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fujikuroi infection
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Xiaoli Chang1* and Wenyu Yang1

1College of Agronomy and Sichuan Engineering Research Center for Crop Strip Intercropping System,
Sichuan Agricultural University, Chengdu, Sichuan, China, 2Institute of Economic Crops, Guangxi
Academy of Agricultural Science, Nanning, Guangxi, China
Background: The family of membrane-bound fatty acid desaturase (FAD) genes

play a vital role in plant growth, development, and stress responses. The seed-

borne pathogen Fusarium fujikuroi causes seed decay disease during pre-harvest

and post-harvest stages of soybean, leading to a significant reduction in yield and

quality. Therefore, it is very meaningful to characterize the diversity and function

of the GmFAD gene family in soybean and to elucidate their roles in seed

resistance to F. fujikuroi.

Results: In this study, 30 full-length GmFAD genes were identified from the

soybean genome. A range of analysis was conducted to characterize gene and

protein structures, chromosomal locations, conserved motif and conserved

structural domains, and results showed that GmFAD genes were clustered into

seven subfamilies (FAB2, ADS, SLD, DES, FAD6, FAD2, FAD3/7/8), which is also

supported by phylogenetic analysis. The diversity and expansion of the GmFAD

gene family were mainly caused by segmental duplication, and their encoding

proteins were observed to locate in chloroplast or endoplasmic reticulum. The

promoters ofGmFAD genes contained a set of cis-acting elements in response

to plant hormone, defense and stress, light, and plant growth and

development, indicating these genes have the complex expression

regulation and diverse functions. Gene ontology (GO) and KEGG enrichment

pathway analyses showed that GmFAD genes were closely related to the

biosynthesis and metabolism of lipid and unsaturated fatty acids (UFAs). In

addition, the expression of GmFADs was significantly changed in soybean

seeds when challenged by the seed decay pathogen F. fujikuroi. Specifically,

GmFAB2.1/2.2, GmFAD3.3/3-2B/7-1//8-2, and GmFAD2.3/2.5 genes displayed

distinct temporal expression patterns in the resistant ND25 and susceptible

CX12, highlighting their potential roles in soybean resistance against F.

fujikuroi infection.
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Conclusion: Our findings contribute to a deeper understanding of the GmFAD

gene family and their intricate roles in soybean resistance against the seed-borne

pathogen F. fujikuroi. Moreover, several distinct genes provide valuable

candidates for further application in soybean resistant breeding.
KEYWORDS

Glycine max, fatty acid desaturases, phylogenetic analysis, gene expression, Fusarium
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Background

Unsaturated fatty acids (UFAs) have been increasingly

recognized as significant components in the plant defense against a

range of biotic and abiotic stresses (He et al., 2018). Fatty acid

desaturases (FADs) are key enzymes in the biosynthesis of UFAs,

catalyzing the insertion of double bonds at specific sites in fatty acid

chains, thereby enhancing the fluidity and structural integrity of cell

membranes (Dong et al., 2016; Feng et al., 2017). Generally, plant

FADs can be categorized into soluble desaturases and membrane-

bound desaturases based on their solubility (Nayeri and Yarizade,

2014). Among them, stearoyl-ACP desaturase, namely FAB2, known

as the typical soluble FAD located in the plastid matrix, is responsible

for introducing a double bond at the D9 position, and facilitating the

conversion of stearic acid to oleic acid (Ha et al., 2010; Xue et al.,

2018). Membrane-bound FADs are further divided into four distinct

subfamilies based on their functions, including omega-6 desaturases

(w6, FAD2 and FAD6), omega-3 desaturases (w3, FAD3, FAD7 and
FAD8), FAD4, and DES/ADS/SLD (Hashimoto et al., 2008; Lou et al.,

2014; Saini and Kumar, 2019). Generally, FADs in the same

subfamily have the highly conserved amino acid sequences

(Hashimoto et al., 2008). To date, FAD genes have been

characterized in many plants, such as soybean (Glycine max) (Chi

et al., 2011), tobacco (Nicotiana tabacum) (Sayanova et al., 1997),

banana (Cheng et al., 2022), corn (Zea mays) (Mikkilineni and

Rocheford, 2003), rice (Oryza sativa) (Wang et al., 2006), etc.

Numerous studies have demonstrated that FADs play crucial

roles in plant stress tolerance, such as high and low temperatures,

drought, salinity, and heavy metal exposure (Xue et al., 2018). The

MaFADs expression in banana are significantly activated in

response to high and low temperature (Cheng et al., 2022).

Similarly, a significant up-regulation of CsSLD3 and CsSLD4 is

also observed under cold stress in Camellia sinensis (Jin et al., 2024).

Overexpression of antisense AtFAD2 results in a decrease tolerance

to drought and salt stresses in Arabidopsis (Im et al., 2002), when

the transcript of the soybean homologous GmFAD2-2C was

accumulated to increase in pods grown in cool conditions rather

than those in warmer conditions (Li et al., 2007). AtFAD3 or

AtFAD8 expressed in transgenic tobacco enhanced the resistance

to drought and osmotic stresses (Zhang et al., 2005). On the other

hand, since fatty acids as the main source of organic carbon can be

delivered to the fungi by the host plants, thus FADs as pivotal agents
02
in plant lipid metabolism also modulate the plant-pathogen

interaction (Jiang et al., 2017; Luginbuehl et al., 2017). Researches

have demonstrated that triene fatty acids originating from

chloroplasts are involved in host resistance at the infection initial

stage of pathogen (Chandra-Shekara et al., 2007). Transient

silencing of the FAD2 homologous gene in wheat (Triticum

Aestivum) increased its susceptibility to powdery mildew (Jiang

et al., 2009). Conversely, the inhibition of OsFAD7 and OsFAD8

have been found to enhance the transgenic rice resistance against

Magnaporthe grisea (Yara et al., 2007). In addition, the SSI2 gene

encoding a stearoyl-acyl carrier protein-desaturase (SACPD) also

participates in the pathogen resistance, and knockdown of OsSSI2

markedly increased accumulation of endogenous free salicylic acid

(SA) and enhanced rice resistance to the fungusMagnaporthe grisea

and bacterium Xanthomonas oryzae pv. oryzae (Li et al., 2011).

Similarly, overexpression of the Arabidopsis ssi2 mutant TaSSI2

restored its resistance to powdery mildew fungi (Song et al., 2013).

In soybean, the fatty acid composition in soybean tissues is often

responsive to pathogen attack (Upchurch, 2008), and fatty acids and

fatty acid-derived compounds act as signals of defense gene

expression (Upchurch, 2008). Evidence suggests that the level of

stearic acid and oleic acid are critical for defense against pathogens

in soybean as they have been shown to be in Arabidopsis (Kachroo

and Kachroo, 2009). Moreover, the oleate and linoleate content of

soybean seeds appears to influence the course of seed colonization

by Cerospora kikuchii and Diaporthe phaseolorum (Xue et al., 2008).

