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Plant diseases and pests pose significant threats to crop yield and quality,

prompting the exploration of digital image processing techniques for their

detection. Recent advancements in deep learning models have shown

remarkable progress in this domain, outperforming traditional methods across

various fronts including classification, detection, and segmentation networks.

This review delves into recent research endeavors focused on leveraging deep

learning for detecting plant and pest diseases, reflecting a burgeoning interest

among researchers in artificial intelligence-driven approaches for agricultural

analysis. The study begins by elucidating the limitations of conventional

detection methods, setting the stage for exploring the challenges and

opportunities inherent in deploying deep learning in real-world applications for

plant disease and pest infestation detection. Moreover, the review offers insights

into potential solutions while critically analyzing the obstacles encountered.

Furthermore, it conducts a meticulous examination and prognostication of the

trajectory of deep learningmodels in plant disease and pest infestation detection.

Through this comprehensive analysis, the review seeks to provide a nuanced

understanding of the evolving landscape and prospects in this vital area of

agricultural research. The review highlights that state-of-the-art deep learning

models have achieved impressive accuracies, with classification tasks often

exceeding 95% and detection and segmentation networks demonstrating

precision rates above 90% in identifying plant diseases and pest infestations.

These findings underscore the transformative potential of deep learning in

revolutionizing agricultural diagnostics.
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1 Introduction
Researchers are using image data to detect diseases and pest

infestation in plants using machine learning models and computer

vision techniques. Detection of diseases and pest infestation in

plants is a technique of photographing plants with industrial vision

equipment to check for diseases or pests (Shoaib et al., 2023). In this

method, the shooting angle and light source are selected according

to how the diseases and pests behave, so that a uniformly

illuminated photo can be created. Computer-vision-based

methods combined with traditional image processing techniques

and manual feature design and classifiers are commonly used to

detect plant diseases and pest infestation (Xiong et al., 2024).

On the other hand, well-designed imaging schemes can

significantly reduce the complexity of developing traditional

algorithms while also increasing implementation costs.

Simultaneously, expecting traditional algorithms to eliminate

scene changes from recognition results in the natural

environment is often unrealistic (Hurtado et al., 2023). A

complex natural environment presents numerous challenges.

Lesion areas differ modestly from their contexts, contrast is low,

the size of the lesion area differs significantly, and noise levels in the

image of the lesion are variable. In natural light, it is difficult to

detect plant diseases and pest infestations because of numerous

distractions. In this situation, traditional methods are often

ineffective and ineffective.

During the last few years, the effective implementation of deep

learning models based on convolutional neural networks (CNN)

has improved several computer vision (CV) applications, including

traffic detection (Karvelis et al., 2020), recognition of medical

images (Mehmood et al., 2018), text recognition in scenarios

(Moustafa et al., 2019), facial expression detection (Khare et al.,

2024), and identification of faces (Shah et al., 2022). Wechat disease

and pest infestation detection apps based on deep learning and

photo recognition APP applications have been developed by several

national and international companies. As a result, methods based

on deep learning for detecting plant diseases and pest infestation

have significant value in both academic and commercial fields.

Recent studies have made significant advancements in plant

disease detection and agricultural prediction using cutting-edge

technologies. One such study (Vishnoi et al., 2023), demonstrated

the effectiveness of CNNs in identifying diseases in apple plants

based on leaf images, showcasing how deep learning can automate

and enhance disease diagnosis. Another important work (Joshua

et al., 2022), explored various machine learning models for

predicting crop yields across different types of crops, emphasizing

the importance of data-driven approaches in improving agricultural

productivity. Additionally, the study (Khan et al., 2022) introduced

a novel IoT-based system that uses environmental data to

recommend precise fertilizer application, highlighting how IoT

can optimize resource usage and improve crop health. The study

(Parashar et al., 2024) provided a thorough review of various yield

prediction models, analyzing their advancements and the challenges

that still need to be addressed for more accurate and reliable
Frontiers in Plant Science 02
predictions. Together, these studies contribute to the growing

body of research that blends machine learning, IoT, and data

analytics to revolutionize agriculture and enhance sustainability.

This study makes several significant contributions to the field of

plant pathology and agricultural science:
• It provides a comprehensive review of recent advancements

in the application of deep learning techniques for the

detection of plant diseases and pests. By synthesizing and

analyzing the latest research findings, the study offers

valuable insights into the strengths and limitations of

deep learning models in addressing this critical

agricultural challenge.

• The study identifies and elucidates the challenges associated

with the adoption of deep learning methods in real-world

agricultural settings. By highlighting issues such as dataset

scarcity, model complexity, and detection speed, the study

offers researchers and practitioners a roadmap for

overcoming these obstacles and advancing the state-of-

the-art in plant disease and pest detection.

• The study proposes potential solutions to address the

identified challenges, including data augmentation

techniques, transfer learning strategies, and the

development of lightweight network architectures. By

outlining these solutions, the study not only informs

future research directions but also empowers practitioners

to implement more effective and efficient detection systems

in agricultural settings.
The article begins with an Introduction, highlighting the

significance of plant disease and pest detection in agriculture and

the role of advanced technologies like deep learning in addressing

these challenges. The second section, Pest and Disease Detection

Problems in Plants, explores the common issues associated with

plant diseases and pests, along with the limitations of traditional

detection methods. The third section, Deep Learning for Image

Recognition, provides an overview of deep learning techniques such

as CNNs and Transformers, emphasizing their impact on image

recognition in agriculture. The fourth section, Deep Learning for

Plant Disease Detection, focuses on recent advancements in

classification, detection, and segmentation models tailored for

plant disease identification. The fifth section, Integration of IoT

and Edge Computing for Enhanced Plant Disease Detection,

discusses the potential of IoT and edge computing technologies to

complement deep learning models for real-time agricultural

diagnostics. In the sixth section, Analyzing the Dataset and

Comparing its Performance, the importance of robust datasets

and a comparative analysis of model performance are presented.

The seventh section, Evaluation Indices, explains the metrics used

to assess the effectiveness of deep learning models. The eighth

section, Challenges, addresses the obstacles in deploying these

technologies in real-world scenarios. Finally, the ninth section,

Future Directions, outlines potential research opportunities and

innovations to advance plant disease and pest detection using

deep learning.
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2 Pests and disease detection
problems in plants

2.1 An overview of plant disease and
pest definitions

Natural disasters such as plant diseases and pests threaten

plants at all stages of their life cycle, from seed production to

seeding and seedling development. The concept of plant diseases

and pests is often used instead of mathematics when it comes to

industrial vision tasks. As a result, automating the task becomes

more difficult. In order to simplify the task, it can be divided into

simpler parts, such as detecting individual pests or diseases. Labeled

training data can be used to train the system (Maity et al., 2023).
2.2 Detection of plant diseases and pests

Pest infestations require broader criteria for detection,

identification, and segmentation (Kiobia et al., 2023). Its criteria

are divided into three groups: what, where, and how, with “who”

referring to the first-level classification role in computer vision. The

group to which it belongs, as shown in Figure 1, is indicated. This

step is known as classification, and it consists solely of providing

information about the image category. In computer vision, the

“where” on the second level is a representation of location, and the

“where” on the third level is a representation of robust detection.

This step determines whether an image contains any sign of diseases

or pests in plants, as well as where they are located. In Figure 1, a

rectangular box denotes the grey mould plate area. The “Why” task

in computer vision is the third-level segmentation task. As shown in

Figure 1, grey mould lesions are separated from the background

pixel by pixel, allowing for the extraction of additional data such as

the duration, region, and position of grey mould lesions, which can

help assess diseases and pest severity infestation in plants.

Object detection involves analyzing the local features of an object

to determine its spatial location within an image. This process

primarily relies on machine learning techniques, which consider

attributes such as shape, size, and color (Ma et al., 2023). Its

applications span diverse domains, including autonomous vehicles,

medical image analysis, and security systems. Classification, an
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integral facet of object detection, entails globally describing an image

through feature representations, followed by classification operations

to ascertain the presence of specific objects. This method ensures a

comprehensive understanding of the image content before making

object-specific determinations. The process of detecting plant diseases

and pest infestations encompasses three distinct stages, each serving a

unique function but interconnected and transformative in nature. The

initial stage focuses on identifying the presence of relevant objects

within the image (“what” task), followed by determining their spatial

location (“where” task). Lastly, the process concludes with

understanding the nature of these objects (“how” task), which

further refines the detection process. It is also noteworthy that

specific approaches may be employed to achieve the objectives of

the second and third stages by leveraging the outcomes of the initial

stage. For the sake of clarity and consistency, the term “identifying

plant diseases and pest infestations” is employed throughout this

discourse, with variations in network structures and functionalities

being the sole distinguishing factors in terminology.

