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Peanut (Arachis hypogaea L.), a key oilseed crop in the U.S., plays a significant role in

agriculture and the economy but faces challenges from biotic and abiotic stresses,

including aflatoxin contamination caused by Aspergillus flavus and A. parasiticus.

Despite many large-effect QTLs identified for yield and key traits, their use in

breeding is limited by unfavorable genetic interactions. To overcome this, we

aimed to identify consensus genomic regions and candidate genes linked to key

traits by analyzingQTL data from30 independent studies conducted over the past 12

years, focusing on biotic, abiotic, aflatoxin, morphological, nutritional, phenological,

and yield-associated traits. Using genetic map information, we constructed

consensus maps and performed a meta-analysis on 891 QTLs, leading to the

identification of 70 Meta-QTLs (MQTLs) with confidence intervals ranging from

0.07 to 9.63 cM and an average of 2.33 cM. This reduction in confidence intervals

enhances the precision of trait mapping, making the identified MQTLs more

applicable for breeding purposes. Furthermore, we identified key genes associated

with aflatoxin resistance in MQTL5.2 (serine/threonine-protein kinase, BOI-related

E3 ubiquitin-protein ligase), MQTL5.3, MQTL7.3, and MQTL13.1. Similarly, for yield-

related traits in MQTL3.1–MQTL3.4 (mitogen-activated protein kinase, auxin

response factor), MQTL11.2 (MADS-box protein, squamosa promoter-binding

protein), and MQTL14.1. Genes related to oil composition within MQTL5.2 (fatty-

acid desaturase FAD2, linoleate 9S-lipoxygenase), MQTL9.3, MQTL19.1 (acyl-CoA-

binding protein, fatty acyl-CoA reductase FAR1), MQTL19.4, and MQTL19.5.

Nutritional traits like iron and zinc content are linked to MQTL1.1 (probable

methyltransferase, ferredoxin C), MQTL10.1, and MQTL12.1. These regions and

genes serve as precise targets for marker-assisted breeding to enhance peanut

yield, resilience, and quality.
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1 Introduction

Peanut (Arachis hypogaea), also known as groundnut or

earthnut, is an allotetraploid oilseed legume crop (2n=4x=40)

with a genome size of 2.7 Gb. It is the second most widely

cultivated legume crop globally, primarily grown for oil

production, following soybean (Glycine max L.; Vishwakarma

et al., 2017). Peanuts are a key ingredient in ready-to-use

therapeutic and supplementary foods aimed at combating

malnutrition in underdeveloped and developing regions (Variath

and Janila, 2017). Peanut seeds contain approximately 45–50% oil,

25% protein, 15% carbohydrates, and various beneficial secondary

compounds. They also provide all 20 amino acids, making a

significant contribution to human nutrition (Shasidhar et al.,

2017; Wang et al., 2015).

Global peanut production reached 539 lakh tons, harvested

from 327 lakh hectares, with an average productivity of 1,648 kg per

hectare (FAOSTAT, 2021). China, India, Nigeria, the United States,

and Sudan together account for about 69% of global peanut

production (USDA, 2024; https://ipad.fas.usda.gov/cropexplorer/

cropview/commodityView.aspx?cropid=2221000). In 2022–2023,

India exported approximately 668,885.40 metric tons of peanuts

(APEDA, 2024; https://apeda.gov.in/apedawebsite/GroundNut/

GroundNut.htm). Notably, around 70% of the peanut cultivation

area is located in arid and semi-arid regions. Peanuts are highly

adaptable, thriving in soils with low chemical inputs, requiring

minimal water, and exhibiting the lowest carbon footprint among

nuts (Pandey et al., 2020). Additionally, peanut plants are zero-

waste crops and play a role in preventing soil erosion (National

Peanut Board, 2023; Agropedia, 2023).

Despite their significant economic and nutritional importance,

peanut production faces substantial challenges from biotic and

abiotic stresses, including pests, diseases, and adverse

environmental conditions. One major constraint is aflatoxin

contamination, which severely reduces peanut quality and poses

serious health risks to humans (Pandey et al., 2017). Additionally,

diseases such as tomato spotted wilt virus (TSWV), early leaf spot

(ELS), late leaf spot (LLS), rust, root-knot nematode (RKN), and

stem rot (SR) are critical biotic threats to peanut production

worldwide. These challenges lead to significant yield losses and

adversely affect the quality of peanut oil and seeds.

While both high and low oil content in peanuts have value—

small seeds are preferred for oil production and large seeds for

confectionery products (Wang et al., 2015; Gangurde et al., 2022)—

a high oleic-to-linoleic acid ratio is particularly desirable. This trait

improves shelf life and provides health benefits for both

manufacturers and consumers (Wang et al., 2015; Pandey et al.,

2014). Farmers and traders can benefit substantially from

incorporating stable, high-oil content traits into elite cultivars, as

even a 1% increase in oil content can raise producer profits by 7%

(Liao, 2003). Many agronomic traits in peanuts are inherited

quantitatively and influenced by genotype × environment

interactions, highlighting the importance of identifying stable and

promising genomic regions for crop improvement. Discovering

such genomic regions, especially those conferring resistance to
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aflatoxins, is critical for sustainable peanut production (Yu et al.,

2019; Variath and Janila, 2017).

The primary focus of peanut breeding is to improve yield, which

is closely linked to pod, seed, and disease-related traits. However,

these are complex quantitative traits that can be enhanced through

quantitative trait loci (QTL) mapping (Lu et al., 2018). Over the two

decades, numerous QTL studies on important traits have been

conducted (PeanutBase, 2023; Ahmad et al., 2020; Dodia, 2018; Lu

et al., 2018; Pandey et al., 2017; Bertioli et al., 2016; Sujay et al., 2012).

However, many of these studies are limited to specific environments,

leading to inconsistent and unstable phenotypes when these traits are

introduced into elite cultivars with new genetic backgrounds. This

instability often arises from unfavorable epistatic interactions (Lu

et al., 2018). Consensus genomic regions and candidate genes play a

pivotal role in the efficient transfer of desirable traits into crops,

significantly reducing the risk of genetic load. Genetic load refers to

the accumulation of unfavorable or non-beneficial alleles that can

arise during traditional breeding approaches. By focusing on

consensus genomic regions identified through meta-QTL (MQTL)

analysis, breeders can target stable and well-defined loci associated

with important traits, ensuring precision and efficiency in marker-

assisted selection (MAS).

