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materials detection based on
hyperspectral feature fusion
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and Zaiqing Chen1,2*

1School of Information Science and Technology, Yunnan Normal University, Kunming, China,
2Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of
Education of Yunnan Province, Kunming, China, 3Yunnan Tobacco Leaf Company, Kunming, China
The removal of non-tobacco related materials (NTRMs) is crucial for improving

tobacco product quality and consumer safety. Traditional NTRM detection

methods are labor-intensive and inefficient. This study proposes a novel

approach for real-time NTRM detection using hyperspectral imaging (HSI) and

an enhanced YOLOv8 model, named Dual-branch-YOLO-Tobacco (DBY-

Tobacco). We created a dataset of 1,000 images containing 4,203 NTRMs by

using a hyperspectral camera, SpectraEye (SEL-24), with a spectral range of 400-

900 nm. To improve processing efficiency of HSIs data, three characteristic

wavelengths (580nm, 680nm, and 850nm) were extracted by analyzing the

weighted coefficients of the principal components. Then the pseudo color

image fusion and decorrelation contrast stretch methods were applied for

image enhancement. The DBY-Tobacco model features a dual-branch

backbone network and a BiFPN-Efficient-Lighting-Feature-Pyramid-Network

(BELFPN) module for effective feature fusion. Experimental results demonstrate

that the DBY-Tobacco model achieves high performance metrics, including an

F1 score of 89.7%, mAP@50 of 92.8%, mAP@50-95 of 73.7%, and a processing

speed of 151 FPS, making it suitable for real-time applications in dynamic

production environments. The study highlights the potential of combining HSI

with advanced deep learning techniques for improving tobacco product quality

and safety. Future work will focus on addressing limitations such as stripe noise in

HSI and expanding the detection to other types of NTRMs. The dataset and code

are available at: https://github.com/Ikaros-sc/DBY-Tobacco.
KEYWORDS

object detection, non-tobacco related materials (NTRMs), hyperspectral imaging
technology, feature fusion, deep learning
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1 Introduction

Tobacco leaves are the primary raw material for the production

of cigarettes, cigars, and other tobacco products. Tobacco leaf

farming and product production are important economic drivers

in some countries and regions (Wang and Bennetzen, 2015). In

recent years, China has become the largest tobacco producer and

global cigarette market (Shahbandeh, 2024; Trenda, 2023). Tobacco

products are among the most widely consumed goods globally.

However, during the operations of tobacco leaf harvesting,

shipping, and curing, other non-tobacco related materials

(NTRMs) such as weeds, feathers, and rubber rings are frequently

mixed in. NTRMs significantly reduce the quality of tobacco

products and can endanger consumer health (Li et al., 2023). To

be more specific, rubber products emit harmful substances during

combustion and pyrolysis, which can have a negative impact on

human health; materials like feathers and insect cocoons emit

unpleasant odors when burned; and the presence of weeds and

other foreign substances can affect the intrinsic quality of

tobacco leaves.

The effective detection of NTRMs has long been a difficult

problem. Currently, the primary method for removing NTRMs is

manual screening, which is time-consuming and prone to

subjectivity. Certain NTRMs are treated with specific ways, such

as utilizing metal detectors to detect metal particles or air classifiers

to remove lighter contaminants, but these approaches have limits.

Traditional detection and hyperspectral classification

algorithms such as supervised Support Vector Machine (SVM)

algorithms (El-Omairi et al., 2025), decision tree algorithms, and

unsupervised approaches like K-means clustering (Wang et al.,

2024) and PCA (Bagnasco et al., 2015) has been widely applied in

various fields. However, with the development of computer vision,

object detection methods based on deep learning are more popular.

These methods have higher classification accuracy, especially in

complex circumstances. Furthermore, the new technique is less

susceptible to noise and has increased robustness (Spiegelberg and

Rusz, 2017). Additionally, the scalability and generalization

capability of these methods are impressive, allowing it to be

applied to a variety of scenarios (El-Omairi et al., 2025).