From four perspectives, including gasoline, we compare

traditional methods of detecting plant and pest diseases based on

existing references (Joseph et al., 2023), to better illustrate the

characteristics and application scenarios of detection methods for

plant diseases and pest infestations. The results of the comparison

are presented in Table 1.
3 Deep learning image recognition

A deep learning model-based image recognition technique does

not require the extraction of specific features, rather it iteratively

discovers the most suitable ones. Image features can be extracted

globally and contextually, with high accuracy and robustness.
3.1 Deep learning theory

“Deep Learning” was popularized in a 2006 Science article by

Kabir et al (Kabir et al., 2023). Multiplying hidden layers is the basic

principle of deep learning. Perceptrons serve as hidden layers;

perceptrons extract low-level characteristics, and low-level

characteristics are combined to achieve high-level abstract

characteristics, thereby minimizing the local minimum problem.
FIGURE 1

(a) Input raw image, (b) leaf classification, (c) lesion detection, and (d) lesion segmentation.
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Using deep learning, researchers can overcome the shortcomings of

traditional algorithms that rely on artificial features. As a result, it has

been applied to many areas such as computer vision, face recognition,

speech recognition, natural language processing, recommendation

systems, and speech recognition (Chan et al., 2023). This stumbling

block can also be removed using the deep learning method. It can use

unsupervised learning to extract information on low-level,

intermediate-level, and high-level semantic characteristics directly

from the original image. Traditional plant disease and pest

infestation detection algorithms are based on manually designed

features extracted from original images. Human intervention is not

required for deep learning algorithms. With robust autonomous

learning and characteristic expression abilities, this model comprises

several layers that can automatically classify and recognize images.

Therefore, deep learning can be used to identify diseases and pests in

photographs. This technique has been used to create several well-

known deep neural network models. A few of them are Deep Belief

Networks (DBN) (Ahmed et al., 2023), Boltzmann’s Deep Machines

(DBMs) (Liu et al., 2017), Battery Noise Delete Autoencoders

(SDAEs) (Sun et al., 2023), and Deep CNNs (Li et al., 2022). Image

recognition techniques based on deep neural networks have several

advantages over manual methods for extracting features from a space

of prominent features. With more learning samples and

computational power, deep neural networks become better at

analyzing data. A wide margin separates deep neural networks from

traditional models in academia and industry. Among deep learning

environments, deep convolution neural networks have recently

gained popularity.
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3.2 Artificial neural network based
on convolution

Learning-based features are extracted by convolutional neural

networks and image classification is performed by these networks

(see Figure 2). One of the most well-known deep learning models is

CNN. The network’s essential structural features provide CNN with

a significant advantage in image recognition because they provide a

great deal of model capacity and complex information.

While CNN has been successful in computer vision tasks, deep

learning has seen an increase in popularity. First, the convolution

layer defines a convolution nucleus. In addition to its local receptive

field, the convolution neural network has several other advantages.

Convolution cores slide across feature maps to extract some of the

information from them. To group local receptive field values, average,

maximum, and random values are calculated (Alzubaidi et al., 2021).

3.3 Toolkits for deep learning based on
open-source software

TensorFlow (Zainab et al., 2019), Torch/PyTorch (C. Science

et al., 2021), Cafe (Shoaib et al., 2022), and Teano (Alzubaidi et al.,

2021) are some of the most widely used open-source third-party

deep learning tools. The features of each open-source tool are listed

in Table 2. The four most popular open-source learning libraries are

cross-platform, meaning they can run on Ubuntu, Windows, iOS,

Android, and other platforms. On systems with high-end GPUs,

PyTorch and TensorFlow with Keras can efficiently form large CNN
TABLE 1 A comparison is made between traditional image processing methods and deep learning techniques.

Aspect Traditional DIP Methods Cutting-Edge Deep Learning

Foundation Manual feature crafting, rule-based Autonomous learning from data

Features Extraction Handcrafted features, SIFT, HOG, LBP CNNs, attention mechanisms, transfer learning

Classification methods SVM, Backpropagation, Bayesian methods End-to-end learning, hierarchical deep networks

Advance Techniques Scale-Invariant Feature Transform (SIFT), Histogram of Oriented
Gradients (HOG), Local Binary Patterns (LBP)

Attention mechanisms, transfer learning, pre-trained models

Model Adaptability Relies on manually crafted features, may struggle with complex patterns Learns intricate features autonomously, superior adaptability to
dynamic environments

Enhancements
for Classification

Support Vector Machines (SVM), Backpropagation (BP),
Bayesian methods

End-to-end learning, exploiting hierarchical nature,
ensemble methods

Preprocessing Tools Limited preprocessing tools, often manual Batch normalization, dropout layers, activation functions for
enhanced robustness

Performance Optimization Utilizes advanced tools for nuanced decision-making Leverages data augmentation, transfer learning, and ensemble
methods for optimal performance

Coexistence with
Deep Learning

Coexists but relies on manual feature engineering Represents a paradigm shift, offering superior adaptability
and automation

Decision Factors Suitable for scenarios with limited data, computational constraints Ideal for large datasets, computational resources, dynamic
imaging environments

Impact on
Imaging Landscape

Traditional methods are still relevant but facing challenges Marks a paradigm shift, transforming the landscape of
image processing

Considerations for Choice Data volume, computational resources, simplicity vs. complexity Data volume, computational resources, adaptability to dynamic
imaging environments
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networks, and are extremely stable libraries that support numerous

third-party libraries.

3.4 Leveraging GANs and VAEs to address
data scarcity

One of the critical challenges in applying deep learning to plant

disease and pest detection is the scarcity of diverse and high-quality

datasets. This issue is particularly significant in agriculture, where

variations in environmental conditions, crop species, and disease

presentations make it difficult to build comprehensive datasets.

Generative Adversarial Networks (GANs) and Variational

Autoencoders (VAEs) have emerged as powerful tools to

overcome this limitation by generating synthetic data that mimics

real-world variations, thereby augmenting existing datasets and

improving model performance. GANs consist of two neural

networks—a generator and a discriminator—that work in

tandem. The generator creates synthetic images, while the

discriminator evaluates their authenticity against real images,

gradually pushing the generator to produce increasingly realistic

outputs. In the context of plant disease and pest detection, GANs

can simulate diverse lesion patterns, pest appearances, and

environmental conditions such as lighting and background

variations. These synthetic images enrich the dataset and improve

the robustness of deep learning models, ensuring they perform well

across different scenarios.
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VAEs on the other hand, learn latent representations of the

data, enabling the generation of new, plausible samples by

interpolating between existing data points. VAEs are particularly

useful for producing variations of plant images that maintain the

underlying features of diseases or pests while introducing subtle

differences. This ability to generate realistic variations can address

the imbalance in datasets by increasing the representation of under-

represented classes, such as rare diseases or pests. The integration of

GANs and VAEs into the data preparation pipeline offers several

advantages. First, these models significantly reduce the dependency

on large, annotated datasets, which are time-consuming and

expensive to collect in agricultural settings. Second, they enable

researchers to simulate specific conditions, such as early-stage

disease symptoms or variations across different crop types, to

improve model generalization. Finally, the use of synthetic data

generated by GANs and VAEs can enhance the scalability of plant

disease detection systems, making them applicable to a broader

range of crops and environmental conditions. Recent studies in

related fields, such as biomedical imaging and natural image

synthesis, have demonstrated the efficacy of GANs and VAEs in

augmenting datasets and improving model performance. Their

application in agriculture is still emerging but holds immense

potential for advancing plant disease and pest detection systems.

