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Climate change has significantly impacted the distribution patterns of medicinal

plants, highlighting the need for accurate models to predict future habitat shifts.

In this study, the Maximum Entropy model to analyze the habitat distribution of

Pulsatilla chinensis (Bunge) Regel under current conditions and two future

climate scenarios (SSP245 and SSP585). Based on 105 occurrence records and

12 environmental variables, precipitation of the wettest quarter, isothermality,

average November temperature, and the standard deviation of temperature

seasonality were identified as key factors influencing the habitat suitability for

P. chinensis. The reliability of the model was supported by a mean area under the

curve (AUC) value of 0.916 and a True Skill Statistic (TSS) value of 0.608. The

results indicated that although the total suitable habitat for P. chinensis expanded

under both scenarios, the highly suitable area contracted significantly under

SSP585 compared to SSP245. This suggests the importance of incorporating

climate change considerations into P. chinensis management strategies to

address potential challenges arising from future ecosystem dynamics.
KEYWORDS

ArcGIS, ecological suitability zoning, future climate change, MaxEnt model,
Pulsatilla chinensis
1 Introduction

As carbon emissions continue to rise, global warming has gradually become an

irreversible trend. Under this influence, China’s climate and environment have

undergone significant changes, including rising average annual temperatures and shifting

precipitation patterns. Studies indicate that from 1951 to 2021, the average annual
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temperature in China increased by 0.26°C per decade, while annual

precipitation rose by 5.5 mm per decade, accompanied by a

northward shift in the primary rainy zone (Ren et al., 2021). The

growth, development, and distribution status of plants are typically

closely associated with climate (Huang et al., 2024; Ni and Vellend,

2024). Consequently, climate change will inevitably lead to some

degree of alteration in species habitats (Li et al., 2019; Wouyou et al.,

2022). For example, due to climate change, the range of

Gymnadenia conopsea (L.) R. Br. is expected to contract and

gradually shift to higher altitudes, such as those in Tibet and

Yunnan (Cha et al., 2024). Similarly, the suitable area of Paris

polyphylla var. yunnanensis (Franch.) Hand.-Mzt. is also expected

to shrink significantly under future high greenhouse gas emission

scenarios, with its center of mass shifting toward higher latitudes

(Zhang et al., 2024). These cases exemplify the differentiated

response mechanisms of medicinal plants to climate change,

reflecting the two primary types of species habitat shifts:

altitudinal and latitudinal migration. Therefore, understanding

the interaction between climate change and plants is of great

significance for plant resource conservation and exploitation.

In recent years, species distribution modeling (SDM) has

become the method of choice for predicting changes in species’

habitats, which focuses on simulating areas of habitat distribution

by analyzing known location information and ecological factors of

species (Li et al., 2020; Wang et al., 2020; Low et al., 2021).

Compared with models such as the Generalized Linear Model

(GLM) (Hirzel et al., 2001) and DOMAIN model (Xia et al.,

2024), the Maximum Entropy (Maxent) model is easy to operate,

has higher prediction accuracy, and has been widely used in species

distribution modeling studies (Glor and Warren, 2011; Fitzpatrick

et al., 2013; Warren et al., 2014; Remya et al., 2015). By searching

the Web of Science using “MaxEnt” and “species distribution” as

keywords, we retrieved 906 and 1,145 publications in 2023 and

2024, respectively, which reflects the applicability of the MaxEnt

model in plant ecology study. Although the maximum entropy

model achieves high prediction accuracy with default parameters,

its fixed feature combinations with regularization multipliers may

lead to overfitting risk and do not apply to the prediction of all

species distributions (Warren and Seifert, 2011; Moreno-Amat

et al., 2015). In practice, parameters used for MaxEnt analysis will

be adjusted in advance by using the R program to screen the optimal

configuration based on environmental variables and distribution

points. By this means, the model reliability can be improved to

construct a more ecologically meaningful distribution model.

Pulsatilla chinensis (Bunge) Regel is a rhizomatous perennial herb

of the buttercup family, whose rhizomes are widely used for clearing

away heat and toxins, cooling the blood, and treating dysentery, with

a particular specialty in removing toxins of dampness-heat and

blood-heat from the gastrointestinal tract (Zhao et al., 2021).

Pharmacological studies have reported that the active ingredients

contained in P. chinensis extracts have demonstrated significant

antitumor, anti-inflammatory, antibacterial, and antiviral effects

(Cheng et al., 2008; Sun et al., 2010; Li et al., 2014). However, with

the increasing demand for P. chinensis for medicinal purposes, its

wild resources are gradually being depleted, leading to an increasing
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conflict between supply and demand. In the face of this situation, it is

particularly urgent to strengthen the research on the distribution of P.

chinensis resources and its ecological characteristics, which not only

helps to scientifically and rationally formulate conservation measures

but also provides strong support for the development of artificial

cultivation technology and realizes the sustainable use of resources.