Currently, the YOLO (You Only Look Once) algorithm is the

most popular model for object detection (Jocher et al., 2023). Among

the YOLO series, the most efficient algorithms in terms of

performance are YOLOv5, YOLOv8, and YOLOv11. YOLOv5

adopts an Anchor-Based design, with anchor boxes to

accommodate multi-scale and various aspect ratio targets. This

design significantly enhances the model’s performance in dense

object detection tasks. Additionally, YOLOv5 incorporates cross-

scale skip connections within the network structure, enriching the

gradient flow information. Building on YOLOv5, YOLOv8

introduces various improvements, with a primary focus on small

object identification and computing resource optimization. The

Anchor-Based design in YOLOv5 may waste computational

resources when there are few targets, resulting in performance

bottlenecks in small object identification tasks. Consequently,

YOLOv8 discards the classic Anchor-Based design and proposes an
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Anchor-Free design, which is more suited to small object

identification and simplifies the model. This innovation enables

YOLOv8 to achieve greater precision in handling small objects

while simplifying the network structure and enhancing model

efficiency. YOLOv8 also incorporates more skip connections, which

enriches the gradient flow and saves computing load via split

operations. Moreover, YOLOv8’s decoupled head design separates

the extraction and independent optimization of target location and

class information, which improves the model’s robustness and

generalization ability. The latest edition of the YOLO series,

YOLOv11, incorporates cutting-edge technology innovations to

improve object detection performance even more. YOLOv11

features modules designed to enhance the capability of feature

extraction. These modules, through deep feature fusion and refined

processing, effectively improve the model’s ability to capture detailed

features. Additionally, YOLOv11 introduces attention mechanisms to

further optimize feature extraction in critical regions. The attention

mechanism allows the model to dynamically focus on crucial areas of

an image while discarding unnecessary background information,

enhancing object detection accuracy.

YOLO algorithm has been applied to various agricultural tasks

in agricultural engineering, generating significant economic benefits

(Badgujar et al., 2024; Furlanetto et al., 2024a, b; Zhou et al., 2025).

Based on YOLOv5, Fan et al. (2024) achieved a lightweight

improvement to the backbone by using ShuffleNet v2 (Ma et al.,

2018), and enhanced the neck with BiFPN and a parallel hybrid

attention mechanism (PHAM), allowing the model to better

integrate multi-scale features. The improved model effectively

identified weeds. Based on YOLOv7, Li et al. (2024) optimized

the model’s backbone using the ConvNext module and combined

the Swin Transformer (Liu et al., 2021) with the ConvNext module

to improve the model’s head. This method achieved effective

identification of foreign fibers in cotton while maintaining a high

detection speed.

During training, the YOLO series object detection algorithms

use manually annotated RGB images. However, RGB images only

include spectral information from three predefined bands, resulting

in limited data and minimal material distinction. RGB photos give

insufficient spectrum information for advanced analysis tasks such

as exact categorization or object detection. In recent years,

hyperspectral imaging (HSI) has evolved as an accurate and non-

destructive approach for target detection, solving RGB images’

shortcomings. This technology scans objects to obtain hundreds

of wavelengths and extracts specific spectral information required

for subsequent analysis, and it is widely used in agriculture to assess

food quality (Du et al., 2020; Ram et al., 2024; Shuai et al., 2024).

Zhang et al. (2024) combined Successive Projection Algorithm

(SPA) with Principal Component Analysis (PCA) to select

wavelengths of 1074 nm, 1269 nm, and 1441 nm for extracting

bruise features from apples. Dong et al. (2014) selected wavelengths

of 523 nm, 587 nm, 700 nm, and 768 nm through weighted

coefficient analysis and PCA, effectively extracting the thrips

defect features on Green-Peel citrus. It should be noted that these

wavelengths are used as the characteristic wavelengths for the entire

region (Dong et al., 2014; Vargas et al., 2006).
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There has been increased attention to methods for feature

fusion between HSIs and RGB images. To address the problem of

performance degradation due to insufficient local feature

interaction, Shen et al. (2024) proposed a feature fusion

framework called Iterative Cross-Attention Guided Feature

Fusion (ICAFusion). This framework improves object feature

discriminability by using a query-guided cross-attention

mechanism, which improves performance. To fully integrate

different modalities, Qingyun et al. (2021) proposed a Cross-

Modal Fusion Transformer (CFT) method. This approach uses

the self-attention mechanism of Transformers to naturally perform

both intra-modal and inter-modal fusion, dramatically improving

multispectral object identification performance. Zhang et al. (2023)

introduced SuperYOLO, an accurate and quick RSI object detection

algorithm. This method integrates multimodal data and uses

symmetric compact multimodal fusion (MF) to extract

supplementary information from various data sources, resulting

in better recognition of small objects.

There are some studies on NTRMs detection using computer

vision. Li et al. (2023) proposed a method for classifying tobacco

stems and impurities based on HSI superpixels and a Light Gradient

Boosting Machine (LightGBM) classifier, achieving high accuracy.

Wu et al. (2023) proposed an effective and rapid detection approach

for NTRMs based on single-channel grayscale pictures and the

YOLOv8 model. However, these studies are limited to detecting

NTRMs in tobacco stems, and are ineffective for detecting NTRMs

that are heavily hidden by tobacco leaves. Additionally, it is

challenging to detect NTRMs that have colors similar to tobacco

leaves. Furthermore, it is difficult to recognize NTRMs with hues

comparable to tobacco leaves. As a result, this study performs

spectrum analysis on NTRMs and improves the YOLOv8

algorithm to propose a model for effective and real-time

NTRM detection.