By leveraging these generative models, researchers can develop

more robust, efficient, and scalable solutions to address the

pressing challenges in agricultural technology.
FIGURE 2

A CNN framework for classifying plants into healthy and unhealthy (Shoaib et al., 2022).
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4 Deep learning for plant
disease detection

This section addresses the early detection of plant diseases and

pest infestations, emphasizing the integration of deep learning

methodologies into traditional agricultural networks (Kaya and

Gürsoy, 2023). The objective aligns seamlessly with computer

vision tasks, facilitating the adaptation of deep learning

techniques for the identification of plant and pest ailments.

Figure 3 delineates classification, detection, and segmentation

networks, elucidating their respective network structures.

Subsequently, a comprehensive summary of the distinctive

attributes inherent to each methodological approach is provided,

as depicted in Figure 3.

Explainable Artificial Intelligence (XAI) enhances plant disease

and pest detection by addressing the “black-box” nature of deep

learning models, making their predictions interpretable and

transparent. Tools such as SHAP, LIME, and Grad-CAM allow

visualization of key features, like leaf texture or discoloration,

contributing to model predictions, enabling farmers to verify and
Frontiers in Plant Science 06
trust AI-driven decisions. XAI facilitates informed decision-making

by highlighting critical areas in images for disease treatment and

pest management while identifying biases in training data to

improve model generalization across diverse agricultural settings.

Additionally, transparent AI systems align with regulatory

compliance, foster adoption, and can integrate with IoT devices

for real-time monitoring, offering actionable insights for precision-

driven agriculture.
4.1 Network of classifications

In the real world, detecting plant diseases and pest infestations

can be challenging due to differences in shapes, sizes, textures,

colors, backgrounds, layouts, and lighting (Shoaib et al., 2023).

Plant and pest diseases are classified using CNN-based classification

networks because of their high capacity to extract characteristics.

Some studies (Rai and Pahuja, 2024) have developed a network

architecture based on real-world problems. A new test image is

analyzed, and a label is assigned to the image categories in that class
TABLE 2 Software for deep learning based on open-source sources.

Techniques Editors
Hardware
Compatibility

Languages Usability

TensorFlow Google CPU, GPU, Mobile C++, Python, Java
Develop flexible applications, port to different platforms, increase performance, and
support distributed applications.

Deeplearning4j Skymind CPU, GPU Java Distributed deep learning, supports integration with Hadoop and Spark.

MATLAB MathWorks CPU, GPU MATLAB
Comprehensive support for deep learning and computer vision, extensive toolbox,
and functions for image processing.

R Language R Foundation CPU, GPU R
A growing ecosystem for deep learning, various packages for computer vision tasks,
statistical analysis, and visualization.

Theano MILA CPU, GPU C++, Python, C# High level of performance and flexibility.

Torch Face CPU, GPU, FPGA C#, Python, Lua
Simple debugging and development support dynamic neural networks. Easily
expandable, modularized, and cost-effective learning.
FIGURE 3

A general framework for plant and pest detection methods based on artificial intelligence.
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when added to the classification model. The classification network

method is divided into two subcategories based on the tasks it

performs: 1) CNN as a characteristics descriptor and 2) CNN as a

decision-making system for detecting and locating lesions in plants.
4.2 Extraction of features from the network

Early deep-learning-based disease and pest classification methods

were able to take advantage of CNN’s powerful characteristic

extraction capability. A combination of the techniques was

combined with an approach based on machine learning (Diana

Andrushia et al., 2023). A CNN-based meta-architecture with

characteristic extractors was proposed by Simbiring et al

(Sembiring et al., 2023). by crossing meta-architectures. An SVM

linear multiclass model was trained using features and labels

extracted from the nine types of rice diseases by Mendoza et al

(Mendoza-Bernal et al., 2024). It had a validation accuracy of 97.5%.
4.3 Classifying directly using a network

The Figure 4 shows the classification probabilities, and plant

survival rate as low, moderate or high. CNN was first widely used to

detect pests and diseases in plants. There is currently research being

done in the categories of image classification after identifying an

area of interest (ROI), as well as multi-category classification after

identifying an area of interest (ROI).
Fron
I. An enhanced pre-training model based on transfer

learning was proposed by Sakib et al. (Sourav and

Wang, 2023). Insect species were classified using three

sets of public insect data, which were accurate 96.75

percent, 97.47 percent, and 95.97 percent. Plant and

pest diseases were identified using ResNet50 by

Lawrence et al. (Ngugi et al., 2021). For identifying the

grade of leaf disease using Adam’s optimization approach,

95.61 percent accuracy was achieved by substituting the

focus loss function for the traditional cross-entropy

loss function.

II. As soon as the return on investment has been calculated,

the classification process begins. Our method of judging

diseases and pests is based on a fixed area within the

region of interest (ROI) for the entire acquired image

because we often know the ROI beforehand.

III. As with the original image classification system, the

traditional plant and pest classification network sorting

into different categories behaves similarly when

categorizing more than two classes, with the network size

being 1 (including middle classes. However, methods that

employ multiple classes of classification usually start out by

identifying lesions and standard samples before sharing

characteristic extraction sections to modify or expand the

classification branches. By utilizing binary learning
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between normal and diseased samples and pests, a pre-

workout weight parameter can be generated for multi-goal

disease and pest classification networks. With a single

multi-crop model Kirti et al (Kirti and Rajpal, 2023).

identified 17 diseases across five cultures with a CNN

architecture that integrates basic metadata. The model

can accomplish the following objectives:

• The goal is to achieve more prosperity and stability
through visual characteristics than through a

single culture.

• This culture doesn’t suffer from diseases with similar

symptoms to other cultures.

• Classifies conditional crop diseases based on

the context.
4.4 Locating lesions with the network

An image is classified using a label by a classification network.

There are three common methods: sliding windows, thermal maps,

and multitasking learning networks.
I. Determine the location of objects based on a sliding

window pattern. In general, this is the most intuitive

and basic method for determining the location of a

lesion. Using CNN classification networks based on the

sliding window technique, Chen et al (Chithambarathanu

and Jeyakumar, 2023). developed a system to identify and

estimate regression of plant disease and pest species

positions based on machine learning characteristics. A

majority of the 38 common symptoms had been

recognized by the field in 50-90 percent of the cases.

II. In the temperature chart, regions within the image are

ranked based on the hues of their regions. Temperature

charts demonstrate how hues indicate intensity of a

region. Image analysis and classification are made easier

with this tool. In addition to detecting outliers in images,

the temperature chart may also be used for data analysis.

Darker hues denote greater importance, and darker hues

indicate a larger area. Plant diseases and pest infestation

are more likely to be identified by darker heat maps. As a

result of training CNN to create thermal maps of corn

disease images, Kumar and colleagues (Rai and Pahuja,

2024) classified entire images depending on whether they

indicated infected leaves or not. The creation of a thermal

map of an image takes about two minutes (1.6 GB of

memory) and identifying three thermal cards for

execution takes less than a second (800MB of memory).

Test data show an accuracy of 96.7 percent in

experiments. Using the thermal map system, Wiesner-

Hanks et al. analyzed maize disease contour zones in

2019. Using the model, lesions as small as millimeters
frontiersin.org
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Fron
can be accurately detected from drone images with a

99.79 percent accuracy rate, which is an enormous

advancement in detecting aerial plant diseases.

III. Learning network that performs multiple tasks at once. As

long as there is no other capacity in the purely classified

network, it will be able only to classify images at the image

level. In order to locate plant diseases and pest infestations

reliably, the technical network must frequently add a branch.

A segmentation network’s branches can be created by

learning samples from every pixel in the image. Therefore,

the multitasking learning network generates specific lesion
tiers in Plant Science 08
segmentation results by using segmentation branches, which

reduces the sampling requirements for classification. The

deconvolution-guided VGNet model (DGVGNet) was

developed by Ren et al (Bouacida et al., 2024). in order to

detect plant leaf diseases caused by shadows, occlusions, and

light intensity. CNN classifiers have been refocused on actual

lesion sites because of deconvolution. The model is robust in

occlusions, low light, and other conditions, with an accuracy

of 99.19 percent in identifying disease classes, 94.66 percent

in segmenting lesions, and 99.19 percent in identifying

disease classes.
TABLE 3 Pros and cons of each classification network sub-method are compared.