However, there is a relative paucity of research on the resource

distribution of P. chinensis and its habitat characteristics. Therefore,

to investigate the habitat suitability dynamics and climate adaptation

mechanisms of P. chinensis. In this study, we used the parameter-

optimized MaxEnt model, combined with ArcGIS spatial analysis

techniques, to systematically assess the distribution pattern of P.

chinensis habitat suitability under the current climatic conditions, as

well as under two future climate scenarios (SSP245 and SSP585) in

the 2050s (2041–2060) and 2070s (2061–2080). Based on the variable

contribution rankings and response curves of the model outputs, key

climate factors driving the distribution of P. chinensis were identified,

and their ecological threshold ranges were analyzed to reveal the

adaptation boundaries of P. chinensis to climate change.

The aims of this study were as follows: (1) to predict the current

distribution of P. chinensis into different suitability classes; (2) to

analyze key variables affecting the growth of P. chinensis; and (3) to

predict future changes in the habitat of P. chinensis in China under

different carbon emission scenarios.
2 Materials and methods

2.1 Species distribution data of P. chinensis

Information on the distribution points of P. chinensis in this study

was obtained from the National Specimen Information Infrastructure

(NSII, http://www.nsii.org.cn) and the Global Biodiversity

Information Facility (GBIF, http://data.gbif.org). For distribution

points lacking detailed latitude and longitude coordinates,

geographic coordinates were obtained through Google Maps, and

133 coordinates were collected. Environmental variables exhibit

significant spatial autocorrelation at short distances (Dormann

et al., 2007). To prevent model overfitting caused by clustered

distribution points, a 5 km × 5 km grid consistent with the

resolution of the bioclimatic data (2.5 arc min) was generated by

using a Spatially Rarefy tool in ArcGIS 10.8, with only one

coordinate point retained in each grid. The 5-km spatial interval

ensures both the independence of distribution points by

representing different grid cells and avoids sampling too sparsely

and missing key environmental assemblages. Eventually, 105

distribution points were retained for model construction (Figure 1).
2.2 Environmental data acquisition and
processing

This study utilized climate data from the modern period (1970–

2000) and two future periods (2041–2060 and 2061–2080).

Ecosystem responses to climate change usually have a lag, and the
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selection of the 2050s and 2070s as time points for future scenarios

can reflect changes in species distributions under the medium-term

immediate response and the loss of habitat or the ability to adapt to

new environments under the forward cumulative effect. The climate

data included in this study include monthly precipitation, January-

December mean temperature, and 19 bioclimatic variables, which

were obtained from WorldClim (http://www.worldclim.org) with a

spatial resolution of 2.5 arcminutes (about 5 km). This resolution

achieved a good balance between data accuracy and computational

efficiency. In addition, ArcGIS was used to extract slope and aspect

direction from the digital elevation model provided by WorldClim,

which characterize the degree of inclination and orientation of the

ground surface, respectively. Data for soil were obtained from the

Harmon i z ed Wor ld So i l Da t aba s e (HWSD, h t tp : / /

vdb3.soil.csdb.cn/). Future bioclimatic variables were accessed

from the WorldClim database, which integrates datasets derived

from the BCC-CSM2-MR climate model under the Sixth Coupled

Model Intercomparison Project (CMIP6) (Wu et al., 2019). BCC-

CSM2-MR is suitable for modeling the Chinese climate and

provides relatively accurate forecast data (Fick and Hijmans,

2017). This study modeled the potential future fitness zones of P.

chinensis under two typical concentration emission scenarios,

SSP245 and SSP585. SSP 245 represents a development pattern

with a moderate level of greenhouse gas emissions, while SSP 585 is

a development pattern with fossil fuels as the main source of energy,

reflecting higher greenhouse gas emissions (Zhang et al., 2019).

To avoid the potential impact of multicollinearity on model

stability, this study first excluded variables with zero contribution

rate using the MaxEnt 3.4.4 to ensure that candidate variables were

potentially ecologically driven (Shi et al., 2021; Guo et al., 2023).

The Pearson correlation coefficients of the variables screened by
Frontiers in Plant Science 03
MaxEnt were then calculated using Statistical Product and Service

Solutions (SPSS, version 27.0), and for the group of highly

correlated variables (|r| ≥ 0.8), those with high contributions were

retained (Zhang et al., 2022). Finally, 12 variables were obtained for

model analysis (Table 1).
2.3 Species distribution modeling

The distribution data of P. chinensis, along with associated

environmental variables, were processed using the MaxEnt model.

