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Introduction: Durum wheat is the most important cereal in the Mediterranean

regions, where drought negatively affects grain yield. Therefore, our objective

was to perform a multi-omics and integration analysis in conjunction with

physiological trials to improve our understanding of drought tolerance

mechanisms of durum wheat.

Methods: Genome-wide association study (GWAS) for yield components was

performed on a panel of 225 elite durum wheat genotypes evaluated in eight

sites under irrigated and rainfed conditions. Based on physiological parameters

(net photosynthesis, intracellular CO2 content, transpiration and stomatal

conductance) and grain yield, contrasting genotypes (susceptible and tolerant)

to drought were identified. A transcriptomic (RNA-seq), metabolomic and

integration analyses were performed to identify genes and metabolites

associated with tolerance in durum wheat.

Results: Nine marker-trait associations were detected across 8 environments,

and they were grouped into three QTL clusters (QTL_2A_TGW/GPS.1,

QTL_2A_TGW/GPS.2, and QTL_2B_TGW/GPS.1), explaining between 5.15%

and 14.29% of the phenotypic variation. One drought tolerant (QUC 3678-

2016) and one susceptible (BRESCIA) genotype were identified based on

physiological parameters. RNA-seq analysis showed that the genes regulated

were mainly enriched in processes such as response to salicylic acid, plant organ

senescence, synthesis of secondary metabolites, and immune response.

Metabolic analysis showed that drought increased the contents of amino acids,

sugars, and organic acids. The integration analysis identified 30 genes and six

metabolites in the root and 30 genes and 10 metabolites in leaves as the primary

variables in the drought-tolerant genotype, in which L-Proline was an important
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metabolite that allowed differentiating those two contrasting genotypes. A WRKY

transcription factor was also positioned on the stable QTL QTN_2A_TGW/GPS.1

associated with the GENE-1342_238 SNP marker.

Discussion: These results open an opportunity to use new biomarkers in durum

wheat breeding programs to develop resilient and high-yielding cultivars and

ensure food security under water deficit conditions.
KEYWORDS

Triticum durum L., proline, WRKY, QTL, GWAS, RNA-seq
1 Introduction

Durum wheat (Triticum turgidum L. ssp. durum; 2n = 4 × = 28,

AABB) is an essential crop in the world with a cultivated area of 17

million ha and a production of 33.6 million t in 2020 (Royo et al.,

2021). This crop is the most important cereal in the Mediterranean

region since it is deeply connected with the history and culinary

traditions of this region (Martıńez-Moreno et al., 2020). However,

only half of the worldwide production is produced in this area

(Zaïm et al., 2024). Among the main durum wheat-producing

countries in the world are Spain, France, Italy, and Greece in

southern Europe; Morocco, Algeria, and Tunisia in northern

Africa; Turkey and Syria in southwest Asia; Canada, the United

States, and Mexico in North America (Martıńez-Moreno et al.,

2020); and Argentina and Chile in South America (Colasuonno

et al., 2019). Durum wheat plays a key role in the human diet

because it is primarily used for making pasta and other semolina-

based products, such as frike, couscous, bourghul, and unleavened

bread, which are widely consumed in many countries of the world

(Sharma et al., 2019), providing more than 20% of the nutritional

demands for human consumption (Shewry and Hey, 2015).

Durum wheat is commonly grown in arid and semi-arid regions

under rainfed conditions, where the water scarcity combined with

high temperatures during grain-filling period significantly affects

key plant metabolic pathways, causing grain yield losses of up to

50% to farmers (Dettori et al., 2017; Soriano et al., 2021).

Additionally, global climate models predict a continued reduction

in precipitation in the main durum wheat production areas

(Schlaepfer et al., 2017; Daramola and Xu, 2022), which will

significantly affect the production. Therefore, it is essential to

study and understand the mechanisms that regulate drought

tolerance in durum wheat to develop high-yielding varieties that

are drought tolerance.

Plants have developed different physiological, biochemical, and

molecular mechanisms to escape, tolerate, or avoid drought stress

(Bashir et al., 2021; Dodd and Kudoyarova, 2021). Drought causes a

reduction in leaf water potential (Y). The plant responds by closing

its stomata, reducing the stomatal conductance, which affects

transpiration and net photosynthesis rates and, ultimately, the
02
grain yield (Gupta et al., 2020; Akhiyarova et al., 2023). The

phytohormone abscisic acid (ABA) plays a key role in the

regulation of stomatal closure under drought conditions (Hsu

et al., 2021), where two signaling pathways in response to

drought have been described, which are classified as ABA-

dependent and ABA-independent (Yoshida et al., 2014). From a

biochemical standpoint, drought signals induce stress-protective

compounds with antioxidant activity, osmoprotectants, and

secondary metabolites (Bashir et al., 2021). Finally, the drought

response strategies are genetically controlled by numerous genes

involved in osmolyte, redox, and hormonal metabolism (Singh PK.

et al., 2019), such as dehydration-responsive element-binding

factors (DREBs), basic leucine zipper (bZIP) proteins, MYBs,

MYC, WRKY, NAC, sucrose non-fermenting1-related protein

kinases (SnRKs) and SOS2-like protein kinases (CIPKs), among

others (Joshi et al., 2016; Singh PK. et al., 2019; Bashir et al., 2021).

Genome-wide association studies (GWAS) have identified

thousands of loci associated with complex traits in durum wheat

(Sukumaran et al., 2018; Zaïm et al., 2024). However, the functional

interpretation of GWAS results remains challenging due to large

candidate regions and linkage disequilibrium (Knoch et al., 2024).

Implementing and integrating different high-throughput omics

techniques, including genomics, transcriptomics, proteomics, and

metabolomics, have produced very valuable results in discovering

specific genes, proteins, metabolites, and signaling processes in

different tissues that are involved in the stress response in wheat

(Shah et al., 2018; Goel et al., 2020; Da Ros et al., 2023; Le Roux

et al., 2024). In addition, robust gene regulatory networks associated

with drought stress have been constructed using multi-omics

analysis in cereals (Baldoni et al., 2021), including wheat (Chen

et al., 2025), which have had a major impact on accelerating crop

improvement in the era of omics. However, multi-omics studies are

still very limited for wheat. In fact, to our knowledge, multi-omics

studies have only been performed in common wheat, opening the

possibility of exploring and identify new markers, genes and

metabolites that are associated with the response to drought in

durum wheat. Therefore, this study aimed to perform physiological

analyses and integrate different omics (genomics, transcriptomics,

and metabolomics) approaches for a better understanding of the
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interaction between the different tolerance mechanisms involved in

response to drought stress. These results are novel and valuable for

developing resilient durum wheat cultivars, which are necessary to

ensure production sustainability and global food security.
2 Materials and methods

All the experimental setup of this work is summarized in

Supplementary Figure S1.
2.1 Genome-wide association approach

2.1.1 Plant material and field management
A panel of 225 durum wheat genotypes comes from Mexico

(International Maize andWheat Improvement Center [CIMMYT]),

Chile (Chile’s National Agricultural Research Institute [INIA], and

Pontifical Catholic University of Chile [PUC]), Spain (Institute of

Agrifood Research and Technology [IRTA]), and Tunisia (National

Institute of Agronomic Research [INRAT]) breeding programs

were used as plant material. The complete list of the germplasm

used in this study is available in Supplementary Table S1. The field

trials were established at Santa Rosa (36° 32′ S, 71° 55′ W; 220

m.a.s.l.) and Los Tilos (33° 70′ S, 70° 70′ W; 530 m.a.s.l.) INIA

experimental stations in southern and central Chile, respectively.

Considering that durum wheat is grown in Chile from the

Valparaıśo (central) to Biobıó (south) Regions, the sites evaluated

in this study represent contrasting production environments. The

trials were established during 2021-22 (hereinafter referred to as 22)

and 2022-23 (hereinafter referred to as 23) growing seasons under

rainfed (r) and irrigated (i) conditions, giving a total of eight

environments. The monthly precipitation and temperature data

for each site and growing season are shown in Supplementary Table

S2. For the irrigation treatments, furrow irrigation was used at Santa

Rosa (SR) and Los Tilos (LT) locations; one irrigation with 50 mm

of water at the end of tillering (Z22) and at the flag leaf stage (Z37)

was applied in the two growing seasons in each location. The

experimental design was a-lattice with two replications and 15

incomplete blocks per replicate, each containing 15 genotypes. Each

entry was planted in plots of five rows of 2 m length and 0.2 m

distance between rows. The sowing rate was 22 g m2, and sowing

dates were 13 and 18 of August in 2021 and 2022, respectively, at

Santa Rosa; 30 of July and 28 of July in 2021 and 2022, respectively,

at Los Tilos. The harvest dates were 17 and 19 January 2022 and

2023, respectively, at Santa Rosa, and 10 and 20 January 2022 and

2023, respectively, at Los Tilos.

Plots were fertilized with a mix of 700 kg ha−1 with the following

element components: 18% P2O5, 4% N, 15% of K2O, 6% of S, 5% of

Ca, 0.2% of B and 0.3% of Zn. Fertilizers were incorporated with a

cultivator before sowing. At Z20, and Z30, 111 kg ha−1 of N was

applied. Weeds were controlled with the application of flufenacet +

flurtamone + diflufenican (96 g a.i.; Bacara Forte 360 SC, Bayer) as

pre-emergence controls and a further application of MCPA (525 g

a.i.; Anasac) + metsulfuron-metil (5 g a.i.; Anasac) as post-
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emergent. To keep the genotypes free of leaf disease as rust

(Puccinia striiformis and Puccinia triticina), two applications were

made of the foliar fungicide Miravis Aeon, Syngenta (75 mL ha−1;

100.1 g/L azoxystrobin, 125 g/L propiconazole, 75.1 g/L

pydiflumetofen). These applications were made before symptoms

appeared, to avoid any interference of these diseases in the

development of the plants.
2.1.2 Analysis of phenotypic data
Five yield-related traits such as spikes per square meter (SPM),

grains per spike (GPS), thousand grain weight (TGW), grain yield

(GY), and harvest index (HI) were evaluated. For each yield-related

trait, the best linear unbiased predictors (BLUP) were predicted for

each site, combined by treatment, and across environments using

the META-R software version 6.0 (Alvarado et al., 2020), using the

restriction maximum likelihood method (REML). The normal

distribution was tested with the Shapiro–Wilk test using the

shapiro.test function in R software. Most of the traits in the

different data sets followed a normal or approximately normal

distribution (Supplementary Table S3). The raw data and BLUP

values are provided in the supplementary Supplementary Table S4

and Supplementary Table S5, respectively. The linear mixed models

used in META-R are implemented in the lme4 package (Bates et al.,

2014) and adjusted as follows:

Yijk = u + Repi + Blockj(Repi) + Genk + eijk

Where Yijk is the trait of interest, u is the overall mean effect,

Repi   is the effect of the ith replicate, Blockj(Repi) is the effect of the j

th incomplete block within the ith replicate, Genk is the effect of the

kth genotype and   eijk   is the effect of the error associated with the i

th replication, jth incomplete block, and kth genotype. The

distribution was assumed standard with mean zero and variance

 s 2
e . All effects, except the overall mean, were treated as random.

