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Introduction: Soil properties and extracellular enzyme activities are the key
factors affecting microbial communities at different altitudes. It is very
important to understand their distribution patterns along the elevation gradient
for predicting the function of alpine ecosystems in response to climate change,
especially in alpine shrub ecosystems, which are rarely studied.

Methods: In eastern Qinghai-Tibet Plateau Set up four sample plots with different
altitudes (3400,3700,4000,4300 and 4300 m), Illumina I6S gene sequencing was
used to analyze the changing law of soil bacterial community, and its diversity
and influencing factors were discussed by combining correlation and
redundancy analysis.

Results: The results showed that the contents of soil total carbon, total nitrogen,
water content, microbial biomass carbon, nitrogen, phosphorus and alkaline
phosphatase were the highest, but the bacterial diversity was the lowest
(Shannon and Pielou index); Dominant bacteria are different at different
altitude gradients. Acidobacteriota is the most abundant at 3700, 4000 and
4300 m above sea level, while Verrucomicrobiota is the most abundant at 3700m
above sea level; In addition, PCoA analysis showed that the community structure
of soil bacteria changed significantly, with similar structures at 3700 , 4000 and
4300 m above sea level; Redundancy analysis (RDA) showed that soil properties
(TC and BD) and enzyme activities (AG, BG and CBH) were the main factors
affecting the bacterial community, while soil properties (TN), microbial biomass
(MBC and MBN) and enzyme activities (AG and BG) all had significant effects on
the functional groups of soil bacteria.

Conclusion: To sum up, these results show that soil physical and chemical
properties, microbial biomass, enzyme activities and bacterial communities have
different responses to different altitude gradients.These studies provide a new
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perspective for us to deeply understand the driving factors of soil bacterial
community variation along the elevation gradient. It is helpful to strengthen
our awareness of the protection of Potentilla fruticosa shrub, and also provide
basic information for the study of alpine ecosystem in this area.

KEYWORDS

alpine ecosystem, bacterial community, different altitudes, co-occurrence network,

soil properties

1 Introduction

Soil microorganisms and enzymes are important components
of soil and play a significant role in the ecosystem (Shu et al., 2023).
They are not only regulators of ecosystem functions but also the
main drivers of nutrient transformation and material cycling in the
ecosystem (Wang et al., 2025). The main groups of soil
microorganisms include bacteria, fungi, actinomycetes, and
protozoa. These microorganisms can secrete enzymes such as
alkaline phosphatase, [3-1,4-glucosidase, cellulase, amidase, and
nitrogenase (Arunrat et al., 2024). Through decomposition, they
can mineralize soil organic matter, including remains of animals
and plants, and release nutrients into the surrounding soil, playing
an important role in the normal growth of plants and the stability of
ecosystem structure and function (Wyszkowska et al., 2019). As the
main group of soil microorganisms, soil bacteria have complex
ecological functions and promote the decomposition of soil organic
matter by participating in the cycle and metabolism of soil nutrients
(Yan et al., 2023). Soil moisture, organic carbon, and total nitrogen
are generally important environmental factors that influence the
composition of soil bacterial communities (Pang et al., 2023). In
addition, changes in the environment of soil ecological processes
can lead to significant changes in soil bacterial communities at the
regional scale (Crowther et al., 2019). Especially in alpine shrub
ecosystems, the distribution pattern of soil bacterial communities
along altitudinal gradients has always been a hot topic in ecological
research (Zhu et al,, 2025). Therefore, analyzing the soil bacterial
communities in the P.fruticosa shrubs of the Yellow River source
area on the Qinghai-Tibet Plateau is of great significance for the
biodiversity conservation and ecological management of
alpine ecosystems.

In the alpine shrub ecosystem, there are significant differences
in climate, plant and soil characteristics in a short spatial distance
(Bayranvand et al., 2021; Zhao et al., 2025). Altitude gradient is
considered as a powerful “natural laboratory” to study the response
and feedback of soil function to climate change (Feng et al., 2021).
Especially the altitude model to detect soil microbial community
and extracellular enzyme activity, because the climate and biological
properties change dramatically in a small spatial scale (Klimelk et al.,
2020). The variation patterns of soil bacterial community
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composition, biomass and soil extracellular enzyme activity along
altitude gradient were studied extensively (Ren et al, 2018). For
example, some studies show that microbial biomass increases,
decreases or has no obvious trend with the elevation (Chang
et al,, 2016; Klimek et al, 2020). In Nyainqgentanglha Mountain
(Sietal, 2014) and Italian Alps (Margesin et al., 2014), it was found
that soil extracellular enzyme activity decreased along the elevation
gradient, while in south-central Chile (Reyes et al., 2011) and
Wouyishan (Jin et al., 2011), it was found that soil enzyme activity
increased with altitude. A study of Kohala volcano in Hawaii by
Peay et al. (2017) found that the bacterial diversity showed a hump-
shaped upward trend. In a study in Mount Fuji, Singh et al. (2012)
found that the diversity of soil bacteria and the abundance of
Acinetobacter decreased monotonously with the increase of
altitude gradient. Cui et al. (2019) observed the different changes
of o-diversity of soil bacteria in Qinghai-Tibet Plateau at high
altitude gradient, and the results showed that Shannon-Wiener
diversity of bacteria first increased and then decreased. The above
research found that the research results of bacterial community and
extracellular enzyme activity were inconsistent, and the consensus
was still difficult to reach. This shows that the influencing factors are
not only the temperature fluctuation caused by altitude rise, but
these contradictory observations may be attributed to the
interaction of various abiotic and biological factors on bacterial
communities and extracellular enzyme activities (Chang et al., 2016;
Siles etal., 2017; Zhao et al., 2025). Because this area is very sensitive
to climate change, there is still a lack of synchronous understanding
of the changes of soil bacterial community and extracellular enzyme
activity along the elevation gradient, which needs to be solved
urgently (Fan et al,, 2021).

At present, the research on the response of soil bacteria to
altitude gradient mainly focuses on large-scale areas and different
vegetation types (Yuan et al, 2014). However, the mechanism
behind the small-scale changes of soil bacterial community
structure in the same vegetation type, especially in the P. fruticosa
shrub, is limited. In view of that fact that the response of soil
microbial community structure to altitude gradient change has
become an important part of predict the response of ecosystem to
environmental change (Cui et al., 2019), It is necessary to study the
response mode and driving factors of soil microorganisms in shrub
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communities with the same dominant species to altitude gradient
changes, so as to improve people’s awareness. P. fruticosa shrub is
widely distributed on shady slopes, semi-shady slopes and diluvial
fans in mountainous areas at an altitude of 3 200~4 500 m, and is an
important shrub species in alpine ecosystem, which plays an
important role in maintaining the function of alpine meadow
ecosystem in Qinghai-Tibet Plateau (Li et al., 2010).

