought, standard conditions, disease trials,

and irrigation. Results showed significant yield variation based on

hybrid-location combinations, and planting dates were found to

impact yield. Additionally, an empirical rule-based tool was

developed for high-yield hybrid classification across different
Frontiers in Plant Science 16
scenarios. Finally, a multimodal CNN-DNN model, ensembled

with XGBoost, was created to predict yield considering G×E×M

interactions. This section summarizes the key findings of this study.

Selecting informative loci from genotype data is crucial for yield

prediction model performance. Using the entire genotype dataset

can lead to a curse of dimensionality, so choosing an appropriate

subset is essential. Iterative analysis revealed that selecting around

300 loci improves prediction accuracy, given the training data size.

Systematic selection of these loci, as opposed to random selection,

enhances prediction because random selection may include less

informative loci. The proposed method for locus selection

demonstrated better yield prediction results.

In addition to using appropriate feature selection methods, the

imputation technique is important, particularly when dealing with

datasets with many missing values. Given the locational dependency

of the observations, location-based imputation significantly aided the
FIGURE 14

Comparison of prediction model performances. The proposed CNN-DNN model and base models are evaluated in terms of (a) RMSE, (b) RRMSE, (c)
MAPE, and (d) Pearson Correlation.
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prediction model’s learning. However, observations with numerous

missing values were excluded to prevent the model from learning from

synthetic data. Deciding the extent of imputation and which

observations to exclude was a key aspect of the data preprocessing stage.

The analysis of model architecture showed that a multimodal

CNN-DNN model outperforms a single-modal CNN-DNN model in

terms of predictability. In single-modal models, temporal and spatial

dependencies are often lost when using various data sources for

prediction. Notably, for weather data, a 2D CNN block was more

effective than a 1D CNN or LSTM block in feature extraction and

model prediction. Converting the 16 distinct weather features from

week 1 to week 48 into a 3D array, with the y-axis representing the week

number and the z-axis representing each weather feature, preserved

temporal dependencies and improved the model’s performance.

Exploring the model prediction results, it was observed that the

mean yield for state-hybrid combinations is well correlated with the

observed yield for combinations that appeared at least twice during

the training data (Pearson correlation: 0.78 for training data; 0.35

for test data). However, for new hybrid-state combinations, this

feature had less predictability, indicating that crop yield can vary

widely due to G×E interactions.

An evaluation of model performance across various treatments

revealed that the model had the best predictability for irrigation

(RMSE 2.31 Mg/ha) and standard treatment (RMSE 2.36 Mg/ha),

followed by dryland (RMSE 2.48 Mg/ha) and drought (RMSE 2.85

Mg/ha). The highest error was observed in the late planting scenario

(RMSE 3.91 Mg/ha), likely due to the training data containing only

synthetic observations for this scenario. This suggests that the

model performs better for treatments or scenarios included in the

training data; however, it has limitations in predicting yield for new

management practices it has not encountered. This limitation could

be addressed by expanding the training dataset to include a broader

range of management practices. Additionally, incorporating satellite
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data to capture crop growth stages may improve the model’s ability

to predict outcomes under extreme conditions.

Examining the observed and predicted yield distributions for

various scenarios revealed that the distributions for the standard

treatment were nearly identical (Figure 15). For drought, the

observed yield distribution was higher (25th percentile at 11 Mg/

ha, mean at 12 Mg/ha, and 75th percentile at 14.5 Mg/ha) compared

to the predicted distribution (25th percentile at 9 Mg/ha, mean at

9.5 Mg/ha, and 75th percentile at 10 Mg/ha). Conversely, for late

planting, the predicted yield distribution (25th percentile at 5 Mg/

ha, mean at 5.5 Mg/ha, and 75th percentile at 6 Mg/ha) was higher

than the observed distribution (25th percentile at 2 Mg/ha, mean at

2.5 Mg/ha, and 75th percentile at 4 Mg/ha). This discrepancy is due

to the lack of real training data for late planting and the presence of

both high and low-yield scenarios for drought in the training data.

For other treatments, the predicted and observed yield

distributions overlap.
5 Conclusion

This research investigated the factors influencing agricultural

productivity, proposed a hybrid selection tool to improve yields

under extreme weather conditions or specific locations, and

developed a yield prediction model. The exploratory data analysis

highlighted the variations in yield related to genotype, environment,

and management practices. Particularly, yield varied significantly

based on location and hybrid interaction, with stable historical data

providing good predictability for future outcomes. A prediction

model incorporating genotype, environment, and management

interactions (G x E x M) was developed using a multimodal

CNN-DNN model. This model demonstrated its effectiveness in

predicting field-level productivity across various management
FIGURE 15

Evaluation of model performance for different treatment types.
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practices, weather conditions, locations, and hybrids. Future

research could focus on estimating other phenotypic traits at

different crop cycle phases and incorporating spatial properties

into the hybrid identification tool for various scenarios. To

better address unforeseen conditions, in addition to increasing

training data, crop simulation studies grounded in plant

science and physiology could also be incorporated into the

prediction framework.
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