Silencing of GmSACPDs confers soybean resistance to Pseudomonas

syringae pv. glycinea (Kachroo et al., 2008). Thus, FADs as crucial

regulatory components are capable of reacting to and being linked

with various stress-induced damages in plants.

Soybean (Glycine max) is one of the largest oilseed crop

worldwide and rich in high-quality vegetable protein and

unsaturated fatty acids. However, soybean seed quality and yield

are often affected by various seed-borne diseases (Wrather et al.,

2003). Specially, seed decay emerges as one of the most damaging

seed-borne diseases during the pre- and post-harvest stages of

soybean, and this disease often leads to substantial yield losses,

poor seed quality and nutrients, and reduced seed germination and

vigor (Chang et al., 2020a; Xu et al., 2023). Some infected seeds can

even become important carriers of diseases, facilitating the spread of

these pathogens over extensive distances (Lv and Sun, 2007). The

necrotrophic fungus Fusarium fujikuroi has previously been
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reported to cause soybean root rot (Chang et al., 2020b), and it was

also identified as the causal agents of pod blight and seed decay

(Suga et al., 2018; Chang et al., 2022). The fungus is capable of

producing a variety of secondary metabolites, such as fumonisins

and gibberellins, which threaten the health of humans and livestock

(Zhang et al., 2021). However, there is little information on F.

fujikuroi-induced seed responses in soybean. Recently, our study

showed that the soybean cultivar CX12 exhibited susceptibility to F.

fujikuroi, whereas the cultivar Nandou25 had high resistance to F.

fujikuroi. Given the important role of FAD genes in enhancing plant

resistance against various diseases, it become meaningful to explore

the contribution of GmFAD to soybean seed decay.

To date, the GmFAD gene family has been reported in Glycine

max through genomic and transcriptomic analyses (Chen et al.,

2016; Liu et al., 2017). A total of 75 FAD genes have already

reported from the genomes of different soybean species, with 23

FAD genes found in Glycine max var. Williams 82 (Chen et al.,

2016). However, the diversity and function of GmFAD genes in

soybean remain largely uncovered. This study aimed to analyze the

functions of the soybean FAD gene and clarify the roles of GmFAD

in soybean resistance to the seed-borne F. fujikuroi. By performing a

genome-wide analysis using the latest genomic data from Glycine

max var. Williams 82, we systematically characterized and

functionally annotated the GmFAD gene family according to their

physicochemical properties, gene structures, and promoter motifs.

Furthermore, we analyzed the expression profiles of representative

FAD genes using qRT-PCR during F. fujikuroi infection in soybean

seeds. This study aids in identifying candidate genes that may

improve Fusarium resistance in soybean.
Results

Identification of GmFAD genes in soybean

Full-length genes of 30 fatty acid desaturase (GmFADs) were

predicted from the genome of Glycine max var. Williams 82

(Glycine max Wm82.a4.v1) using HMM search, and were listed in

Supplementary Table S1. The identified proteins corresponding to

the GmFAD gene family had an amino acid sequence length from

235 aa (GmFAD6.2) to 453 aa (GmFAD7-2). The relative molecular

mass of these proteins varied between 26,800.2 Da (GmFAD6.2) and

51,550.41 Da (GmSLD1.2). The isoelectric points (pI) of the

proteins were distributed within a range of 5.94 (GmFAB2.1) to

9.51 (GmFAD5.1), with the majority possessing pI values above 7.

The lipolysis index values ranged from 79.26 (GmSACPD) to 94.62

(GmSLD1.4). The instability coefficients of proteins were found to

vary between 30.72 and 48.67, with GmFAD2.3 protein being the

most stable and GmFAD6.1 protein the least stable among these

members identified. Out of the 30 family members, 21 members

were classified as hydrophilic proteins, whereas the others were

hydrophobic (Supplementary Table S2).

The subcellular localization analysis predicted that proteins

GmFAD2, GmDES, and GmSLD were localized on endoplasmic

reticulum, whereas GmFAD6 and GmFAB2 proteins localized on

chloroplasts. The members of GmFAD5 and GmFAD3 along with
Frontiers in Plant Science 03
their isozymes GmFAD7/FAD8 proteins were found in both

endoplasmic reticulum and chloroplasts as detailed in

Supplementary Table S2. These results suggest that the subcellular

location diversity of these proteins could be related to

multiple functions.
Phylogenetic relationship analysis of
GmFAD proteins

To determine the evolutionary relationships of FAD proteins

among A. thaliana (At), rice (Os), and soybean (Gm), a

phylogenetic tree was constructed using the neighbor-joining (NJ)

method with p-distance model using amino acid sequences of

GmFADs (30), AtFADs (24), and OsFADs (18) (Supplementary

Table S3). As depicted in Figure 1A, all FAD proteins were classified

into two distinct clusters: soluble (FAB2) and membrane-bounding

FAD proteins (ADS, SLD, DES, FAD6, FAD2, and FAD3/FAD7/8).

FAB2 subfamily represents the only soluble desaturase

identified so far. In this study, both A. thaliana and rice were

found to contain seven homologous proteins, respectively

(Figure 1A). In contrast, it was observed that soybean possesses

four FAB2, namely three GmFAB2 and one GmSACPD, and among

them, two alleles GmFAB2.1 and GmFAB2.2 were clustered

together, when GmFAB2.3 aligned with GmSACPD in a different

branch (Figure 1B). Compared FAB members in three species,

except for OsFAB2.1, AtFAB2.1 and OsFAB2.1, most FAB

members of soybean and A. thaliana were closely clustered

together but OsFAB in rice was located at the base position of

this subfamily. This suggests that FAB2 in rice may have evolved

earlier and could have been divided into monocotyledonous and

dicotyledonous taxa.

As shown in Figure 1A, proteins encoding membrane-bound

desaturases were categorized into six distinct subfamilies. Among

them, the ADS subfamily was further classified into two groups,

composed of nine ADS from A. thaliana along with their two

homologous FAD5 from soybean. Interestingly, GmFAD5.1 and

GmFAD5.2 were closely grouped with AtADS3 and AtADS5 as a

small branch, indicating that GmFAD5 might evolved from

AtADS. Furthermore, no members from rice were identified in

the ADS subfamily, indicating that it might have undergone

evolutionary loss in rice or were transmitted to dicotyledons (A.

thaliana and soybean) following their divergence from the last

common ancestor.