Regarding the analysis between environments by treatment or

between all environments, the terms associated with the

environment and the environment x genotype interaction were

added to the model (Alvarado et al., 2020). Additionally, phenotypic

and genetic correlations among the traits combined across all

environments were performed in META-R software version 6.0

(Alvarado et al., 2020).
2.1.3 Analysis of genotypic data
The total genomic DNA of the 225 genotypes was extracted

from fresh leaves using Plant/Fungi DNA Isolation Kit (Norgen

Biotek, Canada), according to the manufacturer’s instructions.

DNA quality and concentration were measured using agarose gel

electrophoresis (1%) and Qubit 4.0 (Thermo Fisher Scientific, Inc.).

SNP genotyping was performed by Trait Genetics GmbH (http://

www.traitgenetics.com/) using the 90K SNP array developed by

Wang et al. (2014), of which a total of 51,423 SNPs were distributed

on the A and B genome of durum wheat. Monomorphic SNP and

SNPs with minor allele frequency (MAF) of less than 5% and those

SNPs and accessions containing 10% or more of missing values

were removed using TASSEL 5.2 software (Bradbury et al., 2007).
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Additionally, the genotypes with 10% or more heterozygotes were

also eliminated.

2.1.4 Population structure and kinship analysis
SNPs were pruned for linkage disequilibrium (LD) to remove

linked loci at the r2 > 0.2 using PriorityPruner software (http://

prioritypruner.sourceforge.net/) to infer the population structure

(Q) and kinship (K) matrices. The number of subgroups among the

225 genotypes was inferred based on a Bayesian model approach

implemented in Structure v2.3.4 (Pritchard et al., 2000). An

admixture ancestry model with correlated allele frequencies and

no prior information of population origin was used. The putative

number of subpopulations (K) ranged from 1 to 6. Ten replicates

were performed for each K with a burn-in period of 100,000 steps

followed by 1,000,000 MCMC iterations. The optimal K value was

determined in Structure Harvester (https://taylor0.biology.ucla.edu/

structureHarvester/) using the ad hoc statistic DK (Evanno et al.,

2005). To confirm the results, a discriminant analysis of the

principal components (DAPC) was implemented in ade4 (Chessel

et al., 2004) and adegenet (Jombart, 2008) and visualized with

ggplot2 (Wickham, 2010) packages in R software. The K matrix was

estimated using the ‘Scald_IBS method’ in the TASSEL 5.2 software

(Bradbury et al., 2007).

2.1.5 Association analysis
The marker-trait association analysis was carried out in

TASSEL 5 (Bradbury et al., 2007) with the following mixed linear

model (MLM) proposed by Yu et al. (2006):

y = Sa + Qv + Zu + e

Where y is the vector of BLUPs of each trait at each

environment, combined for the two water treatments (irrigated

and rainfed), and across all environment, a is the vector of SNP

effect (fixed), v is the vector of population structure (Q; fixed), u is

the vector of kinship effects (K; random), and e is the vector of

residual effects. S, Q, and Z are incidence matrices relating y to a v

and u, respectively. A threshold of p< 0.001 [−log10(p) > 3] was used

to indicate the significant SNP-trait association (MTA). Manhattan

plots were drawn to visualize significant markers using SRplot

(Tang et al., 2023), and quantile-quantile (Q-Q) plots to show

important p-value distributions. Furthermore, for comparison

purposes of the confidence of the MTAs detected using MLM, the

general linear model (GLM) and the fixed and random circulating

probability unitization model (FarmCPU) were performed on the

data sets combined by treatment using the R package rMVP (Yin

et al., 2021). MTAs detected for the same trait in at least two

environments were reported as stable MTAs andMTAs detected for

the same trait in all environments were considered constitutive.

Moreover, MTAs were clustered into a unique QTL using the

genome LD decay value, where 8.71 Mbp and 7.37 Mbp were

used for genome A and B, respectively. The MTAs not in LD were

considered as independent QTL.
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2.2 Physiological study

2.2.1 Yield tolerance index and experimental
design

The yield tolerance index (YTI) was calculated for the 225

genotypes established at Santa Rosa during the 2021–22 growing

season. This index combines the yield performance of a genotype

under drought with its potential yield under irrigated conditions

(Ober et al., 2004). The three most tolerant (highest YTI; QUC

3418-2020, QUC 3592-2020, and QUC 3678-2016) and susceptible

(lowest YTI; QUC 3319-2020, QUC 3572-2018, and BRESCIA)

genotypes were coded from G1 to G6and selected for the evaluation

of physiological parameters (Supplementary Table S6).

The experiment was performed in a greenhouse under a natural

photoperiod with control of temperature and relative humidity at

the Pontifical Catholic University of Chile (33°29’ 46.117” S and 70°

36’ 27.454” W) using the protocol outlined in Vargas et al. (2016).

The experiment consisted of two factors associated with drought

treatments: well-watered (WW, 100% of container capacity) and

water deficit (WD, 50% of container capacity). The experimental

layout was a split plot with five replications, arranging drought

treatments as the main factor (2) and the genotypes (6) as the

subfactor. The experimental unit was a pot containing 20 seeds

arranged randomly for each block. The seeds were sown in

rectangular pots (18 x 48 x 14 cm) with a substrate mixture based

on mature compost and sand (7:3 v/v). A dose of 10 g of slow-

release fertilizer Basacote® plus 6 M (16% N, 8% P2O5, 12% K2O)

was applied both at sowing and at the tillering stage, as described by

Vargas et al. (2016).

The initial irrigation was the same for all pots. Then, the pots

were weighed, and their volumetric water content (VWC) was

monitored daily using a Procheck reader with a GS2 METER

Group, Inc. USA FDR (Frequency Domain Reflectometry) probe.

Watering to replenish the VWC was performed when the

volumetric moisture content of the WW 100% treatment

decreased to 75% and that of the DW 50% treatment decreased to

15% of the VWC in the pots. The total amount of water used was

calculated as the difference between the initial and final weight of

the container. The WD treatment began from the full stage of plant

tillering (stage 32 of the scale of Zadoks) until the end of the crop.
2.2.2 Gas exchanges and leaf pigments
The net photosynthesis rate (Pn; mmol CO2 m-2 s-1),

intracellular CO2 content (Ci; mmol CO2 mol air-1), transpiration

(T; mol H2O m-2 s-1), and stomatal conductance (gs; mol H2O m-2

s-1) were measured using a portable Infrared Gas Analyzer (IRGA)

LI-6400/LI-6400XT across treatment between 8:00 to 13:00 on

sunny days. All measurements were taken using the fully

expanded flag leaf from the appearance of the first awns to the

fully emerged spike. The variables CO2 (400 ppm), temperature (20°

C), and relative humidity (~20%) were monitored. Moreover, the

greenhouse radiation at the start of the measurements was close to
frontiersin.org
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200 umol m-2 s-1, therefore, this radiation was established as a

reference. Leaf pigments (chlorophyll content [CC] and nitrogen

balance index [NBI]) were non-destructively measured in three flag

leaves per pot using a handheld Dualex® Scientific instrument

(Force A DX16641, Paris, France). These parameters were

measured at three phenological stages: at the end of stem

elongation (corresponding to stage 49 of the Zadoks scale, Z49,

Zadoks et al., 1974), at the beginning of flowering (stage 61 of the

Zadoks scale, Z61), and at the beginning of grain filling (stage 73 of

the Zadoks scale, Z73). The leaf water potential (LWP; Scholander

et al., 1965) and the relative water content (RWC; Barrs and

Weatherley, 1962) were also calculated.

2.2.3 Yield components and data analysis
The different plant tissues were harvested separately per pot and

dried at 70°C for two days, and weights were recorded until they

remained constant. The following yield components were

measured: number of grains, number of empty and productive

spikes, number of tillers, number of spikes, 1000-grains weight, pot

yield, harvest index, and total dry biomass. A general linear model

(ANOVA) analyzed physiological parameters and yield component

data. For comparisons of means, the LSD-Fisher test was used with

a significant level of 0.05. Additionally, the t-student test was

performed to compare treatments. All analyses were performed

using the R program (R Core Team, 2023).
2.3 Multi-omics approach

Two contrasting genotypes for drought tolerance were

identified based on their physiological response and yield

components under water stress conditions using data from the

2021–2022 season. Therefore, a new experiment using the drought-

tolerant (DT) and drought-susceptible (DS) genotypes was carried

out under greenhouse conditions as described above in the “yield

tolerance index and experimental design” section to perform the

transcriptomic and metabolomic analyses.

2.3.1 RNA extraction and transcriptomic analysis
For the RNA extraction, flag leaf and root tissues were collected at

three sampling times: 0, 14, and 30 days after anthesis (61, 75, and 85

on the Zadoks scale, respectively) from the two contrasting genotypes

under well-watered (WW) and water-deficient (WD) conditions.

Total RNA was extracted from each sample using the NucleoSpin

RNA Plant Kit (Macherey-Nagel, Düren, Germany), following the

manufacturer’s instructions. RNA quality was evaluated using the

Qubit™ RNA IQ Assay Kit with a Qubit™ 4 Fluorometer (Thermo

Scientific) and RNA quantity was assessed with a NanoDrop™ Lite

spectrophotometer (Thermo Scientific). RNA samples were sequenced

using Illumina NovaSeq6000 with an average of 20 million reads per

sample (Macrogen, Inc. Seoul). The raw reads were subjected to

quality filtering using the FastaQC (v0.11.9) and MultiQC (v1.12)

software. Low-quality sequences and adapters were trimmed with the

TrimGalore v.0.6.5 (https://github.com/FelixKrueger/TrimGalore),
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considering those with a Q value > 30 and a sequence size greater

than 50 bp. Subsequently, contamination was removed using the

Kraken2 software, and a library was built based on high-quality

sequences. Filtered reads were aligned against the Triticum

aestivum reference transcriptome IWGSC RefSeq v1.0 (https://

www.wheatgenome.org/) employing the STAR v2.07 software.

The differential expression of genes (DEG) was proceeded by

DESeq2 (Anders and Huber, 2010). Genes were differentially

regulated with a Log2-fold change ≤ - 1 or ≥ 1 and false

discovery rate (FDR)< 0.05. The functional annotations of DEGs,

the gene sets of Kyoto Encyclopedia of Genes and Genome (KEGG)

pathways, and Gene ontology (GO) terms based on biological

processes (BP) were employed in gene set enrichment analysis.
2.3.2 Polar metabolite profiling
Leaf root and seed tissues were collected at three sampling times: 0,

14, and 30 days after anthesis (61, 75, and 85 on the Zadoks scale,

respectively) in the two contrasting genotypes under WW and WD

conditions. The extraction and derivatization of polar metabolites were

determined according to the protocol of Hatoum et al. (2014), slightly

modified by Fuentealba et al. (2017). Briefly, 100 mg of frozen tissue

powder was mixed with 500 mL of cold methanol, and 20 mL of 2910 ng
L−1 phenyl b-D-glucopyranoside, and the sample was incubated at 70°C

for 15 min with shaking (Labnet International Inc., Edison, NJ, USA).