Therefore, in this study,P. fruticosa shrub investigated along
different altitudes in alpine shrub ecosystem was taken as the
research object, and Illumina MiSeq technique was used to
analyze the composition of soil bacterial community and
extracellular enzyme activities related to C, N and P acquisition
in the meadow of P.fruticosa shrub at altitude. By studying the
important correlation between soil bacterial community and
extracellular enzyme activities and soil variables, Characterizing
changes in soil bacterial communities and extracellular enzyme
activities along altitude, and identifying possible drivers of changes
in soil bacterial communities and extracellular enzyme activities
along altitude are of great significance in guiding ecological
restoration and regeneration of Source region of the Yellow River
in the eastern part of the Qinghai-Tibetan Plateau and realize the
sustainable management of shrub meadow. We assume that: (i) at
high altitude (3700 m), due to the combined influence of soil
variables, soil microbial biomass and extracellular enzyme
activities related to N and P cycles increased significantly, while
extracellular enzyme activities related to carbon cycle decreased
significantly; (ii) o diversity and composition of soil bacterial
communities will change with altitude. (iii) Soil factor (TC) will
be an important factor affecting the bacterial community, because it
can affect the soil microbial community by driving C and nutrients
into the soil microorganisms during the nutrient flow.

10.3389/fpls.2025.1539945

2 Materials and methods

2.1 Study area

Golog Tibetan Autonomous Prefecture in Qinghai Province is
located in the hinterland of the Qinghai-Tibet Plateau (96°54'~101°
51'E,32°31'~35°37'N), at the Source region of the Yellow River, with
an average elevation of over 4,200 m, with an annual average
temperature of-0.4°C~3.7°C, annual precipitation of 400-760 mm
and annual sunshine hours of 1,988. The vegetation type is alpine
meadow and the soil is mainly alpine shrub meadow soil (Xie L. L. et
al,, 2024). Common herbs are Cyperaceae, such asCarex capillifolia,
Carex alatauensis and Carex atrofusca Schkuhr; Gramineae includes
Elymus nutans Griseb, Poa pratensis L. and Deschampsia cespitosa;
Miscellaneous grasses include Bistorta vivipara, Pedicularis
kansuensis Maxim, and Anaphalis lactea Maxim.

2.2 Experimental design and sample
collection

In the study area, the experimental sites were selected according
to the following principles: (1) The slope and aspect were consistent,
and P. fruticosa was the dominant shrub species in the sample plot.
(2) In all the experimental sites, the growth status of P. fruticosa
shrub is similar; (3) The environmental conditions of each
experimental site are relatively consistent, that is, the topography
and soil types are basically the same; (4) Based on the above
principles, this study selected four experimental sites (3400, 3700,
4000, and 4300 m) with a span of 300 m. The detailed distribution is
shown in Figure 1.
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FIGURE 1

Distribution (A) and sampling method (B) of four experimental sites in Guoluo Tibetan Autonomous Prefecture.
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The sampling time of this study is August, 2023, the peak season
of forage growth, in the altitude range of 3400 -4300 m, taking 300
m as an altitude span to illustrate the difference of different altitude
gradients. In order to reduce the spatial heterogeneity, we set up 6
repeated plots in each experimental site, and the interval between
each plot is 10 m. Therefore, we have a total of 24 plots (4
experimental sites and 6 repeated plots). Field quadrat survey was
used to record the species composition and coverage of each plot,
and the latitude, longitude and altitude of each experimental point
were recorded by GPS. A total of 24 soil samples were collected in
this study (Bai et al., 2020).

At each elevation gradient, six 10mx10m shrub quadrats were
established. Within each quadrat, five sampling points were set up
using the five-point sampling method. After removing surface litter
and stones from each sampling point, soil samples were collected
from the 0-20 cm depth using a soil auger with a diameter of 3.5 cm.
The soil samples from the five sampling points within each quadrat
were thoroughly mixed to form a composite soil sample. Therefore,
a total of 24 soil samples were collected in this study (4 elevation
gradients x 6 replicates). Pass the soil sample through a 2 mm sieve
to remove roots and stones, and then the soil samples are
immediately sent back to the cooler in the laboratory. The soil
sample is divided into two parts, which are used to determine the
chemical properties and microorganisms existing in the soil. A
portion soil samples are naturally air-dried indoors to determine
soil physical and chemical properties and other indicators. The
other part was stored at -80°C for Qualcomm gene sequencing
(Zhou et al., 2024).

2.3 Analysis of soil nutrients and enzyme
activities

The contents of total nitrogen (TC) and total nitrogen (TN) in
soil were determined by C and N analyzer (Elementar, Langenselbold,
Germany);Total phosphorus (TP) in soil was determined by
molybdenum antimony colorimetric method and flow analyzer
(Proxima, AMS Alliance, Paris, France); pH measurement: Measure
the soil pH from the sample containing the ratio of soil (air-dried) to
water of 1:5; Soil moisture content (SM): measure the soil moisture
content after drying in an oven at 105°C for 48 h to constant weight;
BD: The density (BD) of soil samples was measured by circular knife
method and dried at 105°C for 24 hours. Soil microbial biomass
carbon (MBC) and microbial biomass nitrogen (MBN) were
determined by chloroform steaming-K,SO, leaching method, and
soil microbial biomass phosphorus (MBP) was determined by
chloroform steaming-NaHCOj3 leaching method (Zhao et al., 2023).

Six important enzymes in soil carbon, nitrogen and phosphorus
cycling were selected to determine their activities, among which f3-
D-glucosidase (BG), cellulose-degrading cellobiohydrolase (CBH)
and o-1,4-glucosidase (AG) were C-harvesting enzymes (Cenini
et al,, 2015). B-1,4-N-acetylglucosamine glucosidase (NAG) and
Leucine aminopeptidase (LAP) are common acquisition enzymes
(Salazar et al,, 2020). Alkaline phosphatase (ALP) is p-acquiring
enzyme (Delgado-Baquerizo et al., 2017). According to the method
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of Saiya-Cork et al. (2002) the activity of extracellular enzymes in
soil was determined: firstly, 1g of soil was weighed and put into a jar
filled with 125ml acetic acid buffer with pH 5.05 mmol/L, and
stirred for 5min with a magnetic stirrer to homogenize the soil and
solution; Then use a pipette to take 200pL of suspension. Add it to a
96-well plate, put it in the dark at 20°C for 4 hours, and then add
10uL 1 mol/L NaOH solution; Finally, the soil enzyme activity was
determined by a multifunctional enzyme marker (Synergy H, USA)
(Saiya-Cork et al., 2002).