The SLD subfamily comprised six GmSLD, two AtSLD, and one

OsSLD, all of which encode sphingolipid D7 desaturases. Except for
OsSLD1 was grouped with both GmSLD1.4 and GmSLD1.5 as a

separate branch, the SLD members from each plant species were

distinctly clustered together, indicating a closer genetic relationship

among them. The DES subfamily, which is responsible for

sphingolipid D4 desaturases, had the members including OsDES1,

AtDES1, GmDES1.1 and GmDES1.2, with OsDES1 in rice localized

at the basal position of the subfamily. This suggests GmDES1 in

soybean as well as AtDES1 in A. thaliana had more close

relationship as the dicotyledonous plants, but they diverged from

OsDES1 from the last common ancestor.
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Both FAD6 and FAD2 subfamilies encode D12 desaturases but

were differently localized in the subcellular organelles. In the

plastidial FAD6 subfamily, GmFAD6.2 notably occupied at a

basal position within this subfamily. In the microsomal FAD2

subfamily, three rice OsFAD2 were clustered together, while six
Frontiers in Plant Science 04
GmFAD2 and one AtFAD2 grouped in another branch, indicating

this family has diverged into monocotyledonous and

dicotyledonous groups from the same ancestor. Additionally, in

the FAD3/FAD7/FAD8 subfamily, eight FADs from soybean (four

GmFAD3, two GmFAD7 and two GmFAD8), three from
FIGURE 1

Phylogenetic analysis of FADs proteins. (A) Phylogenetic relationship of FAD proteins from Arabidopsis (At), rice (Os) and soybean (Gm). The amino
acid sequences of GmFAD, AtFAD and OsFAD were compared using ClustalW and a phylogenetic tree was constructed using the neighbor-joining
(NJ) method with p-distance model by MEGA7.0. The bootstrap support values were calculated from 1000 replicates. FAD proteins are divided into
seven subfamilies as FAD3/7/8, FAD2, FAD6, DES, ADS, SLD and FAB2, which are indicated by different colors. (B) Phylogenetic relationships of
GmFAD protein in soybean.
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Arabidopsis, and four from rice, were clustered together and

encoded their corresponding microsomal or plastidial

w3 desaturases.
Chromosomal location and gene
duplication analysis of GmFAD genes

As shown in Figure 2, different GmFAD genes were located in

different soybean chromosomes. Except for the chromosomes 4, 5,

6, 12, and 16, the identified 30GmFAD genes in soybean were found

to distribute on the other 15 of the 20 soybean chromosomes. The

maximum number of GmFAD genes were located on chromosome

2 as four genes. There were three genes located on the chromosomes

7, 14, and 18, respectively, while only one or two genes were located

on other chromosomes. In addition, different gene members of each

subfamily were mostly distributed in different chromosomes except

that GmFAD2.4 and GmFAD2.5 was clustered in a small region of

chromosome 19. This suggests that GmFAD genes are broadly

dispersed throughout the soybean genome, and they might

originate from diverse ancestors.

The diversity and expansion of gene families often arise from

crosstalk and segmental duplication events, and gene duplication
Frontiers in Plant Science 05
serves as a key mechanism for enhancing plant genetic diversity and

the generation of novel genes. In this study, covariance analysis

based on MCScanX was performed to investigate gene duplication

events in the GmFAD gene family, and results showed that a large

number of GmFAD genes had covariance between and within

soybean chromosomes, and the most GmFAD genes with

covariance were localized on the chromosome 19. As shown in

Table 1, both tandem and segmental duplication can be observed in

the GmFAD family. Except for GmFAD2.4 and GmFAD2.5 on the

chromosome 19 were caused by tandem duplication, a total of 29

segmental duplication events were identified (Table 1). Among

them, the w-3 desaturase subfamily (GmFAD3/GmFAD7/

GmFAD8) had the maximum duplicated gene pairs as 13 pairs

followed by the GmSLD subfamily with seven pairs, while the w-6
desaturase subfamilies (GmFAD2 and GmFAD6) had five

duplicated gene pairs. The subfamilies of GmFAB2, GmDES and

GmFAD5(ADS) had less duplicated gene pairs than other

subfamilies in our study. Thus, the role of segmental duplication

events plays a prominent role in increasing the genetic diversity of

soybean GmFAD gene families rather than tandem duplication.

To assess the selection of duplicated GmFAD gene pairs, we

calculated the substitution ratios between non-synonymous and

synonymous (Ka/Ks) based on a whole genome analysis of gene
FIGURE 2

Covariance analysis of GmFAD gene family. Rectangles indicate chromosomes, and the location of the GmFAD genes on the chromosome is
marked using the GmFAD name. Each gray and dark blue curves indicate all covariate gene pairs on the chromosome and gene duplication events
of GmFAD, respectively.
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duplication (Table 1). In soybean, most Ka/Ks ratios for the

GmFAD gene replication pairs were found to be less than 1,

indicating that these genes are relatively conserved during the

evolutionary process and have been subjected to purifying

selection pressure to maintain gene functions and species stability.

However, three gene pairs, such as GmFAD7-2/GmFAD3.4,

GmFAD2.1/GmFAD2.2, and GmFAD2.2/GmFAD2.5, exhibited a

Ks value greater than 1, and it indicates that a positive selection

pressure occurs to produce new protein functions aiming to

promote gene evolution and the adaptive changes of species.
Frontiers in Plant Science 06
Analysis of gene structures, conserved
motifs and protein structures of GmFAD
in soybean

Analysis of the exon/intron structures of 30 GmFAD genes

identified in soybean (Figure 3A, Supplementary Table S4), showed

that the gene structure of different GmFAD subfamily was generally

variable. Both GmFAD3/FAD7/FAD8 and GmFAD6 gene

subfamilies had more than 6 exons, especially GmFAD6.1

possessed ten exons. GmFAD5 subfamily had five exons as
TABLE 1 Ka/Ks analysis of the GmFAD gene pairs duplication.