After centrifugation at 17–000 g for 20 min, 100 mL of supernatant was

dried under a stream of nitrogen gas. The derivatization consisted of

methoximation and trimethylsilylation reactions. GC-MSmethods were

performed, one for more concentrated compounds, such as sugars, and

the other for less concentrated compounds, such as organic and amino

acids. For both methods, the injector and interface temperatures were

220°C and 280°C, respectively, and 1 mL of sample was injected. Helium

was used as carrier gas with a constant flow of 1 mLmin-1. Mass spectra

in the 50–600 m/z range were recorded at a scanning speed of 2.66 scan

cycles per second. The MS ion source and quadrupole temperatures

were 230°C and 150°C, respectively. The method for more abundant

compounds included an injection with a split ratio of 1:150, and the

oven temperature was programmed to start at 120°C (for 1 min),

increased to 300°C at 10°C min−1, and then held for 6 min. The method

for less abundant compounds used a splitless injection mode, and the

oven temperature was set to start at 50°C (for 1min), increased to 310°C

at 10°C min−1, and then held for 13 min. The chromatographic peaks

were deconvolved and identified by comparing retention times and

mass spectra to a home-built library of commercial standards and the

NIST14 library using Mass Hunter Quantitative software (Agilent

Technologies, Santa Clara, CA, USA). To obtain a relative response of

each compound, the peak area data were corrected using the peak area

of phenyl b-D-glucopyranoside (as internal standard), the sample dry

weight, and a quality control (QC) sample representative of all samples.

PartialLeastSquaresDiscriminantAnalysis(PLS-DA)wasperformed

on the normalized dataset using theMetaboAnalyst 5.0 software (https://

www.metaboanalyst.ca/MetaboAnalyst/). PLS-DA analysis was used

with metabolites as predictor variables and the drought and

genotype treatments as response variables. Variables were mean-

centered and weighted by the standard deviation to assign an equal
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variance. Variable Important in Projection (VIP) scores were used

to filter PLS-DA results to determine essential features.

2.3.3 Transcriptomics and metabolomics
integration

Normalized expression/abundance values of transcripts and

metabolites were scaled considering the mean-centered and divided

by the standard deviation of each variable, which was used to perform

multi-omics integration analysis. The R package mixOmics v6.20.0

(Rohart et al., 2017) was used to perform the multiblock PLS-DA,

considering the average representation space between all datasets with

the block.plsda function described for the DIABLO software (Singh A.

et al., 2019). Correlations between omics datasets (transcriptomics and

metabolomics) were calculated and plotted using the plotDiablo

function of the same package. Finally, the tune.block.splsda function

was used to identify the minimum number of variables that explain the

sample dispersion of each variate, and correlations between selected

variables were plotted using the circosPlot function considering a

correlation cutoff = 0.8.
3 Results

3.1 Phenotypic variation for yield-related
traits

A panel of 225 durum wheat genotypes were grown under

rainfed and irrigated conditions in two locations (Los Tilos and
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Santa Rosa, central and south of Chile, respectively) for two

consecutive years (the 2022 and 2023 seasons), and five yield-

related traits were measured, such as spikes per square meter

(SPM), grains per spike (GPS), thousand grain weight (TGW),

grain yield (GY), and harvest index (HI). The combined analysis of

variance (ANOVA) across all sites showed significant effects (p<

0.05) of genotypes (G), environments (E), and their interactions

(G×E) for all traits, except for grains per spike (GPS) and spike per

square meter (SPM), in which the G×E factor was not significant

(Supplementary Table S7). The E effect explained most of the

variation for grain yield (GY; 79.8%) and 1000-grains weight

(TGW; 63.2%), harvest index (HI; 55.8%), and GPS (54.7%),

whereas the G×E effect explained the most significant variation

for SPM (45.5%). Moreover, the G×E interaction contributed more

to the total variability than the G effect for all traits except for TGW,

which is in accordance with the value of its broad-sense heritability

value ofH2 = 0.882. Under rainfed conditions, the E effect explained

over 52% of the variation for all yield-related traits, indicating that

the environment has a key impact on durum wheat yield.

Phenotypic variation was found for all traits across the 8

environments (Supplementary Figure S2). The highest average

GY was recorded in the SR_2022 site (9.46 t ha-1) under irrigated

conditions, whereas SR_2023 had the highest average GY (4.3 t ha-

1) under rainfed conditions. On average, a 36% reduction in yield

was observed at the two locations during the two growing seasons

due to drought (Supplementary Table S8). The grand mean,

variance components, and heritability for each trait are shown in

Table 1. The phenotypic variances were higher than the genotypic
TABLE 1 Grand mean, variance components, and heritability for grain yield (GY), spikes per square meter (SPM), harvest index (HI), grains per spike
(GPS), and thousand grain weight (TGW) under irrigated, rainfed, and across all environments.

Environment Statistic GY SPM HI GPS TGW

Irrigated H2 0.509 0.288 0.083 0.700 0.804

s 2
g 35.026 569.738 0.000 8.910 10.951

s 2
ge 39.965 961.071 0.000 1.656 1.837

s 2
e 190.225 6548.690 0.005 27.188 17.625

Grand Mean 75.969 423.052 0.308 28.696 48.192

Rainfed H2 0.269 0.395 0.438 0.665 0.774

s 2
g 4.758 542.927 0.001 6.106 9.173

s 2
ge 11.624 159.782 0.001 1.553 3.117

s 2
e 80.104 4676.959 0.003 21.470 15.143

Grand Mean 48.947 362.107 0.249 26.238 39.094

Across H2 0.600 0.481 0.416 0.826 0.882

s 2
g 17.856 524.080 0.000 7.953 10.022

s 2
ge 27.582 592.283 0.000 1.252 2.528

s 2
e 135.166 5613.349 0.004 24.303 16.334

Grand Mean 62.458 392.580 0.282 27.467 43.643
H2: broad-sense heritability; s 2
g : genotype variance; s 2

ge : genotype × environment variance; s 2
ge : residual variance.
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variances in all the traits in the combined analysis across all

environments. However, the genotypic variances were higher than

their corresponding environmental variances for GPS (7.95) and

TGW (10.02), indicating that these traits have greater genetic

variability within the traits evaluated in the durum wheat panel.

In addition, the GPS and TGW were the ones that presented the

highest heritability with values of H2 = 0.825 and H2 = 0.882,

respectively. These results show that GPS and TGW have greater

potential for genetic gains due to selection in breeding programs

using this durum wheat panel. On the other hand, the harvest index

(HI) was the trait that presented the lowest genetic variation (0.000)

and heritability (H2 = 0.416), being a trait with no potential to be

used as a selection criterion to obtain genetic gains.

The genetic and phenotypic relationship among traits under

irrigated, rainfed, and across environments showed significant (p<

0.05) correlations among most of the traits (Supplementary Table

S9). Under well-water (WW) conditions, the strongest genetic

positive associations were obtained between GPS and HI (r =

0.999; p< 0.05) and GPS and GY (r = 0.611; p< 0.05), while the

strongest negative correlation was found between TGW and HI (r =

-0.771; p< 0.05). The highest positive phenotypic correlation was

found between GPS and GY (r = 0.515; p< 0.05), while the negative

one was between TGW and GPS (r = -0.542; p< 0.05). Under water

deficit (WD) conditions, the highest positive genetic correlation was

between HI and GY (r = 0.924; p< 0.05), while the highest negative

correlation was between TGW and GPS (r = -0.771; p< 0.05). The

highest positive and negative phenotypic correlations were found

between HI and GY (r = 0.445; p< 0.05) and TGW and GPS (r =

-0.553; p< 0.05), respectively. Overall, GPS recorded one of the

highest and most consistent genetic and phenotypic correlations

with GY in both water regimes and across all environments.
3.2 Markers distribution and population
structure

12,498 SNP markers distributed across the 14 chromosomes,

primarily positioned in the regions close to the telomeres, were

retained after filtering criteria (Supplementary Figure S3). Out of

the total markers, 5,969 and 6,529 SNPs were located on the

genomes A and B, respectively. On genome A, the number of

markers varied from 631 to 1,061 on chromosomes 4A and 7A,

respectively, with an average of 852 SNPs per chromosome. In the B

genome, the number of markers ranged from 644 to 1,134 on

chromosomes 4B and 2B, respectively, with an average of 932 SNPs

per chromosome. The physical chromosome length ranged from

593.5 to 829.5 Mpb on chromosomes 1A and 3B, respectively. The

highest density of markers was found on chromosome 1B with

~1.57 SNP/Mpb (Supplementary Table S10).

Based on the structure and DAPC analyses, using 5,258 SNPs

retained after filtering by LD (r2< 0.2), the 225 durum wheat lines were

divided into two groups. Population structure analysis indicated K = 2

as the most probable number of subpopulations. Based on the

membership coefficient (Qi > 0.8), 18 lines (7 from INIA [Chile’s

National Agricultural Research Institute] and 11 from CIMMYT
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[International Maize and Wheat Improvement Center]) were

grouped into group 1, while 194 lines (87 from INIA, 98 from

CIMMYT, 3 from PUC, 2 from INRAT, and 4 IRTA) were classified

into group 2. This result indicates that the durum wheat lines were not

grouped according to their genebank origin. Conversely, five sub-

populations were inferred according to DAPC analysis by the origin of

the durum wheat lines (Supplementary Figure S4). The first and

second principal components (PC) explained 58.3% and 20.5% of

the total variation, respectively, in which the PC1 allows the

differentiation of lines from the INIA and CIMMYT gene banks.

Finally, the results from both Structure and DAPC analyses showed an

admixture between the genotypes of the different germplasm banks,

mainly those of INIA and CIMMYT, common in durum wheat lines

developed in breeding programs. The subsequent association analysis

was performed using the two principal components.
3.3 Linkage disequilibrium and genome-
wide association

The LD decay was similar in both genomes. In genome A, the

LD decayed at values less than r2< 0.2 at an approximate distance of

8.71 Mpb; in genome B, the LD decayed decay at 7.37 Mbp

(Supplementary Figure S5).

Based on the individual analysis by environment, a total of 772

significant SNPs (-log10P > 3) distributed across the 14

chromosomes of the durum wheat genome were associated with

the five yield-related traits through the eight environments using

the MLM model (Supplementary Table S11). Marker-trait

associations (MTAs) were 331 and 441 under rainfed and

irrigated conditions, respectively. The chromosomes with the

highest number of MTAs were 2A (351) and 2B (102), whereas

the lowest number of MTAs were 4B (2), 4A (18), and 5A (18)

(Figure 1). In this context, 300, 206, 115, 88, and 63 MTAs were

identified for TGW, GPS, HI, SPM, and GY, respectively. The

phenotypic variation explained (PVE) for each MTA ranged from

5% (BS00000297_51 on chromosome 2A) to 24 .3%

(Excalibur_c12446_155 on chromosome 3A), both for HI. A total

of 57 and 33 MTAs were stable in more than one environment

under irrigated and/or rainfed conditions, respectively. Within the

stable MTAs, eight were detected exclusively under rainfed

conditions, which were clustered into two genomic regions

associated with TGW on chromosomes 2A (QTN_2A.TGW.1_R)

and 3A (QTN_3A_TGW.1_R), explaining between 5.11% and

11.07% of the phenotypic variance. Under irrigated conditions, 32

stable MTAs were detected, clustered into twelve genomic regions

on chromosomes 1A, 2A, 2B, and 5A. All genomic regions were

associated with TGW and GPS, explaining between 5.15% and

10.41% of the phenotypic variation, except a quantitative trait loci

(QTL) (QTN_2B_GY.1_I) located on chromosome 2B at 56.78 Mpb

that explained between a 5.80% and 7.42% of the GY variation

(Supplementary Table S12). Finally, nine constitutive MTAs were

identified across all environments (Table 2), which were grouped

into three QTL associated with TGW and GPS located on

chromosomes 2A (QTN_2A_TGW/GPS.1; QTN_2A_TGW/GPS.2)
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and 2B (QTN_2B_TGW/GPS.1), explaining between 5.15% and

14.29% of the variation.