Logistic output was selected, and the random test percentage was

configured to 25%, reserving 75% of the dataset for training

purposes (Amiri et al., 2022). The model was set to run for a

maximum of 500 iterations with 10,000 pseudo-absence points, and

cross-validation was conducted ten times. The use of 10,000

background points is usually sufficient to characterize the

environmental space of the study area. When there are fewer

species distribution points, appropriately increasing the number

of background points can help reduce potential sampling bias

(Barber et al., 2022). To determine the importance of each

variable, Jackknife tests were employed, followed by an evaluation

using the ROC curve. The ROC curve, a widely recognized tool for

assessing binary classifiers, illustrates the balance between true

positive and false positive rates. Model performance was

quantified through the area under the curve (AUC), with the

following interpretation: 0.50–0.60 indicates failure, 0.60–0.70

poor, 0.70–0.80 fair, 0.80–0.90 good, and 0.90–1.00 very good

(Phillips et al., 2006).

To comprehensively assess the predictive performance of the

model, we also chose the True Skill Statistic (TSS) to verify the
FIGURE 1

Records of P. chinensis in terms of distribution in China.
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reliability of the results. TSS is an indicator that assesses the

predictive performance of species distribution models, which

effectively corrects for sample imbalance bias in species

distribution data by integrating sensitivity and specificity

(Allouche et al., 2006). The value of TSS ranges from − 1 to 1,

and the closer to 1 the better the prediction results; when the value

of TSS is located between 0.6 and 1, the prediction ability can be

considered good. The calculation of TSS values in this study was

done in R 4.4.1.
2.4 Optimization of the model

The MaxEnt model regularization level is governed by two

critical parameters: the regularization multiplier (RM) and feature

combinations (FC) (Radosavljevic and Anderson, 2014). The

feature classes available include linear (L), quadratic (Q), hinge

(H), product (P), and threshold (T) (Elith et al., 2011). To identify

the optimal parameter settings, RM values were incrementally

varied from 0.5 to 4.0 in steps of 0.5, and tested with six

combinations of feature classes: L, LQ, H, LQH, LQHP, and

LQHPT. The Akaike Information Criterion Correction (AICc) is

an important metric for assessing model fit (Muscarella et al., 2014).

In this study, we used the ENMeval package for R to calculate the

AICc values of the MaxEnt models for different parameter settings.

Delta AICc is a metric used in model selection to measure the

relative difference between candidate models and the optimal

model. The delta AICc value is obtained by calculating the AICc

values and then subtracting the AICc of each model from the

smallest AICc value among all candidate models. Larger values of

delta AICc are less likely to serve as the best approximation of the

model in the candidate set. Models with delta AICc ≤ 2 have

substantial support, while models with delta AICc > 10 have

essentially no support (Burnham and Anderson, 2004). For our
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study on P. chinensis, the model with delta AICc = 0 was

finally chosen.
2.5 Data processing

The grading and visualization of P. chinensis suitable areas were

achieved by loading the mean results of the model output into

ArcGIS software. Suitability probability classes were classified using

the natural breakpoint method, which determines the optimal

classification threshold based on the distributional characteristics

of the data itself. There were four categories: highly suitable (0.5–

1.0), moderately suitable (0.3–0.5), lowly suitable (0.1–0.3), and

unsuitable (0.0–0.1). Dynamic changes in center-of-mass

trajectories better reflect the spatial and temporal reconfiguration

characteristics of the distribution pattern than area fluctuations.

Therefore, in this study, while quantifying the areas with different

suitability classes, we used the spatial statistical tools in ArcGIS to

transform the distribution of P. chinensis suitable areas in each

period into representative centroids (Brown, 2014; Guo et al., 2023;

Wang et al., 2024), which reflected the overall spatial positioning of

P. chinensis suitability zones.
3 Results and analysis

3.1 Model optimization accuracy evaluation

The distribution area of P. chinensis was predicted based on 105

occurrence records and 12 environmental variables. When running

the model with the MaxEnt default parameters (RM = 1, FC =

LQH), delta AICc = 317.77, it indicated a risk of overfitting.

Nevertheless, adopting the adjusted parameters (RM = 2.5, FC =

LQHPT), delta AICc = 0, demonstrated that the predictive accuracy

of the model was better than the default model for this combination

of parameters. The results showed that the mean AUC of the model

under the optimized parameters was 0.916 and the mean TSS was

0.608, both of which further confirmed the reliability of the model

results (Figure 2).
3.2 Distribution of P. chinensis concerning
environmental variables

Model results indicate that Precipitation of the wettest quarter,

Isothermality, Average November temperature, and Standard

deviation of temperature seasonality collectively contributed

83.3% to the habitat suitability of P. chinensis. The precipitation

of the wettest quarter ranked as the most influential variable,

contributing 32.7% (Table 2). The Jackknife test revealed that

Precipitation of the wettest quarter, Isothermality, and Mean

diurnal range had significant impacts on the survival of P.

chinensis. This highlights precipitation and temperature as key

determinants of P. chinensis habitat suitability (Figure 3).
TABLE 1 Variables used for modeling.