Duplicated
gene 1

Duplicated
gene 2

Ka Ks Ka/Ks

GmFAD8-1 GmFAD8.2 0.02328 0.1421 0.16383

GmFAD8-1 GmFAD7-2 0.124333 0.709715 0.175188

GmFAD8-1 GmFAD7-1 0.120121 0.720123 0.166806

GmFAD8.2 GmFAD7-2 0.138577 0.755093 0.183523

GmFAD8.2 GmFAD7-1 0.135723 0.758853 0.178853

GmFAD7-2 GmFAD7-1 0.030214 0.096519 0.313034

GmFAD7-2 GmFAD3.4 0.219589 1.978483 0.110988

GmFAD6.1 GmFAD6.2 0.144787 0.23843 0.607254

GmFAD5.1 GmFAD5.2 0.033837 0.134296 0.25196

GmFAD3.1 GmFAD3-2B 0.145533 0.881057 0.16518

GmFAD3.1 GmFAD3.3 0.02335 0.130903 0.178379

GmFAD3.1 GmFAD3.4 0.134448 0.769057 0.174822

GmFAD3-2B GmFAD3.3 0.145017 0.8803 0.164736

GmFAD3-2B GmFAD3.4 0.023048 0.12135 0.189928

GmFAD3.3 GmFAD3.4 0.131717 0.79204 0.166302

GmFAD2.1 GmFAD2.2 0.134722 1.22811 0.109699

GmFAD2.1 GmFAD2.5 0.183761 0.500099 0.36745

GmFAD2.2 GmFAD2.5 0.271703 1.135618 0.239256

GmFAD2.3 GmFAD2.6 0.030866 0.123855 0.249212

GmSLD1.1 GmSLD1.2 0.007168 0.137411 0.052164

GmSLD1.1 GmSLD1.3 0.115137 0.964275 0.119403

GmSLD1.1 GmSLD1.6 0.113882 0.94864 0.120048

GmSLD1.2 GmSLD1.3 0.116353 0.883028 0.131766

GmSLD1.2 GmSLD1.6 0.115659 0.855715 0.135161

GmSLD1.3 GmSLD1.6 0.011562 0.216251 0.053465

GmSLD1.4 GmSLD1.5 0.03313 0.261431 0.126725

GmFAB2.1 GmFAB2.2 0.008886 0.200335 0.044354

GmSACPD GmFAB2.3 0.117118 0.506882 0.231055

GmDES1.1 GmDES1.2 0.01621 0.105436 0.153738
The Ka/Ks value represents the ratio between synonymous substitutions (Ka) and non - synonymous substitutions (Ks) based on a whole genome analysis of gene duplication. A Ka/Ks ratio
greater than 1 means the genes evolved under positive selection, a ratio of 1 indicates the genes evolved under neutral selection, while a Ka/Ks ratio less than 1 suggests negative
purifying selection.
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compared to GmDES and GmFAB2 subfamilies which contained

two to three exons. In addition, members in the GmFAD and

GmFAB subfamilies had different number of exons, for example,

GmFAD6.2 and GmFAD6.1 had four and ten exons, respectively.

Interestingly, GmFAD2 and GmSLD had the simplest structures

with only one exon. Furthermore, most GmFAD genes within the

same subfamily exhibited high similarity in their exon/intron

patterns as compared to those in different subfamilies, thus the

exon/intron distribution could provide strong supports for the

phylogenetic classification of GmFAD proteins above.

Furthermore, the gene motifs were analyzed in this study, and

total 20 motifs were identified in GmFAD genes (Figure 3B).
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Evaluation of motifs 1-20 using the Pfam database (http://

pfam.xfam.org) showed that motifs 2, 3, 6, 10, 11, 12, 16, 19, and

20 corresponded to membrane-FADS-like superfamily structural

domains, while other three protein conserved structural domains

PLN02505, D6-FADS-like, and PLN02598 were also identified as

the membrane-FADS-like superfamily. Motifs 2, 3, and 10 were

observed in all members of the w-3 subfamilies (GmFAD3/

GmFAD7/GmFAD8), while two unique motifs 16 and 20 were

found in the GmFAD7 and GmFAD8 subfamilies. All the

GmFAD2 subfamily members contained motifs 4, 6, and 11

except that GmFAD2.5 lacked motif 4. Motif 17 was present only

in the GmFAD6 subfamily, but this motif is not functional. In the
FIGURE 3

Analysis of gene structure, conserved motifs and conserved structural domain interactions in soybean GmFAD proteins. (A) Exons and introns of GmFAD
genes. Green boxes and blue boxex represented exons and untranslated region (UTR), respectively. Grey lines meaned introns. (B) Conserved motifs of
soybean GmFAD gene family and their interacted with conserved structural domains. Motifs 1-20 represent conserved motifs. Membrane-FADS-like
PLN02505, PLN02598, PLN02579, D6-FADS-like, Cyt-b5, PLN03198 and PLN00179 belong to conserved structural domains.
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GmFAB2 subfamily, motifs 5, 14, 15 and 20 corresponded to the

acyl-[acyl-carrier protein] desaturase structural domain

(PLN00179), whereas Motif 11 was a domain of unknown

function (with PLN00179 domain) and only existed in the branch

of GmFAB2.3 and GmSACPD as compared to GmFAB2.1 and

GmFAB2.2. The members of GmFAD5(ADS), GmDES, and

GmSLD subfamilies comprised two, two, and four motifs,

respectively. Notably, motif 9, as a component of the Cyt-b5

domain, was uniquely identified in the GmSLD subfamily. In

short, members with similar conserved motifs and gene structures

clustered together in the GmFAD gene family. The motif

distribution patterns of each subfamily are similar, whereas

differences between subfamilies may be related to subfamily

functional convergence.

To elucidate the three-dimensional conformation of the

GmFAD proteins, homology modeling method was adopted and

homology modeling was performed using Swiss-Model online
Frontiers in Plant Science 08
software. As shown in Figure 4, GmFAD primarily consisted of

a-helixs, irregular coils, and b-turns, and proteins clustered into the
same clade exhibited analogous 3-dimensional (3D) structures.

GmFAD3.3 within the w-3 desaturase subfamilies and

GmFAD2.6 within the w-6 desaturase subfamilies exhibited

distinct characteristics compared to GmFAD proteins from other

subfamilies, indicating that there exists a balance between

conservation and divergence within the GmFAD proteins.
Analysis of cis-acting elements in GmFAD
gene promoter

Promoters located in the upstream regions of genes are crucial

in gene expression regulation involving in plant growth and

development as well as environmental adaptation. To understand

the roles of GmFAD genes and the precise regulation of gene
FIGURE 4

Three-dimensional conformation prediction of soybean GmFAD proteins. The coil, a-helix, and strand were represented in green, gray and
yellow, respectively.
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expression, cis-acting elements within the promoter regions were

analyzed (Figure 5, Supplementary Table S5). The results showed

that the promoter region of the GmFAD genes contained three

distinct types of cis-elements. The first type of cis-elements was

related to plant growth and development, including light

responsiveness, circadian control, the differentiation of fenestrated

chloroplasts, and cell cycle regulation. The second type was

responsible for stress responses, including those triggered by

methyl jasmonate (MeJA), abscisic acid (ABA), salicylic acid (SA),

GA, growth hormone, low-temperature, drought, defense and stress

responsiveness. The third category is associated with specific

biological processes, such as those involved in endosperm

expression, zein metabolism regulation, flavonoid biosynthesis

regulation, and cell cycle regulation.

As illustrated in Table 2, the promoters of most GmFAD genes

contained cis-elements related to phytohormone responses, including

ABRE, TGA, P-box, TATC-box, GARE-motif, CGTCA-motif,

TGACG, AuxRR-core, and TGA-box, which correspond to ABA,

SA, GA, MeJA, and Auxin signaling, respectively. Additionally, TC-

rich repeats, which often function on the regulation of defense and

stress responses, have been identified within the promoter sequences

of 10 GmFAD genes (GmFAD3.3, GmFAD7-2, GmFAD2.1,

GmFAD2.2, GmFAD2.5, GmDES1.2, GmSLD1.1, GmSLD1.4,

GmSLD1.5, and GmSLD1.6). Moreover, the distribution patterns of

TC-rich repeats within the GmFAD2 subfamily were similar to those

in the GmSLD subfamily, but it is notably absent in the GmFAD6,

GmFAD5, and GmFAB2 subfamilies.