Method Advantages Disadvantages Application
Implementation
Complexity

Resource
Requirements

Network Feature
Extraction

Detailed lesion
feature extraction

Requires additional
classifiers,
adding complexity

Lesion analysis,
feature extraction

Moderate Moderate

Classification of
Original Image

Fundamental framework Effectiveness depends on
lesion percentage in
the image

General image classification Low Low

ROI-Based
Classification

Precise lesion details Requires additional
methods for ROI extraction,
adding complexity

Targeted lesion analysis,
accurate classification

High High

Multi-Category
Classification

Addresses sample
imbalance, considers
multiple lesion categories

Requires secondary level
training,
increasing complexity

Diverse lesion categories,
robust classification model

Moderate Moderate

Sliding Window Preliminary
lesion localization

Optimal window size
selection can be
time-consuming

Initial lesion detection,
broad overview

Moderate Low

Heatmap Enhances accuracy in
lesion localization

Dependent on classification
model accuracy

Detailed lesion localization,
improved precision

High Moderate
FIGURE 4

Sample images and corresponding saliency maps for the EG-CNN model.
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Many researchers working on plant disease and pest

classification (Devi et al., 2023; Liu and Wang, 2021; Li et al.,

2021; Turkoglu et al., 2022). As shown in Table 3, each sub-method

has its own set of advantages and disadvantages.
4.5 Impact of environmental factors on
model performance

In real-world agricultural settings, environmental factors such

as lighting conditions, background complexity, weather, and

seasonal variations play a significant role in the performance of

plant disease and pest detection models. These factors can introduce

significant variability in image data, which poses challenges for the

accuracy and robustness of deep learning models. For instance,

variations in natural lighting can cause shadows, overexposure, or

underexposure in images, making it difficult for models to

distinguish subtle signs of disease or pest infestations.

Additionally, the background complexity, such as cluttered foliage

or varying soil textures, can interfere with accurate segmentation

and detection of target features.

Seasonal changes also contribute to variations in plant

appearance, with differences in leaf color, texture, and growth

patterns that can affect how diseases manifest on plants. These

environmental variations make it crucial for models to generalize

well across different conditions. To address these challenges,

strategies such as data augmentation, where images are artificially

varied through changes in brightness, contrast, and rotation, can

help simulate environmental factors and improve model

robustness. Transfer learning, which allows models to adapt to

new environments using pre-trained models, can also aid in

mitigating the impact of environmental variability. By

acknowledging and addressing the influence of these factors, the

study ensures that the proposed models are more adaptable and

reliable in diverse agricultural contexts.
4.6 Relevance to small-scale farms and
resource-constrained environments

The approaches and models discussed in this study are designed

to be applicable and effective in environments with limited

resources, such as small-scale farms. These types of farms often

face challenges including limited access to high-end computational

infrastructure, scarce datasets, and insufficient technical expertise

for implementing complex machine learning models. To address

these challenges, the study emphasizes the use of lightweight deep

learning architectures, such as smaller CNNs and more efficient

versions of Generative Adversarial Networks (GANs) and

Variational Autoencoders (VAEs), which require less

computational power and memory while still delivering accurate

results. Moreover, transfer learning plays a crucial role in adapting

models to new, data-scarce environments. By fine-tuning pre-

trained models on a smaller set of locally collected data, these

models can be adapted to the specific conditions of small-scale

farms, without the need for large annotated datasets. This
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significantly reduces the burden of data collection and labeling,

which is a major challenge in resource-constrained environments.

Additionally, data augmentation techniques—such as varying

lighting, background conditions, and crop types—allow the model

to be trained on a diverse range of synthetic images, improving

generalization. This is particularly important in small-scale farms

where natural environmental variations, such as changes in

weather, crop health, and pest behavior, can significantly differ

from region to region. The study also discusses the integration of

edge computing, where processing is done locally on devices such as

smartphones or low-cost IoT sensors, minimizing the need for

cloud-based infrastructure. This makes the technology more

accessible for small-scale farmers, who may not have access to

robust internet connectivity or expensive hardware. By focusing on

these strategies—lightweight models, transfer learning, data

augmentation, and edge computing—the study ensures that the

proposed methods are not only scalable but also practical and

accessible for small-scale farms. These approaches provide a

pathway for implementing effective plant disease and pest

detection systems in resource-constrained environments,

ultimately contributing to sustainable agricultural practices.

The adoption of AI-based plant disease detection systems in

agriculture introduces both ecological and socio-economic trade-

offs, particularly for smallholder farms in developing countries.

While these systems offer significant benefits, such as improved

crop health monitoring, reduced reliance on chemical pesticides,

and increased productivity, they also pose challenges. Ecologically,

the deployment of AI technologies may drive the need for energy-

intensive infrastructure, such as edge computing devices and cloud-

based solutions, potentially increasing carbon footprints. Socio-

economically, the high costs of implementation, limited access to

digital tools, and lack of technical expertise among smallholder

farmers can hinder adoption. Furthermore, the introduction of

advanced AI systems may exacerbate existing inequalities, favoring

larger farms with better resources. Addressing these trade-offs

requires developing cost-effective, energy-efficient, and user-

friendly AI systems tailored to the specific needs of smallholder

farms, ensuring equitable access and sustainability while

minimizing environmental impacts.
4.7 Detection network

Computer vision relies heavily on object positioning. As a

result, plant diseases and pests can be detected as closely as

possible in a traditional sense. Object location and category are its

primary aims. It is constantly being developed methods for

detecting objects using deep learning. Three types of deep

learning-based plant disease and pest infestation detection

networks include two-tiered networks like Faster R-CNN (Olgun

et al., 2018), one-story networks like SSD (Wang, 2022), and YOLO

(Redmon and Bochkovskiy, 2021). The two-tiered network is

different in that it must first create a candidate box (proposal)

with lesions before it can detect objects. In contrast, one-story

networks directly predict lesions based on their features.
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4.7.1 Detection of pests and diseases in plants
using a two-stage network

Faster R-CNN works in two stages: first obtaining input image

maps of functions via the unifying network. Refine the initial detection

results after connecting ROI-Carpool to the network, then obtain the

lesion position and classification results after refining the initial

detection results. Due to this method, plant diseases and pest

infestations are detected more accurately by improving the spine

structure, anchor ratio, ROI-carpooling, and loss function. The first

time Faster R-CNN was used to accurately locate tomato diseases and

pest infestations was by Zhang et al. (Zhang et al., 2023). The mAP

value rises to 85.98 percent when deep functionality extractors like

VGG-Net and ResNet are used. The CNN model’s parameters were

modified in 2019 by Ozguven et al. to detect beet spot disease

automatically using R-CNN. The total number of qualified and

verified images is 155. This system scores 95.48 percent on right-

hand rankings. FCM-KM and Faster R-CNN were merged by Sakib

et al. (Shovon et al., 2023) for the rapid detection of rice diseases. 96.71

percent of rice explosions, 97.53 percent of bacterial blights, and 98.26

percent of sheath burns could be detected accurately and quickly for

3010 images. A 15.01 frame-per-second detection speed and an

accuracy of 81.1 percent were achieved with the proposed model.

4.7.2 One-stage network for disease and
pest detection

With this one-step approach, the process of detecting objects

becomes significantly quicker and more efficient, making it an

attractive option for many applications. Further, compared to

traditional two-step object detection approaches, it requires fewer

parameters and training time. In computer vision research, SSD and

YOLO both come from open sources. Objects can be detected

quickly and accurately in images with these tools. Unlike traditional

convoluted neural networks, SSD uses a pyramidal network of

features to extract functionality and make predictions from

various layers. The YOLO method classifies objects in images by

using a convolutional neural network. Singh et al. [63] created the

PlantDoc dataset to detect plant diseases using this method because

it is faster and more accurate than its predecessors. To make model

setting detection easier on a mobile CPU, an app based on

MobileNets and SSD was developed. Sun et al. [64] showed how

to detect corn leaf burn in a complex context using a multi-scale

characteristic fusion instance detection system based on a

convolutional neural network improved with SSD. Pre-processing

data, merging characteristics, sharing characteristics, disease

detection, and other measures were all part of the proposed

system. The new model has a higher mAP than the SSD model

(ranging from 71.80 to 91.83 percent). The SPF of the new model

was also increased (from 24 to 28.4), bringing it closer to real-time

detection. YOLO approaches end-to-end detection of a single CNN

network as a regression problem and uses global knowledge to

directly predict the item’s delimitation area and category.