Variable Environmental factor

Aspect Aspect (°C)

Bio2 Mean diurnal range (°C)

Bio3 Isothermality (%)

Bio4 Standard deviation (SD) of temperature seasonality (°C)

Bio15 Precipitation seasonality (mm)

Bio16 Precipitation of the wettest quarter (mm)

Elev Elevation (°)

Pre1 January precipitation (mm)

Pre12 December precipitation (mm)

Slope Slope (°)

T_clay Percentage clay respectively in the topsoil (%)

Tmean11 Average November temperature (°C)
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Response curves were generated by univariate marginal effects

analysis in the MaxEnt model, reflecting each variable’s marginal

contribution to species habitat suitability while holding other

variables constant. In this study, response curves for the four

variables with the highest contributions were specifically analyzed

using a threshold probability of occurrence greater than 0.50 (Liu

et al., 2005; Xu et al., 2023b). The presence of P. chinensis was most

likely when the precipitation of the wettest quarter ranged from

307.5 to 506.9 mm. P. chinensis grows best in this region when

isothermality values range from 16.2% to 31.1%. The likelihood of

P. chinensis presence exceeded 50% when the average November

temperature ranged from − 1.7°C to 9.7°C. Additionally, P.
Frontiers in Plant Science 05
chinensis exhibited higher survival rates when the standard

deviation of temperature seasonality ranged from 9.3°C to 13.1°

C (Figure 4).
3.3 Current distribution of P. chinensis in
China

The distribution of P. chinensis is primarily concentrated in

northern and eastern China, with a total suitable area estimated at

262.78 × 104 km². The highly suitable zone covers 47.60 × 104 km²,

accounting for 18.12% of the total suitable area, and is primarily

distributed across Liaoning, Beijing, Shandong, Hebei, and Shanxi.

The moderately suitable zone spans 84.02 × 104 km², representing

31.98% of the total suitable area. It surrounds the highly suitable

zone and extends into regions such as Inner Mongolia, Jilin, and

Shaanxi. The low suitability zone occupies 131.14 × 104 km²,

making up 49.91% of the total suitable area. It is primarily

located around the moderately suitable zone, spanning central,

eastern, and southwestern China (Figure 5).
3.4 Distributional changes of P. chinensis
under future climates

Projections suggest an overall expansion of suitable habitat for

P. chinensis under both future emission scenarios. The SSP245

scenario predicts a more pronounced increase in suitable habitat

compared to SSP585 (Table 3).

Between 2041 and 2060, the total suitable area under SSP245

increased by 25.40% relative to the current period, with significant

expansion in highly suitable areas (Figure 6A). Key suitable regions

included Shandong, Hebei, Beijing, Tianjin, Liaoning, Jilin,
TABLE 2 Contribution and significance of variables.

Variable Percent
contribution (%)

Permutation
importance (%)

Bio16 32.7 25.4

Tmean11 19 12.4

Bio3 17.9 0.9

Bio4 13.7 15.5

Slope 6.6 8.3

Bio15 3.9 6.4

Elev 2.1 17

Aspect 1.4 1.8

Bio2 1.4 10

T_clay 1.1 1.9

Pre1 0.1 0.3

Pre12 0.1 0.2
FIGURE 2

ROC curves of the MaxEnt model for P. chinensis.
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Heilongjiang, Inner Mongolia, Shanxi, Shaanxi, and Gansu. Under

SSP585, the total suitable area increased by 8.89% compared to the

current period (Figure 6B). While moderately suitable areas

expanded, highly suitable areas experienced a relative decline.

Between 2061 and 2080, the SSP245 scenario projected a 23.26%

increase in total suitable area, with further expansion in highly

suitable regions, particularly in Jilin, Heilongjiang, and Inner

Mongolia (Figure 6C). The overall distribution pattern remained

consistent with projections for 2041–2060 under the SSP245

scenario. Under SSP585, the total suitable area increased by

7.41% compared to the current period, with a slight decrease

relative to the 2041–2060 projections. The distribution pattern

remained largely unchanged (Figure 6D). According to ArcGIS,

the threshold for a highly suitable area is greater than 0.5. To

present the data from another perspective, we redrew the highly

suitable areas with an adjusted threshold greater than 0.8,

considering current (Supplementary 1) and future scenarios

(Supplementary 2).
3.5 Changes in the center of mass of P.
chinensis at different periods

The center of mass of P. chinensis exhibits slight variations

under different emission scenarios (Figure 7). Under the SSP245

scenario, the center of mass of P. chinensis is projected to shift

westward from Tangyin County, Anyang City, Henan Province, to

Lintong District, Xi’an City, Shaanxi Province, covering a distance

of approximately 501.28 km between 2041 and 2060. It is expected

to move further to Chang’an District, Xi’an City, Shaanxi Province,

with an additional shift of about 544.32 km between 2061 and 2080.