The main works of this paper are the following: (1)

Constructing the first HSIs dataset with 1,000 tobacco leaf images

containing 4,203 NTRMs. (2) Using PCA to determine the

characteristic wavelengths of NTRMs and pseudo color

composition and decorrelation contrast stretch methods to

generate images with significant NTRMs features. (3) Building on

the YOLOv8n, an enhanced model, Dual-branch-YOLO-Tobacco

(DBY-Tobacco), was proposed, which includes a dual-branch

backbone network and a feature fusion module for the

neck component.

The overall technical route is shown in Figure 1. Firstly, we

analyzed the reflectance of regions of interest (ROIs) in the

hyperspectral images and identified two spectral regions where

the reflectance differences among various NTRMs were most

significant. PCA was then applied to these spectral regions to

identify the Principal Component (PC) images that best describe

the properties of various NTRMs. The weight coefficient map was

used to produce three characteristic wavelengths. For image

processing, techniques including pseudo color composition and

decorrelation contrast stretch were used, and the processed images

were subsequently input into the proposed model for real-time

detection of NTRMs.
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2 Materials and methods

2.1 Experimental environment

The experimental setup for this study is shown in Figure 2. The

equipment consists of a collection platform, a personal computer

(PC), light-emitting diode light (LED light), and a hyperspectral

camera, with specific parameters detailed in Table 1.
2.2 Image acquisition

Tobacco leaves used in this study were planted in various cities

in Yunnan Province, China (north latitude: 25°02′58′′, east

longitude: 102°42′32′′), and included various varieties of tobacco

leaves, such as Yunyan 87, K326, Yunyan 97, etc. The adaptation

ability of the model to different weather conditions was improved

by adjusting the intensity of the light source. Weeds, rubber rings,

and feathers are some of the NTRMs explored. Tobacco leaves and

NTRMs were placed first, and photos were taken with the

hyperspectral camera positioned directly overhead at the optimal

brightness and acquisition rates. We captured images at different

transmission speeds, allowing the model to address the issue of

motion blur induced by the operational speed of faster transmission

devices. Finally, materials were collected at the end. Table 2 contains

details about the HSIs. The study collected 1,000 HSIs with 4,203

NTRMs, taking into account the huge quantity, disordered

arrangement, and stacking of tobacco leaves. Figure 3 shows RGB

image samples from the gathered hyperspectral images.
2.3 Spectral analysis

2.3.1 PCA based on different spectral regions
The study used ENVI 6.0 (The Environment for Visualizing

pictures, version 6.0) software to perform spectrum analysis on

hyperspectral images, as well as Python3.9 and PyCharm 2021.3.1

software was used to assist with data processing. Initially, ROIs for

tobacco leaves and NTRMs were extracted from the collected HSIs,

with each ROI containing between 8,000 and 30,000 pixels. These

ROIs will be used for further spectral analysis in later stages. We will

use these ROIs for further spectral analysis. As shown in Figure 4,

we used the spline regression method for curve smoothing, the

reflectance differences between tobacco leaves and NTRMs are

more pronounced and the curves are relatively smooth in the

wavelength regions around 450 nm and 550-850 nm. For further

analysis, the study selected the 550-850 nm and 450-850 nm ranges.

However, there is significant redundancy among the spectral

bands in these data, and performing target detection directly would

considerably increase computational load and complexity. Thus,

dimensionality reduction of the spectral data is necessary. PCA, an

effective dimensionality reduction method (Prasad and Bruce,

2008), is frequently used in HSIs processing (Frederick et al.,

2023; Huang et al., 2015; Luo et al., 2019). PCA was performed

on these two spectral regions separately, and the resulting PC score
frontiersin.org

https://doi.org/10.3389/fpls.2025.1538051
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shen et al. 10.3389/fpls.2025.1538051
FIGURE 1

The overall technical route.
FIGURE 2

Experimental equipment for simulating the sorting process of tobacco leaves.
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images are shown in Figure 5. The later-arranged PC images

provide less to the hyperspectral data in these two spectral

regions because of the decreasing order of variance. Only the first

six PC images are shown. In contrast, we can see that the PC1, PC2,

and PC3 images in the 550–850nm region and the PC1 and PC2

images in the 450–850nm region show ghosting effects between the

shadows of weeds and rubber bands. The PC4, PC5, and PC6

images in the 550-850nm region and the PC5 and PC6 images in the

450-850nm region contain excessive noise. The PC3 image in the

450-850nm region shows better feature representation, but the PC4

image in the same region captures subtle contour changes more

effectively, clearly distinguishing object edges and demonstrating

stronger NTRMs detection capability. Thus, for further analysis, we

chose the PC4 image in the 450–850nm range.