The detection of plant diseases and pests is increasingly based on

two-step models that emphasize accuracy. Machine learning is used

in these models to identify potential disease outbreaks and pest
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threats. In addition to predicting future outbreaks, the models can

help farmers prepare for and respond to them more effectively.

Detailed annotations must be provided in advance in order to

determine the location of plant diseases and pests. The model can

then produce more accurate predictions since it has a better

understanding of the environment. As well as detecting disease

outbreaks and pests, these models can detect environmental

changes that may be contributing to disease outbreaks. Using their

knowledge of diseased and pest-infested areas, researchers and

farmers can provide this detail. In order to generate accurate

predictions, the model is trained using this data. The type of plant

disease and pest determined during training is not always the type

that occurs in the field. To a certain extent, a detection network can

address “what types of plant diseases and pests are in which areas” if it

provides accurate results in a good model differentiation. A

classification network, however, can help represent the individuality

of plant diseases, while pest categories merely refer to the types of

diseases and pests in a given area. Consequently, the classification

network can’t perform the same functions as the detection network.
4.8 Segmentation network

Segmentation networks detect diseases by identifying lesions

and healthy areas using semantic segmentation. As a result of this

network, lesions and healthy areas can be accurately classified, and

multiple diseases can be detected in one image. Furthermore, it is

capable of providing a comprehensive analysis of a patient’s health

using this data. Based on the entire area of the lesion, this method

calculates the position, rank, surface, contour, and center of the

lesion (along with its length, width, and surface area). Next, either

benign or malignant lesions are classified by the classification

algorithm. In addition to calculating the growth rate of the lesion,

the algorithm also calculates the likelihood of it spreading to other

parts of the body.

4.8.1 Fully connected network
The semantics of the image are segmented using a complete

convolution neural network (FCN). In FCN, the input image

features are extracted and encoded by convolution, and the

characteristic image is gradually resized by deconvolution or

oversampling. Almost every semantic segmentation model uses

FCN today. FCNs are classified into three clusters based on their

structure: traditional FCNs, U-nets (Zhang and Zhang, 2023), and

SegNets (Goncalves et al., 2021).
I. FCN as it appeared in its original form. The corn leaf

lesion image was deconvoluted to restore its size and

resolution, then convolution layers were used to extract

the multilayer characteristics. To detect corn leaf lesions,

the extracted features were used. A validation and

performance evaluation was then conducted on the

model. A comparison was made between the results of

the automatic detection and those of the manual
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detection. By segmenting the small area of the lesion, we

were able to achieve an accuracy of 95.87 percent

compared to the original FCN process.

II. In one network, the U-Net acts as both a decoder and a

decoder decoder. This algorithm introduces a layer jump

relationship, which allows the decoding stage feature map

to be merged with that in the coding stage to aid in

recovering segmentation information. U-net-based

convolutional neural networks were used by Lin et al.

(Lin et al., 2019) to segment 50 wild cucumber oidium

sheets. In a complex context, the U-net approach

segmented the affected area with fewer samples and

good accuracy and speed.

III. Lastly, SegNet can be considered. In addition, it is a standard

encoder-decoder configuration. An unusual aspect of the set-

top box oversampling operation is that it uses the most

extensive indexes from consolidation. Kerkech and colleagues

(Kerkech et al., 2020) presented a segmentation system for

unmanned aerial vehicles. Based on four categories of

shadows, field vines, stable, and symptomatic images, 488

samples of visible and infrared images were analyzed by

SegNet. On vines and leaves, respectively, 92 percent and 87

percent of the proposed method were detected.
4.8.2 Mask R-CNN
Image segmentation methods such as Mask R-CNN are very

popular. In this technique, multitasking learning is used for

segmentation and detection. With instance segmentation, multiple

lesions of the same type can be distinguished from each other and

counted. Alternatively, semantic segmentation treats multi-tumors of

the same form as a single entity. With the help of an unmanned aerial

vehicle (NLB) image, Stewart et al. (DeChant eta al., 2017) were able

to divide corn leaf burn injuries into segments using a Mask R-CNN

model. The qualified model allows reliable detection and

segmentation of a single lesion. The IOU between the actual

baseline and the expected lesion was 0.73 at the 0.50 IOU

threshold, with a 0.96 average accuracy. As well as identifying

diseases and pests with object detection networks, the Mask R-

CNN system has been used in several studies. The authors (Wang

et al., 2019) used two separate models to detect and segment the

infected region, Faster R-CNN and Ask R-CNN, with Faster R-CNN

identifying the tomato disease class and Mask R-CNN identifying

and segmenting the infected region’s location and shape. Using the

proposed model, 11 different types of tomato diseases were easily and

reliably classified by location and form. With a detection rate of 99.64

percent, Mask R-CNN detected all tomato disease groups. Compared

to classification and identification networks, segmentation provides

more information about lesions.

4.8.3 Advantages and practical applications of
segmentation networks

Segmentation networks, such as Mask R-CNN and U-Net, are

powerful tools in the detection and analysis of plant diseases and
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pest infestations. These models enable the precise localization and

segmentation of affected areas in plant images, making them highly

effective in agricultural applications. Mask R-CNN, an extension of

Faster R-CNN, is particularly advantageous for instance

segmentation, where it not only detects the presence of a disease

or pest but also accurately delineates the boundaries of the affected

areas. This capability is crucial for quantifying the extent of damage

caused by plant diseases or pests. For example, in detecting powdery

mildew on crops, Mask R-CNN can separate the fungal growth

from the healthy parts of the plant, providing detailed information

about the size and location of the infection. A study by Liu et al.

(2020) demonstrated that Mask R-CNN could achieve high

accuracy in segmenting grapevine leaves affected by downy

mildew, offering an effective solution for early detection and

targeted treatment.

U-Net, designed for medical image segmentation, has also

shown remarkable success in agricultural image analysis due to its

encoder-decoder architecture, which allows the model to produce

high-resolution output and accurately segment small lesions or

infections on plants. U-Net has proven particularly useful in cases

where there is a need to segment images with limited labeled data.

For instance, Prathusha et al. (2020) applied U-Net to detect tomato

leaf curl virus (TLCV), successfully identifying and segmenting

infected areas from healthy tissue. This level of precision aids in

early disease detection, enabling more targeted interventions and

reducing unnecessary pesticide use.

Other examples of segmentation network applications include:
1. Early detection of citrus greening (HLB) disease using U-

Net, where it was applied to images of citrus trees to

accurately identify infected regions, even when the

symptoms were subtle.

2. Rice plant disease detection using Mask R-CNN to segment

leaf spot lesions caused by the bacterial blight disease,

allowing for precise quantification of the infected area

and aiding in the development of better disease

management strategies.

3. Weed detection and classification using U-Net to segment

crops from weeds in agricultural fields, helping to automate

weed management processes and improve crop yields by

minimizing herbicide use.
These segmentation networks offer practical applications in

precision agriculture, where they enable automated and efficient

monitoring of plant health. The detailed segmentation results allow

farmers and researchers to accurately assess the severity of plant

diseases and pest infestations, leading to more efficient resource

management and targeted intervention strategies. Segmentation

networks like Mask R-CNN and U-Net provide significant

advantages in plant disease and pest detection by offering high

precision in segmenting affected areas. Their practical applications,

demonstrated through various case studies, show their ability to

enhance early detection, improve crop management, and contribute

to sustainable farming practices.
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5 Integration of IoT and edge
computing for enhanced plant
disease detection

The integration of Internet of Things (IoT) and edge computing

technologies has the potential to significantly enhance the process

of plant disease detection, offering real-time monitoring and

analysis of plant health in agricultural settings. These technologies

enable efficient, scalable, and autonomous systems for early disease

detection, which is crucial for managing crop health and preventing

large-scale outbreaks.
5.1 Internet of things in plant
disease detection

IoT refers to the network of physical devices, such as sensors and

cameras, connected to the internet to collect and exchange data. In

agriculture, IoT devices can be deployed throughout a farm to

monitor various environmental factors that influence plant health,

such as temperature, humidity, soil moisture, and light intensity.

These environmental variables are essential for understanding plant

disease dynamics, as diseases often thrive under specific conditions.