Under the more severe SSP585 scenario, the center of mass is

projected to shift southwestward to Shangnan County, Shangluo

City, Shaanxi Province, over a distance of approximately 420.01 km

between 2041 and 2060. Subsequently, it is expected to move

southeastward to Luoning County, Luoyang City, Henan
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Province, with an additional shift of about 322.98 km between

2061 and 2080. Overall, the center of mass of P. chinensis tends to

shift southwestward. Notably, the SSP245 scenario predicts a longer

shift distance compared to SSP585, primarily spanning Shaanxi and

Henan provinces.
4 Discussion

4.1 Optimized performance of MaxEnt

Previous studies have demonstrated that optimizing model

parameters can reduce complexity and minimize error rates

during operations (Shi et al., 2024). In this study, the ENMeval

toolkit in R was employed to optimize the initial MaxEnt

parameters, utilizing filtered P. chinensis distribution data and key

ecological factors, including climate, topography, and soil. The

adjusted parameters are RM = 2.5 and FC = LQHPT. The results

demonstrate that the mean value of AUC was 0.916 and the mean

value of TSS was 0.608, both of which exceeded the ecological model

validity threshold, which indicates the reliability of the

model results.
4.2 Major environmental variables affecting
the distribution of P. chinensis

The results showed that precipitation of the wettest quarter

(Bio16), isothermality (Bio3), average November temperature

(Tmean11), and standard deviation of temperature seasonality

(Bio4) were the key environmental variables affecting the

geographical distribution of P. chinensis with a total contribution

of 83.3%. This shows that temperature and precipitation play a

central role in regulating the growth rhythm and distribution

pattern of P. chinensis. By analyzing the response curves, it was

found that Bio16 at 307.5–506.9 mm, Bio3 at 16.2%–31.1%,
FIGURE 3

Jackknife test of environmental variables for P. chinensis.
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FIGURE 5

Distribution of P. chinensis in China.
FIGURE 4

Response curves for the critical variables: precipitation of the wettest quarter (A), isothermality (B), average November temperature (C), and standard
deviation of temperature seasonality (D).
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Tmean11 at − 1.7°C or to 9.7°C, and Bio4 at 9.3°C—13.1°C were

suitable for P. chinensis growth.

Temperature and precipitation are the main biological

determinants of plant growth status, and there are differences in

water and temperature requirements between plants, with drought

and high temperatures reducing the efficiency of water uptake by

plants (Punyasena et al., 2008; Bradie and Leung, 2017). The P.

chinensis tends to grow in light, moderately rainy environments, is

tolerant of cold, and wilts easily under hot, rainy conditions (Xu

et al., 2023a). The P. chinensis has a shallow root system and has a
Frontiers in Plant Science 08
significantly higher water requirement during its growth spurt.

Adequate precipitation not only increases soil water content to

promote root development but also provides the necessary

conditions for photosynthesis and reproductive development,

while excessive precipitation may lead to waterlogging of the soil,

which induces diseases such as root rot and thus inhibits the

expansion of its population (Fang et al., 2021). Bio3 and Bio4

together reflect the magnitude of intra-annual temperature

fluctuations. As a temperate plant, P. chinensis is sensitive to

temperature changes that affect dormancy lifting and growth
TABLE 3 Distribution of P. chinensis under current and future scenarios (× 104 km2).

Scenarios Unsuitable Low suitable Middle suitable High suitable Total suitable

Current 666.4479 131.1424 84.0277 47.6093 262.7794

SSP245 2050S 632.9549 128.2292 88.7691 112.5365 329.5348

SSP245 2070S 638.5816 139.0122 65.8020 119.0938 323.9080

SSP585 2050S 676.3507 115.7135 102.3681 68.0572 286.1388

SSP585 2070S 680.2292 109.0365 105.7917 67.4322 282.2604
FIGURE 6

Changes in P. chinensis suitability areas under future climate conditions. (A) 2041–2060, SSP 245; (B) 2041–2060, SSP 585; (C) 2061–2080, SSP
245; and (D) 2061–2080, SSP 585.
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initiation. A small diurnal temperature difference helps to avoid

extreme temperature stress and maintain normal photosynthesis

and metabolic activities (Khodorova and Boitel-Conti, 2013).