MQTL analysis has emerged as a powerful approach to refining

and consolidating data from multiple QTL studies, thereby

improving the precision and utility of genetic markers for breeding

(Kumar et al., 2023; Isha et al., 2024; Gupta et al., 2024). While

individual QTL studies provide valuable insights, they often report

QTLs with large confidence intervals (CI) and inconsistencies across

different environments and genetic backgrounds. MQTL analysis

addresses these limitations by integrating data from multiple

independent QTL studies to identify consensus QTLs with smaller

CI, thereby enhancing the resolution of trait-associated regions. In

this study, we report MQTLs for various biotic and abiotic stress

resistance traits and key nutritional traits in peanuts, based on 30

QTL studies available in the public domain up to 2024.
2 Material and methods

2.1 Collection of studies and QTLs

A comprehensive review was conducted to gather information

on QTLs associated with abiotic stress, biotic stress, morphological,

nutritional, phenological, physiological, and yield-related traits in

peanut over the past 12 years. A total of 30 studies were sourced

from platforms such as Google Scholar and PubMed. Key details,

including population type, logarithm of odds (LOD) score,

phenotypic variation explained (PVE/R²), population size, marker

positions, QTL locations, and CIs, were extracted from these

research articles. Each QTL was treated as an individual entity,

even if it was identified in multiple environments or genetic

backgrounds. In total, 893 QTLs were initially utilized to conduct

the MQTL analysis (Supplementary Table S1). All these QTLs were

grouped into eight major trait categories (1) aflatoxin (percent seed

infection index PSIIA, PSIIB, RAF, AFB2A, AFTA and AFTB), (2)
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abiotic stress-associated traits (DW, HW, SLA, TR, TE, SDW and

ISC), (3) biotic stress-associated traits (AE, ELS, LLS, LS, NH, rust,

stem rot, thrips, TSWV, root knot nematodes, NH and bruchid), (4)

morphological traits (NB, HRN, IN, NN, PEL, NPB, NSB, IL, PS,

TLW, PH, PC, PEL, MSH and PL), (5) nutritional traits (Fe, Zn,

OC, OA, AA, BA, GA, LGA, LA, OC, OLR, PA and SA), (6)

phenological traits (DE, DF, EDP, TDP, DFF, FI and DW), (7)

physiological traits (SCMR, CT, HUE, LDW, NID, SD, LDW, CID,

SC, SLW, VCR, RWC and LA), (8) yield related traits (10-SW,

HSW, BDW, DPN, HI, PL, DPL, PN, PWE, PWL, PW, PWD,

DPW, SN, SWT, SW, SP, SDW, SP and LW). To calculate start CI

and end CI positions, we used the following formula for

recombinant inbred lines (RIL), back cross (BC) and F2
populations (Darvasi and Soller, 1997; Venske et al., 2019; Guo

et al., 2006).

For RIL populations, CI = 163
P*R2

and for F2 and BC populations,

CI = 530
P*R2

Where P refers to the size of the population and R2 refers

to the phenotypic variance explained. The peak, initial, and final

positions of the QTLs are also determined for the QTL projection

and the MQTL analysis.
2.2 Construction of high-density
consensus maps

High density consensus maps for all 20 chromosomes were

constructed with the help of ‘LPmerge’ package of R software.

Markers and their positions from each map of each linkage group

were extracted, and ‘.csv’ extension format Excel sheets were

prepared as an input file in the R studio. The commands for the

LPmerge package were modified according to input data (Endelman

and Plomion, 2014). The LPmerge package uses linear

programming to efficiently minimize the mean absolute error

between the consensus maps and the linkage maps from each

population. To obtain the weighted consensus maps, population

size of each map was provided in the commands. Then, it creates

the “n” number of weighted models, which is selected based on the

smallest length of the consensus map and root mean sum of square

error (RMSE) value. The best consensus map for all the 20 linkage

groups was saved in the ‘.csv’ extension file format.
2.3 QTL projection on the consensus maps

The consensus maps constructed using LPmerge was used for

MQTL analysis using Biomercator software (Arcade et al., 2004;

Olivier et al., 2012; https://mybiosoftware.com/biomercator-

genetic-maps-qtl-integration.html). In addition to the consensus

map file, QTL information files were also created in ‘.txt’ format.

The Veyrieras two-step algorithm (Veyrieras et al., 2007), included

in the BioMercator v4.2 software, was used to perform meta-

analysis. In the first step, meta-analysis determines the best

MQTL model based on model choice criteria from the Akaike

information criterion (AIC), a corrected AIC, a Bayesian

information criterion (BIC) and the average weight of evidence
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(AWE). The best MQTL model was selected based on the lowest

value and highest weight. All the output information regarding

MQTLs and their QTLs from all the 20 linkage groups were

extracted. The MQTLs that correspond to weak associations were

excluded. MQTL regions containing more than two QTLs for

different traits and from different studies were only considered for

further analysis. The QTL regions, which deviated from their

MQTL positions, were also excluded from the MQTL group. QTL

nomenclature is as follows: the name starts with MQTL, followed by

the number of the consensus map where the QTL was detected, and

a serial number for those MQTLs where two or more were found.
2.4 Candidate genes identification from the
MQTL region

We used the physical positions of flanking markers from the

MQTL regions to retrieve genes from the “NCBI” database for

candidate gene identifications. In cases where the physical positions

of the flanking markers were not available, the positions of adjacent

markers were used instead. Genes were identified using the reference

genome assembly of peanut (arahy.Tifrunner.gnm1.KYV3). Genes

located in these regions with established functional links to the trait of

interest in any crop species were regarded as potential candidate

genes for further analysis.
3 Results

3.1 Salient features of the QTL studies

Thirty independent studies used different types of mapping

populations, such as RILs, BC, and F2. A total of 893 QTLs were

used for the meta-analysis, and all were classified into different

categories such as aflatoxin, biotic and abiotic stress-associated

traits, morphological, phenological and yield-associated traits

(Supplementary Table S1). Of these, 30 QTLs related to aflatoxin,

57 QTLs related to abiotic stresses, 158 QTLs related to biotic stresses,

61 QTLs related to morphological traits, 200 QTLs related to

nutritional traits, 50 QTLs related to phenological traits, and 87

QTLs related to physiological traits, 250 QTLs related to yield were

used in this study. The maximum number of QTLs were observed on

LG05 (Linkage Group 05) with 74 QTLs, while the minimum 22

QTLs were on LG17 (Supplementary Table S2). The phenotypic

variation explained (PVE) varied from 0.013 to 91.1%. Out of 893

QTLs, 437 major QTLs (PVE ≥ 10%) and 456 minor QTLs (PVE

≤10%) were selected for MQTL analysis (Supplementary Table S1).
3.2 Construction of consensus maps

The consensus map was constructed utilizing pre-existing

linkage map data, resulting in a comprehensive map with 11,956

markers spanning 4,496.20 cM (Supplementary Table S3). This map

contains various types of molecular markers, such as SSRs and
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SNPs. The distribution of markers per linkage group also showed

considerable variation, ranging from 340 markers on LG10 to 1,006

markers on LG05. On an average 2.76 markers per cMwere mapped

on the consensus genetic map constructed. Linkage group 10 was

the shortest, with a length of 128.05 cM, and had the least number

of markers. Linkage group 13 was the longest, with a length of 337.9

cM. In addition, we observed substantial variability in marker

density across linkage groups (Supplementary Table S3). For

instance, LG05 has a high marker density of 4.73 markers per
Frontiers in Plant Science 04
cM, while LG02 has a lower density of 1.55 markers per cM,

indicating more densely mapped regions in specific chromosomes.
3.3 Meta-QTLs detection and their
distribution on the peanut genome

In the present study, a total of 70 MQTLs were identified across

20 different LGs (Table 1). The distribution of MQTLs showed
TABLE 1 Meta-QTLs identified on 20 linkage groups of peanut for various traits.