2.3.2 Selection of characteristic wavelengths
The study will use the PC4 image from the 450-850nm region to

select wavelengths that approximately represent the characteristics

of the entire region. The weight coefficient image (Figure 6) for PC4

can be obtained using Equation 1.

g = (g 1, g 2,⋯, g m) = ( b1,iffiffiffiffiffiffia1,i
p , b2,iffiffiffiffiffiffia2,i

p ,⋯, bm,iffiffiffiffiffiffiam,i
p )

=

b1,1ffiffiffiffiffiffia1,1
p b2,1ffiffiffiffiffiffia2,1

p

b1,2ffiffiffiffiffiffia1,2
p b2,2ffiffiffiffiffiffia2,2

p
⋯

bm,1ffiffiffiffiffiffiffiam,1
p

bm,2ffiffiffiffiffiffiffiam,2
p

⋮ ⋱ ⋮
b1,nffiffiffiffiffiffia1,n
p b2,nffiffiffiffiffiffia2,n

p ⋯ bm,nffiffiffiffiffiffiffiam,n
p

2
66666664

3
77777775

(1)

where, i ∈ 1, 2,⋯, nf g and j ∈ 1, 2,⋯,mf g. ai,j. represents the

eigenvalue of the principal component i at the wavelength j, bi,j
denotes the corresponding eigenvector, and gi,j indicates the

corresponding weight coefficient.

Based on the correlation coefficient curve, three wavelengths

with wide intervals located at peaks and troughs are selected: 580

nm, 680 nm, and 850nm.

The chosen three bands were converted into single-wavelength

grayscale images, as shown in Figure 7, where NTRMs are clearly
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visible. The contour information of NTRM is mainly reflected in the

grayscale image at 580 nm, the contrast between NTRMs and tobacco

leaves is enhanced in the grayscale image at 680 nm, and the internal

information of NTRMs is primarily reflected in the grayscale image at

850 nm. This suggests that the three bands that were chosen are

trustworthy. For the sake of additional study, the complete spectral

region will be represented by these three distinctive bands.
2.4 Decorrelation contrast stretching

Decorrelation contrast stretching is one of the effective methods

for eliminating strong correlations in images (Gillespie, 2003;

Gillespie et al., 2003). In multispectral images, it enhances the

color difference, resulting in higher color contrast, highlighting

complex details, and producing a richer color composite image.

Decorrelation stretching is widely used in hyperspectral data

(Domingo et al., 2015; Palomar-Vazquez et al., 2017) and has

been shown to be very effective in emphasizing subtle details in

images (Le Quellec et al., 2015; Rogerio-Candelera, 2015). Figure 8

shows the pseudo color image fusion and decorrelation stretching

applied to the grayscale images of the three selected characteristic

wavelengths. PCC and DCS images are the terms used to describe

the final images. Following the application of these two processes, it

is clear that the NTRMs can be identified. The efficacy of the

technique is demonstrated by the DCS image, which displays very

obvious contours and color distinctions, even while some weeds and

tobacco leaves have similar colors in the RGB image. However,

tobacco leaves can also exhibit weed-like colors because of the

presence of mold or roots. As a result, deep learning techniques

should be used to capture more intricate details like texture

and shape.
2.5 Dataset construction

The purpose of data augmentation is to expand the dataset to

improve the model’s fitting capability, including methods such as

image rotation, cropping, and brightness adjustment (Maharana

et al., 2022; Yuan et al., 2023). Only 1000 hyperspectral data samples

were gathered for this study because hyperspectral data acquisition,

processing, and storage are time-consuming and complex. Image

rotation and background filling techniques were selected for data

augmentation in order to improve the detection performance of

NTRMs under tobacco leaf occlusion. Before data augmentation,

the original images were split into training, validation, and test sets

in a 6:2:2 ratio, and NTRMs were annotated using the LabelImg tool

(https://github.com/HumanSignal/labelImg). The images in these

three sets were then performed to data augmentation. As shown in

Figure 9, each original image was rotated clockwise by 90°, 180°, and

270°, and backgrounds without NTRMs were cut and overlaid onto

areas with NTRMs. Three augmented images were created from

each original image, and any two of these images were then joined

with the original to create the Tobacco-3000 dataset, which had

3000 images with 12,609 NTRMs for model training. The quantities

of each type of NTRMs are shown in Table 3, indicating that the
TABLE 1 Main parameters of experimental equipment.