All members of the GmFAD gene family possess abundant

light-responsive cis-elements at the start codon upstream, with the
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detection of 17 such regulatory elements, such as Box4, G-Box, and

GT1-Motif and others, suggesting that light signals play crucial

roles in the accumulation of soybean fatty acid desaturases. Overall,

these findings illuminate the potential functions of GmFAD genes in

facilitating plant growth and development, enhancing stress

responses, and modulating hormone signaling.
Gene ontology (GO) functional annotation
and KEGG pathway enrichment analysis of
GmFAD genes

To gain a deeper understanding of the functional pathways

associated with GmFAD genes, we conducted Gene Ontology

(GO) annotation and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis to explore the

potential functions of GmFAD. The results showed that GmFAD

was mainly enriched in three GO terms: “molecular function”,

“cellular component” and “biological process” (Figure 6A).

Notably, the GmFAD gene family were significantly implicated

in oxidoreductase activity, facilitating the transfer of electrons

between paired donors and binding or reduction of molecular

oxygen, and GmFAD genes also exhibited acyl-acyl-carrier-

protein desaturase activity. Furthermore, GmFAD genes showed

significant enrichment in membrane components, particularly

endoplasmic reticulum membrane network, suggesting their

potential involvement in the stability of membrane assembly.

Additionally, both GO and KEGG annotations revealed that

GmFAD genes were significantly involved in the biosynthetic
FIGURE 5

Map of cis-acting elements of the GmFAD gene promoter. Promoter sequences (−1500 bp) of GmFAD genes are speculated on PlantCARE. The
upstream length to the translation start site can be deduced on the basis of the scale at the bottom.
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and metabolic pathways of lipids and fatty acids (Figure 6B). In

summary, GmFAD gene family participate in the biosynthesis and

metabolism of fatty acid and lipid, and they also are responsible

for redox and desaturation activities.
Expression patterns of GmFAD genes in
soybean after F. fujikuroi infection

To investigate the regulation of GmFAD genes in soybean seed

resistance to F. fujikuroi, the dominant seed decay pathogen, we

analyzed expression patterns of 16 GmFAD genes in soybean seeds

of susceptible cultivar (CX12) and resistant cultivar (ND25) after F.
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fujikuroi inoculation (Figure 7). As shown in Figure 7, all

representative GmFAD genes belonging to w-3 and -6 desaturase

subfamilies were significantly induced by F. fujikuroi infection but

their expression patterns differed in the resistant ND25 and

susceptible CX12. Most genes in the susceptible CX12 were

significantly up-regulated at much earlier infection (12 hpi),

whereas they were strongly induced at 48 hpi in the resistant

ND25. In particular, relative expression level of five genes

including GmFAD8.2, GmFAD3.3, GmFAD7-1, GmFAB2.2,

GmFAD2.3 and GmFAD2.5 were as higher as 6.0 fold at 48 hpi as

compared to 0 hpi. In contrast, expression of GmFAB2.3 and

GmSACPD was inhibited at the early infection of F. fujikuroi (6

hpi) in both cultivars, but their expression were more rapidly

recovered and reached the peak at 12 hpi in the resistant ND25

rather than those in the susceptible CX12. Additionally, GmFAD2.4

were dramatically up-regulated by F. fujikuroi at 6 hpi and then

decreased after 24 hpi in the susceptible CX12, but it had different

expression pattern in the resistant ND25. Expression of GmFAD2.1

and GmFAD7.2 were weakly induced in the resistant ND25 upon F.

fujikuroi infection but they were up-regulated differently in the

susceptible CX12. This suggests that GmFAD genes play important

roles in soybean seed resistance to F. fujikuroi infection.
Discussion

In recent years, the FADs gene family has been extensively

studied in a wide range of plant species, and genome-wide analyses

have revealed different members of FAD genes regarding plant

species (Zhiguo et al., 2019). Previously, Chi et al. (2011) reported

41 GmFAD genes from an older version of the Williams 82 genome.

Zhang et al. (2021) identified 23 GmFADs in Glycine max var.

Williams 82 using the BLASTP method when compared to Chinese

wild soybean and ancient polyploid soybean. In this study, we

identified 30 full-length GmFADs genes from the soybean genome

(Glycine maxWm82.a4.v1) using a Hidden Markov Model (HMM)

of protein structural domains by HMM BLAST software. The

difference in total gene numbers of Williams 82 may result from

different genomic versions and identification criteria and

parameters of the BLAST software. Phylogenetic analysis based

the amino acid showed 30 GmFAD proteins in this study were

categorized into seven subfamilies, including FAD3/7/8, FAD2,

FAD6, FAD5(ADS), DES, and SLD, and FAB2, and except for the

ADS subfamily, other six subfamilies are basically consistent with

those of A. thaliana and rice (Cheng et al., 2022), indicating that

those subfamilies have a common ancestor before their divergence.

For the ADS family, responsible for desaturating palmitic acid to

palmitoleic acid (Laureano et al., 2021), GmFAD5 was clustered

with eight AtADS genes, whereas the monocotyledons rice lost this

subfamily. Similar results was also reported in banana genome

previously (Cheng et al., 2022), and this suggests that the ADS

family might be formed after the differentiation of monocotyledons

and dicotyledons. In addition, compared to A. thaliana and rice, the

soybean genome possesses a larger number of genes within the w-3
and w-6 subfamilies as well as the SLD subfamily, and this can be

predicted that these subfamilies have undergone positive selection
TABLE 2 The main cis-elements in GmFAD gene promoter regions
in soybean.

No. Cis-elements Function

1

Box 4, G-Box, GT1-motif, ACE, AE-box, AT1-motif,
ATCT-motif, chs-CMA1a, GA-motif, Gap-box,

GATA-motif, I-box, LAMP-element, MRE, TCCC-
motif, TCT-motif, 3-AF1 binding site

Light
responsive

2 ABRE
Abscisic
acid

responsiveness

3 TCA-element
Salicylic
acid

responsiveness

4 P-box, TATC-box, GARE-motif
Gibberellin-
responsive

5 CGTCA-motif, TGACG-motif
MeJA-

responsiveness

6 TGA-element, AuxRR-core, TGA-box
Auxin-

responsive

7 TC-rich repeats
Defense and

stress
responsiveness

8 MBS
Drought-
inducibility

9 circadian
Circadian
control

10 ARE
Anaerobic
induction

11 HD-Zip 1
Cell
cycle

regulation

12 LTR
Low-

temperature
responsiveness

13 CAT-box
Meristem
expression

14 CCAAT-box
MYBHv1
binding site

15 O2-site
Zein

metabolism
regulation
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pressures, leading to the expansion of gene families. This expansion

may have granted soybean greater functional redundancy,

enhancing their adaptability and diversity in lipid biosynthesis

pathways. As a result, this could improve their capacity to adapt

to environmental changes. Additionally, our results also

demonstrated that different members within the same GmFAD

gene subfamily were located on different soybean chromosomes,

which is consistent with the previous findings in sunflower

(Laureano et al., 2021).