For instance, IoT-enabled sensors can be used to measure soil

moisture and temperature, providing valuable insights into

conditions that may predispose crops to fungal or bacterial

infections. When combined with image data from cameras or

drones capturing plant images, IoT devices can provide real-time

feedback on plant health, allowing for early detection of diseases such

as powdery mildew, downy mildew, or leaf rust. Moreover, IoT

networks can support precision agriculture by enabling the automatic

collection and transmission of large datasets across the farm. This

data can then be processed and analyzed to detect patterns indicative

of disease outbreaks. Smart sensors, for example, can continuously

monitor plant leaves for visual symptoms of disease, such as spots or

lesions, and alert farmers immediately.
5.2 Edge computing in plant
disease detection

Edge computing complements IoT by enabling local data

processing near the source of data generation (i.e., on-site at the

farm), reducing the reliance on cloud-based systems and

minimizing the delay between data capture and actionable

insights. In the context of plant disease detection, edge computing

allows for the real-time analysis of images captured by cameras or

drones, as well as sensor data, directly on local devices such as

smartphones, drones, or field gateways. For example, edge

computing allows image processing algorithms, such as CNNs, to

run on local devices to detect and classify plant diseases without

needing to send all data to a cloud server. This local processing

ensures quicker results and more efficient disease detection, even in

remote areas with limited or unreliable internet connectivity. By
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reducing latency and providing immediate feedback, edge

computing enhances the timeliness of interventions, allowing

farmers to act quickly before diseases spread further. In addition,

by offloading intensive computations to local edge devices, it

reduces the bandwidth and data transfer costs associated with

cloud-based systems. This is particularly important for large-scale

farms or areas with limited internet infrastructure. Below are some

examples discussed for the application of IoT and edge computing

in the agricultural domain.
1. IoT-based systems, such as Plantix, use sensors and mobile

apps to detect plant diseases by analyzing images captured by

farmers. The app processes the images and environmental

data to provide real-time disease diagnosis and

recommendations for treatment. By integrating IoT-enabled

sensors with image recognition technologies, it offers a more

comprehensive and accurate disease detection solution.

2. John Deere, a leader in agricultural machinery, uses edge

computing in its smart farming equipment to detect plant

diseases and pests in real-time. Their See & Spray

technology uses high-resolution cameras and on-board

computing power to identify weeds, pests, and diseases

while simultaneously applying targeted treatments,

reducing resource waste and ensuring efficient

disease management.

3. IoT-enabled irrigation systems can help reduce the risk of

plant diseases caused by overwatering or under-watering.

These systems use soil moisture sensors to provide real-

time data to farmers, who can adjust irrigation schedules

accordingly. In combination with edge computing, these

systems can monitor environmental conditions and plant

health simultaneously, enhancing disease prevention.
6 Analyzing the dataset and
comparing its performance

In this section, we review plant disease and pest datasets and

compare and analyze related deep learning models.
6.1 Datasets for plant diseases and
pests detection

In order to detect plant diseases and pests, scientists use

datasets. Plant and pest diseases aren ’t detected by a

comprehensive and unified dataset, such as ImageNet,

PASCALVOC 2007/2012, or COCO. To collect plant disease and

pest data, self-collection, networking, and public databases can all

be used. Various methods are frequently used to collect image data

sets, including unmanned aerial remote sensing, ground camera

imagery, video capture with the Internet of Things, aerial

photography using a camera, hyperspectral imaging, near-infrared

spectrometers, and others. A widely used digital library,

PlantVillage, is a popular resource for public datasets. The natural
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world, however, collects more realistic data on plant diseases and

pests. It can be difficult to compare field-collected photographs

across diseases, artifacts, and detection scenarios systematically,

even though several researchers distribute field-collected

photographs. Various datasets related to detecting plant and pest

diseases are provided in this section, according to existing research.

The results of the study are summarized in Table 4.
7 Evaluation indices

Evaluation indices will vary based on the study focus. Metrics

used to evaluate performance include precision, recall, and

harmonic mean F1. Precision and recall are defined as:

Precision =
TP

TP + FP
 * 100 (1)

Recall =
TP

TP + FN
 * 100 (2)

It is estimated that TP (True Positive) represents the number of

lesions correctly detected in Formulas 1 and 2. Between one and
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zero lesions are estimated to be incorrectly detected by the

algorithm. False Positives (FP) indicate that the algorithm

detected lesions incorrectly. In FN codes, the number of

unidentified lesions ranges from 0 to 1. The method of

determining detection accuracy known as mAP is widely used. To

begin, calculate the average accuracy of each dataset segment:

Paverage = o
N(Class)

j=1
Precision(j) * Recall(j) * 100 (3)

The formula above has N (class) representing the total number

of categories, Precision (j) representing precision and recall for class

j, and Recall (j) representing recall for class j, respectively.

Accordingly, each category’s mAP is calculated as follows:

mAP =
Paverage
N(Class)

(4)

An algorithm’s recognition accuracy increases as its mAP value

increases; the algorithm’s recognition accuracy decreases as its mAP

value decreases. In addition to the F1 score, the accuracy of the

model is also evaluated. Model precision and recall are both

considered in the F1 score. The following is the formula:
TABLE 4 Plant disease and pest detection from benchmark datasets.

Dataset Name Species
Collection

Environment Link
Number
of Images Classes Background

PlantVillage-Dataset
14 crop varieties,
26 diseases

Detached leaves on a
plain background

GitHub 50,000 26 No

Rice Leaf Diseases Rice
Captured with a white
background in direct sunlight

UCI Archive Not specified 3 No

Plant Disease Symptoms
Image Database (PDDB)

21 plant species Field Embrapa 2,326 171 No

New Plant Diseases
Dataset (Augmented)

Various crop leaves
Detached leaves on a
plain background

Kaggle 87,000 38 No

PlantVillage Dataset Not specified Network GitHub Not specified 39 Yes

Northern Leaf Blight
(NLB) Lesions

Not specified Field OSF 105,705
Not
specified

No

Insect Pests Database
Rice, maize, soybean,
sugarcane, cotton

Field NBAGR Not specified 40 No

High-Quality Crop Images Rice, wheat, maize Not specified Website Not specified
Not
specified

No

PlantDoc Dataset
13 plant species,
17 diseases

Field
GitHub -
Object
Detection

2,598 17 No

Maize Dataset for NLB Maize Field Bisque Not specified
Not
specified

No

Apple Leaf Disease Apple Field Kaggle 3,651
Not
specified

No

IP102 Insect Pest
Recognition Database

Various insect pests Field GitHub 75,000 102 No

Tomato Pests Database Tomato Network Mendeley 8
Not
specified

No
frontiersin.org

https://doi.org/10.3389/fpls.2025.1538163
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shoaib et al. 10.3389/fpls.2025.1538163
F1 = 2 * 
Precision * Recall
Precision + Recall

 * 100 (5)

FPS measures recognition speed. With increasing frames per

second, the algorithm recognizes more objects. Alternatively,

recognition speed decreases with a reduction in frames per second.
7.1 Performance comparison of
existing algorithms

A complete classification, diagnosis, and segmentation of the

samples has been accomplished as well as more complex tasks such

as determining the degree of infection. Based on unique data sets,

the most advanced methods for detecting pest infestations and plant

diseases are used. It is still difficult to compare all algorithms

consistently due to the lack of comprehensive, publicly accessible

datasets. In recent years, some popular algorithms have steadily

improved their performance on various datasets, with improved

mAP, F1 score, and FPS. Despite significant advances in previous

research, there is still a significant gap between the sophistication of

infectious disease and pest images used in current research and real-

time disease detection using mobile devices in the field. Data sets

that are larger, more complex, and experimental will be required for

future research.
8 Challenges

8.1 Small dataset size problem

Plant diseases and pests can now be identified using deep-

learning approaches in specialized agricultural applications.

Insufficient samples of agricultural plants have been collected for

disease and pest research. It is difficult to mark self-collected

datasets compared to open standard libraries. While ImageNet

datasets contain over 14 million samples, detecting plant and pest

diseases remains a challenge because of the small sample size. A few

or dozens of training data are available for detecting diseases and

plant pests due to low prevalence and high acquisition costs.