2.4 16S amplicon sequencing method and
analysis

DNA was extracted from 0.5g of soil sample using the Hipure
Soil DNA Kit (Magen, Guangzhou, China). 2pL of the DNA sample
was taken and the OD value of the nucleic acid was measured using
a NanoDrop 2000 micro-spectrophotometer to detect the purity of
the nucleic acid. Agarose (1% agarose) gel electrophoresis was used
to detect the integrity of the nucleic acid sample and the degree of
protein contamination. 2uL of the DNA sample was taken and the
DNA concentration of each sample was detected using Qubit
fluorescence quantification (Qubit 3.0, Thermo Fisher, USA), and
the total DNA amount of the sample was calculated based on the
concentration quantification results. Specific primers with barcodes
were used to amplify the V4 region of the bacterial 16S rRNA, and
the primers used were 515 F: (GTGYCAGCMGCCGCGGTAA)
and 806 R (GGACTACNVGGGTWTCTAAT) (Zhao et al, 2023).

After obtaining the raw sequence (Raw reads), low-quality
sequences (reads) are filtered, followed by assembly and re-
filtering to obtain representative sequences of operational
taxonomic units (OTUs). Uparse software is used to cluster all
effective sequences of all samples, and sequences are clustered into
OTUs with 97% consistency, and the absolute abundance and
relative information of each OTU in each sample are calculated
(Lietal, 2016). Select all OTUs with an average abundance greater
than 1 in the comparative groups (i.e., high-abundance union
OTUs) for Venn analysis. During the construction of OTUs,
Uparse will select representative sequences (the Tag sequence
with the highest abundance in the OTUs). These representative
sequences are then used with the Naive Bayesian assignment
algorithm of the RDP Classifier to annotate species against the
Silva database (Edgar, 2013), with a confidence threshold set
between 0.8 and 1.0 (Xie L. L. et al., 2024). Based on the species
annotation information of OTUs, count the number of Tags
sequences for each sample at the phylum level. Based on the
counting statistics of OTUs, analyze the differences in soil
bacterial communities using the Bray-Curtis distance coefficient.
Use Faprotax to predict the ecological functions of soil bacteria.

2.5 Statistical analysis

Excel 2021 is used to sort out the data, and then Kolmogorov-
Smirnov is used to test the normality of the data to determine
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TABLE 1 Changes of soil nutrients and microbial biomass in different altitude gradients.

Altitude 3400 3700 4000 4300

TC 41.57 + 0.50¢ 85.28 + 1.20a 48.90 + 1.23b 37.52 + 0.96b
N 4.07 £ 0.70b 7.36 + 0.56a 451 £0.11b 3.77 £ 021b
TP 050 £ 0.04a 0.54 £ 0.06a 0.57 £ 0.07a 0.57 £ 0.052
pH 6.99 + 0.13a 6.76 + 0.17a 7.09 £ 0.07a 6.97 + 0.152
SM 0.64 £ 0.03a 0.65 + 0.04a 0.58 + 0.03a 059 + 0.04a
BD 0.82 £ 0.02a 0.34 £ 0.02¢ 0.73 + 0.06ab 0.65 + 0.05b
MBP 16.84 + 3.50a 21.50 + 4.91a 7.92 + 1.70b 18.19 £ 5.82a

MBC 1496.19 + 97.30¢ 2334.49 + 268.49% 1633.17 + 115.36bc 2111.22 + 130.02ab

MBN 108.43 + 10.88ab 162.16 + 29.19a 53.59 + 8.51b 121.08 + 31.27ab

3400, at an altitude of 3400 m; 3700, at an altitude of 3700 m; 4000, at an altitude of 4000 m,4300, and 4300 m.TC, TN, TP, pH, SM, BD, MBP, MBC and MBN soil total carbon, total nitrogen,
total phosphorus, pH, soil water content, soil bulk density, microbial biomass phosphorus; microbial biomass carbon; microbial biomass nitrogen respectively, Values are the means + SE (n=6).
Lowercase letters indicate significant differences among different altitude gradients (P < 0.05).

whether it meets the normality hypothesis of the subsequent
statistical test. SPSS 24 (IBM Corp., Armonk, NY, USA) was used
to analyze the diversity index (Simpson, Shannon, Pielou and
good_coverage index) by one-way analysis of variance (one-way
ANOVA; 0=0.05) to determine the significance between different
altitude gradients, and the least significant difference method (LSD)
is used for multiple comparisons. All data in the table are average
standard error. Principal Coordinate Analysis (PCoA) is a
dimensionality reduction analysis of microbial community based
on Unweight unifrac distance, which evaluates the degree of
explanation of bacterial community structure on each coordinate
axis by percentage. The relationship between bacterial colony
structure and soil physical and chemical properties was obtained
by redundancy analysis,RDA) of Canoco 5.0 software package, and
was plotted by Origin 2021. Linear discriminant analysis(LDA)
effect size (Lefse) method is used to determine the microbial groups
with significant differences among soil samples, and the unique
microbial groups are detected with LDA threshold of 2.5 and
significance less than 0.05, and all samples are compared (Zhang
and Laanbroek, 2020). One-way similarity analysis (ANOSIM)
based on unweighted UniFrac distance was used to test whether
the difference of B diversity between treatments was significantly
higher than that within groups. The relationship between o and -
diversity and bacterial community was discussed by Mantel test.
The correlation network diagram between microbial community at
the door level and soil physical and chemical properties was
constructed by Spearman correlation coefficient using vegan
software package. Then, a molecular ecological network including
all samples was created, and the abundance of OTU was normalized
by using the Hmisc package of R, and the Spearman correlation
among parameters was estimated. Then, the molecular network was
constructed by using the RMT model. Subsequently, Gephi 9.2 was
used to visualize the network and calculate the parameters,
including the number of nodes and edges, the average degree
(avgK), the average path length (GD) and the average clustering
coefficient (avgCC), to determine the interaction of bacteria
between different altitude gradients (Barberan et al., 2012).
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According to OTU classification information and FAPROTAX
database, the function of soil bacterial community was predicted.

3 Results

3.1 Soil properties, microbial biomass and
enzyme activities at different altitude
gradients

The results show that altitude has significant effects on soil total
carbon, total nitrogen, soil bulk density, microbial biomass carbon,
microbial biomass nitrogen and microbial biomass phosphorus
(Table 1). Soil total carbon and total nitrogen first increased and
then decreased with the elevation, all of which were significantly
higher than 3400, 4000 and 4300 m. With the elevation, the soil bulk
density increased first, then decreased, and then increased, and the
soil bulk density content reached the maximum at 3400 m. The
biomass carbon, nitrogen, and phosphorus of microorganisms first
increased, then decreased, and then increased again along the
altitude gradient. Specifically, within the range of 3400-4300m,
the content of all three reached their peak at 3700m (MBP: 21.50
+ 4.91mg/kg; MBC: 2334.49 + 268.49 mg/kg; MBN: 162.16 + 29.19
mg/kg), then significantly decreased at 4000m, and showed an
increasing trend again at 4300m. Compared to the microbial
biomass at 4000m, phosphorus, carbon, and nitrogen increased
by 10.27 mg/kg, 478.05 mg/kg, and 67.49 mg/kg, respectively,
at 4300m.