MetaQTL LG Position CI
(95%)

CI
start

CI
end

Left Marker Right Marker No.
of
QTL

Traits

MQTL1.1 1 5.3 1.12 4.74 5.86 5939F C39 5 TR, Fe, TSWV, SLA and Zn

MQTL1.2 1 56.33 1.78 55.44 57.22 Marker64 bgPabg-595666 8 SLA, PEL, KPA, SDW, PWPP, IN and SP

MQTL1.3 1 73.14 3.34 71.47 74.81 Ah01_38930228 Marker460 5 HUE, LLS, HSW, CT and PW

MQTL2.1 2 0.39 0.5 0.14 0.75 Marker927 Marker893 9 HSW, LW, SL and LW

MQTL2.2 2 15.48 3.58 13.69 5.37 Ah02_98843120 IPAHM524a 4 KDLL, CT and AE

MQTL2.3 2 53.94 1.12 53.38 1.68 GM2196-900 Seq11G07 8 SLA, SP, TW, PYPP, NPPP and PWPP

MQTL2.4 2 207.80 0.28 207.66 0.42 RGC2 Ah5600 8 YOC, PWPP, TDP, HI, TR and HW

MQTL3.1 3 0.35 1.44 0.37 1.07 bgPabg-596210 AX-147243049 8 NPB, PYPP, DFF, SLW, KPA and HSW

MQTL3.2 3 12.03 1.61 11.22 12.83 ARS761-300 PM477 4 SDW, Zn, LS and Fe

MQTL3.3 3 69.72 0.07 69.68 69.75 AX-147217292 AX-147217370 10 MPTO, Fe, WBA, OIL, LLS, NSB and ELS

MQTL3.4 3 81.3 3.53 79.53 83.06 GM2206 PM238-1 4 HUE, PW and HSW

MQTL3.5 3 115.46 2.22 114.35 116.57 AHGS1674 GM2691 3 SLA and SDW

MQTL3.6 3 129.03 2.02 128.02 130.04 AX-147217953 Ah03_133970796 5 NH, VCR and TW

MQTL3.7 3 151.24 0.32 151.08 151.4 Ah03_126798348 Seq15F12 4 SCMR, PW and SW

MQTL4.1 4 10.08 1.21 9.475 10.68 bgPt-593893 bgPt-600898 4 NPPP, TSW and VCR

MQTL4.2 4 34.33 2.61 33.02 35.63 bgPabg-597624 GM890 4 WPA, LLS and TSW

MQTL4.3 4 64.86 0.20 64.76 64.96 AX-147219426 Ah15_155617956 7 Fe, AE, TDP, ISC, PLB and HSW

MQTL5.1 5 15.37 1.20 14.77 15.97 Marker3583 Ah5897 4 LW, SL and KDLL

MQTL5.2 5 30.30 2.20 29.2 31.4 Ah6140 Ah6242 4 WSPA, SL, MPSO and SW

MQTL5.3 5 55.64 2.94 54.17 57.11 Ah4097 Ah5485 3 MPSO and ELS

MQTL5.4 5 88.57 1.44 87.85 89.29 AHGS2534 Ahs2641II 15 YAA, OIL, SP, LLS and PC

MQTL5.5 5 96.46 2.05 95.43 97.485 A05A1146 A05A1355 4 LLS, HPW, AE and PLA

MQTL5.6 5 103.93 1.92 102.97 104.89 AX-147250857 AX-147223064 5 HPW, RLLS, WA and PLA

MQTL5.7 5 131.36 2.86 129.93 132.79 qHW-A05.2 PM112 7 SLA, HW, TE and DW

MQTL5.8 5 140.43 0.19 140.33 140.52 Ah05_114999121 AX-147223487 8 TR, SLA, NB, HW, SDW and DW

MQTL6.1 6 14.31 3.22 12.7 15.92 Ah06_3810427 bgPabg-597436 3 EL, PWA and ELS

MQTL6.2 6 50.12 4.07 48.08 52.15 IPAHM509 Ah06_21266806 3 LLS, NPB and NSB

MQTL6.3 6 74.52 3.85 72.59 76.44 GNB837 TC1A08 4 CT, SP and SCMR

(Continued)
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TABLE 1 Continued

MetaQTL LG Position CI
(95%)

CI
start

CI
end

Left Marker Right Marker No.
of
QTL

Traits

MQTL7.1 7 12.45 2.16 11.37 13.53 bgPabg-594537 seq3B8-400 10 PAA, KPA, SDW, TE, EL, Fe, WSS, SdWA
and ISC

MQTL7.2 7 37.54 2.51 36.285 38.795 Marker4573 PM450 11 LDW, GDDFI, HW, CT, SLA, NPB, SDW,
PW, SdW and FI

MQTL7.3 7 85.75 1.82 84.84 86.66 Ah6254 AX-147227736 10 WSA, SW, WSPA, NB, ISC, TE and SCMR

MQTL7.4 7 101.29 0.85 100.86 101.71 AHGA102053 GM1986-2 5 PW, DFF, SP and WSB

MQTL8.1 8 2.10 2.38 0.91 3.29 AX-147231702 PM367 4 KDLL, NH and KDrust

MQTL8.2 8 16.51 1.74 15.64 17.38 AX-147229678 Ah6347 5 YPA, DFF, KDrust, RWC and Zn

MQTL8.3 8 58.92 5.78 56.03 61.81 Ahs5872I AX-147229847 4 YOC, NPPP, KDrust and YLGA

MQTL8.4 8 252.61 2.76 251.23 253.99 TC14B08 A08B47 5 WB, MPTLA, LLS, WPA and MPTO

MQTL9.1 9 3.61 2.06 2.58 4.64 S9_81536603 TC2D08 6 KDrust, TR and KDLL

MQTL9.2 9 84.58 2.12 83.52 85.64 Ah09_117710447 TC1D02 13 PTIFF, PLA, CT, WAA, PW, HUE, TSW
and SP

MQTL9.3 9 104.27 1.22 103.66 104.88 Marker5532 AX-147234176 5 OIL, OLE, PAL and LIN

MQTL9.4 9 122.17 1.23 121.55 122.78 AhTE0572 FAD2A 11 MPTL, MPSL, MPTO, YOA, NSB
and MPSO

MQTL9.5 9 178.79 0.69 178.44 179.13 Ah6234 Ah6116 5 WSA, SLA, YBA, YLG and YSA

MQTL10.1 10 6.8 2.30 5.66 7.94 TC7H11 Ah6326 6 Thrips, TDP, Kdrust, LS and YOC

MQTL10.2 10 71.98 0.38 71.79 72.16 AhTE0162 Marker6000 7 HW, SP, OLE, SIL, CT and PC