Moderate seasonal variation in temperature is conducive to the

successful completion of the entire process of growth,

differentiation, reproduction, and entry into dormancy of P.

chinensis between seasons. The P. chinensis is more likely to

establish stable populations in more humid climates with less

temperature fluctuation. Before entering winter dormancy, P.

chinensis still requires some degree of nutrient accumulation and

root activity. Suitable November temperatures help it to complete

the synthesis and storage of nutrients, laying the foundation for

winter dormancy and emergence in the following spring. If the

temperature is too low, it may lead to passive early dormancy, which

can negatively affect nutrient accumulation and growth in the

following year. It is worth noting that there may be synergistic

effects between these key variables. For example, in areas with

moderate temperature seasonality and favorable November

temperatures, P. chinensis can fully accumulate nutrients before

winter. However, if temperature seasonality is too high, even if the

late fall temperatures are suitable, the species’ growth may still be

hindered by sharp temperature fluctuations throughout the year.

The state of plant growth and distribution is the result of the

synergistic effect of multidimensional ecological factors (Zhou et al.,

2025). Although climatic variables are often shown to be the

dominant drivers, factors such as soil physicochemical properties

and geomorphological and hydrological features likewise shape

species’ ecological niche boundaries (Benning and Moeller, 2021).

Therefore, when formulating resource maintenance strategies,

priority can be given to monitoring the dynamic thresholds of

key climatic parameters while establishing a multifactor synergistic

early warning mechanism to safeguard the ecological adaptability of

populations and ultimately realize the sustainable use of resources.
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4.3 Changes in the suitability distribution
of P. chinensis

Previous studies have identified northeastern China—

comprising Jilin, Liaoning, Hebei, Shandong, and Henan

provinces—as the primary distribution area of P. chinensis. This

is consistent with the predictions made in this study. Analysis of

habitat changes indicates that the total suitable area for P. chinensis

shows a general increasing trend under both SSP245 and SSP585

scenarios. Under SSP245, P. chinensis is projected to experience the

most significant increase in suitable area, with expansions of 25.40%

(2050s) and 23.26% (2070s) compared to the current period. Under

SSP585, the suitable area continues to expand relative to the current

period but is reduced by 13.17% (2050s) and 12.86% (2070s)

compared to SSP245.

This suggests that although warming may have expanded the

habitat of P. chinensis to some extent, the stability of its habitat is

more challenged under more extreme warming scenarios. The

relatively mild temperature increases in the SSP245 scenario,

coupled with a moderate increase in precipitation, may provide a

more balanced mix of water and heat for P. chinensis, which is

conducive to the maintenance of its growth rhythm and life-cycle

processes. The SSP585 scenario has a greater temperature increase,

which may lead to high-temperature stress and water deficit, limiting

population expansion. In addition, as a perennial herb, seed

germination and seedling emergence of P. chinensis are extremely

sensitive to spring temperatures and soil moisture, and climate

extremes will affect population renewal and dispersal. Climate

change not only affects the extent of species’ habitats but also

drives the displacement of their centers of distribution (Cheng

et al., 2008). When climatic conditions are outside the appropriate

range for a species to survive, changes in its geographical distribution

will follow (Campos et al., 2023). By calculating the distance of the
FIGURE 7

Map of the center of gravity shifts of P. chinensis suitable areas under future climate scenarios.
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center of mass movement in different periods, it was found that the

center of mass of P. chinensis showed a tendency to shift to the

southwestern direction. The study suggests that a warming climate

will drive some species to higher altitudes and latitudes, causing them

to expand and contract (Zu et al., 2021; Nuñez et al., 2023). However,

since species have different physiological characteristics, their

responses in the face of climate change are not entirely uniform.

This study demonstrates that the habitat of P. chinensis shifted

towards lower rather than higher latitudes. Species shifts toward

lower latitudes often result from deteriorating habitat conditions

driven by climate change, compounded by geographical anomalies

(Sun et al., 2020). Variations in migration direction and distance are

often influenced by the magnitude of climate warming (Poggio et al.,

2018). Although temperatures are rising in the northern high

latitudes, they may be unfavorable to the expansion of P. chinensis

due to ecological constraints such as soil, light, or phenology. The

southwestern region is characterized by mountains and plateaus,

which may provide diverse microclimatic conditions for P. chinensis.

Therefore, P. chinensis may maintain its adaptation to its ecological

niche by migrating to lower latitudes but higher altitudes.

Changes in the distribution areas of species are the result of a

combination of factors, including climate change, ecological

changes, human activities, species competition, and geographical

factors. This phenomenon reflects the dynamic adaptive capacity of

plants to environmental changes and also reminds us to pay

attention to the potential impacts of ecosystem changes on

biodiversity. In response to the dynamic change of species’

habitats under the high carbon emission scenario, we can

prioritize the establishment of climate-adapted protected areas in

the expansion areas of habitats, carry out habitat restoration in the

contraction areas, and layout relocation and protection corridors

along the migration path of the center of mass of the habitats to

connect the fragmented habitats and reduce the risk of migration

and extinction.
4.4 Limitations of the study

The present study has several limitations that should be

considered when predicting the distribution pattern of P. chinensis.