As shown in Figure 2, the single factor analysis of variance
shows that altitude significantly affects the enzyme activities related
to soil carbon, nitrogen and phosphorus cycling (Figure 2). With
the increase of altitude, the activities of enzymes related to soil
phosphorus cycle first increased and then decreased, reaching the
highest at 3700 m (Figure 2A). Altitude significantly affected the
enzyme activities related to soil carbon cycle (B-1,4-glucosidase, o
1,4-glucosidase and B-D-cellobiohydrolase). Among them, [-1,4-
glucosidase and o-1,4-glucosidase decreased with the elevation
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Changes of soil enzyme activities at different altitudes. alkaline phosphatase (A);BG, B-1,4-glucosidase (B); AG,a-1,4-glucosidase (C);CBH, B-D-
cellobiosidase (D); LAP, L-leucine aminopeptidase (E); NAG, B-1,4-N-acetylglucosaminidase (F). Different lowercase letters indicate significant

differences at the 0.05 confidence level.

(Figures 2B, C), while B-D-cellobiohydrolase increased first and
then decreased with the elevation (Figure 2D). L-leucine
aminopeptidase related to soil nitrogen cycle decreased with the
elevation, reaching the lowest at 4300 m (Figure 2E), while 3-1,4-N-
acetylglucosaminidase first increased and then decreased with the
elevation, reaching the highest at 4000 m (Figure 2F).

3.2 a diversity of bacterial communities
under different altitude gradients

As shown in Figure 3, there are significant differences in
bacterial o, diversity among different altitude gradients (Figure 3).
With the increase of altitude, the Shannon index first increased and
then decreased, and the Shannon index reached its peak at 4300 m
(9.52) (Figure 3A). However, the difference of good_coverage index
between different altitudes is not significant (Figure 3D). Simpson
index and Pielou index first decreased and then increased with the
elevation, and both reached the peak at 4300 m, which were 0.99
and 0.76 respectively (Figures 3B, C).

3.3 Composition and structure of bacterial
community under different altitude
gradients

At the phylum level (Figure 4A), the dominant groups of soil
bacteria in different altitude gradients are mainly Acidobacteriota,
Verrucomicrobiota, Proteobacteria and Planctomycetota, with
abundance of 25.69%, 19.24%, 12.36% and 6.85% respectively. The
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relative abundance of bacteria at different phylum levels varied
significantly with altitude gradient (P<0.05). With the elevation,
Acidobacteriota first increased and then decreased, reaching the
maximum relative abundance (30.27%) at 4000 m, while
Verrucomicrobiota showed a downward trend with the elevation
gradient, and the relative abundance was the lowest (16.77%) at 4000
m. Proteobacteria first increased and then decreased with the elevation,
with the highest relative abundance (13.57%) at 4000 m, while
Planctomycetota showed an upward trend with the elevation, with
the highest relative abundance (7.49%) at 4300m (Figure 4A). Venn
shows that there are 35 phylum between different altitude gradients,
and the total number of bacteria OTUs under different altitude
gradients is 8144 (Figure 4B).

A total of 2281 operational taxonomic units (OTUs) were
identified. The number of OTUs at different altitudes was 4820
(3400 m), 4345 (3700 m), 4612 (4000 m), and 4782 (4300 m),
respectively. Correspondingly, the number of unique bacterial
OTUs at these altitudes was 1147 (3400 m), 665 (3700 m), 677
(4000 m), and 871 (4300 m), respectively.

UPGMA method and principal coordinate analysis (PCoA) were
used to cluster soil bacterial communities (Figure 5A). UPGMA
classification can study the similarity between different altitude
gradients, and UPGMA identified four groups, namely 3700, 4000,
4300 and 3400 m, in which the community structure at 3700 and 4000
m is similar, while the community structure at 3400 m is different from
other altitudes (Figure 5B). In addition, PcoA, ANOSIM and Adonis
analysis showed that there were significant differences in bacterial
communities among different altitude gradients (Adonis P=0.001;
Anosim P=0.001), the first and second principal components explain
29.89% and 16.19% of the variation, respectively.
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FIGURE 3

Diversity and richness index of bacteria in different altitude gradients. Shannon index (A), Simpson index (B), Pielou index (C), and good coverage
index (D). Different lowercase letters indicate significant differences at the 0.05 confidence level.
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Arithmetic average unweighted paired grouping (UPGMA) clustering (A), principal coordinate analysis of bacterial community diversity at different

altitude gradients (B).

3.4 Indicator microbial groups of bacterial
communities under different altitude

gradients

LefSe analysis showed that altitude significantly changed the
bacterial community. Specifically, at the level of phylum, class and
genus, some bacterial groups are significantly enriched at different
altitude gradients (Figure 6). The number of indicator bacteria at
each altitude is as follows: 3400 (22), 3700 (9), 4000 (5) and 4300

(12) for 22 kinds of indicator bacteria determined by LDA>2.0.
Most bacterial groups are mainly concentrated at an altitude of
3400 m. Specifically, at the phylum level, Crenarchaeota,
Patescibacteria, Desulfobacterota and Gemmatimonadota are
indicator bacteria at an altitude of 3400 m. Verrucomicrobiota
and Methylomirabilota are indicator bacteria at an altitude of
3700 m. Acidobacteriota is an indicator bacterium at an altitude of
4000 m. Chloroflexi is an indicator bacterium at an altitude of
4300 m.
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FIGURE 6

The phylogenetic tree diagram shows significant differences between bacterial enrichment groups, the LDA score diagram shows biomarkers at
different altitudes, the groups with significant differences in abundance at different altitudes are represented by colored dots, and the phylogenetic
groups from phylum to genus are represented by phylogenetic tree circles, only the LDA > 2.
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aerobic_chemoheterotrophy, (I) chemoheterotrophy, (J) nitrate reduction, (K) nitrification, (L) ureolysis.

3.5 Cha nges of bacterial functional groups With the increase of altitude, functional groups related to nitrogen

under different altitude gradients cycle, such as fumarate_respire, sulfate_respiratic and xylanolysis,
showed a downward trend (Figures 7C, E, F), while celluloiysis first

Based on FAPROTAX database, the soil bacterial community = decreased and then increased (Figure 7A), and chitinolysis first
was functionally labeled, and 56 functional groups were obtained.  increased and then decreased (Figure 7B). However, with the
The results show that the altitude gradient significantly affects the  increase of altitude, mthylotrophy first decreases, then increases
functional groups related to carbon and nitrogen cycle (Figure 7).  and then decreases, and the lowest is at 3700m (Figure 7D).
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Functional groups related to nitrogen cycle, tend to decrease with 3.6 The re[ationship between bacteria, soil,
the increase of altitude (Figures 7G, J, K). However, the microbial biomass and enzyme activity
aerobic_chemoheterotrophy and Chemoheterotopy showed an

upward trend with the elevation ladder (Figures 7H, I). Ureolysis Spearman correlation analysis showed that there was a
first increases and then decreases with altitude, reaching the highest ~ significant relationship between dominant bacteria and soil
at 3700 m (Figure 7L). factors (Figure 8A). NAG, ALP, TC and TN were negatively

TABLE 2 Characteristics of influencing factors on horizontal changes of soil bacteria phylum.