Previous studies have revealed that expansion of the FAD gene

family is species-specific in different plants, and this expansion is

often determined by gene duplication events (Johnson and Thomas,

2007). Gene duplication plays a crucial role in generating new genes

and functions, and both segmental and tandem duplication can drive

the emergence of novel gene families (Cannon et al., 2004). In the

wheat genome, TaFAD gene pairs were generated from tandem and

segmental duplication with the pair number of 26 and 126,

respectively (Hajiahmadi et al., 2020). In the poplar genome,

PtFAD genes had 16 segmental repeat events and one tandem

repeat event, respectively (Wei et al., 2022). However, replication of

FAD family in Brassica juncea is mostly identified as segmental

replications (89%) (Xue et al., 2020). In our study, there were 29 pairs

of segmental repeats and one pair of tandem repeats in soybean

GmFAD genes. Thus, segmental duplication in FAD family

amplification is more frequently and important than tandem

duplication, and it might play a vital role in increasing the genetic

diversity of soybean GmFAD gene family. In addition, the selection

pressure analysis showed that most GmFAD genes have undergone
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purifying selection to maintain the functions of GmFAD genes and

species stability in soybean. For example, the FAD2 gene has

experienced several duplication events, and all members of the

FAD2 gene family have diverged into monopolistic and

dicotyledons clusters in their evolutionary history. In some

dicotyledons, the FAD2 genes is divided into two branches as

constitutive and specific expression. In soybean, multiple GmFAD2

copies, such as GmFAD2.1, GmFAD2.2, GmFAD2.3, GmFAD2.4, and

GmFAD2.5, have already been reported (Chi et al., 2011). Among

them, GmFAD2.2 and GmFAD2.3 are constitutively expressed in

both vegetative tissue and developing seeds, whereas two alleles

GmFAD2-1A and GmFAD2-1B are specifically expressed in

developing seeds and contributes to the polyunsaturated fatty acid

contents of seed storage oil (Schlueter et al., 2007; Zhao et al., 2019).

Another study on soybean genome analysis found that the transcript

of GmFAD2-2C rather than GmFAD2-2A and GmFAD2-2B alleles of

GmFAD2-2 was significantly accumulated in pods under cool

conditions (Li et al., 2007).

The variation in gene structure is critical for the functional

evolution of gene family (Cao and Shi, 2012). With the exception of

GmFAD2.5 and GmFAD6.2, members within the same GmFAD

subfamily exhibit similar intron/exon structures and intron

patterns, and the proteins encoded by the same gene family had

similar gene motif compositions and conserved protein domains.

Similar results have also been found inMedicago truncatula (Zhang

et al., 2018), wheat (Hajiahmadi et al., 2020), and Brassica napus

(Xu et al., 2019). Our study also revealed that no common

conserved sequences existed among these 30 GmFAD genes, and
FIGURE 6

GO functional annotation and KEGG pathway enrichment analysis of GmFAD gene family. (A) Gene ontology (GO) analysis of the GmFAD gene
family. (B) The KEGG pathway analysis of the GmFAD gene family. Both GO enrichment and KEGG pathway enrichment analysis were performed
using TBtools, respectively. A total of 10 GO terms and 10 KEGG pathways with the lowest P-value were listed. The horizontal axis shows -log10(P-
value), and the larger P-value means higher statistical significance.
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gene members clustered into the same clade were evolutionarily

conserved. It is implied that specific conserved motifs play different

roles in plant growth and development (Zhang et al., 2015).

Combined with the results of the phylogenetic analyses, these

results strongly support the reliability of the taxon divisions.

Previous studies have demonstrated that the FAD gene

promoters contained diverse cis-elements in response to growth,

development, fruiting, and defense and stresses (Soria-Garcï et al.,

2019). Horiguchi et al. (1996) that the expression level of the wheat

TaFAD7 gene was significantly up-regulated during leaf

development stage under light and dark stresses. Liu et al. (2016)

have reported that the BnFAD2-C5 promoter had SA and JA

response elements, and their expression was up-regulated by SA

and JA induction. In this study, we identified a range of cis-elements

in the promoter region of GmFAD genes related to low temperature,

drought, light, hypoxia, circadian rhythms, plant hormones (ABA,
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GA, SA, MeJA), and defense and stress responsive. For example,

TC-rich repeats involving in the regulation of defense and stress

responses were identified in the promoter sequences of 10 GmFAD

genes including GmFAD3.3, GmFAD7-2, GmFAD2.5, GmFAD2.2,

GmFAD2.1, GmDES1.2, GmSLD1.5, GmSLD1.4, GmSLD1.1 and

GmSLD1.6, suggesting that these genes may play important roles

in soybean defense and stress responses. However, expression

analysis of Chinese wild soybean under salt stress demonstrated

that GsDES1.1, GsDES1.2, GsFAD2.1 and GsSLD1 in leaves were not

closely related to salt stress response (Zhang et al., 2021).

Growing evidence that members of the FAD gene family

regulate plant defense responses to biotic stresses (Kachroo et al.,

2005; Dar et al., 2017). Previous studies demonstrated AtFAD2

genes not only contribute to salt and cold tolerance in A. thaliana

(Schlueter et al., 2007; Chi et al., 2011; Zhao et al., 2019), but also

some alleles of GmFAD2 genes was able to respond to pathogen
FIGURE 7

Expression patterns of GmFAD genes in soybean after F. fujikuroi inoculation. The expression level of GmFADs at 0 hour post inoculation was
normalized as “1”. Quantitative RT-PCR was used to investigate the expression levels of each GmFAD gene upon F. fujikuroi infection from three
biological and four technical replicates. Vertical bars indicated the standard errors of mean. Means denoted by the same lowercase letters when
there was no significant difference at P < 0.05 as determined by Analysis of variance (ANOVA) and Duncan’s multiple range test (DMRT) using SPSS
24 software.
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attack by increasing the biosynthesis of linoleic acid and palmitic-

linoleic acid in soybean (Hernández et al., 2011). Li et al. (2021)