MQTL11.1 11 0.47 9.63 4.34 5.28 Marker6137 seq2G4-1 5 ISC, PLE, LS, TSW and KDLL

MQTL11.2 11 50.05 2.28 48.91 51.19 TOG896615_1198# SD_c329p435vAC# 14 PW, ELS, DW, TR, SW, PC, HW, LPL
and YLGA

MQTL11.3 11 117.84 3.01 116.33 119.34 PM83 PM52 4 SDW, Zn and EDP

MQTL12.1 12 20.54 7.61 16.735 24.34 AHS0046# AHGS1692_b1 6 DPW, TSW, PLE, DPL and PWD

MQTL12.2 12 42.85 4.26 40.72 44.98 IPAHM531 A02B349 4 SDW, NPPP and MSH

MQTL12.3 12 128.56 2.67 127.22 129.89 Ah12_3356216 GNB1121 4 TW

MQTL13.1 13 61.47 1.11 60.915 62.02 AX-147216965 AX-147252574 9 PTIFF, KDLLS, SW, TE, VCR, HW, SCMR
and Zn

MQTL13.2 13 133.4 2.85 131.97 134.82 AX-147217982 Ah2820 9 WSG, MPSO, YOC, Stem Rot, WSP, NPPP,
WSL and OIL

MQTL13.3 13 256.94 5.34 254.27 259.61 AHGS1571 RN10F09 3 WG, SN and MSH

MQTL14.1 14 21.11 1.60 20.31 21.91 S14_22478715 GM1959-185 18 TE, SN, MSH, Rust, HW, 10SW, LS, TSW,
NPPP, PC, MSH, Fe, Stem Rot and PL

MQTL14.2 14 89.78 3.28 88.14 91.42 AX-147247139 AX-147247229 5 LLS, HSW, MPSO, MPTO and HSW

MQTL14.3 14 112.64 0.08 112.6 112.68 AHGS0202 AX-147219990 9 MPSL, WL, WS, WA, WP, WB, WG, WSS
and YPA

MQTL15.1 15 103.97 4.45 101.74 106.19 AX-147250857 Ah15_26507737 3 PW, DFF and FI

MQTL15.2 15 123.2 1.78 122.31 124.09 S1066EaB AX-147223295 3 FI, PH and DFF

MQTL16.1 16 11.53 1.08 10.99 12.07 PM210 Marker9514 10 PC, HSW, SCMR, PC, SP and SW

MQTL16.2 16 38.66 4.93 36.19 41.12 AX-147226634 S16_74072826 3 ELS, SP and MPTO

MQTL16.3 16 66.21 6.22 63.1 69.32 Ah16_2247722 Ahs3386 3 WP, WA and Stem Rot

(Continued)
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noticeable variability across these regions. LG05 harbored the

highest number of MQTLs, with 8 (11.43% of the total), followed

by LG03 with 7 MQTLs (10%), and LG09 with 5 MQTLs (7.14%;

Figure 1). These regions are likely critical for important traits such

as disease resistance and seed weight. Other linkage groups, such as

LG02, LG07, LG08 and LG20, each contained 4 MQTLs (5.71%),

while LG18 had the only single MQTLs (Supplementary Table S2).

The uneven distribution of MQTLs across the genome points to

specific genomic hotspots that may be associated with key traits.

Moreover, certain MQTLs, such as MQTL5.4, were associated with

many underlying QTLs (15 in this case), which are linked to several

traits like late leaf spot (LLS), oil content, and seed size. This

suggests that some MQTLs are hotspots for the genetic control of

multiple traits, providing an invaluable resource for breeders aiming

to improve multiple traits simultaneously. Among the 70 MQTLs,

13 MQTLs contained 18 aflatoxin-associated QTLs. Five aflatoxin

QTLs were located on LG05 across three different MQTLs:

MQTL5.1, MQTL5.2, and MQTL5.3. Additionally, two QTLs

each were identified on LG07 (MQTL7.3), LG13 (MQTL13.1),

and LG16 (16.2). MQTL5.2 contains six QTLs associated with

palmitic acid, oleic acid, seed weight, seed length and two related
Frontiers in Plant Science 06
to aflatoxin. Similarly, MQTL5.3 grouped two aflatoxin QTLs along

with other quality and disease-associated QTLs. MQTL14.1 was

crucial for both disease resistance and yield traits, underscoring its

role in improving both plant health and productivity. MQTL9.7,

MQTL19.1 and MQTL18.8 were significant for enhancing oil

content and quality, focusing on the balance of linoleic and oleic

acids. MQTL1.4 impacts various morphological traits, offering

opportunities to optimize plant structure and pod characteristics.

MQTL7.5 addresses physiological traits influencing factors like

chlorophyll content and transpiration efficiency, which are vital

for plant growth and stress resilience. MQTL10.1 harbors QTLs for

multiple traits such as oil content, thrips resistance, leaf spot and

rust resistance. Collectively, these MQTLs provide valuable insights

for targeted breeding strategies aimed at improving peanut quality,

yield, and resilience.

The precision and stability of the identified MQTLs are evident

in their CIs. Initially, the average CIs of the individual QTLs ranged

from 1.59 to 29.37 cM, with a mean of 9.26 cM, highlighting

variability in the original QTL positions. After meta-analysis, the

MQTL CIs significantly decreased, ranging from 0.07 cM

(MQTL3.3) to 9.63 cM (MQTL11.1), with an average of 2.33 cM,
TABLE 1 Continued

MetaQTL LG Position CI
(95%)

CI
start

CI
end

Left Marker Right Marker No.
of
QTL

Traits

MQTL17.1 17 14.89 3.00 13.39 16.39 AX-147227003 AX-147254568 4 DPA, PW, KP and KPA

MQTL17.2 17 67.19 3.50 65.44 68.94 S17_65719159 S17_38129204 3 PL, SP and HSW

MQTL18 18 192.09 0.50 191.84 192.34 GNB159 GM1986-1 9 PTOLR, MPTO, MPTL, WP, MPSO and LLS

MQTL19.1 19 19.11 0.51 18.85 19.36 Marker11860 Ah19_11699918 44 OLA, DFF, PC, LIN, OLE, PL, ShW, CT,
PLE and LA

MQTL19.2 19 90.51 0.57 90.22 90.79 FAD2B AhS67426 10 YPA, MPSL, WSP, MPSLOA, YOC,
MPSOLR and YLA

MQTL19.3 19 117.13 0.68 116.79 117.47 gi30420405 AX-147232613 3 YOC and HW

MQTL20.1 20 70.63 2.52 69.37 71.89 Ah20_117411384 AHGS1446 8 Stem Rot, OIL, TSW and TW