First, since the model was constructed using only distribution records

from within China, it may not fully capture the physiological tolerance

range of the species (Feeley and Silman, 2011). Second, although

parameter optimization was performed using the ENMeval toolkit,

model performance may still be influenced by the choice of feature

combinations. Different climate models exhibit systematic biases due

to variations in physical processes and parameterization schemes (Tett

et al., 2022), which can reduce the accuracy of their reproduction of

historical climate states and the reliability of their future projections

(Zhu and Yang, 2020). The BCC-CSM2-MR model used in this study

shows significant improvements in simulating seasonal mean

precipitation in East Asia; however, its temperature simulation is

less accurate, with larger errors in inter-monthly variations compared

to the BCC-CSM1.1mmodel (Li et al., 2023). In addition, the MaxEnt
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model has some inherent limitations (Feng et al., 2019; Schnase et al.,

2021). It assumes a static environmental response and does not

account for dynamic adaptive processes, such as phenotypic

plasticity. The model also presumes that species can freely migrate

to all suitable habitats, but in reality, seed dispersal distance limitations

and human land-use barriers can significantly constrain the actual

dispersal ability of species (Mou et al., 2025). Furthermore, biotic

interactions and interspecies competition also play essential roles in

species distribution (Hooper et al., 2005; Wisz et al., 2013). These

factors may introduce a directional bias in the predictions, potentially

leading to an overestimation of the expansion trend of suitable areas.

Future research suggestions include the following: (1) Integrating

transboundary distribution data with functional trait parameters to

construct ecological niche models that cover the full range of species;

(2) using CMIP6 multimodel ensembles and downscaling techniques

to quantify climate sensitivity under different emission scenarios,

thereby reducing the uncertainty of regional projections; and (3)

coupling individual-based and adaptive dynamic models to simulate

the role of phenotypic plasticity and gene flow on the boundary

expansion. These measures will aid in identifying credible expansion

areas and provide scientific support for risk assessment in

conservation planning.
5 Conclusion

The primary distribution of P. chinensis is currently

concentrated in northern and eastern China, including the

provinces of Liaoning, Hebei, and Shandong. Future climate

projections suggest a general expansion of suitable habitats for P.

chinensis, with the most significant increase occurring under the

SSP245 scenario. Among the 12 variables analyzed, precipitation of

the wettest quarter, isothermality, average November temperature,

and the standard deviation of temperature seasonality emerged as

the most influential factors affecting the growth of P. chinensis. The

center of mass of P. chinensis habitats exhibited a southwestward

shift, primarily driven by climate change. This study analyzes the

spatial response patterns of P. chinensis habitat distribution under

climate change and provides scientific support for its habitat

adaptation, cultivation, and sustainable resource utilization.
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Elith, J., Phillips, S. J., Hastie, T., Dudıḱ, M., Chee, Y. E., and Yates, C. J. (2011). A
statistical explanation of MaxEnt for ecologists. Diversity distributions 17, 43–57.
doi: 10.1111/j.1472-4642.2010.00725.x
Fang, Y., Zhang, X., Wei, H., Wang, D., Chen, R., Wang, L., et al. (2021). Predicting
the invasive trend of exotic plants in China based on the ensemble model under climate
change: A case for three invasive plants of Asteraceae. Sci. Total Environ. 756, 143841.
doi: 10.1016/j.scitotenv.2020.143841

Feeley, K. J., and Silman, M. R. (2011). Keep collecting: accurate species distribution
modelling requires more collections than previously thought. Diversity Distributions
17, 1132–1140. doi: 10.1111/j.1472-4642.2011.00813.x

Feng, X., Park, D. S., Liang, Y., Pandey, R., and Papes ̧, M. (2019). Collinearity in
ecological niche modeling: Confusions and challenges. Ecol. Evol. 9, 10365–10376.
doi: 10.1002/ece3.5555

Fick, S. E., and Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas. Int. J. climatology 37, 4302–4315. doi: 10.1002/
joc.5086

Fitzpatrick, M. C., Gotelli, N. J., and Ellison, A. M. (2013). MaxEnt versus MaxLike:
empirical comparisons with ant species distributions. Ecosphere 4, 55. doi: 10.1890/
ES13-00066.1

Glor, R. E., and Warren, D. (2011). Testing ecological explanations for biogeographic
boundaries. Evolution 65, 673–683. doi: 10.1111/j.1558-5646.2010.01177.x