Currently, small samples are approached in three ways.
8.2 Data amplification, synthesis,
and generation

As part of the training process for deep learning models, data

amplification is required. A well-designed data amplification

technique will greatly aid the detection of plant diseases and

pests. Mirroring, rotating, flipping, deforming, filtering, and

contrast adjustment can produce more samples. Small data sets

will also be enriched by GAN (Nazki et al., 2020) and Automatic

Variational Encoder (VAE) (Zilvan et al., 2019). Emerging datasets,

including synthetic data generated through GANs, play a pivotal

role in addressing data scarcity and improving the robustness of

deep learning models for plant disease and pest detection. GANs
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can create realistic synthetic images that augment existing datasets,

enabling models to generalize better across diverse scenarios and

conditions. This approach is particularly beneficial in cases where

collecting real-world data is challenging due to seasonal limitations,

rare disease occurrences, or resource constraints. Moreover,

synthetic data generation helps balance datasets by addressing

class imbalances, such as underrepresented diseases or pests,

thereby enhancing model performance. By leveraging GANs to

create high-quality, diverse datasets, researchers can train more

robust and scalable models, making AI-based solutions more

effective and accessible for real-world agricultural applications.
8.3 Fine-tuned and transfer learning

Transfer Learning (TL) involves transferring information from

large, generic datasets to sparsely represented areas. In transfer

learning, a learning dataset can be used as a starting point when

creating a model for newly collected, unannotated samples. Natural

light was used to photograph contaminated potatoes of various

shapes, sizes, and hues. The VGG network was then used to identify

the potatoes. In addition to new learning, network transfer training

was also beneficial. In their comparison of conventional networks,

Too et al. (2019) used fine and contrasting settings. Increasing the

number of iterations improved the accuracy of Dense-Nets. They

achieved an average accuracy of 92.00 percent using transfer

learning and adjustment to properly categorize rice disease

images in a complex context, demonstrating that transfer learning

is more effective than traditional training.
8.4 An appropriate network structure

A network structure can significantly reduce sample

requirements. Using three color components, Zhang et al. (2019)

developed a convolution neural network model for recognizing

plant leaf diseases. For each channel of TCCNN, there are three-

color RGB leaf disease images. An improved CNN method was

proposed by Liu et al. (2017) for the detection of disease in vine

leaves. Deep separable convolution was used instead of regular

convolution to avoid overadjustment and reduce parameters. To

improve the extraction of multi-scale characteristics for vine leaf

lesions of different sizes, the original structure was added to the

model. Traditional ResNet and GoogleLeNet structures have slower

convergence speeds and lower training accuracy.
8.5 Identifying small lesions in an
early stage

8.5.1 Early detection of small lesions
In order to maximize yields, plant diseases must be detected

early (Bouacida et al., 2024). Small-scale artifacts are often

overlooked in the deep characteristic extraction network due to

the size of the lesion object. Also, background noise on the collected

images can result in false detection because of the large-scale
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complexity of the background, especially on low-resolution images.

Small object detection is examined in light of the scarcity of existing

algorithms. In order to improve the detection efficiency of small

targets, several techniques have been proposed, such as the use of an

attention mechanism. By using the attention system, resources can

be allocated more rationally. Attention is primarily responsible for

locating a region of interest and discarding irrelevant information

quickly. Using the factory village dataset, Karthik et al. (2020) tested

a residual network attention mechanism with 98 percent accuracy.

In this method, a protruding image is obtained, the object is isolated

from its context, the characteristic image is manipulated, and the

original characteristic image is combined with the characteristic

image. A new fusion function can be created by the Attention

Mechanism module using the Softmax function in order to reduce

noise. By using attention mechanisms, we will be able to select

information and allocate resources more accurately in future studies

on the early detection of plant diseases and pests. A residual

network attention mechanism was tested with 98 percent

accuracy using the factory village dataset by Karthik et al. (2020).

8.5.2 Fine-grained identification
There are a lot of variations; for example, different plant diseases

and pests can appear slightly different from one another. Irregular

lighting, dense occlusion, blurred equipment weaving, or other

interference can lead to differences in samples of the same disease

or pest. A complex situation makes it difficult to identify plant

diseases and pests (Wang, 2022). There is also some blurring of class

that makes objects from different classes look the same. There are

similarities between subclasses in biological morphology and

lifestyle that pose the problem of fine recognition of “interclass

similarity.” Despite similar symptoms, Barbedo, 2019 says that

plant pathologists cannot distinguish them. The detection of plant

and pest diseases becomes more difficult when the story interacts

with other objects of interest. Some publications overlook this issue

since photographs are taken under controlled conditions.
8.6 Real-world feasibility, scalability, and
challenges of deployment

While the proposed deep learning-based techniques for plant

disease detection show significant promise, their deployment in real-

world agricultural settings presents several challenges that need to be

carefully considered. The feasibility of implementing these techniques

depends on several factors, including the availability of high-quality

data, suitable hardware, and the technical expertise required for

deployment. In agricultural environments, deploying models such

as CNNs or GANs requires access to robust computational resources,

especially when dealing with large datasets. Moreover, real-time

processing capabilities are crucial to make decisions promptly in

large-scale farms. Therefore, employing edge computing and IoT

solutions can significantly aid in processing data locally, reducing

latency, and improving overall system efficiency.

Scalability is another key consideration, particularly when

moving from small-scale to large-scale farms. The proposed
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models should be adaptable to different farm sizes, crop types,

and environmental conditions. For large farms, the models must be

capable of handling high volumes of data collected from various

sensors and cameras. Additionally, scaling the models to

accommodate diverse environmental factors such as lighting

conditions, plant species, and pest varieties may require fine-

tuning or transfer learning strategies. Several challenges need to

be addressed for the effective deployment of plant disease detection

systems. The first challenge is data availability, particularly in

regions with limited access to high-quality, labeled datasets.

Variability in environmental factors (e.g., weather conditions,

light intensity, and background noise) can also impact model

accuracy. Furthermore, many small-scale farms may lack the

necessary infrastructure, such as high-speed internet and

advanced hardware, to deploy complex deep learning models.

These limitations make it essential to develop lightweight,

cost-effective solutions that can be deployed without

significant resources.

To overcome these challenges, future research should focus on

developing scalable models that can be easily adapted to different

agricultural contexts. Additionally, incorporating IoT and

edge computing technologies can help address data processing

and real-time decision-making requirements, making the

detection system more practical for deployment in resource-

constrained environments.
8.7 Detection performance under the
influence of illumination and occlusion

8.7.1 Lighting problems
The use of indoor lightboxes has been used in the past to

capture diseases and pests on plants [105]. It can simplify image

processing by eliminating the impact of external light, but the result

is a very different image captured in natural light. The dynamic

range of natural light is small, which makes it easy for a camera’s

dynamic light source range to become out of date when it is used

with natural light. Moreover, due to differences in angle of view and

distance, the appearance of plant and pest diseases changes

significantly during image processing.

8.7.2 Occlusion problem
There is currently a lack of efforts by scientists to identify plant

diseases and pests across various ecosystems. Whenever they are

dealing with a situation, they only pay attention to that situation.

Often, they do not consider the occlusion problem when collecting

images of areas of interest. Consequently, recognition accuracy and

practicality cannot be maximized under occlusion. The occlusion of

the blade, the occlusion of the branch, and the occlusion of light due

to external lighting are all common causes of occlusion in virtual

natural environments. Diseases and pests are difficult to identify due

to occlusion and a lack of characteristics. Recognition algorithms

are affected differently by different degrees of occlusion, resulting in

false or missed detections. Researchers have found it more difficult

to identify plant diseases and pests in extreme conditions as deep
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learning algorithms have improved under limited conditions in

recent years. Plant and pest disease identification has made

significant progress, providing a solid foundation for real-world

applications. In addition to designing lightweight network

architecture, the basic framework needs to be improved for

creativity and optimization. In contrast, occlusion occurs

unexpectedly and is difficult to predict. While retaining detection

accuracy, GAN exploration should be improved and model

formation complexity reduced. When it comes to posture changes

and chaotic environments, THE GAN has many advantages.

Although its architecture is still in its infancy, it is easily planted

during training, resulting in intractable model problems. Improved

exploration of network output will help us measure the

model’s effectiveness.