showed that HaFAD3.1 and HaADS6 genes in sunflower were

expressed at higher level after Orobanche cumana infection. In

Brassica carinata, five genes including BolFAD6.2, BolFAD4.3,

BolFAD6.3, BolFAD4.1, and BolADS17, were significantly up-

regulated in response to Xanthomonas campestris infection

(Shaheen et al., 2023). The Arabidopsis double mutant fad7/fad8

also exhibited reduced the accumulation of triene fatty acid in

chloroplast and increased the sensitivity to Pseudomonas syringae

pv. tomato DC3000 (Yaeno et al., 2004). In addition, several genes

such as DES1, FAB2.3, FAB2.5, FAB2.7 and FAD3.2 were

significantly down-regulated in banana when infected by the

pathogenic FocTR4 causing banana wilt disease (Cheng et al.,

2022). FAD genes play important roles in membrane remodeling

and signaling in grapevine defense towards biotrophic pathogens

(Cavaco et al., 2021). During the early interaction between

grapevine and the biotrophic oomycete Plasmopara viticola, the

polyunsaturated alpha-linolenic acids were highly accumulated in

the leaves of the tolerant genotype, followed by alterations in the

expression of desaturase genes, regulation of membrane fluidity,

and finally JA accumulation and activation of JA biosynthetic

pathway, which forms together form a complex network of

disease resistance responses in grapevines. Especially, the

expression patterns of FAD6 and FAD8 may be related to the

timing of the JA pathway activation during the interaction of grapes

with the necrotrophic pathogen B. cinerea (Cavaco et al., 2021).

In Southwest China, soybeans are often exposed to heavy

rainfall and high humidity from the full pod stage (R4) to the

ripening stage (R8), resulting in severe pod rot and seed decay, and

largely reduced soybean yield and quality (Chang et al., 2020a). In

this study, the GmFAD gene was also significantly induced by F.

fujikuroi causing soybean seed decay. Specially, eleven of the

representative 16 GmFAD genes were significantly up-regulated at

the early infection stage of F. fujikuroi in the susceptible cultivar

(CX12) seeds, whereas no significant changes were observed in

resistant cultivar (ND25) seeds until 48 hpi. Our study showed that

at the late stage of F. fujikuroi infection, the genes GmFAB2.1/2.2,

GmFAD3.3/3-2B/7-1/8-2, and GmFAD2.3/2.5 were expressed

significantly higher in resistant cultivar (ND25) than in sensitive

cultivar (ST06). This suggests that some GmFAD genes are involved

in pathogen defense responses. Since F. fujikuroi is one

necrotrophic fungi, JA signaling can be activated as plant

immunity (Song et al., 2023). In addition, F. fujikuroi is also well-

known as the causal agent of rice bakanae bring big threat to rice

production worldwide, and transcription profile of rice to F.

fujikuroi infection found the pathways involved in bakanae

resistance, such as chitin, JA-dependent signaling, and

hypersensitive response (Matić et al., 2016). Furthermore,

OsWRKY114 has been reported to act as a player in rice JA-

mediated immunity against Fusarium fujikuroi in rice (Song

et al., 2023).Therefore, we hypothesized that there may be a more

persistent stimulation of unsaturated fatty acid (UFA) biosynthesis

in resistant cultivar (ND25) seeds, which could lead to the induction

of the JA pathway (Cavaco et al., 2021). This is also consistent with

the prediction of the promoter cis-acting elements of GmFAD genes
Frontiers in Plant Science 13
in response to JA. In conclusion, GmFAD genes play crucial roles in

soybean seed resistance against the seed decay fungus F. fujikuroi,

and the diversity of enzyme functions and expression patterns in the

GmFAD gene family suggests the diversity of gene functions

(Laureano et al. , 2021). The results will enhance our

understanding of the regulatory genes involved in the

biosynthesis pathway of unsaturated fatty acids. In the future,

gene editing technology will enable precise regulation of

GmFAB2.1/2.2, GmFAD3.3/3-2B/7-1/8-2, and GmFAD2.3/2.5,

allowing for the breeding of soybean varieties with enhanced

resistance and good agronomic traits.
Conclusion

In this study, 30 full-length GmFAD genes were identified from

the soybean genome. Analyses of gene structure, protein three-

dimensional structure, and conserved motifs and conserved

structural domains indicate that GmFAD genes are clustered into

seven subfamily and evolutionarily conserved, and this is also

strongly supported by the phylogenetic analysis. We found

segmental duplication plays an important role in the gene

amplification and subfamily generation of GmFAD in soybean

genome. Most GmFAD gene promoter can be activated by light,

phytohormones and other abiotic stresses, thus inducing fatty acid

biosynthesis. Expression of GmFAD genes were differentially

induced in the resistant and susceptible cultivars under seed

decay stress caused by F. fujikuroi, some specific up-regulated

genes such as GmFAB2.1/2.2, GmFAD3.3/3-2B/7-1//8-2, and

GmFAD2.3/2.5 would be the potential candidate genes for seed-

decay resistance breeding in soybean. Future studies will explore the

roles of these genes in seed decay stress. The results obtained are

crucial for researching the molecular mechanisms of fatty acid

synthesis, FAD and SAD editing, and for marker-assisted and

genomic selection in breeding soybean varieties with a specific

fatty acid composition in their oil.
Materials and methods

Identification and physicochemical
characterization of soybean FAD
gene family

The genome data of Glycine max var. Williams 82 were

retrieved from the Genome Warehouse (GWH) with the

Phytozome v13 database (Annotation version: Glycine max

Wm82.a4.v1, https://phytozome-next.jgi.doe.gov/) (Xu et al.,

2019). The published protein sequences and gene sequences of 24

AtFADs were obtained from TAIR release 10 (http://

www.arabidopsis.org) (Shaheen et al., 2023), while the published

sequences of 18 OsFADs were downloaded from RGAP release 7

(http://rice.plantbiology.msu.edu) (Zhiguo et al., 2019).

The hidden Markov model (HMM) profiles for the

FA_desaturase (PF00487), FA_desaturase 2 (PF03405), and

TMEM189 (PF10520) domains (Cheng et al., 2022) downloaded
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from the Pfam protein family database (https://www.ebi.ac.uk/

interpro/entry/pfam/) were searched against the soybean (Glycine

max var. Williams 82) protein data using an e-value threshold of

≤1e -5. The GmFAD gene family members were then filtered to

eliminate duplicates and identify potential gene family members.

Subsequently, the protein physicochemical properties and

subcellular localization of the GmFAD members were further

analyzed using Expasy (https://www.expasy.org/) and Cell-PLoc

(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/).
Evolution analysis of FAD gene family
in soybean

We performed multiple alignments of FADs were conducted by

Clustal W using full-length protein sequences from soybean (30), A.

thaliana (24), and rice (18), respectively. A Neighbor-Joining (NJ)

phylogenetic tree was constructed using the p-distance model by

MEGA7 (http://www.megasoftware.net) (Kumar et al., 2016). The

bootstrap support values were calculated from 1000 repeats.