Equipment Parameter

Hyperspectral Camera SpectraEye (SEL-24)

Collection platform 1200×600×1050mm

PC CPU: Intel(R) Xeon(R) Silver 4210R
GPU: NVIDIA T1000
TABLE 2 Main parameters of HSIs.

Parameter Value

Resolution 3024×2464

Wavelength coverage 400-900nm

Spectral resolution
Spectral bands

5nm
101
frontiersin.org

https://github.com/HumanSignal/labelImg
https://doi.org/10.3389/fpls.2025.1538051
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shen et al. 10.3389/fpls.2025.1538051
distribution ratio of each NTRMs is roughly the same across the

sets. In order to ensure that the two rotated images chosen for each

original image were consistent and allow for fair comparison in later

experiments, the study performed the same partitioning and data

augmentation processes to PCC and DCS images.
2.6 DBY-Tobacco detection model

2.6.1 Improved DBY -Tobacco network structure
The YOLO series of algorithms has evolved to YOLOv11.

However, the YOLOv8 algorithm is highly flexible and stable in

actual deployment, and it can handle a variety of hardware

platforms, ensuring the hardware compatibility of the model. The

YOLOv8 algorithm is divided into five versions based on

complexity: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and

YOLOv8x. The model needs a lower model complexity and

detection time because it is designed for real-time monitoring.
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Therefore, the DBY-Tobacco model proposed in this study is an

improvement based on YOLOv8n.

The structures of YOLO series networks are composed of a

backbone, neck, and head:
1. The backbone is composed of a Convolutional Neural

Network (CNN), and its primary task is feature

extraction at various levels of image granularity. It is

capable of extracting feature maps from input images that

contain semantic information about the object’s position,

shape, color, and texture.

2. The neck receives the feature maps produced by the

backbone and uses a series of feature fusion mechanisms,

such as the Feature Pyramid Network (FPN), Path

Aggregation Network (PAN), and Bidirectional-FPN

(BiFPN) (Mingxing et al., 2020; Wang et al., 2022; Xu

et al., 2023), to fuse features at different scales, enabling

more effective target detection.
FIGURE 3

RGB image samples of the collected hyperspectral images.
FIGURE 4

Reflectance curves of the ROIs.
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FIGURE 5

PC score images in the wavelength range: (a) 550-850nm, (b) 450-850nm.
FIGURE 6

Weight coefficient image of PC4 in the 450-850nm range.
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Fron
3. The head is the component in the YOLO algorithm

responsible for generating detection results. Based on the

feature maps passed from the neck, the model predicts the

targets, producing both the bounding boxes and the class

probabilities for the detected objects.
The model creates two backbone branches, as illustrated in

Figure 10, to process RGB and DCS images independently, allowing

for the simultaneous extraction of features from each branch’s

images. BiFPN-Efficient-Lighting-Feature-Pyramid-Network

(BELFPN) is a lightweight and efficient structure that is proposed

for more effective feature fusion at the neck part. The primary

components of this structure are C2f_Efficient-Lighting (C2f_EL)

and BiFPN (Yang et al., 2024). The BiFPN may do multi-scale

feature weighted fusion by accepting multiple inputs.

2.6.2 C2f_EL module
The C2f_EL module replaces the Bottleneck in C2f module with

the Multi-Branch-Module (ELModule). The ELModule is an

efficient and lightweight structure using Multi-Branch-Module

(MBModule) as its operator. As shown in Figure 10d, the

MBModule has three branches that operate in parallel, which

speeds up computation. Depthwise Convolution (DWConv) is

used in each branch, which significantly reducing the
tiers in Plant Science 08
computational load and parameter. Convolutional kernels of

various sizes are used by the branches to gather information on

multi-scale features, and Channel Shuffle is then used to accomplish

multi-scale feature fusion.

While smaller receptive fields are more suited for identifying

smaller scale targets, Larger receptive fields are better suited for

detecting larger objects (Yanghao et al., 2019). To get multi-scale

information, the MBModule chooses different multi-scale

convolutional kernels for various feature layers.