MQTL20.2 20 102.84 3.69 100.99 104.68 GM2165 AHGA75537 5 SN, NSB, SP, DW and GDDFI

MQTL20.3 20 116.03 2.03 115.01 117.04 Ah20_143925737 Ah20_126361289 8 HSW, PYPP, GDDFI, SLA, CT and SLA

MQTL20.4 20 136.76 0.69 136.41 137.10 Ah20_143912200 Ah20_134973352 5 HSW, ShW, SP and HI
10SW, Ten seed weight; AA, Arachidic acid; AFB2A, Resistance to production of aflatoxin B2; AE, Adult emergence; AFTA, Aflatoxin content; AFTB, Aflatoxin content; BA, Behenic acid; BC,
Backcross; BDW, Biomass dry weight; CI, Confidence interval; CID, Leaf carbon isotope analysis; CT, Canopy temperature; DE, Days of emergence; DF, Days to flowering; DFF, Days to 50%
flowering; DPL, Pod length of double seeded; DPW, Pod width of double seeded; DPN, Double seeded pod; DW, Dry weight; EDP, Estimated days to podding; ELS, Early leaf spot; Fe, Iron
content; FI, Flower initiation; GA, Gadoleic acid; HI, Harvest index; HRN, Root hairiness; HSW, Hundred seed weight; HUE, Heat use efficiency; HW, Haulm weight; IL, Internode length; ISC,
Delta biomass canopy conductance; LA, Leaf area; LDW, Leaf dry weight; LLS, Late leaf spot; LOD, Logarithm of odds; LW, Terminal leaflet width; MQTL, Meta QTL; MSH, Main stem height;
NB, Number of branches; NID, Leaf isotope analysis; NH, Number of holes on pod; NN, Node number; NPB, Number of primary branches; NSB, Number of secondary branches; OA, Oleic acid;
OC, Oil content; OLR, Oleic to linoleic acid ratio; PA, Palmitic acid; PC, Pod constriction; PEL, Peduncle length; PH, Plant height; PL, Pod length; PN, Pod number per plant; PS, Plant spread;
PSIIB, Percent seed infection index for 100 seed weight; PSIIA, Percent seed infection index for 100 seed weight; PSII, Percent seed infection index; PW, Pod weight per plant; PWD, Pod width;
PWE, Pod weight; PWL, Pod weight loss; QTLs, Quantitative trait locus; RAF, Aspergillus favus resistance; RILs, Recombinant inbred lines; RWC, Relative water content; SA, Stearic acid; SCMR,
SPAD chlorophyll meter reading; SC, Stomatal conductance; SD, Stomatal density; SDW, Shoot dry weight; SDW, Weight of two kernels; SLA, Specific leaf area; SLW, Specific leaf weight; SN,
Seed number; SP, Shelling percentage; SWT, Seed weight per plant; TE, Transpiration efficiency; TLW, Terminal leaflet width; TDP, Total developmental period; TR, Transpiration rate; TSWV,
Tomato spotted wilt virus; VCR, Visual chlorotic rating; Zn, Zinc content; KPA, Kernel percentage; PWPP, Pod weight per plant; IN, Internode length; KDLL, Late leaf; spot; PYPP, Pod yield per
plant; TW, Test weight; NPPP, No of pods per plant; YOC, Oil content; OIL, Oil content; MPTOA, Oleic acid; WBA, Behenic acid; WPA, Palmitic acid; PLB, Pod length; WSPA, Palmitic acid;
MPSO, Oleic acid; YAA, Arachidic acid; HPW, Pod weight per plant; RLLS, Late leaf spot; WSS, Stearic acid; GDDFI, Days to flower initiation; WSA, Stearic acid; TE, Transpiration efficiency
under WW regime; WSPA, Palmitic acid; WSB, Behenic acid; KDrust, Rust; YLGA, Gadoleic acid; WB, Behenic acid; PAL, Palmitic acid; WSA, Stearic acid; YBA, Behenic acid; YLG, Gadoleic
acid; SP, Shelling percentage; SIL, Seed length; PLE, Pod length; LPL, Pod length; YLGA, Gadoleic acid; WSG, Gadoleic acid; WS, Stearic acid; WSS, Stearic acid; PTOLR; Oleic to linoleic acid
ratio; MPTO, Oleic acid; MPTL, Linoleic acid; WP, Palmitic acid; MPSO, Oil content; LIN, Linoleic acid content; OLA, Oleic acid; OLE, Oleic acid; MPSLOA, Oleic acid; YOC, Oil content;
MPSOLR, Oleic to linoleic acid ratio; ShW, Shell weight.
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marking a notable improvement in precision. The fold change in CI,

reflects enhanced localization accuracy, varied from 1.76 to 111.38,

with an average fold change of 9.02, showcasing substantial

improvement in MQTL precision over the original QTLs

(Supplementary Table S4). Further analysis across linkage groups

(LGs) revealed that the average CI of the original QTLs ranged from

5.06 to 17.73 cM, with an overall average of 9.23 cM, indicating

considerable variability. After meta-analysis, MQTL CIs were

reduced across all LGs, ranging from 0.50 to 4.97 cM, with an

average of 2.40 cM (Supplementary Table S2; Figure 2),

demonstrating increased precision across the genome. The fold

change in CI reduction also varied across LGs, with LG18 showing

the largest fold change (21.58), indicating a substantial

improvement in QTL localization. LG10, LG14, and LG19

displayed high fold changes of 8.13, 7.04, and 8.72, respectively,

further emphasizing the enhanced precision in these regions

(Supplementary Table S2). In contrast, LG06 and LG16 had the

lowest fold changes, 1.99 and 1.77, respectively, indicating more

modest refinements. On average, the fold change across all LGs was

5.17, demonstrating an overall improvement in MQTL localization

compared to the original QTLs.
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3.4 Candidate genes identification

For candidate gene identification, MQTLs less than 50 Mb in size

were used. Total 48 MQTL regions were selected for the identification

of candidate genes based on the availability of the physical position of

the flanking markers of MQTLs (Supplementary Table S5). From these

meta-genomic regions, we identified a total of 4,024 genes

(Supplementary Table S6). The functions of these genes were

determined through a detailed review of the existing literature.

MQTL1.1 is harbors QTLs for transpiration rate, iron content,

tomato spotted wilt virus resistance, specific leaf area, and zinc

content. For transpiration rate, genes like gibberellin-regulated

protein 14-like (LOC112710127), caffeoyl-shikimate esterase-like

(LOC112720721) and EPIDERMAL PATTERNING FACTOR-like

protein (LOC112754391) were identified. Similarly, gibberellin-

regulated protein (LOC112710127), transcription factor KUA1

(LOC112802418), and several small nuclear RNAs were found to be

associated with specific leaf area (Miceli et al., 2019). Disease resistance

related genes like serine/threonine-protein kinase (LOC112801194),

BOI-related E3 ubiquitin-protein ligase (LOC112801426), autophagy-

related protein (LOC112802850), auxin-responsive protein IAA30-like
FIGURE 1

The 70 MQTLs for important traits across 20 chromosomes is illustrated. The circles from inside to outside represent the following: the 1. heatmap
of QTLs, 2. projected QTLs with their PVE (Phenotypic Variance Explained), 3. fold change per Meta-QTL, 4. Meta-QTLs with their confidence
Intervals (CI), and 5. chromosome wise marker density, respectively.
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(LOC112718703), WAT1-related protein (LOC112802633), and

protein YABBY 4 (LOC112803178) were identified from this region.