Soil physicochemical properties Importance ranking Explains (%) Contribution Pseudo-F
TC 1 223 29.1 63 0.002
CBH 2 113 147 3.6 0.004
AG 3 114 14.8 4.1 0.002
BD 4 6.6 8.6 26 0.054
BG 5 5.8 7.5 2.4 0.046
PH 6 4.8 62 22 0.1
SM 7 2.9 3.8 13 0226
LAP 8 2.7 35 12 0312
MBC 9 17 22 0.8 048
MBP 10 1.6 20 0.7 0.56
NAG 11 14 1.8 0.6 0.624
TP 12 0.9 11 0.4 0.826
TN 13 0.9 12 03 0.854
MBN 14 1.9 25 0.7 0.556
ALP 15 0.8 1.0 03 0.866
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TABLE 3 Characteristics of influencing factors on changes of soil bacterial functional groups.

Soil physicochemical properties = Importance ranking Explains (%) Contribution Pseudo-F
AG 1 18.6 26.0 5.0 0.002
TN 2 8.8 124 26 0.040
BG 3 7.0 9.8 21 0.048
MBC 4 7.0 9.8 23 0.028
MBN 5 6.6 9.2 23 0.042
BD 6 3.6 5.1 13 0.256
TC 7 3.4 47 1.2 0320
TP 8 3.0 42 11 0350
ALP 9 29 41 11 0390
CBH 10 24 3.4 0.8 0.484
LAP 11 1.9 26 0.6 0.684
SM 12 2.1 29 0.7 0.616
PH 13 15 2.0 05 0.800
MBP 14 15 2.1 0.4 0.804
NAG 15 1.2 1.7 03 0.868

correlated with Chloroflexi. TC and TN were negatively correlated
with Actinobacteriota and Gemmatimonadota. ALP,TC, TN and
Methylomirabilota is a very significant positive correlation. There
is a significant positive correlation between AG and Crenarchaeota
(Figure 8A). Mantel test was used to evaluate the o diversity and B
diversity of bacteria related to soil physical and chemical properties,
microbial biomass and enzyme activity (Figure 8B). Mantel test
revealed that the observed o diversity of bacteria was positively
correlated with TC, TN, SM, BD and ALP. 3 diversity was positively
correlated with BD, BG, NAG, LAP, CBH and AG (Figure 8B).
RDA was used to analyze the relationship between soil bacterial
communities and functional groups and soil nutrients and enzyme
activities (Figure 9). In the first two axes, 32.79% and 15.61% were
explained respectively (Figure 9A). The results showed that the main
driving factors of soil bacterial community were TC, CBH, AG, BD
and BG. The arrow of TC is the longest, which indicates that TC has
the greatest influence on the overall distribution of bacterial
communities in different altitude gradients, followed by CBH, AG,
BD and BG. As shown in Figure 8A, the arrow of TC is the longest,
which indicates that TC has the greatest influence on the overall
distribution of bacterial communities in different altitude gradients,
followed by CBH, AG, BD and BG. The results of Monte Carlo
experiments show that the important values of soil physical and
chemical properties decrease in the order of TC>CBH>Ag>BD>
BG>pH>SM>LAP>MBC>MBP>NAG>TP>TN>MBN>ALP
(Table 2). In addition, TC, CBH and AG are significantly different at
the level of 0.01, while BD and BG are significantly different at the level
of 0.05, and the contribution rates of these five factors are 22.3%,
11.3%, 11.4%, 6.6% and 5.8% respectively (Table 2). These results

Frontiers in Plant Science

11

show that TC, CBH, AG, BD and BG are the main driving factors
affecting the bacterial community structure at different altitude
gradients. RDA was used to analyze the relationship between soil
bacterial functional groups and soil nutrients and enzyme activities
(Figure 8). In the first two axes, 22.33% and 22.16% were explained
respectively (Figure 9B). The main factors affecting bacterial functional
groups are AG, TN, BG, MBC and MBN. The difference of AG is
significant at the level of 0.01, while that of TN, BG, MBC and MBN is
significant at the level of 0.05. The contribution rates of these five
factors are 18.60%, 8.8%, 7.0%, 7.0% and 6.6% respectively (Table 3).

3.7 Co-occurrence network structure of
different altitude gradients

Cluster analysis divides different altitude gradients into three
groups (Figure 3), and the co-occurrence network reveals their
significant differences (Figure 6). The complex relationship between
nodes is described by calculating the topological properties of the
network. Generally speaking, the number of 4300 m network nodes
(191) is lower than 3400 (195), 3700 (198) and 4000 m (199)
(Figure 6A), while the number of links is higher than 3700 (920) and
4000 m (1132) (Figure 6B). In addition, the altitude of 4300 m has a
higher average degree and modularity (Figures 6G, H), indicating the
cluster topology and modular structure. The network complexity at
4300 m is higher, indicating that the relationship between species is
more complicated and the network stability is higher. On the contrary,
the 3400 m network is more susceptible to environmental interference,
with a modularity index of 0.53 (Figure 6H).
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4 Discussion

4.1 Changes of soil physical and chemical
properties, microbial biomass and
extracellular enzymes in different altitude
gradients