Based on the combined analysis by water treatment, the GLM

model, as measured by the Q-Q plot, did not show a pronounced

deviation from the expected distribution of P values in the tail area,

indicating poor control of false positives and negatives. In contrast,

while the FarmCPU model better controlled false positives and
Frontiers in Plant Science 08
negatives, the MLM model used in this study also provided

adequate control (Supplementary Figure S6). Therefore, our

MTAs detected using MLM are reliable. A total of 152 significant

MTAs (-log10P > 3) were found for the five yield-related traits

under irrigated conditions, with two for GY, 13 for SPM, 24 for HI,

54 for GSP, and 55 for TGW (Supplementary Table S13). The

percentage of phenotypic variation explained by each MTA varied
FIGURE 1

Manhattan plot showing the SNPs significantly associated with the yield-related traits evaluated across eight environments. SR, Santa Rosa; LT, Los
Tilos; 2022, 2021/22 growing season; 2023, 2022/23 growing season; Rainfed and Irrigated with 50 mm at the end of tillering and the flag leaf stage.
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from 5.23% (Kukri_rep_c108875_85 marker on chromosome 2B)

to 16.49% (Tdurum_contig27887_55 marker on chromosome 2A),

both markers associated with TGW and GPS. Under rainfed

conditions (Supplementary Table S14), a total of 107 MTAs were

detected for GY (10), SPM (2), HI (7), GPS (48), and TGW (40).

The marker BS00066873_51 with HI located on chromosome 2B

explained the lowest percentage of phenotypic variance, while the

Tdurum_contig27887_55 (2B) marker associated with TGW and

GPS explained the highest percentage (15.69%). Finally, under the
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combined analysis of both conditions (Supplementary Table S15), a

total of 133 MTAs were detected for GY (2), SPM (2), HI (5), GPS

(64), and TGW (60). The percentage of phenotypic variation

explained by each MTA varied from 5.13% (Excalibur_c4847_631

marker on chromosome 2A) to 18.03% (Tdurum_contig27887_55

marker on chromosome 2A), both markers associated with TGW

and GPS. Interestingly, the Tdurum_contig27887_55 marker

located at 156,366,746 bp on chromosome 2B, which was

associated with GPS and TGW, it was consistently the one that
TABLE 3 Effects of water treatment on different physiological parameters evaluated in six contrasting drought tolerant/susceptible durum
wheat genotypes.

Category Parameter Measure G1 G2 G3 G4 G5 G6

Gas exchange Pn Fully-expanded leaf *

T Fully-expanded leaf * * *

Gs Fully-expanded leaf * * *

Ci Fully-expanded leaf * *

Leaf pigment

CC

End of stem elongation * *

Beginning of flowering * *

Beginning of grain filling * * *

NBI

End of stem elongation *

Beginning of flowering * *

Beginning of grain filling * *

Water status
LWP

End of stem elongation *

Beginning of grain filling * *

RWC
End of stem elongation

Beginning of grain filling

Yield N° grains Harvest * * * *

TGW Harvest * *

Yield Harvest * *

Number of tillers Harvest * * * * *
fro
*Significant differences between treatments according to the Tukey test (p<0.05).
TABLE 2 Nine constitutive MTAs were identified across all eight environments, grouped into three drought-tolerant QTLs.

Marker Trait Chr Pos (Mpb) PVE (%) Name QTL

GENE-1342_238 TGW;GPS 2A 146.959587 5.15 - 13.6 QTN_2A_TGW/GPS.1

RAC875_rep_c74200_1415 TGW;GPS 2A 146.962374 5.15 - 13.6

wsnp_CAP11_c1787_968410 TGW;GPS 2A 146.962374 5.15 - 13.6

GENE-1319_146 TGW;GPS 2A 151.25509 5.62 - 14.29

TA001351-1193 TGW;GPS 2A 151.258908 5.62 - 14.29

BobWhite_c2532_966 TGW;GPS 2A 154.415628 5.62 - 14.29

Tdurum_contig27887_55 TGW;GPS 2A 154.415628 5.62 - 14.29

wsnp_BG607088A_Ta_1_1 TGW;GPS 2A 156.762886 5.39 - 13.21 QTN_2A_TGW/GPS.2

GENE-1181_694 TGW;GPS 2B 209.088615 5.62 - 14.29 QTN_2B_TGW/GPS.1
Chr, Chromosome; Pos, position; PVE, percentage of the phenotypic variation explained.
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explained the greatest phenotypic variation under irrigated, rainfed,

and in the combined analysis of both conditions.
3.4 Physiological effects of drought

The summary of the physiological parameters evaluated for the

six genotypes can be visualized in Table 3. According to the results,

the G3 (BRESCIA) and G4 (QUC 3678-2016) genotypes were the

most and least affected, respectively, due to water deficit (WD)

treatment. Therefore, these genotypes are appropriate candidates

for studying mechanisms associated with susceptibility (BRESCIA)

and tolerance (QUC 3678-2016) in the durum wheat panel.

Regarding the gas exchange parameters studied, the genotype

and the genotype x water treatment interaction were significant

only for stomatal conductance (gs) according to the ANOVA

(Supplementary Table S16), in which the genotypes that showed

the highest gs under water-deficit (WD) conditions were G1 (0.26

mol H2O m-2 s-1) and G2 (0.24 mol H2O m-2 s-1), while the lowest

values of gs were found in G3 (0.03 mol H2O m-2 s-1) and G5 (0.07

mol H2Om-2 s-1). The genotypes that most and least reduced gs due

to WD treatment were G3 (75%) and G6 (7.14%), respectively. The

G4 genotype had a gs reduction of 66.66%, and, surprisingly, the G1

genotype increased gs by 136.36%. The highest net photosynthetic

rate (Pn) was observed in G4 (Pn = 6.3 mmol CO2 m
-2 s-1) and G2

(Pn = 8.73 mmol CO2 m-2 s-1) for well-watered (WW) and WD

conditions, respectively. The G3 and G4 genotypes reduced Pn due

to WD treatment by 32.14% and 37.14%, respectively. According to

the t-student test performed, significant differences (p< 0.05) were

found between treatments for Ci and T in G3 and G4 genotypes.

The G3 genotype was the most affected with respect to the

intracellular CO2 concentration (Ci) and transpiration (T) with a

reduction of 23.8% and 69%, respectively. While the G4 genotype

had a reduction of 14.29% and 60.94% for Ci and T, respectively.

At the end of the stem elongation stage (Z 49), nitrogen balance

index (NBI) did not show significant differences between genotypes

and water treatments according to the ANOVA (Supplementary

Table S17). The G3 genotype was the most affected with a reduction

of 25.38%, while the G4 genotype had a 4% reduction. Chlorophyll

content (CC) was significantly reduced due to WD treatment, with

genotype G6 standing out with a 26% reduction, followed by G3

with 16%. The G4 genotype was little affected due to WD treatment

and had a reduction of 6.32% in CC. During flowering (Z 61,

Zadoks et al., 1974), no differences were found between genotypes

and between water treatments. However, NBI and CC increased due

to WD treatment in the G3 and G4 genotypes. The G3 had an

increase of 3% and 5% for NBI and CC, respectively. While the G4

genotype increased by 4.5% and 6% for NBI and CC, respectively.

At the beginning of grain filling (Z 73), only 4 genotypes (G1, G2,

G3, and G4) were evaluated due to technical limitations. Significant

differences were found for NBI and CC only for the factor

treatment. The G3 genotype experienced a more significant

reduction for NBI (39.76%) and CC (42.69%) due to WD
Frontiers in Plant Science 10
treatment. It is worth noting that G4 had the lowest reduction

between treatments associated with NBI (11%) and CC (18%).

At the end of stem elongation (Z 49) and during beginning of

flowering or grain filling (Z 60), no significant differences were

observed between genotypes for leaf water potential (LWP).

Compared to the control, the G3 genotype significantly reduced

its LWP by 57.62% and 53.96% at stages Z 49 and Z 60, respectively.

The G4 genotype had a 1.5% reduction at stage Z 49 and an 11.59%

increase at stage Z60 for LWP (Supplementary Table S18). For

relative water content (RWC), no significant differences were

identified between genotypes and treatments at stages Z 49 and Z

60. However, the genotype x treatment interaction was substantial

at stage Z 49. The G3 genotype had a reduction of 1% and 19% at Z

49 and Z 60 stages, respectively. While the G4 genotype had a

reduction of 1% in both stages of development. Finally, for the

yield-related traits, there were significant differences between

genotypes and between treatments, in which the G1, G5, and G3

genotypes were the most affected under WD conditions. In contrast,

the G6 and G4 genotypes were the least affected. The grain yield was

reduced by 67.5% and 38.09% for G3 and G4 genotypes,

respectively (Supplementary Table S19).
3.5 Overall gene expression profile under
drought stress

Gene transcription from leaf and root tissues at 0-, 14-, and 30-

days post anthesis (DPA) under WW and WD conditions were

compared to investigate the molecular responses of the two

contrasting genotypes of durum wheat to drought previously

reported. An average of 27,278,116 reads were generated, of

which 26,294,562 were retained after the quality and trimming

filters, meaning 96.3% sequencing integrity. In total, 85% of

sequences were aligned to the genome of Triticum turgidum

Svevo v1.0, within which 81.43% had an alignment to a single

locus while 4% showed an alignment to multiple loci. Overall, there

was a higher amount of differentially expressed genes (DEGs) in the

root compared to the leaf for comparisons between genotypes and

treatments at the three developmental stages studied. 11,176 DEGs

were identified in the leaf, of which 4,819 were up- and 6,357 down-

regulated. In root, 12,229 DEGs were identified, of which 5,489 were

up- and 6,740 down-regulated. In the leaf, a more significant

number of DEGs were determined by the comparison between

genotypes (9,173) than between treatments (2,003). In root, the

number of DEGs identified by comparing genotypes and treatments

was 6,949 and 5,280, respectively. It was confirmed through

principal component analysis (PCA) that the transcriptome data

of the leaf could separate the G3 (drought-susceptible, DS) and G4

(drought-tolerant, DT) genotypes by PCA1 (39% of variance) and

the drought treatment by PC2 accounting for 22% of variance. At

root, there was no clear separation between genotypes and

treatments, where PC1 and PC2 explained 36% and 15% of the

variance, respectively (Supplementary Figure S7).
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The summary of the total number of up-and down-regulated

genes identified by the comparison of WD/WW in the two

contrasting genotypes and DT/DS under different water

conditions at the three developmental stages in the leaf and roots

is shown in Figure 2. A large proportion of drought-responsive

genes were induced in leaf at 0-DPA in both genotypes after

drought treatment, and the number of drought-responsive genes
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in the DT genotype (1,174 DEGs) was much higher than in the DS

genotype (84 DEGs) after drought stress exposure. 151 and 1852

DEGs were identified by comparing WD/WW, with 92 and 569 up-

regulated genes and 59 and 1283 down-regulated genes for DS and

DT genotypes, respectively (Figure 2A). Moreover, four DEGs were

constitutive across 0 to 30-DPA in the DT genotype (Figure 2B),

which were TRITD2Bv1G146530 (encodes a plastid-localized
FIGURE 2

A total number of up-and down-regulated genes identified by the comparison of well-water (WW) and water deficit (WD) conditions in the drought-
tolerant (DT) and drought-susceptible (DS) genotypes and the comparison DT/DS genotypes under WW/WD conditions at 0-, 14-, and 30-days post
anthesis (DPA) in leaf (A, B) and root (C, D).
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arogenate dehydratase involved in phenylalanine biosynthesis),

TRITD4Bv1G179760 (encodes a chloroplast RNA-binding

protein), TRITD5Av1G000200 (encodes a grain softness protein),

and TRITD5Bv1G186950 (Serine protease inhibitor (SERPIN)

family protein). Interestingly, the TRITD5Bv1G186950 and

TRITD5Av1G000200 genes were down-regulated (Log2FC< -20)

at 0-DPA, and then at 14- and 30-DPA were highly up-regulated

(Log2FC > 20). Additionally, 583 DEGs were compared to the two

genotypes under WD conditions.