Subsequently, the evolutionary tree was refined and visualized

through the iTOL online platform (https://itol.embl.de/).
Comprehensive analysis of chromosome
locations and gene duplications

The annotation file for the general feature format version 3

(GFF3) in the soybean genome database was utilized to pinpoint the

chromosome locations of the GmFAD genes. Visualization of the

chromosomal localization of the GmFAD genes were achieved using

TBtools software, which was based on the starting position on the

soybean chromosome (Chen et al., 2020). The matched sequences

covered more than 80% of the length of the longer gene, exhibited

over 80% similarity within their respective regions, and were

products of a single duplication event (Jiang et al., 2013; Singh

and Jain, 2015). To further assess the evolutionary pressure on the

GmFAD gene family, the synonymous (Ks) and non-synonymous

(Ka) substitution rates of the GmFAD gene pairs were computed

using TBtools, along with the Ka/Ks calculator (Bailey et al., 2006;

Kong et al. 2013; Kumar et al., 2016). In addition, to explore the

evolutionary relationships within the soybean species, MCScanX

and BLASTP were employed to detect gene pairs that were co-

variantly associated with FAD members (Xue et al., 2020).
Investigation of gene structures, conserved
structural domains, conserved motifs and
protein structures of GmFADs

The soybean coding sequence and genome file were applied to

explore the splicing phase of the GmFADs family (Zhang et al.,

2021). The Gene Structure Display Server (GSDS, http://

gsds.cbi.pku.edu.cn/).and TBtools software (Chen et al., 2020)

were employed to map the distribution of introns, exons and

non-coding regions within genes. NCBI Conserved Domains
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database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)

was used to identify the conserved structural domains of GmFAD

gene family proteins, and MEME (https://meme-suite.org/meme/)

to analyze the conserved motifs of FAD gene family proteins with

the following parameter settings: the motif discovery was set to

classical mode with a predicted motif count of 20, and each motif

was allowed to occur 0 or 1 times (Bailey et al., 2006). The Pfam

database was then utilized to evaluate the functions of the

aforementioned motifs (Mistry et al., 2021). The conserved motifs

and structural domains of the FAD gene family proteins were

simultaneously visualized, and their interactions were analyzed using

TBtools. The integrated structure of GmFAD was constructed using

the Swiss-Model platform (https://swissmodel.expasy.org/) based on

fragments of iterative templates (Wei et al., 2022), and subsequently

refined and visualized by Chimera software to yield a three-

dimensional structural model.
Promoter analysis, GO annotation and
KEGG enrichment analysis

Sequences encompassing the 1500 bp region upstream of the start

codon (ATG) for each GmFAD gene were retrieved from the soybean

genome database using TBtools. Subsequently, the promoter

sequences of these GmFAD genes were uploaded to Plant CARE

(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to

identify cis-regulatory elements (Lescot et al., 2002).

The functional annotation of genes was conducted using the

eggNOG-mapper database (http://eggnog-mapper.embl.de/). To

further understand the potential pathways that might be

associated with the GmFAD genes, the TBtools eggNOG-mapper

Helper tool was subsequently employed to systematically organize

and process the results derived from the eggNOG-mapper.

Following this, the GO-basic file and the KEGG-backend file were

exported for GO enrichment analysis and KEGG Pathway

enrichment, respectively (Wei et al., 2022).
Plant materials, growth conditions and
pathogen inoculation

The fungal isolate F. fujikuroi (No. S100) was isolated from the rot

seeds of soybean in the fields and identified using sequence analysis of

translation elongation factor 1 alpha (EF-1a) and DNA-directed RNA
ploymerase II second largest subunit (RPB2) (Chang et al., 2020a). The

cultivar CX12 exhibited susceptibility to F. fujikuroi, whereas the

cultivar ND25 showed a high resistance to the fungus, and both these

two cultivars were chosen to examine the expression of GmFAD genes

following inoculation of soybean seeds with F. fujikuroi.

Spore suspensions of F. fujikuroi were prepared following the

protocol by Chang et al. (2022). For sporulation, a mung bean liquid

mediumwas prepared by boiling 30 g of mung bean in 1 L of sterilized

water for 20 min, filtering the mixture with cheesecloth, and then

autoclaving at 121℃ for 30 min (Lv and Sun, 2007). Disease-resistant

and susceptible soybean seeds were inoculated with F. fujikuroi

suspensions at a concentration of 1 × 106 spores per milliliter,
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supplemented with 0.1% Tween 20. As a control (CK), soybean seeds

were treated with an equal volume of mung bean liquid medium. The

treated and control seeds were then arranged on water agar medium

(WA), and were incubated in the dark at a constant temperature of 25

℃ for varying durations of 0, 6, 12, 24, and 48 h, respectively. The

experiments were conducted in triplicate. At specified intervals post

inoculation, soybean seeds from both control and treatment groups

were collected, immediately frozen in liquid nitrogen, and

subsequently stored at -80°C for RNA extraction.
Expression analysis of GmFAD genes in
soybean seeds upon Fusarium
fujikuroi infection

The expression profiles of twenty-sixGmFAD genes were analyzed

using qRT-PCR with specific primer pairs listed in Supplementary

Table S6. Total RNA was extracted from soybean seed samples using

Fast Pure® Universal Plant Total RNA Isolation Kit (Vazyme-Bio,

Chengdu, China) and subsequently assessed with a NanoDrop

fluorometer (Thermo Fisher Scientific, Stuttgart, Germany) to

ascertain the concentration and quality of RNA. First-strand cDNA

was synthesized from 2.5 mg RNA in a 20-mL reaction volume

according to the instructions of BeyoRT™II First Strand cDNA

Synthesis Kit (Beyotime-Bio, Shanghai, China). The qRT-PCR assay

was conducted on the Chromo4 Real-Time PCR System (Bio-Rad, CA,

USA), within a 10-mL reaction mixture containing 5 mL of the SYBR

qPCR Mix (2×) (Vazyme-Bio, Shanghai, China), 1 mL of each primer

(10mM), 1 mL of template DNA (10 ng), and 2 mL of ddH2O. The

PCR thermal cycling conditions were set as follows: an initial heat

activation at 95°C for 3 minutes, followed by 40 cycles of amplification

at 10 s at 95°C for 10 s, annealing temperature for 30 s, 15 s at 95°C,

1min at 60°C, and a final 15 s at 95°C for melting curve analysis.

Relative gene expression levels were determined using the 2-DDCt

method (Livak and Schmittgen, 2001) with the GmActin gene

serving as an internal reference for normalization. Each sample was

subjected to four technical replicates and three biological replicates.

Data analysis was preformed using SPSS 24 software (SPSS Software

Inc., Chicago, IL, USA), and statistical analysis was conducted with

Analysis of variance (ANOVA) and Duncan’s multiple range test

(DMRT). The results were visualized with GraphPad Prism 10

(GraphPad Software Inc., San Diego, CA, USA).
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