2.6.3 Loss function
We used the loss function of the YOLOv8 model, which

combines Binary Cross Entropy (BCE) Loss, CIoU Loss, and

Distribution Focal Loss (DFL) (Li et al., 2020) with weighted

summation. The classification loss is BCE, while the localization

losses are CIoU and DFL. The calculation formulas are given in

Equations 2–6:

LBCE = −(q log2 (p) + (1 − q) log2 (1 − p)) (2)

DFL(Si, Si+1) = −((yi+1 − y) log2 (Si) + (y − yi)log2(Si+1) (3)

LCIoU = 1 − CIoU = 1 − IoU +
r2(b, bgt)

c2
+ av (4)
FIGURE 7

Grayscale images corresponding to different wavelengths: (a) 580nm, (b) 680nm, (c) 850nm.
FIGURE 8

Result images after processing: (a) RGB, (b) Pseudo color composition (PCC), (c) Decorrelation contrast stretching (DCS).
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a =
v

1 − IoU + v
(5)

v =
4
p2 ( arctan

wgt

hgt
− arctan

w
h
)2 (6)

where, p represents the probability of a positive prediction, q

denotes the label, IoU stands for the Intersection over Union

between the predicted box and the ground truth box, y represents

the true target value, yi and yi+1 are the neighboring boundary

values of y, S represents the Softmax function, r2 denotes the

Euclidean distance between two rectangular boxes, b represents the

center point of the predicted box, bgt represents the center point of

the ground truth box, c is the diagonal distance of the smallest
Frontiers in Plant Science 09
enclosing area containing both rectangles, a is the weight coefficient

representing the aspect ratio consistency factor between the

predicted box and the ground truth box, v is a balance ratio used

to measure the consistency of the relative proportion between two

rectangles, w and h denote the width and height of the predicted

box, and wgt and hgt represent the width and height of the ground

truth box.
3 Results and discussions

3.1 Environmental configuration

The following hardware platform was used for the experiments:

Intel(R) Xeon(R) Platinum 8383C CPU @ 2.70GHz, NVIDIA

GeForce RTX 4090. Anaconda3 was used to create the training

virtual environment, and Table 4 displays the code execution

environment. YOLOv8n was used as the base network model for

the experiments. Table 5 lists the training hyperparameters.
3.2 Performance evaluation

To assess the performance of the improved DBY-Tobacco model

based on detection results, metrics such as Precision (P) as per

Equation 7, Recall (R) as per Equation 8, Mean Average Precision

(mAP) as per Equations 9, 10, F1 Score (F1) as per Equation 11,

Frames Per Second (FPS), parameter count, Giga Floating-point

Operations Per Second (GFLOPs), and model size were used.
FIGURE 9

Data augmentation process.
TABLE 3 Data distribution of NTRMs.

Category of NTRMs Category of NTRMs Number

Train set Weed 2697

Rubber ring 1944

Feather 2898

Validation set Weed 882

Rubber ring 678

Feather 951

Test set Weed 960

Rubber ring 621

Feather 978
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Validation experiments were carried out on the test set to ensure

accurate evaluation, and 3000 warm-up iterations were performed to

assure complete GPU resource use before measuring FPS.

P =
TP

TP + FP
  (7)

R =
TP

TP + FN
  (8)

AP =
Z 1

0
P(r)dr (9)
FIGURE 10

Network architecture of the DBY-Tobacco model and its components: (a) DBY-Tobacco, (b) ConvModule, (c) C2f module, (d) C2f_EL module.
TABLE 4 Parameters of the virtual environment.

Packages Version

Ultralytics 8.2.79

Python 3.9.19

Torch 1.11.0

Torchvision 0.12.0

Torchaudio 0.11.0

Cuda 11.5

PyCharm 2021.3.1
frontiersin.org

https://doi.org/10.3389/fpls.2025.1538051
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shen et al. 10.3389/fpls.2025.1538051
mAP = o
n
i=1APi
n

(10)

F1 =
2� P � R
P + R

(11)

where, TP (True Positive) means correctly predicted positive

instances, FP (False Positive) represents incorrectly predicted

positive instances, FN (False Negative) denotes actual positive

instances that were incorrectly predicted as negative, P(r)

represents the precision-recall curve, and n denotes the number

of categories.
3.3 Ablation experiments

Based on YOLOv8n, a series of improvements were

implemented in the study. To validate the effectiveness of these

improvements, ablation experiments were designed on the

Tobacco-3000 dataset, with results shown in Table 6.

In this context, “Multi” refers to using RGB and DCS images as

separate input branches for the model. Comparing I2 to I1, all

performance metrics showed improvement. I3 showed some

improvements over I2, but no enhancement in Recall was

observed. This could be owing to the presence of roots or mold in

the tobacco leaves, which causes the DCS technique to transform

these areas into colors similar to weeds, prompting the model to

incorrectly categorize them as NTRMs. I4, which included features

from RGB and DCS images, resulted in a considerable overall

improvement but increased the computing load and inference

time. The DBY-Tobacco model, which was based on I4, included
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the BELFPN module, which improved overall model performance

while reducing complexity and inference time. Overall, the ablation

experiments show that HSI technology works and validate the

development of the DBY-Tobacco model.
3.4 Comparison of algorithms

To assess the performance of the DBY-Tobacco model, in

Table 7, we compared it to YOLO series methods and previously

proposed multispectral object detection models.