Altitude is one of the important topographical factors. Due to
different altitudes, changes in climate characteristics and soil types
all lead to differences in soil nutrients (Gilgen and Buchmann,
2009).Therefore, soil is affected by various ecological factors, and
complex biological and abiotic factors closely interact to form a soil
ecosystem (Denef et al., 2009). In this study, total carbon and total
nitrogen first increased and then decreased with the elevation,
which is consistent with the research conclusion of (Zhou, 2019).
Altitude, as a natural geographical variation, is one of the important
factors affecting the distribution of soil carbon and nitrogen (Xie L.
L. et al, 2024). Due to altitude, continuous changes in heat,
temperature, precipitation, and sunlight occur within the region
(Bin et al,, 2022). This is consistent with the findings of Gao et al.
(2021). The total carbon (TC) and total nitrogen (TN) in the study
area appeared at 3700 meters rather than 4300 meters. The main
reason is that as the altitude rises to 3700m, human interference
(grazing activities) gradually decreases compared to lower altitudes
(3400m), soil moisture content gradually increases, and the content
of plant litter and organic matter increases, which can provide more
nutrients for the growth of soil microorganisms, promote the
reproduction and activity of soil microorganisms, accelerate the
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utilization and mineralization rate of organic matter by soil
microorganisms, thereby improving the physical and chemical
properties of the soil (Pingree and Deluca, 2018). However, as the
altitude continues to rise, wind erosion gradually worsens, the soil
layer becomes thinner, the hydrothermal conditions deteriorate,
and the shelter conditions decrease, causing significant changes in
soil nutrients (Deng et al., 2019). Therefore, the total carbon and
total nitrogen content of soil at different altitude gradients shows
significant heterogeneity. Soil total phosphorus increased with the
elevation (Table 1). A main driving factor seems to be that the
degree of soil weathering decreases with the decrease of altitude,
because soil phosphorus mainly comes from weathered soil
(Helfenstein et al., 2018). Soil microbial biomass first increased
and then decreased and increased with the elevation, and the
microbial biomass was the highest at 3700 m above sea level
(Table 1). The reason may be that the surface soil temperature at
3700 m above sea level is high, which is beneficial to plant growth
and there are more exudates from vegetation roots, Higher soil
temperature promoted microbial proliferation and increased
microbial biomass (Uselman et al., 2000). It is worth noting that
at 4300 m, microbial biomass phosphorus, microbial biomass
carbon and microbial biomass nitrogen are higher than 4000 m,
indicating that microbial biomass is affected by many factors (Ren
et al,, 2021). With the elevation, its climatic conditions will change
(Xu et al,, 2013). At the same time, soil microorganisms have a
certain physiological adaptability to climate conditions. Although
altitude increases will cause temperature drops, microorganisms
can maintain balance by reducing metabolic activity (Li et al., 2014).
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Secondly, the low temperatures in high-altitude areas may increase
physiological stress by altering osmotic pressure and reducing the
ability to obtain effective nutrients Sun et al., 2025).

In this low-temperature environment, the decomposition of soil
organic matter is slow, while the transformation of microbial
biomass remains high (Wang B. R. et al, 2021; Wang R. et al,
2021). Soil extracellular enzymes can reveal the cycling law of
nutrients such as C, N and P in soil, and reflect the intensity and
direction of various biochemical processes (Kotroczo et al., 2014). At
present, the most widely studied soil extracellular enzymes are BG,
CBH,NAG,ALP and LAP, because they can be used as indicators of
C demand, N demand and P demand respectively (Schimel and
Weintraub, 2003). Specifically, BG hydrolyzes cellobiose into glucose
during the carbon cycle, CBH hydrolyzes cellulose to produce
sucrose during the carbon cycle, NAG hydrolyzes chitin during
the carbon-nitrogen cycle, LAP hydrolyzes protein peptide during
the nitrogen cycle, releasing amino acids from the N-terminal, and
ALP hydrolyzes phosphate from phosphate sugars and
phospholipids during the phosphorus cycle (Sinsabaugh et al,
2009). Previous studies have shown that altitude difference causes
the change of micro-habitat, which has a gradient effect on soil
physical and chemical properties, resulting in different soil enzyme
activities (He et al., 2009). Studies such as Zhen et al. (2019) showed
that soil enzyme activities showed significant differences between
different altitudes. Our study found that the activities of ALP, BG,
AG and LAP decreased significantly with the elevation, and our
results were inconsistent with those recently reported, which
reported that the soil enzyme activities in southern Patagonia did
not respond significantly to the elevation gradient (Truong et al,
2019). This difference may be attributed to the different sampling
points used in the two studies. In our study, the sampling points
covered 3400-4300 m, while in the other study, the sampling points
only covered 130-640 m. Different vegetation types in different
regions respond differently to soil microbial communities and
enzyme activities. In addition, In our research, we found that ALP
is related to soil properties, especially to total carbon and total
nitrogen content (S2). Our results are consistent with previous
research reports that soil enzyme activities are strongly influenced
by soil properties, especially total carbon (Truong et al., 2019). These
results further confirmed that the extracellular enzyme activities
associated with N and P cycling increased significantly with altitude,
while those associated with C cycle decreased significantly with
altitude, which supported our first hypothesis. To sum up, there is no
unified conclusion on the influence of altitude gradient on soil
enzyme activity, which is mainly due to the similarities and
differences of regional and soil substrate conditions in the
response of soil enzyme activity to microclimate change. When
analyzing soil microbial activity, soil extracellular enzyme activity is
also the most important analysis item. Therefore, the study on the
dynamic relationship between soil extracellular enzyme activity and
soil characteristics is helpful to understand the influence of
microorganisms on ecosystem processes such as litter
decomposition, soil carbon cycle and nutrient cycle.
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4.2 Changes of bacterial community
composition and structure at different
altitude gradients

Soil microorganisms are very sensitive to environmental changes,
and macro variables such as altitude gradient cause changes in micro
factors such as soil properties, temperature and moisture, thus affecting
soil microbial community structure to varying degrees (Shen et al,
2013). In this study, UPGMA and principal coordinate (PCA) analysis
found that bacterial communities at different altitudes can be well
distinguished, and the characteristics of soil bacterial communities
changed significantly with the change of altitude (Figure 5). The
bacterial communities at 3400 m above sea level are obviously
different from those at other altitudes. In addition, the bacterial
communities at 3700 m, 4000 m and 4300 m above sea level are
similar in composition and structure (Wang B. R. et al,, 2021; Wang R.
et al,, 2021). These results show that different altitude gradients can lead
to soil bacteria with different evolutionary characteristics. Specifically, in
this study, Acidobacteria is the dominant bacteria, followed by
Verrucomicrobiota and Proteobacteria. This is similar to Cui et al.
(2019) finding that the dominant bacteria phylum is Actinomycetes,
Bacteroides and Blastomycetes in the alpine ecosystem at an altitude of
2800-3500 m on the Qinghai-Tibet Plateau. Just as we found in our
study that the relative abundance of various groups of microbial
communities changed significantly with the elevation (Figure 4A), the
co-occurrence model also supported our findings (Figure 10).
Acidobacteria, Verrucomicrobiota and Proteobacteria are always the
dominant populations of soil bacterial community at different altitudes,
which have made great contributions to the variation of community
composition, but the highest relative abundance of the three species
appears at different altitudes. This result is similar to the bacterial
diversity of Xie L. L. et al. (2024) in the desert habitat with an average
elevation of 2800 m on the Qinghai-Tibet Plateau, in which
Proteobacteria, Actinomycetes, Bacteroides and Chlorocurvata are the
dominant groups, indicating that there are similar bacterial
compositions in soils in different habitats, and at the same time, their
respective dominant groups are similar.This is mainly related to the
wide niche of Acidobacteria, Verrucomicrobiota and Proteobacteria,
and their strong adaptability to different environments (Gao et al,
2019). In addition, the difference in adaptability of flora to
microenvironment is the reason why the maximum relative
abundance of the three major fungi appears at different altitudes.
Studies have shown that Acidobacteria can improve soil nutrient
content by degrading complex lignin and cellulose (Pankratov et al,
2011). Soil microbial communities respond to abiotic and biotic
conditions. In mountain plant communities with vertical gradients,
altitude can create unique microenvironments, which have unique
microbial responses (Hernandez-Caceres et al,, 2022). This shows that
the distribution of soil bacteria is not only affected by altitude, but also
by soil heterogeneity, which shows different research results. On the one
hand, soil bacterial species have high spatial heterogeneity and are very
sensitive to climate, soil and vegetation conditions, which leads to
significant differences in dominant bacterial species in different research
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areas (Cao et al,, 2022). This also shows the relative abundance of soil
bacterial species in the high altitude area of Qinghai-Tibet Plateau, and
the study of soil microorganisms still has great exploration space in this
area. On the other hand, due to the existence of altitude gradient, the
natural, soil and biological environment suddenly changed in a short
geographical distance, and these gradients created a variety of bacterial
ecological habitats, which led to great differences in soil bacteria species
in the Pfruticosa shrub meadow under different altitude gradients on the
Qinghai-Tibet Plateau (Hernandez-Caceres et al., 2022).