Different expression patterns across the three developmental

stages studied were observed in the root. In the DS genotype, a more

significant amount of DEGs were observed at 0-DPA (1,096) and

14-DPA (907), whereas a greater amount of DEGs were observed at

0-DPA (2,041) and 30-DPA (857) in the DT genotype, which were

much higher compared to the DS genotype. 2192 and 3088 DEGs

were identified by comparing WD/WW, with 841 and 1429 up-

regulated genes, 1351 and 1659 down-regulated genes for DS and

DT genotypes, respectively (Figure 2C). 11 DEGs were constitutive

in the DT genotypes (Figure 2D). The total number of DEGs under

WD was higher than that under WW conditions. Finally, 569 and

550 DEGs were constitutive in the three developmental stages under

WW and WD conditions, respectively.
3.6 Gene classification by gene ontology

Since the reference genome of T. turgidum does not have a

robust functional annotation, the functional classification was

performed from an alignment against the genome of A. thaliana.

Gene ontology (GO) analysis was based on classifying DEGs into

various biological processes by overrepresenting these genes within

the genome. GO analysis showed genotype-, time-, and tissue-

specific results, revealing that some important biological processes

occur differently in the two contrasting genotypes evaluated under

water stress. However, some biological processes were common,

highlighting cell death, response to salicylic acid, and biosynthesis

of secondary metabolites.

In leaf tissue, the DS genotype only showed enrichment at 14

DPA, whereas the DT genotype exhibited enrichment at 0 DPA and

30 DPA (Supplementary Figure S8). Additionally, genes associated

with the DS genotype were classified into fewer biological processes

than the DT genotype, with most genes related to gibberellin

response and ribosome biogenesis. In contrast, the functional

annotation of genes associated with the DT genotype involved a

wide range of biological processes, highlighting cell death, salicylic

acid response, immune response, and secondary metabolite

biosynthesis. Comparing the two genotypes under WW

conditions, the overrepresentation of genes associated with

senescence, monocarboxylic acid biosynthesis, aromatic

compound catabolism, and cell death was found. Under WD

conditions (WD_DT/DS), the enriched processes were

senescence, hypoxia, cell death, and salicylic acid response at 0-

DPA. In later developmental stages, the persistence of genes

associated with senescence and citric acid response was observed,

as well as the appearance of genes related to secondary metabolite
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biosynthesis and metabolic processes associated with hydroxyl

group-containing compounds. The DS genotype showed gene

enrichment across all three times studied in root tissue. Many

genes associated with various biological processes were identified,

including salicylic acid response, signaling regulation, secondary

metabolite biosynthesis, senescence, response to external stimuli,

ABA signaling pathway, and cellular communication regulation

(Figure 3A). In the DT genotype, gene enrichment was observed in

processes unrelated to drought stress response. In early

developmental stages, genes were primarily associated with DNA

replication, chromosomal organization, microtubule movement,

ribosome biogenesis, cell wall biogenesis, monocarboxylic acid

biosynthesis, and ABA signaling pathway. In contrast, in later

developmental stages, genes were mainly classified into catabolic

processes and senescence (Figure 3B). In both genotypes under

WW conditions, gene enrichment was observed in flavonoid

biosynthesis, secondary metabolite biosynthesis, and processes

related to the plant immune system (Figure 3C). Under WD

conditions, gene overrepresentation was associated with immune

response, cell death, and salicylic acid response (Figure 3D).
3.7 Metabolite profiling under drought
stress

To investigate the metabolic response under drought in selected

genotypes (G3 and G4), the relative abundance of polar metabolites

in leaf, root, and seed tissues was determined at 0-, 14-, and 30-DPA

by gas chromatography/mass spectrometry (GC–MS) (Figure 4).

Overall, 43 metabolites were identified and quantified, 37 were

identified as known compounds, and 6 metabolites were unknown.

Of these metabolites, most were amino acids, sugars, and organic

acids. Moreover, the highest number of known compounds were

present in leaf (42), then in root (41) and seeds (38). A Partial Least

Squares-discriminant Analysis (PLS-DA) showed that the

metabolite profiles between DT and DS genotypes differed

(Figure 4A), which suggests a distinction in the metabolite

accumulation response due to genotypic differences. The score

plots explained 29.1% (leaf), 45.5% (root), and 73.1% (seed) of

the variability with the two first components. Variable importance

of projection (VIP) scores were determined for displaying the 15

most important metabolites involved in the discrimination between

genotypes and treatment (Figure 4B). Among the five most

contrasting metabolites in the leaf are D-Mannitol, shikimic acid,

erythrono-1,4-lactone, (Z), 2-oxoglutaric acid, and L-Serine. The

root had mainly amino acids such as L-threonine, L-Serine, L-

valine, L-glutamic acid, and shikimic acid. In contrast, a

disaccharide unknown, D-Mannitol, shikimic acid, unknown

sugar, and malic acid were the five most contrasting metabolites

in seeds. Only four metabolites showed higher abundance in the DT

genotype under WD conditions in the leaf (citric acid, 2-Keto-l-

gluconic acid, glycol, and malic acid). Interestingly, vanylglycol was

the only metabolite with a high abundance in roots, while no

metabolite had the highest abundance in the DT genotype under

WD conditions in seeds.
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Further analysis of individual metabolites based on fold-change

(FC) of metabolite abundance between the comparison ofWD/WW

in the two genotypes and DT/DS under the two water conditions at

different developmental stages in leaf and roots is shown in

Supplementary Figures S9, S10. Across the three time points in

the leaf, the total number of differential abundance of metabolites

(DAMs) was 30 and 35 in the DT and DS genotypes, respectively.

Only two (asparagine and quininic acid) and one (L-Proline)

metabolites were identified at all three times (constitutive) in DT

and DS genotypes due to drought treatment, respectively. Further,

33 and 43 DAMs were determined by comparing DT/DS genotypes,
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with 24 and 25 up-concentrated and 9 and 18 down-concentrated

metabolites for WW and WD conditions, respectively. Under WD

conditions, a similar number of DAMs was observed at 0-DPA (13)

and 14-DPA (12), while the number was higher (18) in the later

stage (30-DPA). Moreover, five (D-mannitol, asparagine, aspartic

acid, L-glutamic acid, malic acid) metabolites were constitutive

across 0 to 30-DPA in the comparison between the two genotypes

under WD conditions, and only citric acid was under

WW conditions.

A higher number of DAMs was determined in the root than in

the leaf. In this sense, 41 and 49 DAMs were determined across the
FIGURE 3

Gene ontology (GO) enrichment analysis in the root. Comparison between well-water (WW) and water deficit (WD) treatments for drought-
susceptible (DS; A) and drought-tolerant (DT; B) genotypes. Comparison between DS and DT genotypes under WW (C) and WD (D) conditions.
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three phenological stages in the DT and DS genotypes under WD

conditions, respectively. Furthermore, more constitutive DAMs

were identified in roots compared to leaves. Nine metabolites

were constitutive in the DS genotype, which were amino acids (L-

Proline, Asparagine, L-Glutamine, L-Threonine, L-Valine, and L-

Phenylalanine), sugars (D-Fructose, and D-Glucose) and the polyol

D-Mannitol. In the DT genotype, the metabolites constitutive were

organic acids (Quininic acid, Aconitic acid, 2-Oxoglutaric acid, and

Quininic acid), the amino acid L-Proline, and an unknown

disaccharide. Comparing both contrasting genotypes, a similar

number of metabolites were up-concentrated under WW (14)

and WD (15) conditions.

Interestingly, more metabolites were down-concentrated under

WD (41) than WW (8) conditions. Four metabolites were

constitutive under WD conditions: organic acids (aconitic,

aspartic, and glyceric acid) and L-valine. In contrast, the D-

Mannitol and 5-O-Feruloylquinic acid were constitutive under

WW conditions. These results indicate that the metabolic

response of durum wheat under water stress conditions is

modulated at a specific time, indicating the differential abundance

of metabolites at different developmental stages. However,

constitutive metabolites are up-and down-concentrated at

different times (0- to 30-DPA), which can be used as biomarkers

associated with drought stress in leaves and roots.
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3.8 Integration of transcriptomic and
metabolomic data

To integrate transcriptomic and metabolomic data and find the

lowest number of variables that allow explaining the separation

between the DT and the DS genotypes under WD conditions and

both genotypes under WW conditions, a sPLS-DA was performed

using each sampling time as replicas (Figure 5). The number of

DEGs used for the analysis was obtained from the union of a total of

DEGs identified that respond to drought in both genotypes and a

total of DEGs identified due to a differential response between

genotypes. Therefore, the total list of DEGs was 697 and 900 DEGs

for leaf and root, respectively. A clear separation was observed

between the genotypes under WW condition and the DT genotype

under the WD condition with variate 1. In contrast, a separation

was observed between the genotypes under WW condition and the

DS genotype under the WD condition with variate 2 (Figure 5A).

Considering a two-variate analysis, the tuning function was

performed to determine the optimal number of variables to select

for the leaf and root dataset. For variable 1, which separates the DT

genotype, 60 (30 in root and 30 in leaf) transcripts and 16 (6 in root

and 10 in leaf) metabolites that best explained the separation were

selected (Figure 5B), and their expression/abundance is shown in

Supplementary Table S20. Regarding variable 2, which separates the
FIGURE 4

Partial least squares-discriminant analyses (PLS-DA) with the two first components (A) and variable’s importance (VIP scores) of secondary
metabolite profiles (B) of leaf, root, and seed of the drought-tolerant (DT) and drought-susceptible (DS), genotypes under well-water (WW) and
water deficit (WD) conditions at 0-, 14- and 30-DPA.
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DS genotype, 70 (40 in root and 30 in leaf) transcripts and 28 (15 in

root and 13 in leaf) metabolites were selected (Figure 5C), and their

expression/abundance is shown in Supplementary Table S21. A

circosPlot with the correlations between the selected transcripts and

the metabolites for each variate in the DT and DS genotypes is

shown in Figures 5B, C. Finally, L-Proline was an important

metabolite in both tissues (leaf and root) that allowed

differentiating the tolerant genotype from the susceptible one

(Figure 5D), suggesting it as a good biomarker.