Through comparison, it can be concluded that, while YOLOv5n

exhibits a decrease of 0.1 in mAP@50 and 0.5 in mAP@50-95 on

DCS images compared to RGB images, other models perform better

on DCS images, with improvements of approximately 2% in mAP@

50 and mAP@50-95. For multi-input models, the proposed DBY-

Tobacco model outperformed all other models in Precision, Recall,

mAP@50, mAP@50-95, and F1 scores of 87.6%, 87.6%, 92.8%,

73.7%, and 89.7%, respectively. DBY-Tobacco has a slightly higher

model size and parameter count than the SuperYOLO and

ICAFusion models, but it provides faster inference speed, making

it more suitable for practical applications. To summarize, DBY-

Tobacco, with its low complexity and high performance, is well-

suited for NTRMs detection tasks.
3.5 Comparison of validation

To demonstrate the practical detection capability of the

proposed DBY-Tobacco model, it was compared to classic

detection algorithms, as shown in Figure 11. The orange

rectangles in the images represent ground truth boxes for weeds,

the yellow rectangles represent ground truth boxes for rubber rings,

the brown rectangles represent ground truth boxes for feathers, and

the red rectangles represent missed detections, false detections,

misdetections, and undetected objects overall.

Through comparison, it is clear that in the RGB images given in

Figure 11a, the YOLOv8n model missed and incorrectly detected

weeds with colors similar to tobacco leaves. This problem improved

in DCS images, but the model misidentified certain tobacco leaves

and shadows in DCS images as feathers, indicating that the model

needs to learn more detailed information. However, by combining
TABLE 6 Results of ablation experiments.

Method Input Model
size

Parameters GFLOPs FPS Precise Recall mAP@50 mAP@50-95 F1

YOLOv8n(I1) RGB 6.3 3,011,433 8.1 126 88 82.9 88.2 65.7 85.4

YOLOv8n(I2) PCC 6.3 3,011,433 8.1 128 90.5 86.7 90 67.5 88.6

YOLOv8n(I3) DCS 6.3 3,011,433 8.1 122 91.4 84.2 90.2 67.9 87.7

YOLOv8n(I4) Multi 9 4,362,137 12.5 103 91.7 87.1 92.3 73 89.3

DBY-Tobacco Multi 8.5 3,733,674 10.7 151 91.8 87.6 92.8 73.7 89.7
frontiers
Bold values indicates the maximum value of the column.
TABLE 5 Hyperparameter settings for network training.

Parameters Values

Batch size 16

Pre-trained weight False

Epoch 300

Patience 50

Workers 4

Input size 640
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RGB and DCS images, these issues were considerably reduced. The

YOLOv8n model did not perform well in detecting overlapping

NTRMs due to tobacco leaf accumulation and blockage between

NTRMs, as shown in Figure 11b. However, the ICAFusion model

(Shen et al., 2024), SuperYOLO model (Zhang et al., 2023), and

DBY-Tobacco model performed better in detecting these NTRMs.

Further comparison shows that in Figure 11a, the DBY-Tobacco

model has more accurate bounding boxes and better confidence

scores. The analysis presented above confirms the advanced nature

of both hyperspectral technology and the proposed DBY-

Tobacco model.
4 Conclusion

This study effectively detected NTRMs using HSI and computer

vision technologies. We collected 1,000 HSIs in the spectral region

from 400nm to 900nm and used PCA to reduce dimensionality,

allowing us to select three wavelengths (580nm, 680nm, and 850nm).

The image was processed further using pseudo color composition and

decorrelation contrast stretch. In order to improve the robustness and

generalization ability of the model, we performed data augmentation.

To improve model performance, DBY-Tobacco model was proposed,

which including a dual-branch backbone and a novel BELFPN

module. The DBY-Tobacco achieved F1, mAP@50, mAP@50-95,

recall, precision, and FPS scores of 89.7%, 92.8%, 73.7%, 87.6%,

91.8%, and 151, respectively. These results demonstrated the

satisfactory robustness and applicability of the DBY-Tobacco
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model. It is worth noting that the DBY-Tobacco model has great

potential for practical applications and can be applied to a variety of

multispectral target detection tasks.

The DBY-Tobacco model proposed in this paper achieved a

processing speed of 151 FPS in the test, which is significantly

faster than most YOLO series target detection algorithms,

indicating that it can process hyperspectral images in real time and

is suitable for dynamically changing production environments.