8.7.3 Detection speed problem
There is a substantial difference between deep learning

algorithms and traditional ones in terms of computational

requirements, but they produce better results. As a result of the

model’s familiarity with the image’s characteristics, high detection

accuracy results in slow detection speeds and inability to meet real-

time requirements. Usually, reducing measurements is necessary to

ensure detection speed. In some cases, this can result in inaccurate

or missed identifications as a result of a lack of planning. This

necessitates developing a quick and accurate threat detection

algorithm. A deep learning method for detecting diseases and

plant pests in agriculture relies on data labeling, model formation,

and model inference. In real-time agricultural applications, model

inference is becoming more popular. Most methods for detecting

plant and pest diseases emphasize precise identification. The model

inference is rarely examined for its reliability. Tests have been

conducted on several models. In comparison to VGG and

MobileNet, the reduced MobileNet had a classification accuracy

of 98.34 percent with settings 29 times lower. Using mobile devices

with limited resources in real-time to diagnose crop diseases

demonstrates a good balance between time and accuracy.

8.7.4 Identifying and addressing limitations to
improve practical applicability

While the models and approaches discussed in this study show

considerable promise for plant disease and pest detection, certain

limitations may restrict their practical applicability in real-world

agricultural settings. One significant challenge is the variability of

environmental conditions, such as lighting, weather, and

background complexity, which can significantly impact model

accuracy and reliability. Addressing these challenges through

techniques like data augmentation, which simulates different

environmental conditions, and transfer learning, which allows

models to adapt to new environments, is essential for improving

their robustness and generalization across diverse settings. Another

limitation is the dependency on large, labeled datasets for training

deep learning models. In resource-constrained environments, such

as small-scale farms, the collection and labeling of data can be

prohibitively expensive and time-consuming. To mitigate this, the
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study emphasizes the use of synthetic data generated through

techniques like GANs and VAEs, which can augment existing

datasets and reduce the need for extensive data collection efforts.

Furthermore, model complexity and computational requirements

can be barriers to deployment in environments with limited resources.

To address this, the article explores the development of lightweight

models that can be deployed on edge devices, minimizing the need for

high-end infrastructure and enabling on-site detection. By identifying

these key limitations—environmental variability, data scarcity, and

computational constraints—and proposing targeted solutions, this

study aims to enhance the practical applicability and effectiveness of

deep learning models for plant disease and pest detection, particularly

in real-world agricultural settings.
9 Future directions

In contrast to traditional image processing techniques, which

intervene in the detection of plant and pest diseases in stages, deep

learning-based methods integrate them into an end-to-end

extraction of characteristics. This has a lot of potential. Despite

rapid advances in plant and pest disease detection technology, it has

moved from academic research to agricultural application. The

mature application still requires a great deal of work, and several

issues must be resolved before it can be used in the real world.
9.1 Plant diseases and pests
detection dataset

In recent years, deep learning has made it easier to detect plant

diseases and pests. It lays the foundation for identifying complex

diseases and pests by improving and expanding image recognition

algorithms. Researchers primarily collect photographs of plant

diseases and pests in the laboratory and use these photographs as

the basis for their research findings. In contrast, previous research

collected sample images primarily from identifying disease spots,

insects, and insect pests and leaves. Growth in plants occurs

cyclically, consistently, seasonally, and regionally. As crops

develop, diseases and pests also change. Plant species are pictured

differently from one place to another. As a result, most current

research findings do not apply universally. Electromagnetic waves

produce large amounts of data outside the visible range, however.

Due to this, multispectral, near-infrared, and visible light data must

be combined to obtain plant disease statistics. Assuring the

completeness and accuracy of the data set can also help improve

the algorithm’s performance.
9.2 Early recognition of plant diseases
and pests

In the absence of obvious symptoms, it can be difficult to detect

plant and pest diseases early, whether by visual observation or
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computerized analysis. Research and demand are more important for

early diagnosis due to their benefits in preventing and controlling

disease and pest spread and growth. On a cloudy day, however, pre-

processing is more difficult and the recognition effect is reduced.

Taking photos in daylight is best, but on cloudy days, image quality is

best. The early stages of plant diseases and pests can also make it

difficult to interpret even high-resolution images. Temperature and

humidity data, as well as weather data, must be combined to

recognize and predict diseases and pests. Plant diseases and pests

are rarely diagnosed early using current research literature.
9.3 Network training and learning

When plant diseases and pests are detected manually, only

reliable data are available (positive samples). The collection of

labeled data sets is difficult, however, because most existing

approaches use supervised learning and use many samples. A

study of unsupervised learning is necessary. Due to the black-box

nature of deep learning, it is necessary to label several training

samples for end-to-end learning. Additionally, prior knowledge of

brain-inspired computation is also useful in guiding network

training and learning. While deep models require more memory

and testing time, they are incompatible with mobile platforms with

limited resources. A fast-paced model needs to have less complexity

and be accurate without losing speed.
9.4 Interdisciplinary research

We will develop a field diagnostic model based on scientific

evidence and theories such as plants’ agronomic defenses to

enhance crop growth. In this way, pests and plant diseases will be

detected faster and more accurately. Identifying disease and pest

occurrence mechanisms and establishing an experimental

framework will be critical in the future, as well as incorporating

crop growth laws, environmental factors, and other factors into

realistic application research.

9.4.1 Multimodal data fusion
One promising avenue for advancing plant disease detection is

the integration of multimodal data, combining imagery from various

sources (e.g., visible light, thermal, and hyperspectral images) with

environmental data from IoT sensors. By fusing data from different

modalities, it is possible to gain a more comprehensive understanding

of plant health. This approach can overcome limitations such as

variations in lighting conditions, and different types of diseases that

manifest in various environmental contexts. Effective data fusion can

lead to more accurate detection, reduced false positives, and

enhanced decision-making in real-world settings.

9.4.2 Scalable models for diverse environments
Another important future direction is the development of

scalable models that can be effectively deployed across a wide
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range of agricultural environments, from smallholder farms to

large-scale industrial operations. This includes creating

lightweight and adaptable models that can handle the variability

in environmental conditions, crop types, and disease profiles.

Leveraging techniques like transfer learning and domain

adaptation can ensure that models trained in one setting are

adaptable to others with minimal retraining. This scalability can

bridge the gap between research and real-world deployment,

making advanced plant disease detection accessible to farmers

across diverse regions.

9.4.3 Edge AI for real-time monitoring
With the continued expansion of edge computing capabilities,

deploying AI models directly at the point of data collection—such

as on drones, IoT devices, or mobile platforms—will enable real-

time disease detection in remote or resource-constrained

environments. Future research should focus on enhancing the

efficiency and accuracy of edge AI models, ensuring they are

lightweight and capable of running in low-resource settings. This

will allow farmers to make informed decisions quickly, without the

need for constant connectivity to cloud servers.

9.4.5 Automated decision support systems
The future of plant disease management will involve developing

intelligent decision support systems that can not only detect

diseases but also recommend specific, actionable solutions. These

systems should integrate machine learning with expert knowledge

and agricultural best practices, offering real-time insights and

treatment recommendations tailored to the specific conditions of

a farm. By combining disease detection with pest control strategies

and optimal treatment schedules, these systems can automate the

entire decision-making process, making it easier for farmers to

adopt precision agriculture methods.
10 Conclusion

The integration of deep learning and computer vision in the

detection and analysis of plant diseases and pest infestations has

demonstrated significant advancements and potential. Techniques

such as sliding windows, thermal maps, multitasking learning

networks, and various segmentation methods have enhanced the

accuracy and efficiency of identifying and classifying plant health

issues. The application of two-stage networks like Faster R-CNN

and one-stage networks like SSD and YOLO has particularly

improved the speed and precision of detection, making these

techniques invaluable for modern agricultural practices. Despite

these advancements, challenges remain, particularly in handling

diverse environmental conditions and varying disease

manifestations. The complexity of accurately segmenting lesions

and distinguishing between similar disease symptoms necessitates

continuous improvement and innovation in these technologies.

Additionally, the high resource requirements and computational

demands of some methods pose barriers to widespread adoption,
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especially in resource-limited settings. Future directions in this field

should focus on the following areas related to Enhanced Model

Robustness, Integration with IoT and Edge Computing, Scalable

and Efficient Models, Multimodal Data Fusion, Automated

Annotation and Data Augmentation, and Collaborative Platforms.
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