To identify possible biomarkers associated with drought

tolerance/susceptibility in durum wheat, the variables that

exhibited a consistent differential expression/abundance across

the three sampling times in each genotype were determined.

Regarding the transcriptomic data, 15 and 24 genes had higher

differential expression in leaf and roots, respectively. Interestingly,

the TRITD6Av1G194890 gene that encodes a Galactoside 2-alpha-
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L-fucosyltransferase and the L-proline metabolite were significant

in both tissues in the DT genotype. In addition, the metabolites such

as malic acid, glyceric acid, Myo-inositol, and L−proline were

appropriate candidates for leaf, and the sugars such as D-fructose

and D-glucose and the amino acid L-proline were appropriate for

roots. These results confirm that the L-proline is a very good

candidate as a biomarker of tolerance to drought, independent of

tissue and developmental stages. In addition, our study allowed us

to determine new tissue-specific biomarkers in durum wheat. The

catalase was an interesting gene in the DS genotype that responds to

drought stress in both tissues. Therefore, it could be a proper

biomarker of susceptibility to drought in durum wheat. The

metabolites such as 2-oxoglutaric acid, D-mannitol, and an

unknown sugar were adequate candidates for leaf. The amino

acids such as L-phenylalanine, L-leucine, asparagine, L-isoleucine,

L-valine, L-threonine, and b-sitosterol were suitable for roots.
FIGURE 5

Leaf and root transcriptomic and metabolomic integration analysis of durum wheat considering two water treatments (WW and WD) at three
developmental stages (0-, 14-, and 30-DPA) in susceptible (DS) and tolerant (DT) genotypes. (A) Average sparse partial least square discriminant
Analysis (sPLS-DA) with selected variables using leaf metabolomic (ML), leaf transcriptomic (TL), root metabolomic (MR), and root transcriptomic (TR)
as omic datasets for integration. Circosplots showing the root and leaf selected metabolites and transcripts for the DT genotype (variate 1; B) and DS
genotype (variate 2; C). The expression values of each transcript are plotted on the outside part of the circosplots, considering the average value of
all replicates for each condition (WW-mean, DS-WD-mean, and DT-WD-mean). Positive and negative correlations between omic data sets were
represented by green and red lines in the center, respectively. In red, transcripts were located on chromosome 2A, where constitutive QTLs were
identified. (D) L-Proline abundance in tolerant (DT) and susceptible (DS) genotypes in leaf and root under well-water and water deficit conditions.
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4 Discussion

4.1 Genetic dissection of drought tolerance
in durum wheat

In recent decades, climate change has increased drought

frequency, duration, and extent during plant development,

causing significant grain yield losses worldwide and affecting food

security (Bailey-Serres et al., 2019). Uncertainties about the future

effects of climate change require breeders to develop varieties that

perform well in diverse environments, which is challenging since

broad adaptation is hampered by high genotype-environment

interactions for most yield-related traits (Zaïm et al., 2024). The

ANOVA analysis across eight environments showed a larger

contribution of the G×E interaction to the total variability

compared to the G effect for all traits except for TGW, which

agrees with their heritability as reported in previous studies

(Brinton and Uauy, 2019; Arriagada et al., 2020). Thus,

developing high-yielding variet ies adapted to diverse

environments requires the accumulation of loci with additive

genetic effects on yield components. In this sense, numerous

studies have been carried out to identify quantitative trait loci

through QTL or associative mapping related to the main yield

components under irrigated and rainfed conditions in durum wheat

(Sukumaran et al., 2018; Maccaferri et al., 2019; Arriagada et al.,

2022; Zaïm et al., 2024). Most common wheat loci have been

localized on chromosomes 2B, 3A, 4A, 4B, 7A, and 7B (Gupta

et al., 2017; Goel et al., 2020). In durum wheat, the most significant

MTAs associated with yield components under irrigated, rainfed,

and heat stress were identified on chromosomes 2A and 2B

(Sukumaran et al., 2018). This agrees with our results, where the

chromosomes with the highest number of MTAs were 2A (351), 2B

(102), and 7B (53), and the traits most reported were TGW and GPS

(Zaïm et al., 2024).

The QTLs identified across different environments (stable

QTLs) can be considered robust candidates for improving

drought tolerance and increasing grain yield (Soriano et al., 2021;

Arriagada et al., 2022). This study identified nine constitutive MTAs

across eight environments under rainfed and irrigated conditions.

These MTAs were grouped into three QTLs associated with TGW

and GPS, two QTLs located on chromosomes 2A (QTN_2A_TGW/

GPS.1; QTN_2A_TGW/GPS.2) and one on chromosome 2B

(QTN_2B_TGW/GPS.1), explaining between 5.15% and 14.29%

of the variation. In a previous Meta-QTL (MQTL) analysis,

Arriagada et al. (2022) identified three MQTL associated with

yield components on chromosomes 2A (2) at 71.4 and 88.7 cM

and 2B (1) at 28.9 cM associated with TGW and HI under rainfed

and irrigated conditions. Moreover, Soriano et al. (2021) identified

an MQTL on chromosome 2A at 50.8 cM related to normalized

difference vegetation index (NDVI) and chlorophyll content

(SPAD), traits that are associated with grain yield under drought

stress. Sukumaran et al. (2018) also identified a stable QTL under

irrigation and drought conditions on chromosome 2A at 66–70 cM

associated with TGW. These results suggest that regions on

chromosomes 2A and 2B are useful in durum wheat breeding
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programs, in which the goal is to develop varieties adapted to

different environments with high grain yields.
4.2 Physiological response to drought
stress in durum wheat

Reductions of 1% in net photosynthesis (Pn), 8% in intercellular

carbon concentration (Ci), and 21% in transpiration (T) were

observed in the water deficit (WD) treatment, with stomatal

conductance (gs) 9% lower across genotypes. Zhao et al. (2020)

reported a 20% decrease in Pn in bread wheat under moderate

deficit irrigation, while Bogale et al. (2011) noted significant

reductions in Pn and T in durum wheat under WD conditions,

aligning with earlier findings (Condon et al., 2002; Allahverdiyev,

2015). Measurements in this study were taken two weeks after

starting the WD treatment, and gas exchange and yield components

response vary based on the frequency, intensity of water stress, and

wheat growth stage and may not have been reflected to a full extent.

The G3 genotype exhibited significant susceptibility to water

deficit (WD), with all gas exchange parameters declining and lower

NBI and Chlorophyll Content (CC). In contrast, G4 genotype

showed a 66% reduction in gs and a 61% decrease in T but

maintained stable Ci and Pn and higher NBI and CC, linked to

the chromosome 2 findings previously discussed (Sukumaran et al.,

2018; Soriano et al., 2021; Zaïm et al., 2024). Pn reduction is

primarily due to stomatal closure under water stress, linked to

increased ABA in the xylem (Liu et al., 2015). Still, non-stomatal

limitations also arise from lowered enzymatic efficiency or

activation, including RuBP carboxylation and regeneration (Flexas

and Medrano, 2002). Water stress can also damage the oxygen-

evolving complex and PSII reaction centers (Sainz et al., 2010).

Severe drought slows ATP renewal as proton concentration rises in

the thylakoid lumen, leading to more PSII heat dissipation.

Research indicates that Rubisco activity and RuBP reduction do

not limit Pn until drought becomes severe (Boutraa et al., 2010).

Also, gas exchange parameters may not change significantly until

the volumetric water content of the soil decreases by more than

two-thirds (Sinclair, 2005).
4.3 Transcriptomics response to drought in
durum wheat

The stress signaling mechanism and its regulatory networks

that control the expression of critical genes are the basis of plant

tolerance to drought (Janiak et al., 2016). In general, it was observed

that the response to drought stress in durum wheat acted in a tissue-

and time-specific manner since neither the number of DEGs nor

their functional annotation was standard between leaf and root in

the different sampling times studied in this work. There was a

higher amount of DEGs in the root compared to the leaf for

comparisons between genotypes and treatments at 0-, 14- and 30-

DPA. Moreover, most drought response genes were regulated at 0-

DPA in both genotypes, where the number of DEGs in the DT
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genotype (1,174) was much higher than in the DS genotype (84).

This result is expected since the plant responds to drought stress by

sensing the water shortage in the soil through its roots (Janiak et al.,

2016). Then, a signaling cascade is activated that sends chemical

signals to the tissues of the aerial part, such as shoots and leaves

(Kuromori et al., 2022), to initiate a response that leads to

physiological, biochemical, and morphological changes that allow

plants to tolerate stress conditions (Janiak et al., 2016).

Drought stress modulates molecular responses associated with

the biosynthesis of antioxidants, photosystem components, ABA

metabolism, biosynthesis of secondary metabolites, and metabolism

of carbohydrates and tricarboxylic acids in durum wheat (Zuluaga

et al., 2023). This study’s GO analysis showed genotype-, time-, and

tissue-specific results, revealing that some important biological

processes occur differently in the two contrasting genotypes [G3

(BRESCIA, drought-susceptible) and G4 (QUC 3678-2016,

drought-tolerant)] evaluated under water stress. However, some

biological processes were common, including cell death, response to

salicylic acid, and biosynthesis of secondary metabolites. Under

drought stress, the salicylic acid (SA) phytohormone regulates the

antioxidant defense system, transpiration and photosynthesis rates,

nutrient uptake, stomatal movement, nitrogen metabolism, cell

elongation, proline metabolism, inhibiting lipid oxidation, and

deactivating reactive oxygen species (ROS) (Khan et al., 2015;

Khalvandi et al., 2021; González-Villagra et al., 2022). In wheat,

the SA induced responses against drought by increasing

antioxidative enzymes and osmolytes such as proline and total

soluble sugars (Sharma et al., 2017; Khalvandi et al., 2021).

Additionally, plants with exogenous applications of SA have

higher biomass, higher chlorophyll content, higher water content,

higher Rubisco carboxylase activity, and higher superoxide

dismutase (SOD) activity relative to untreated plants (Singh and

Usha, 2003). On the other hand, plants synthesize secondary

metabolites such as flavonoids, spermidine, and plant hormones

to scavenge ROS and protect themselves from lipid peroxidation

when subjected to adverse environmental conditions (Yadav et al.,

2021). Direct regulation of genes in the biosynthetic pathway of

secondary metabolites or indirect regulation through

phytohormone regulation provides the plant with drought

tolerance by avoiding oxidative stress (Jogawat et al., 2021).

Therefore, phytohormones such as salicylic acid and secondary

metabolites play a key role in the drought tolerance of durum wheat.

Finally, a recent study indicates that post-anthesis drought stress

greatly influences wheat grain development and programmed cell

death in the endosperm. The expression of genes related to the

glutathione-ascorbic acid cycle pathway (DNA repair) and the

mitogen-activated protein kinase (MAPK) signaling cascade

pathway (membrane functions) were key pathways involved in

regulating the programmed cell death at two key stages of

endosperm development, 7 days and 14 days post anthesis (Li

et al., 2024), which agrees with our results.

At the gene level, four DEGs showed a constitutive response to

drought stress from 0- to 30-DPA in leaves of the DT genotype.