During deployment, the model can dynamically adapt to different

processing rates. More specifically, the model can maintain efficient

operation at different production rates by adjusting the processing

window (such as batch size or inference time interval) based on the

actual needs of the production line. To further increase the

calculation speed of the model, we will use pruning technology to

reduce the number of parameters and calculation amount of the

model to achieve lightweight model, and improve the detection speed

through parallelization and distributed processing technology.

Besides, long time, high frequency real-time reasoning can lead to

high power consumption, affecting the stability of the entire system,

but also increase long-term operating costs. Therefore, we will

optimize the model for hardware adaptation to run on NVIDIA

Jetson to reduce power consumption and improve compute efficiency

to increase productivity. Besides, to improve research accessibility, we

will develop a software platform that is compatible with existing

tobacco production equipment and management systems, and an

intuitive graphical user interface will be designed, allowing operators

to acquire and process hyperspectral pictures using a simple interface

without complex processes.
TABLE 7 Comparison of the DBY-Tobacco model with other models.

Method Input Model
size

Parameters GFLOPs FPS Precise Recall mAP@50 mAP@50-95 F1

YOLOv3-tiny RGB 24.4 12,133,670 19 303 89.2 84.5 88.3 64.6 86.8

YOLOv3-tiny DCS 24.4 12,133,670 19 300 90.6 84.8 90.2 65 87.6

YOLOv5n RGB 5.3 2,509,049 7.2 123 89.4 83.8 88.7 66.5 86.5

YOLOv5n DCS 5.3 2,509,049 7.2 126 88.9 83 88.6 66 85.8

YOLOv6n RGB 8.7 4,238,441 11.9 125 87.7 83.5 86.9 66.1 85.5

YOLOv6n DCS 8.7 4,238,441 11.9 129 89.9 83.4 89.8 68.6 86.5

YOLOv8n RGB 6.3 3,011,433 8.1 126 88 82.9 88.2 65.7 85.4

YOLOv8n DCS 6.3 3,011,433 8.1 122 91.4 84.2 90.2 67.9 87.7

YOLOv9t RGB 4.7 2,005,993 7.9 64 87.8 82.9 87.6 66.3 85.3

YOLOv9t DCS 4.7 2,005,993 7.9 63 90.6 83.4 90.4 68.4 86.9

YOLOv10n RGB 5.8 2,708,210 8.4 114 85.5 79.7 85.5 62.9 82.5

YOLOv10n DCS 5.8 2,708,210 8.4 119 90 80.7 88.6 65.8 85.1

SuperYOLO Multi 5.5 2,520,225 63 79 91.5 85.7 91.9 73.1 88.5

CFT Multi 24.7 12,044,313 869.3 51 89.9 82.7 88.6 66.5 86.1

ICAFusion Multi 7.7 3,662,521 10.4 109 90.3 87.5 91.4 72.1 88.9

DBY-Tobacco Multi 8.5 3,733,674 10.7 151 91.8 87.6 92.8 73.7 89.7
frontiers
Bold values indicates the maximum value of the column.
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However, there are still some limitations in the study. For

example, HSI technology can introduce stripe noise (Dai et al.,

2024; Wang, 2016), which impacts detection tasks. Removing this

noise will be a key consideration in future study. Furthermore, the

study only examined feathers, rubber rings, and weeds. Other forms

of NTRMs (such as cloth strips and glass) are yet to be researched.

Future studies will collect images containing a wider variety of

NTRMs in order to improve tobacco product quality. At the same

time, consider that acquiring and processing hyperspectral images

is a complex and resource-intensive task. Future work will combine
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cutting-edge artificial intelligence approaches, including diffusion

models, HSIs generation models, snapshot hyperspectral imaging,

and hyperspectral image super-resolution frameworks (Lai et al.,

2024; Pang et al., 2024), to enrich the dataset and ensure that

downstream activities go smoothly.

In this study, we used PCA to extract the characteristic

wavelengths of NTRMs for detection, selecting three representative

bands (580 nm, 680 nm, and 850 nm) to allow for lightweight

computing of the model. However, this method does not use the

entire spectrum curve information and ignores other crucial
FIGURE 11

Comparison of different models in practical detection performance: (a) Group 1, (b) Group 2.
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information, such as inter-band correlations within the spectral

sequence. In some complex scenarios, such as when target features

are confused with the background, relying just on the chosen bands

may be insufficient. The spectral curve contains rich continuous

spectral information that can help distinguish between hard-to-

differentiate targets and backgrounds. Therefore, in future work, we

will consider incorporating the spectral curve data into deep learning

networks to accomplish combined learning of spectral and spatial

features. We intend to include innovative advances in state-space

models and recurrent neural networks (Yao et al., 2024), with the goal

of lowering the computing scale of hyperspectral data while

maintaining both short-term and long-term contextual relationships

between spectral bands.
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