Iron and zinc content related genes are probable methyltransferases

PMT14 (LOC112801274), FCS-Like Zinc finger 2 (LOC112801380),

formyltetrahydrofolate deformylase 1 (LOC112802537), ferredoxin C 2

(LOC112801048), ion protease homolog 2, peroxisomal

(LOC112801369), zinc finger A20 and AN1 domain-containing

stress-associated protein (LOC112803256), transcription factor

bHLH18 (LOC112801016). MQTL 1.7 is harbors QTLs for the leaf

spot, late leaf spot, and rust resistance. We identified some of the

important disease resistance related genes from this region like serine/

threonine-protein kinase STY13 (LOC112695569), ubiquitin-

conjugating enzyme E2-23 (LOC112695673), WAT1-related protein

(LOC112695708). On chromosome 3, four MQTL regions were found,

and most of the QTLs in this region are yield-related traits. The genes

related to these traits are mitogen-activated protein kinase

(LOC112789588) , E3 ubiquit in-protein l igase PUB23

(LOC112789537), auxin response factor 6 (LOC112792550), DELLA

protein GAIP-B (LOC112792521). MQTL4.1 contains tomato spotted

wilt virus, late leaf spot, and one palmitic acid QTL. F-box/LRR-repeat

protein (LOC112795816), serine/threonine-protein kinase RUNKEL-

like (LOC112794155), rust resistance kinase Lr10 (LOC112795859),

receptor-like protein EIX2 (LOC112795875) are mostly related to the

disease resistance and acyl carrier protein (LOC112795780) is related to

the palmitic acid. MQTL5.3 contains disease- and oil-content QTLs.

Some important genes related to these traits are proline-rich receptor-

like protein kinase (LOC112802144), probable polyol transporter

(LOC112802148), serine acetyltransferase 5-like (LOC112803828),

serine/threonine-protein kinase phg2 (LOC112803830), zinc finger

MYM-type protein 1-like (LOC112803827), protein FAR-RED

IMPAIRED RESPONSE 1-like (LOC112803829).

In MQTL8.1, multiple disease-associated QTLs are clustered,

and this region contains biotic stress responsive genes such as

calcineurin B-like protein (LOC112708056), defensin-like protein 1
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(LOC112708031), and pentatricopeptide repeat-containing protein

At3g62890 (LOC112708064). On LG09, we generally found MQTLs

(MQTL9.7 and MQTL9.3) associated with oil content. However, in

MQTL9.7, we also found QTLs for morphological traits in addition

to oil content. In MQTL9.3, the genes related to oil traits include

fatty-acid desaturase FAD2 (LOC112710390), glycerol kinase

(LOC112710344), linoleate 9S-lipoxygenase (LOC112710463), and

serine carboxypeptidase (LOC112710260). Additionally, in

MQTL9.7, genes related to plant growth and development were

identified, including VAN3-binding protein (LOC112711758),

DEAD-box ATP-dependent RNA helicase 7 (LOC112711726),

ATP sulfurylase 1 (LOC112711734), and carboxylesterase 1

(LOC112711707). MQTL10.1 contains important genes responsive

to biotic stress, including L-type lectin-domain containing receptor

kinase VII.1-like (LOC112715495), polyadenylate-binding protein

RBP47 (LOC112715552), serine carboxypeptidase-like 17

(LOC112715547), bZIP transcription factor 46 (LOC112715565),

and zinc finger MYM-type protein 1-like (LOC112717484).

MQTL11.2 is the most important region, and it contains 14 QTLs.

Squamosa promoter-binding-like protein 6 (LOC112722612), serine/

threonine-protein phosphatase-7 long form homolog

(LOC112721816), MADS-box protein (LOC112722615) are related to

the pod weight. Zinc finger protein (LOC112721803), serine protease

SPPA, F-box protein (LOC112722634) and isoaspartyl peptidase/L-

asparaginase (LOC112722621) are related to the late leaf spot.

Squamosa promoter-binding-like protein (LOC112722612), E3

ubiquitin ligase BIG BROTHER-related (LOC112722633), serine/

threonine-protein phosphatase-7 long form homolog

(LOC112721816) are related to the dry weight-related traits.

Rhamnogalacturonan I rhamnosyl-transferase 1 (LOC112722626)

and protein breaking of asymmetry in the stomatal lineage-like

(LOC112724059) are related to the transcription rate and probable

UDP-3-O-acylglucosamine N-acyltransferase (LOC112722632) is

related to gadoleic acid content. These genes are also related to other
FIGURE 2

Graphical representation of projected QTLs and Meta-QTLs. Comparison of the mean confidence interval (CI) of original QTLs (green bar) and meta-
QTLs (yellow bar). The blue line indicates the average fold reduction in Meta-QTLs.
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traits like haulmweight, 100 seed weight and pod constriction. QTLs in

MQTL12.1 are related to the pod length and width and disease

resistance (Tomato spotted wilt virus). The genes encode for

gibberellin 20 oxidase (LOC112728437), receptor-like serine/

threonine-protein kinase (LOC112728351), glyoxylate/hydroxy

pyruvate reductase (LOC112728355), organelle RRM domain-

containing protein (LOC112728356), disease resistance protein

RML1B (LOC112728387), and TMV resistance protein N-like

(LOC112728444) are mostly related to these traits. MQTL13.1 mostly

contains transpiration and chlorophyll related QTLs, protein

photosystem I assembly (LOC112735782), NDR1/HIN1-like protein

(LOC112737452), pentatricopeptide repeat-containing protein

(LOC112737396) , protein LOW PSII accumulat ion 2

(LOC112737399), chloroplast envelope quinone oxidoreductase

homolog (LOC112737420). On LG19, MQTL19.1 harbors QTLs for

seed oil content and quality traits. It contains essential genes related to

these oil-associated traits, including Acyl-CoA-binding domain-

containing protein 6 (LOC112776181), fatty Acyl-CoA reductase

FAR1 (LOC112778876), F-box proteins (LOC112776494), and cyclin-

dependent kinase inhibitor CDKN1B (LOC112776306). MQTL14.3,

MQTL18.8, MQTL19.1, MQTL19.4, and MQTL19.5 are found as a

hotspot for most of the fatty acid’s QTLs (Lignoceric acid, Stearic acid,

Arachidic acid, Palmitic acid, Behenic acid, Gadoleic acid, Stearic acid,

Arachidic acid, Oleic acid, Linoleic acid). This region contains multiple

copies of oxysterol-binding protein-related protein (LOC112741888).

Other trait related genes are TBC1 domain family member

(LOC112741897), glucan endo-1,3-beta-glucosidase (LOC112741948),

phosphatidylinositol/phosphatidylcholine transfer protein SFH11-

like (LOC112742554).
4 Discussion

Developing high-yielding and climate-resilient crops is crucial

for ensuring food and nutritional security. In recent years, various

studies have been conducted on peanut to identify genomic regions

associated with different important quantitative traits. Despite the

identification of thousands of QTLs related to yield and other

significant traits in various plant species, only a few have proven

useful in genetic improvement programs due to their minor effects

and environmental influences. Consequently, the primary objective

of this MQTL analysis is to identify stable QTLs in plant genomes

that can be effectively utilized in breeding programs through

marker-assisted selection.