However , only two genes (TRITD2Bv1G146530 and

TRITD4Bv1G179760) were up-regulated all three times sampled.
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The TRITD2Bv1G146530 gene located on chromosome 2B

(434782763–434784101 bp) encodes a plastid-localized arogenate

dehydratase (ADT) involved in phenylalanine biosynthesis. The

amino acid phenylalanine serves as a building block for proteins and

as a main precursor for the biosynthesis of phenylpropanoids that play

a key role in plant growth, development, and the response to

environmental signals (El-Azaz et al., 2020). In Arabidopsis, the

arogenate dehydratase gene (ADT2) plays an essential role in seed

development because an ADT2 deficiency causes seed abortion (El-

Azaz et al., 2018), which in wheat can translate into a loss of grain yield.

In common wheat, the arogenate dehydratase 5 (ADT5) expression

was increased in leaf tissues of a sensitive and tolerant cultivar after 4 h

drought stress. However, the expression level of ADT5 in the leaf was

increased by eight-fold and decreased by two-fold in the tolerant and

susceptible cultivars, respectively, after 8 h of drought stress (Cevher-

Keskin et al., 2023). The TRITD4Bv1G179760 gene on chromosome

4B (607000032 – 607006–701 bp) encodes a chloroplast RNA-binding

protein (RBP). The RBPs govern many aspects of RNA metabolism,

including pre-mRNA processing, transport, stability/decay, and

translation, and are also involved in regulating the response to

abiotic stresses (Ambrosone et al., 2012; Muthusamy et al., 2021; Yan

et al., 2022), including drought in wheat (Xu et al., 2014; Sun et al.,

2020). Transgenic plants were generated in rice to investigate the

potential use of RBPs in the development of drought-tolerant cultivars.

The expression of the Arabidopsis glycine-rich RNA-binding protein

(AtGRP2 or AtGRP7) caused an increase in the number of grains per

panicle, therefore increasing grain yield under drought conditions

(Yang et al., 2014). Our results show that the ADT and RBP genes

were up-regulated at 0-, 14-, and 30 DPA in the DT genotype under

WD conditions, indicating that these genes can be keys in the drought

response in durum wheat, which has not been previously reported.

In root, 11 DEGs were constitutive in the DT genotypes under

WD conditions (Supplementary Table S22). Among them, three

genes were highly up-regulated (Log2FC > 30). The

TRITD1Av1G135510 gene encodes a bifunctional inhibitor/lipid-

transfer protein/seed storage 2S albumin superfamily protein

related to the lipid metabolic process (Quinga et al., 2018). This

gene was up-regulated under osmotic and drought stress in barley

(Paul et al., 2023) and wheat (Pál et al., 2018), respectively. In

addition, it is highly up-regulated in phellem cells, participating in

suberization and/or secondary cell wall development in the roots of

Arabidopsis (Leal et al., 2022). The TRITD2Bv1G203390 gene that

encodes a proline-rich protein DC2.15. The proline-rich proteins

(PRP) are stress-induced and are involved in cell wall modification

and organization (Fan et al., 2014). In a transcriptomic analysis of

DEGs in two alfalfa cultivars with different salt tolerance, the

MS.gene011517 (14 kDa proline-rich protein DC2.15) had higher

and consistent expression under salt stress (Bhattarai et al., 2021).

In addition, PRP may regulate free cellular proline levels during

drought stress to provide drought tolerance in tomatoes (Gujjar

et al., 2018). Finally, the TRITD4Av1G258040 gene that encodes a

Serine/threonine-protein kinase (S/T PK) was also highly up-

regulated in the root of durum wheat. Protein kinases are

essential enzymes that regulate many metabolic pathways through

protein phosphorylation/dephosphorylation to regulate cellular
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functions such as signal transduction and response to abiotic stress

(Mao et al., 2010). The S/T PK is important in maintaining root

morphology during stress conditions (Muhammad et al., 2019). In

wheat, several S/T PKs involved in drought tolerance have been

characterized, such as TaSnRK2.7 (Zhang et al., 2011), TaSnRK2.4

(Mao et al., 2010), PK4 (Rahimi et al., 2021), RPK1 (Rahim et al.,

2022). In durum wheat, the only reported and characterized gene

that encodes for an S/T PK and is associated with drought tolerance

is Td4IN2 (Rampino et al., 2017).
4.4 Metabolic response to drought in
durum wheat

To explore the metabolic response of durum wheat grown

under drought, GC–MS in leaf and root tissues determined polar

metabolites relative abundances. Metabolites play a fundamental

role in drought tolerance since they are considered signaling

molecules (Obata and Fernie, 2012). Overall, 43 metabolites were

identified and quantified, most of them were amino acids, sugars,

and organic acids. This result agrees with other metabolic studies in

wheat under drought stress conditions, where the most abundant

identified metabolites are amino acids, organic acids, and sugars

(Solomon and Labuschagne, 2005; Guo et al., 2018; Marček et al.,

2019; Fadoul et al., 2021). Amino acids are essential plant

metabolites for protein synthesis and cellular function (Ahanger

et al., 2018). Free amino acids act as osmoprotectants and improve

drought-induced nitrogen uptake through reassimilation and

maintaining protein homeostasis (Živanović et al., 2020). In

addition, they also function as scavengers of reactive oxygen

species (ROS) generated in plants under drought conditions

(Kumar et al., 2021). Organic acids are important in energy

metabolism because they are involved in the oxidative and

synthetic pathways of carbohydrates and fatty acids (Fadoul et al.,

2021). Besides this, they are precursors of amino acids and increase

the osmotic potential of the cell, which implies an increased water-

holding capacity (Martinelli et al., 2013; Zeng et al., 2021). Finally,

sugars play an important role in plant metabolism as sources of

carbon and energy in cells, the maintenance of osmotic balance, as

signaling molecules for photosynthesis, and detoxification of ROS

by acting as metabolic signals in stress conditions (Li C. et al., 2016;

Ahmad et al., 2020).

Five metabolites showed differential abundance across 0- and

30-DPA when genotypes under WD conditions in the leaf were

compared. These metabolites were D-mannitol, asparagine, aspartic

acid, L-glutamic acid, and malic acid. The amino acid asparagine is

central to nitrogen storage and transport due to its relatively high

nitrogen-to-carbon ratio and non-reactive nature (Curtis et al.,

2018). Further, it accumulates in high concentrations during

processes such as seed germination and in response to various

abiotic stresses due to its potential role as an osmolyte (Carillo et al.,

2005; Lea et al., 2007). In this study, asparagine levels were higher in

the DS than in the DT genotype under drought stress, consistent

with rice observations (Degenkolbe et al., 2013) and wheat (Yadav
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et al., 2019). The asparagine accumulation may be associated with a

biochemical response to dehydration, likely senescence, that has

negative consequences for yield (Yadav et al., 2019), in agreement

with our results where senescence was an enriched process in the

transcriptomic analysis comparing genotypes under WD

conditions. Glutamic acid participates in different biological

processes, playing an important role in the biosynthesis of

chlorophyll and proline (Franzoni et al., 2021). It has been shown

that the exogenous application of glutathione protected wheat

seedlings from water deficit damage, increasing chlorophyll

pigments and antioxidant enzyme activity and promoting the root

system, shoot growth, and relative leaf water content (Suliman et al.,

2024). Moreover, the overexpression of the cytosolic glutamine

synthetases (GS) 1 and plastidic GS2 genes from wheat enhanced

drought tolerance of both root and leaf tissues in tobacco (Yu et al.,

2020). At 0-DPA, levels of L-glutamic acid were higher in the DS

than in the DT genotype. However, at 14- and 30-DPA the levels

were higher in DT than in the DS genotypes. Therefore, the higher

proline contents in the DT genotype could indicate the greater

tolerance to drought stress, induced by glutamic acid.

In root, four DAMs were constitutive in the comparison

between contrasting genotypes under WD conditions: organic

acids (aconitic acid, aspartic acid, and glyceric acid) and L-Valine.

Aconitic acid is an intermediate in the glyoxylate and tricarboxylic

acid (TCA) cycles produced during the conversion of citric acid to

isocitrate (Min et al., 2018). In wheat, its positive regulation

increases energy for the defense against oxidative stress (Liu et al.,

2020). In this study, aconitic acid levels were higher in the DS

genotype across the three developmental stages under WD

conditions. However, the aconitic acid levels decreased

significantly after 0-DPA in DS genotype with drought stress,

which agrees with previous findings in common wheat (Guo

et al., 2018). Aspartic acid is obtained from a transamination

reaction between glutamate and oxaloacetate, which then

produces the amino acids lysine, threonine, methionine and

isoleucine, in a series of reactions known as the aspartic acid

metabolic pathway (Alfosea-Simón et al., 2021). In common

wheat, exogenous application of aspartic acid has alleviated salt

stress-induced growth decline by enhancing antioxidants,

compatible solutes, and reducing reactive oxygen species (Sadak

et al., 2022). Finally, Weng et al. (2024) showed that eight

metabolites (L-tryptophan, L-valine, L-leucine, glycerol 1-

phosphate, L-threonine, gluconic acid lactone, malonic acid, D-

malic acid) were increased and two (quinic acid, aspartic acid) were

decreased constitutively in a DT genotype of common wheat under

drought stress conditions, similar as it was found in this study.
4.5 Integration of transcriptomic and
metabolomic data

Tolerance to drought involves activating a series of complex

mechanisms by the plant. This begins with the detection of stress,

which activates a signal transduction pathway that activates stress
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response genes that are translated into proteins and compounds

whose main function is to prevent water loss in the cells. Therefore,

the integration of multi-omics data from genomics, transcriptomics,

proteomics and metabolomics analysis allows to obtain a

comprehensive understanding of these complex biological

processes and to identify the key molecular players involved in

the drought response of the plant (Roychowdhury et al., 2023). In

this sense, to identify possible key biomarkers associated with

drought tolerance/susceptibility in durum wheat, the variables

that showed consistent differential expression/abundance across

0- to 30-DPA in each genotype were determined.

Regarding the transcriptomic data of the DT genotype on leaf, the

TRITD2Av1G062130 gene located on chromosome 2A (140,485,202-

140,488,307 bp) that encodes a WRKY transcription factor (WRKY3)

is positioned on the stable QTL “QTN_2A_TGW/GPS.1”, whose SNP

marker in LD is GENE-1342_238. The WRKY proteins constitute a

large family of transcription factors involved in the regulation of

development, senescence and stress tolerance, including drought (Zhu

et al., 2013; Wang et al., 2023). Several studies in wheat have shown

that overexpression of WRKY transcription factors such as

TaWRKY1, TaWRKY10, TaWRKY33, TaWRKY40, TaWRKY75

enhances drought tolerance (Yu et al., 2023). In root, four identified

genes were located on chromosomes 2A and 2B, where stable QTLs

were located. The TRITD2Av1G187060 (Amino acid permease),

TRITD2Av1G178200 (Uridylate kinase), TRITD2Av1G265880

(Organic cation transporter protein), and TRITD2Bv1G172660

(DNA-directed RNA polymerase II, putative) genes, however, none

of them was present within the regions of the detected stable QTLs.