The o diversity of soil bacterial community directly reflects the
change of soil bacterial community quantity and richness (Ding
et al,, 2023). Many studies show that o diversity decreases with the
elevation (Yao et al., 2017). On the contrary, this study found that
the diversity of soil bacteria in the study area was different at
different altitude gradients (Figure 3), and the differences between
different altitude gradients were obvious. At an altitude of 3400 m,
there is the largest number of species unique to soil bacteria
(Figure 4B). Studies have shown that specific soil microbial
communities exist at specific altitudes (Liu et al., 2013). Shannon
index and Pielou index of soil bacteria decreased first and then
increased along the elevation gradient, and the maximum and
minimum values appeared at the altitude of 3400 m and 3700 m
respectively (Figures 3A,C). The reason may be related to the
temperature and precipitation on the altitude gradient in
Qinghai-Tibet Plateau (Gong et al., 2022). Therefore, the number
and species of soil microorganisms decrease at the 3700 m. At the
3400 m, the bacterial diversity may increase slightly due to the
increase of soil water content. In addition, the changes of soil
Simpson index and good_coverage index along the elevation
gradient are not obvious in this study (Figures 3B, D), which is
consistent with the research results of Li et al. (2022) indicating that
bacterial diversity may be difficult to form a unified pattern along
the elevation gradient. These results further confirm our
second hypothesis.

LEfSe analysis provides a new perspective for studying the
response of soil bacteria to soil niche changeIn the current
research, most bacterial groups are obviously enriched at an
altitude of 3400 m, indicating that these bacteria have a stable
niche at an altitude of 3400 m. However, at an altitude of 3700 m,
only Verrucomicrobiae is abundant. It is generally believed that in a
long-term stable community (that is, a community with little
interference), Some highly competitive species will reproduce,
making a few species dominant in the community (Dolezal
et al., 2013).

The change of soil microbial community function is similar to the
change of community structure, and different altitude gradients form
different microbial functional groups. Different functional groups are
often filtered into different environments, and these environments are
the characteristics of biochemical cycles in these areas (Crowther et al.,
2019). This study showed that at different altitudes, the bacterial
functional group related to Nitrogen cycle changed obviously.
Aerobics_ammonia_oxidation, nitrate _reduction and nitrification
decrease with altitude, while aerobic_chemoheteotrophy,
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chemotetropy and ureolysis increase obviously with altitude.
Aerobic_ammonia_oxidation and nitrification (Figures 7G, K) have
the most obvious changes, which are much higher than other
functions. This phenomenon and characteristics prove the
protection strategy of limiting element nitrogen in different altitude
gradients (Xi et al., 2017). It shows that the effect of nitrate_reduction
is more intense at the altitude of 3400 m, and these different nitrogen-
reducing bacteria groups may be related to the mechanism of soil
nitrogen stability. For example, certain microbial communities (such
as Bacillus, Pseudomonas and Bacillus subtilis) limit nitrogen loss by
reducing nitrate to a more stable form (Kuypers et al,, 2018). It is
attributed to the fact that shrubs have nitrogen fixation characteristics
(Hao et al., 2024). Furthermore, because Proteobacteria has a variety
of species involved in nitrogen fixation, it can form a symbiotic
relationship and fix nitrogen as a nitrogen compound that plants
can use (Creamer et al, 2016). Similar to the change of microbial
community structure, microbial functional groups at different
altitudes are also different (Figure 7). The Carbon cycle of bacteria
related to carbon cycle, such as cellulolysis, fumarate_respire,
methylotrophy, sulfate_respiratic and xylanolysis, varies significantly
with altitude, and their contents are all the highest at 3400 m. The
relative abundance of methylotrophy is the largest, which may be due
to the high vegetation coverage at 3400 m above sea level, and the great
change of litter input will promote aerobic environment, thus
accelerating the oxidation of CH4 (Qu et al., 2020).

4.3 Correlation between bacterial
community and soil properties

The changes of soil microorganisms and functional groups in
different altitude gradients of P. fruticosa shrub meadow are closely
related to soil environmental factors (Figure 9). Spearman
correlation shows that TC and TN are positively correlated with
Methylomirabilota and Verrucomicrobilota (Figure 9A). TC is the
most important factor affecting bacterial community and diversity
(Figure 8B; Table 1). This is consistent with the research results of
Jiang et al. (2021), which showed that microbial communities were
significantly correlated with soil nutrients. The research shows that
soil carbon accumulation affects the structure of soil microbial
community under vegetation by affecting the diversity, productivity
and stability of plant community, which explains why the change of
TC will significantly affect the structure of bacterial community
(Chen et al., 2021). This supports our second hypothesis. Secondly,
the soil bulk density is the second environmental factor that affects
the bacterial community, which may be because the rhizosphere soil
of P. fruticosa shrub will produce the “ Fertility islands effect”, which
makes the soil nutrient content enriched around its roots (Michalet
et al.,, 2016). However, most microorganisms, animals and plants in
the soil will draw enough nutrients for their own growth, so they
concentrate on grabbing nutrients near the rhizosphere of the P.
fruticosa shrub, which makes the soil nutrient content in short
supply. However, due to the increase in altitude, the number of
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plants and animals decreases, and the exposed areas are relatively
extensive, which makes the number of animals and plants in this
area decrease obviously, and the number of soil microorganisms
also decreases. Therefore, the dead bodies of litter and dead animals
and plants cannot be effectively utilized, and the soil organic matter
is low. It further aggravates the degree of soil hardening, resulting in
high soil bulk density, poor water stability and serious soil water
loss. The local micro-habitat situation is not conducive to the
reproduction and metabolism of soil microorganisms, so soil bulk
density has gradually become the main environmental limiting
factor to limit bacteria (Yang et al., 2013). Soil extracellular
enzymes are closely related to a series of biological and abiotic
factors (Ivashchenko et al., 2021). In our study, TC and TN were
positively correlated with ALP (S2), and CBH and AG were
positively correlated with Chloroflexi, Planctomycetota and
Crenarchaeota (Figure 8A). This confirms the view that soil total
nutrients play a key role in the altitude model of regulating
extracellular enzyme activity (Cao et al,, 2021).