The distribution and precision of MQTLs across peanut

chromosomes offer valuable insights into the genetic architecture

of important agronomic traits. Our findings show that certain

linkage groups, such as LG01, LG03 and LG05, harbor a higher

concentration of MQTLs, indicating these chromosomes as critical

regions for traits like disease resistance and seed weight. The

presence of up to eight MQTLs on LG05, for instance, highlights

its potential as a hotspot for genetic control of these key traits

including aflatoxin resistance. The concentration of MQTLs in

these linkage groups is comparable to previous studies in other

legumes, such as soybean and common bean, where similar
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clustering of QTLs was observed in specific genomic regions. This

suggests that certain chromosomes in legumes may play a more

significant role in controlling a variety of traits, thereby making

them prime targets for marker-assisted breeding.

A critical aspect of this study is the improved precision of

MQTLs, as evidenced by the significant reduction in CIs compared

to original QTLs. For example, MQTL3.3, with a CI as narrow as

0.07 cM, indicates a highly stable QTL region, a feature that

significantly enhances the accuracy of breeding programs. This

improvement in precision is also reflected in the overall reduction of

CIs, with many linkage groups showing a fold change greater than

four. This mirrors the outcomes of MQTL studies in other legumes,

where the refinement of QTL regions has successfully reduced

uncertainty around key genomic loci. The narrow CIs in MQTLs

provide breeders with more reliable and specific targets, making it

easier to incorporate these regions into marker-assisted selection

(MAS) programs aimed at improving traits like yield, disease

resistance, and seed quality.

In addition to trait-specific MQTLs, the presence of multi-trait

MQTLs, such as MQTL5.4 harboring 15 QTLs associated with

diverse traits like late leaf spot (LLS), oil content, and seed size,

demonstrates the pleiotropic nature of certain genomic regions.

This observation is consistent with previous reports in legumes,

where specific MQTLs control multiple traits (Kumar et al., 2023).

Such regions are particularly valuable in breeding programs as they

enable the simultaneous improvement of multiple traits, reducing

the need for separate selection processes for each characteristic.

Another notable outcome of our study is the variation in marker

density across different linkage groups. High-density regions, such

as LG10 with 2.83 markers per cM, provide high-resolution genetic

maps, which are crucial for fine-mapping QTLs and enhancing the

precision of breeding strategies. In contrast, regions with lower

marker density, like LG03 with 0.88 markers per cM, may require

additional efforts to improve marker saturation for better trait

mapping. The observed variability in marker density across

linkage groups is consistent with findings in other legume species,

where differences in marker distribution often reflect the complexity

and evolutionary history of the genome.

Our study also highlights the complexity of nutrition-related

traits, which had the highest number of QTLs (200), underscoring

the importance of nutritional improvements in crop breeding. This

aligns with the growing interest in enhancing nutrient content in

legumes, a focus area shared with other legumes like soybean and

chickpea, where nutritional traits like protein and oil content have

been extensively studied. The identification of numerous QTLs for

nutrient traits further emphasizes the potential for genetic

improvement in this area, particularly as breeders aim to develop

biofortified crops with enhanced nutritional profiles.

In our study, we identified important candidate genes related to

the traits in the MQTL region. Total 48 genome-wide MQTLs were

selected based on the availability of physical position of the flanking

markers. Multiple disease resistance related genes like serine/

threonine-protein kinase (LOC112801194), BOI-related E3

ubiquitin-protein ligase (LOC112801426), autophagy-related protein

(LOC112802850), auxin-responsive protein IAA30-like
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(LOC112718703), WAT1-related protein (LOC112802633), protein

YABBY 4 (LOC112803178), zinc finger MYM-type protein 1-like

(LOC112803827), F-box/LRR-repeat protein (LOC112795816), rust

resistance kinase Lr10 (LOC112795859), and receptor-like protein

EIX2 (LOC112795875) were identified from these MQTL regions.

Sequencing-based bulk segregant analysis (seq-BSA) combined with

nonsynonymous analysis identified the SNP variant in serine/

threonine protein kinase gene which has significant role in the

fusarium wilt and sterility mosaic disease resistance (Singh et al.,

2016). In another study, the mutant population was screened to

identify the role of E3 ubiquitin-protein ligase gene for the disease

resistance in rice. The mutant copy of this gene showed a higher

expression against the disease infection (You et al., 2016). Transient

silencing of the WAT1 gene in tomato showed resistance to wilt

pathogen (Hanika et al., 2021). The over deposition of the F-box

proteins was recorded in the nucleus and cytoplasm of the wheat for

the immunity activation signaling against the infection leaf rust

pathogen (Wei et al., 2020). To protect the bread wheat against

biotic stresses like pest and pathogens, wheat breeders have

introduced over 200 genes into the cultivated gene pool from

various sources. One of the disease resistance genes was tested using

the transient expression for its contribution to the resistance against

the stem rust. The overexpression of these receptor protein kinases

showed resistance against the stem rust of wheat (Yu et al., 2023).

Similarly, transpiration related genes like gibberellin-regulated

protein 14-like (LOC112710127), caffeoylshikimate esterase-like

(LOC112720721), EPIDERMAL PATTERNING FACTOR-like

protein (LOC112754391) and NAC domain-containing protein

(LOC112767006) were identified. Gibberellin-regulated protein like

DELLA plays a role in signaling the control of the transpiration rate

for water use efficiency during the critical phases of plant

development and stress management (Locascio et al., 2013).

Caffeoylshikimate esterase plays a crucial role in lignin biosynthesis,

which provides physical support and water protection by controlling

the transpiration network pathway. Due to mutation in this gene and

NAC domain, lignin deposition was hampered in one of the droughts

related experiments in maize and Arabidopsis (Lu et al., 2013; Sun

et al., 2018). Moreover, EPIDERMAL PATTERNING FACTOR-like

protein affects the transpiration rate by regulating stomatal density

and size. In rice, the overexpression of this gene negatively regulates

and reduces the stomatal density, and after this scenario, the

experimental lines of rice performed better in terms of their water

use efficiency (Caine et al., 2019).

Gibberellin-regulated protein (LOC112710127), transcription

factor KUA1 (LOC112802418), and many small nuclear RNAs are

related to the specific leaf area. GA controls the leaf size by

regulating the cell division and increasing water absorption

(Ritonga et al., 2023). KUA is an MYB-like transcription factor

that activates leaf expansion and growth-related genes (Schmidt

et al., 2016). The overexpression of this gene resulted in a larger cell

size, while the mutant of this gene showed a reduction in the size of

the cells in leaf tissue in Arabidopsis (Lu et al., 2014).