Guo, Y., Zhang, S., Tang, S., Pan, J., Ren, L., Tian, X., et al. (2023). Analysis of the
prediction of the suitable distribution of Polygonatum kingianum under different
climatic conditions based on the MaxEnt model. Front. Earth Sci. 11. doi: 10.3389/
feart.2023.1111878

Hirzel, A. H., Helfer, V., and Metral, F. (2001). Assessing habitat-suitability models
with a virtual species. Ecol. Model. 145, 111–121. doi: 10.1016/S0304-3800(01)00396-9

Hooper, D. U., Chapin, F. S. III, Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., et al.
(2005). Effects of biodiversity on ecosystem functioning: a consensus of current
knowledge. Ecol. Monogr. 75, 3–35. doi: 10.1016/j.drugalcdep.2010.01.006

Huang, E., Chen, Y., and Yu, S. (2024). Climate factors drive plant distributions at
higher taxonomic scales and larger spatial scales. Front. Ecol. Evol. 11. doi: 10.3389/
fevo.2023.1233936

Khodorova, N. V., and Boitel-Conti, M. (2013). The role of temperature in the
growth and flowering of geophytes. Plants (Basel) 2, 699–711. doi: 10.3390/
plants2040699

Li, J., Fan, G., and He, Y. (2020). Predicting the current and future distribution of
three Coptis herbs in China under climate change conditions, using the MaxEnt model
and chemical analysis. Sci. Total Environ. 698, 134141. doi: 10.1016/
j.scitotenv.2019.134141

Li, W., Ji, J., Tang, W., Rui, X., Chen, X., Jiang, M., et al. (2014). Characterization of
an antiproliferative exopolysaccharide (LHEPS-2) from Lactobacillus helveticus MB2-
1. Carbohydr. Polymers 105, 334–340. doi: 10.1016/j.carbpol.2014.01.093
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2025.1538566/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1538566/full#supplementary-material
https://doi.org/10.1038/s41598-024-57298-2
https://doi.org/10.1007/s40333-022-0004-1
https://doi.org/10.111/ddi.13442
https://doi.org/10.1002/ecy.3254
https://doi.org/10.1002/ecy.3254
https://doi.org/10.1111/jbi.12894
https://doi.org/10.1111/2041-210X.12200
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1016/j.ecoinf.2023.102147
https://doi.org/10.1016/j.ecoinf.2023.102147
https://doi.org/10.13287/j.1001-9332.202411.023
https://doi.org/10.1002/rcm.3801
https://doi.org/10.1111/j.2007.0906-7590.05171.x
https://doi.org/10.1111/j.2007.0906-7590.05171.x
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1016/j.scitotenv.2020.143841
https://doi.org/10.1111/j.1472-4642.2011.00813.x
https://doi.org/10.1002/ece3.5555
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/joc.5086
https://doi.org/10.1890/ES13-00066.1
https://doi.org/10.1890/ES13-00066.1
https://doi.org/10.1111/j.1558-5646.2010.01177.x
https://doi.org/10.3389/feart.2023.1111878
https://doi.org/10.3389/feart.2023.1111878
https://doi.org/10.1016/S0304-3800(01)00396-9
https://doi.org/10.1016/j.drugalcdep.2010.01.006
https://doi.org/10.3389/fevo.2023.1233936
https://doi.org/10.3389/fevo.2023.1233936
https://doi.org/10.3390/plants2040699
https://doi.org/10.3390/plants2040699
https://doi.org/10.1016/j.scitotenv.2019.134141
https://doi.org/10.1016/j.scitotenv.2019.134141
https://doi.org/10.1016/j.carbpol.2014.01.093
https://doi.org/10.3389/fpls.2025.1538566
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1538566
Li, S., Quan, W., Wang, Z., Chen, Y., Su, T., and Yan, P. (2023). Evaluation of the
ability of BCC-CSM2-MR global climate model in simulating precipitation and
temperature in East Asia. J. Arid Meteorology 41, 984–996. doi: 10.11755/j.issn.1006-
7639(2023)-06-0984

Li, W., Shi, M., Huang, Y., Chen, K., Sun, H., and Chen, J. (2019). Climatic change
can influence species diversity patterns and potential habitats of Salicaceae plants in
China. Forests 10, 220. doi: 10.3390/f10030220

Liu, C., Berry, P. M., Dawson, T. P., and Pearson, R. G. (2005). Selecting thresholds of
occurrence in the prediction of species distributions. Ecography 28, 385–393.
doi: 10.1111/j.0906-7590.2005.03957.x

Low, B. W., Zeng, Y., Tan, H. H., and Yeo, D. C. (2021). Predictor complexity and
feature selection affect Maxent model transferability: Evidence from global freshwater
invasive species. Diversity Distributions 27, 497–511. doi: 10.1111/ddi.13211

Moreno-Amat, E., Mateo, R. G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J.-
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