Interestingly, TRITD6Av1G194890 gene that encodes a Galactoside 2-

alpha-L-fucosyltransferase was important in both tissues in the DT

genotype, in agreement with studies showing that this enzyme

participates in drought tolerance (Li S. et al., 2016; Moradi Tarnabi

et al., 2020; Sui and Wang, 2020). Regarding metabolites in the DT

genotype, the malic acid, glyceric acid, myo-Inositol, and L−proline

were good candidates for leaf, and the sugars such as D-fructose and

D-glucose and the amino acid L-proline were appropriate for roots.

This result confirms that the L-proline is an outstanding candidate as

biomarker for drought tolerance, independent of tissue and

developmental stages. Proline accumulation functions as an electron

sink mechanism that can reduce the amount of singlet oxygen present

due to drought stress, contributing to cellular redox balance (Ullah

et al., 2017). In the DS genotype, the catalase (CAT2) was an

interesting gene that responds to drought stress in both tissues.

Therefore, it could be a promising biomarker of susceptibility to

drought in durum wheat. The CAT gene expression regulates growth,

development, and response to environmental stress (Zhang et al.,

2022). The CAT gene family encodes an antioxidant enzyme that

modulates the hydrogen peroxide (H2O2) contents in cells by

translating this toxic compound into water (H2O) and O2− to

reduce ROS contents in cells, produced because of drought stress

(Ghorbel et al., 2023). Finally, the metabolites such as 2-oxoglutaric

acid, D-mannitol and an unknown sugar were good candidates for

leaf, and the amino acids such as L-phenylalanine, L-leucine,

asparagine, L-isoleucine, L-valine, and L-threonine, and the b-

Sitosterol were appropriate for roots.
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To our knowledge, this is the first study evaluating different

omics approaches and their integration to decipher drought

tolerance in durum wheat. The genomic approach identified nine

stable QTLs under rainfed and irrigated conditions across eight

environments. These QTLs were located on chromosomes 2A and

2B and associated with TGW and GPS traits, suggesting that these

regions may be useful in durum wheat breeding programs, where

the goal is to develop varieties adapted to different environments

with a high yield. Through independent transcriptomic and

metabolomic analysis, it was possible to identify genes and

metabolites that show differential expression/abundance across

the different developmental stages (0 to 30 DPA) in the drought-

tolerant genotype of durum wheat. Finally, by integrating omics, a

set of leaf- and root-specific genes and metabolites were identified,

allowing differentiation between the tolerant and susceptible

genotypes of durum wheat. This result permits the determination

of new tissue-specific biomarkers for drought-stress responses in

durum wheat through their characterization and validation in

future studies. These results are valuable and novel in durum

wheat breeding programs for developing resilient and high-

yielding cultivars to ensure food security.
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Ullah, N., Yüce, M., Neslihan Öztürk Gökçe, Z., and Budak, H. (2017). Comparative
metabolite profiling of drought stress in roots and leaves of seven Triticeae species.
BMC Genomics 18, 969. doi: 10.1186/s12864-017-4321-2

Vargas, V. H., Schulthess, A., Royo, C., Matus, I., and Schwember, A. R. (2016).
Transcripts levels of Phytoene synthase 1 (Psy-1) are associated to semolina yellowness
variation in durum wheat (Triticum turgidum L. ssp. durum). J. Cereal Sci. 68, 155–163.
doi: 10.1016/j.jcs.2016.01.011

Wang, H., Cheng, X., Yin, D., Chen, D., Luo, C., Liu, H., et al. (2023). Advances in the
research on plant WRKY transcription factors responsive to external stresses. Curr.
Issues Mol. Biol. 45, 2861–2880. doi: 10.3390/cimb45040187

Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B., et al. (2014).
Characterization of polyploidy wheat genomic diversity using a high-density 90000
single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796. doi: 10.1111/
pbi.12183

Weng, Y., Mega, R., Abe, F., Tsujimoto, H., and Okamoto, M. (2024). Metabolic
profiles in drought-tolerant wheat with enhanced abscisic acid sensitivity. PloS One 19,
e0307393. doi: 10.1371/journal.pone.0307393

Wickham, H. (2010). A layered grammar of graphics. J. Comput. Graph. Stat. 19, 3–
28. doi: 10.1198/jcgs.2009.07098

Xu, T., Gu, L., Choi, M. J., Kim, R. J., Suh, M. C., and Kang, H. (2014). Comparative
functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich
RNA-binding proteins in response to abiotic stresses. PloS One 9, e96877. doi: 10.1371/
journal.pone.0096877

Yadav, A. K., Carroll, A. J., Estavillo, G. M., Rebetzke, G. J., and Pogson, B. J. (2019).
Wheat drought tolerance in the field is predicted by amino acid responses to
glasshouse-imposed drought. J. Exp. Bot. 70, 4931–4948. doi: 10.1093/jxb/erz224

Yadav, B., Jogawat, A., Rahman, M. S., and Narayan, O. P. (2021). Secondary
metabolites in the drought stress tolerance of crop plants: A review. Gene Rep. 23,
101040. doi: 10.1016/j.genrep.2021.101040

Yan, Y., Gan, J., Tao, Y., Okita, T. W., and Tian, L. (2022). RNA-binding proteins: the
key modulator in stress granule formation and abiotic stress response. Front. Plant Sci.
13. doi: 10.3389/fpls.2022.882596

Yang, D. H., Kwak, K. J., Kim, M. K., Park, S. J., Yang, K. Y., and Kang, H. (2014).
Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7
improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci.
214, 106–112. doi: 10.1016/j.plantsci.2013.10.006

Yin, L., Zhang, H., Tang, Z., Xu, J., Yin, D., Zhang, Z., et al. (2021). rMVP: A memory-
efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association
study. Genom. Proteom. Bioinform. 19, 619–628. doi: 10.1016/j.gpb.2020.10.007

Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K. (2014). ABA-dependent and
ABA-independent signaling in response to osmotic stress in plants. Curr. Opin. Plant
Biol. 21, 133–139. doi: 10.1016/j.pbi.2014.07.009

Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I., Yamasaki, M., Doebley, J. F., et al.
(2006). A unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/ng1702

Yu, Y., Song, T., Wang, Y., Zhang, M., Li, N., Yu, M., et al. (2023). The wheat WRKY
transcription factor TaWRKY1-2D confers drought resistance in transgenic
Arabidopsis and wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 226, 1203–
1217. doi: 10.1016/j.ijbiomac.2022.11.234
frontiersin.org

https://doi.org/10.1016/j.plantsci.2017.12.011
https://doi.org/10.3389/fpls.2023.1193284
https://doi.org/10.1086/302959
https://doi.org/10.1086/302959
https://doi.org/10.1016/j.scienta.2017.10.005
https://doi.org/10.3389/fgene.2022.912251
https://doi.org/10.3389/fpls.2021.710867
https://doi.org/10.1016/j.plaphy.2017.10.010
https://doi.org/10.1016/j.plaphy.2017.10.010
https://www.R-project.org/
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.3390/genes14061281
https://doi.org/10.3389/fpls.2021.674470
https://doi.org/10.3389/fpls.2022.987641
https://doi.org/10.1111/j.1399-3054.2010.01383.x
https://doi.org/10.1038/ncomms14196
https://doi.org/10.1126/science.148.3668.33
https://doi.org/10.3390/ijms19082390
https://doi.org/10.1016/j.jprot.2017.05.011
https://doi.org/10.1016/j.jprot.2017.05.011
https://doi.org/10.1007/s00438-019-01544-0
https://doi.org/10.1002/fes3.64
https://doi.org/10.2134/agronj2004.0286
https://doi.org/10.2134/agronj2004.0286
https://doi.org/10.1093/bioinformatics/bty1054
https://doi.org/10.1016/B978-0-12-816451-8.00006-X
https://doi.org/10.1023/A:1022556103536
https://doi.org/10.1080/02571862.2005.10634693
https://doi.org/10.1080/02571862.2005.10634693
https://doi.org/10.1038/s41598-021-91446-2
https://doi.org/10.1155/2020/6870157
https://doi.org/10.3389/fpls.2018.00081
https://doi.org/10.1038/s41598-023-47868-1
https://doi.org/10.1186/s12870-020-02505-1
https://doi.org/10.1186/s12870-020-02505-1
https://doi.org/10.1371/journal.pone.0294236
https://doi.org/10.1186/s12864-017-4321-2
https://doi.org/10.1016/j.jcs.2016.01.011
https://doi.org/10.3390/cimb45040187
https://doi.org/10.1111/pbi.12183
https://doi.org/10.1111/pbi.12183
https://doi.org/10.1371/journal.pone.0307393
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1371/journal.pone.0096877
https://doi.org/10.1371/journal.pone.0096877
https://doi.org/10.1093/jxb/erz224
https://doi.org/10.1016/j.genrep.2021.101040
https://doi.org/10.3389/fpls.2022.882596
https://doi.org/10.1016/j.plantsci.2013.10.006
https://doi.org/10.1016/j.gpb.2020.10.007
https://doi.org/10.1016/j.pbi.2014.07.009
https://doi.org/10.1038/ng1702
https://doi.org/10.1016/j.ijbiomac.2022.11.234
https://doi.org/10.3389/fpls.2025.1540179
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Arriagada et al. 10.3389/fpls.2025.1540179
Yu, H., Zhang, Y., Zhang, Z., Zhang, J., Wei, Y., Jia, X., et al. (2020). Towards
identification of molecular mechanism in which the overexpression of wheat cytosolic
and plastid glutamine synthetases in tobacco enhanced drought tolerance. Plant
Physiol. Biochem. 151, 608–620. doi: 10.1016/j.plaphy.2020.04.013

Zadoks, J. C., Chang, T. T., and Konzak, C. F. (1974). A decimal code for the growth
stages of cereals. Weed Res. 14, 415–421. doi: 10.1111/j.1365-3180.1974.tb01084.x

Zaïm, M., Sanchez-Garcia, M., Belkadi, B., Filali-Maltouf, A., Al Abdallat, A., Kehel,
Z., et al. (2024). Genomic regions of durum wheat involved in water productivity. J.
Exp. Bot. 75, 316–333. doi: 10.1093/jxb/erad357

Zeng, T., Fang, B., Huang, F., Dai, L., Tang, Z., Tian, J., et al. (2021). Mass
spectrometry-based metabolomics investigation on two different indica rice grains
(Oryza sativa L.) under cadmium stress. Food Chem. 343, 128472. doi: 10.1016/
j.foodchem.2020.128472

Zhang, H., Mao, X., Jing, R., Chang, X., and Xie, H. (2011). Characterization of a
common wheat (Triticum aestivum L.) TaSnRK2. 7 gene involved in abiotic stress
responses. J. Exp. Bot. 62, 975–988. doi: 10.1093/jxb/erq328
Frontiers in Plant Science 23
Zhang, Y., Zheng, L., Yun, L., Ji, L., Li, G., Ji, M., et al. (2022). Catalase (CAT) gene
family in wheat (Triticum aestivum L.): Evolution, expression pattern and function
analysis. Int. J. Mol. Sci. 23, 542. doi: 10.3390/ijms23010542

Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F., et al. (2020). Effects of water
stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 12,
2127. doi: 10.3390/w12082127

Zhu, X., Liu, S., Meng, C., Qin, L., Kong, L., and Xia, G. (2013). WRKY transcription
factors in wheat and their induction by biotic and abiotic stress. Plant Mol. Biol. Rep. 31,
1053–1067. doi: 10.1007/s11105-013-0565-4
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