Iron and zinc content related genes are probable methyltransferase

(LOC112801274), histone-lysine N-methyltransferase, H3 lysine-9

specific SUVH6 (LOC112801997), formyltetrahydrofolate
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deformylase 1 (LOC112802537), ferredoxin C 2 (LOC112801048),

ion protease homolog 2 (LOC112801369), superoxide dismutase

(LOC112719733) and NAC domain-containing protein

(LOC112767006). Under iron deficiency, methyltransferase relaxes

the chromatin structure for the sufficient expression of nrf2 gene

which regulates iron uptake (Su et al., 2022). Ferredoxin C and

superoxidase dismutase is an iron binding protein in plants which

also exoculate the transportation of iron (Sharma et al., 2023).

Oil content and fatty acid content related genes such as fatty-

acid desaturase FAD2 (LOC112710390), glycerol kinase

(LOC112710344), linoleate 9S-lipoxygenase (LOC112710463),

serine carboxypeptidase (LOC112710260), oxysterol-binding

protein-related protein (LOC112741888), TBC1 domain family

member (LOC112741897), glucan endo-1,3-beta-glucosidase

(LOC112741948), phosphatidylinositol/phosphatidylcholine

transfer protein SFH11-like (LOC112742554). Glycerol kinase

provides the precursors to the lipid biosynthesis. The

overexpression of this gene showed the increase in lipid

production and showed the resistance to bacterial blight and blast

diseases in rice (Xiao et al., 2022). Fatty-acid desaturase plays a

crucial role lipid biosynthesis and for converting mono-unsaturated

fatty acids into poly unsaturated fatty acids which is important for

the normal development and function of plants (Czumaj and

Śledziński, 2020). This enzyme also helps with other proteins in

the determining the oil content and composition in the seeds.

Linoleate 9S-lipoxygenase uses linoleic acid or linolenic acid as a

substrate and gets involved in plant development and growth, stress

to l e rance , and senescence (Ve l los i l lo e t a l . , 2007) .

Phosphatidylinositol/phosphatidylcholine transfer protein and

oxysterol-binding protein are also a lipid binding protein and

play various roles in plant metabolism and stress response (Lete

et al., 2020; Ye et al., 2022). The overexpression of the serine

carboxypeptidase gene in the Arabidopsis negatively regulates and

reduces the production of membrane lipid (Chen, 2020).

A few more genes related to plant growth and development were

identified from different MQTL regions, including VAN3-binding

protein (LOC112711758), DEAD-box ATP-dependent RNA helicase

7 (LOC112711726), ATP sulfurylase 1 (LOC112711734), and

carboxylesterase 1 (LOC112711707). VAN3-binding protein activates

proteins which regulate auxin transport mediated pathways and leads

to continuous venation and root elongation (Naramoto and Kyozuka,

2018). DEAD-box ATP-dependent RNA helicase plays a role in plant

growth, development, and found to be upregulated in abiotic stresses of

wheat (Ru et al., 2021). ATP sulfurylase is important for Sulphur

assimilation in plants. Sulphur is an essential macronutrient for the

growth and development of plants (Anjum et al., 2015).

Carboxylesterase also plays an important role in the growth,

development, and stress tolerance in plants. The cis element of this

gene was mostly found to be related to plant hormones like GA and

IAA and the expression of this gene was mostly found in the root, leaf

and stem of cotton (Rui et al., 2022).

In our study, while identifying candidate genes we have

considered and highlighted the genes that are reported to play a

key role in peanut as well as other key crops. For instance, genes

encoding NAC domain-containing protein in the hotspot region
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was reported to play key role in biotic, abiotic, nutritional, and

physiological traits (Yuan et al., 2020; Li et al., 2021; Yuan et al.,

2023). In addition, we identified key genes associated with aflatoxin

resistance in MQTL5.2 (serine/threonine-protein kinase, BOI-

related E3 ubiquitinprotein ligase), MQTL5.3, MQTL7.3, and

MQTL13.1. Comparative proteomic studies indicated that serine/

threonine-protein kinase was reported to play a role in aflatoxin

resistance in maize (Chen et al., 2005; Brown et al., 2010). While

global transcriptome profiling studies reported that BOI-related E3

ubiquitinprotein ligase plays a role on pre-harvest aflatoxin

contamination in peanut. Similarly, for yield-related traits in

MQTL3.1-MQTL3.4 (mitogen-activated protein kinase, auxin

response factor), MQTL11.2 (MADS-box protein, squamosa

promoter-binding protein), and MQTL14.1. AhMPK3 exists in

two copies in peanut genome and its structural organization

revealed well-conserved nature of these signaling components

across different species (Kumar et al., 2009). Further, auxin

response factor AhARF6 reported to play a role in peanut pod

development (Li et al., 2021). In case of peanut, thirty-eight genes

(AhSPL1-AhSPL38) were identified and AhSPL genes might be

widely involved in peanut growth and development, as well as in

response to environmental stresses (Sun et al., 2024). Several genes

like fatty-acid desaturase FAD2, linoleate 9S-lipoxygenase, acyl-

CoA-binding protein are reported to play role in the oil

composition and some of these genes were edited and cloned

(Peng et al., 2020; Neelakandan et al., 2022; Zhao et al., 2022).

Genes related to oil composition within MQTL5.2 (fatty-acid

desaturase FAD2, linoleate 9S-lipoxygenase), MQTL9.3,

MQTL19.1 (acyl-CoA-binding protein, fatty acyl-CoA reductase

FAR1), MQTL19.4, and MQTL19.5. Nutritional traits like iron and

zinc content are linked to MQTL1.1 (probable methyltransferase,

ferredoxin C), MQTL10.1, and MQTL12.1.
5 Conclusion

In conclusion, the outcomes of this study demonstrate the

power of MQTL analysis in refining genomic regions associated

with important traits. The reduction in QTL CIs, the identification

of multi-trait MQTLs, and the concentration of MQTLs on key

linkage groups provide valuable insights that can accelerate

breeding efforts in peanut. These findings are consistent with

MQTL studies in other legumes, suggesting a broader

applicability of this approach across legume species. Future

research should focus on further refining MQTL regions and

increasing marker density in less-dense genomic regions to ensure

comprehensive coverage of trait-associated loci, ultimately

improving the effectiveness of MAS in crop breeding programs.

Furthermore, we found that nutritional-related traits had the

highest number of initial QTLs (200), reflecting their genetic

complexity and the substantial research aimed at enhancing

nutrient content in crops. Other categories, such as biotic traits

(156 QTLs) and abiotic traits (57 QTLs), were also prominent,

showing the broad scope of focus in breeding programs. When
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compared with previously reported MQTL studies in legumes,

similar trends of concentration of MQTLs on key chromosomes

and the improvement in QTL precision were observed. For

example, studies on soybean and common bean also highlighted

that specific chromosomes harbor denser MQTLs, particularly for

traits like disease resistance and yield. The reduction in CIs in

peanut mirrors findings in other legumes, indicating that MQTL

analysis consistently enhances precision across legume species,

providing breeders with robust, reliable genomic regions for

trait improvement.
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