The main environmental limiting factor in bacterial functional
groups is total nitrogen (Figures 9B, Table 2). This may be because
different microbial functional groups perform different functions at
different stages of the material cycle, and they work together to
promote the rapid and orderly flow of matter and energy in the
ecosystem and ensure the normal succession of grassland ecosystem
(Gordon et al,, 2008). The change of environmental factors has a
direct impact on microbial functional groups. Nitrogen-fixing
bacteria transform N, into NH4" for plants to synthesize organic
nitrogen and supplement nitrogen in grassland soil; Ammoniated
bacteria nitrated NH4" into NO37; Nitrifying bacteria convert NO3
into N, to complete the nitrogen cycle, which is related to the
enzyme activity, so soil enzyme activity is also the main factor
affecting microbial functional groups (Wang B. R. et al., 2021; Wang
R.etal, 2021). Nevertheless, due to the large reduction of plants and
microorganisms and the intensification of soil erosion caused by
bare plots, the only soil nutrients are still not enough to maintain the
normal growth of plants and microorganisms, and the competition
among species is intensified (Ahmed et al., 2019). Soil nitrogen
content is an indispensable environmental factor to maintain the
normal flow of microbial functional groups, so soil total nitrogen is
the main environmental factor to limit microbial functional groups
(Yang et al,, 2008). Secondly, the influencing factors are microbial
biomass carbon, nitrogen and extracellular enzymes (AG and BG)
related to carbon cycle. Microbial biomass carbon is an important
indicator reflecting the size of microbial community, and
extracellular enzymes are mainly produced by microorganisms,
and the size of microbial biomass determines the potential of
enzyme production (De Vries et al., 2018). Soil microbial biomass
carbon is an important part of active organic carbon pool. Because of
its fast turnover rate and easy decomposition, it is also a great supply
source of soil effective nutrient pool (Wang B. R. et al., 2021; Wang
R. et al, 2021). These fast-moving carbon sources can continuously
provide energy for soil microorganisms and keep them relatively
high in activity, so as to drive the biogeochemical cycle of nutrients
such as carbon and nitrogen, and then affect microbial functional
groups (Zhou et al,, 2022).
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4.4 Co-occurrence patterns of bacteria
under different altitude gradients

Species form a complex network system by secreting metabolites
and interacting with other microorganisms (Peura et al,, 2015). The co-
occurrence network among microorganisms reflects the function and
stability of biological communities (Ma et al, 2020). It provides a
preliminary means to explore the organization and dynamics of
microbial interaction and niche (Banerjee et al, 2019). It is widely
used to estimate co-occurrence patterns in complex microbial
relationships (Deng et al, 2012). It has been pointed out that the
positive correlation connection in the co-occurrence network represents
the mutual synergy between microorganisms, while the negative
correlation connection represents the potential antagonism between
microorganisms (Blanchet et al., 2020). In this study, the connection of
soil bacterial co-occurrence network is mainly positive correlation
(bacterial network: 97.26%-99.3% positive correlation link), and the
complexity of soil microbial network is the highest at 4300 m, followed
by 3400 and 4000 m, and the complexity of 3700 m is the lowest
(Figure 10). These differences are reflected in factors such as average
degree and modularity index. Our research is consistent with Duan et al.
(2021) research on microbial co-occurrence network in Qinghai-Tibet
Plateau. This may indicate that when microbial communities are
stressed by cold and harsh environment (such as strong solar
radiation, low soil temperature and low soil oxygen content), soil
microbial communities can maintain their ability to resist external
interference through mutual cooperation (Hernandez-Caceres et al,
2022). The complexity of the co-occurrence network tends to increase
with the altitude, which indicates that the scale of the microbial co-
occurrence network is large in high altitude areas, and the interaction
between microorganisms has been enhanced. Similar conclusions have
been drawn in the previous research on the bacterial co-occurrence
network in Gongga Mountain (Zhu et al., 2020). The possible reason is
that the microbial community has been stressed by the cold and harsh
environment (Hernandez-Caceres et al., 2022). This shows that the soil
microbial community in high altitude areas is under greater
environmental stress than that in low altitude areas, and the co-
occurrence network structure of soil microorganisms in high altitude
areas will become more complicated. Therefore, more diverse and richer
microbial groups create greater possibilities, that is, there may be more
potential taxa in the environment to participate in potential interactions,
thus leading to more complex association networks.

5 Conclusion

This study explored the distribution patterns and driving factors
of soil bacterial community structure, diversity, and enzyme activity
along an altitude gradient in P. fruticosa shrub meadows. It was found
that the soil bacteria in P. fruticosa shrubs have different
adaptabilities, which are closely related to soil nutrients and
enzyme activity. This study provides a new perspective for further
understanding the distribution pattern and driving forces of soil
bacterial communities in P. fruticosa shrubs along the altitude
gradient, enhancing our understanding of microbial ecology in
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alpine shrub environments. We observed significant differences in
soil bacterial a-diversity and community composition at different
altitudinal gradients. The altitudinal gradient influences soil bacterial
communities by correlating with soil properties, microbial biomass,
and enzyme activity. Soil properties (TC and BD) and enzyme
activities (CBH, AG, and BG) are the main factors affecting
changes in soil bacterial communities, while AG, TN, BG, MBC,
and MBN have significant impacts on bacterial functional groups.
We also found that TC, TN, SM, MBC, MBN, and MBP were
highest at 3700 m altitude, while ALP was the most active. Moreover,
the dominant bacterial phylum shifted from Acidobacteria (at 3400 m)
to Verrucomicrobia (at 3700 m). This shows that this area has special
ecological adaptability and should be protected first to avoid
interference. It is recommended that protective land use measures
(such as restricting overgrazing and development) be implemented in
this area, and a monitoring system for P. fruticosa shrub vegetation be
established to keep track of its growth and water conservation status in
real time. Based on the monitoring data, protection and management
measures should be adjusted in a timely manner to maintain its unique
microbial community and ecological functions, thereby ensuring the
long-term stability and sustainable development of the ecosystem.
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